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CROSSING OF AN INCOHERENT INTEGRAL RESONANCE 

'* IN THE ELECTRON RING ACCELERATOR . 

Claudio pellegrinit and Andrew M. Sessler 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

January 26, 1970 

ABSTRACT 

UCRL-19462 

In orie mode of operation of an electron ring accelerator (ERA), 

at the end of compression rings are slowly moved through the radial 

integral betatron resonance ~ = 1. Although the coherent radial 

oscillation frequency of the ring as a whole remains below unity, the 

oscillation frequencies of individual electron are (incoherently) 

caused to, pass through the resonance because of the additional focusing 

from ions trapped in the ring. In this paper the effect of field errors 

on ring major and minor radii is evaluated--theoretically--for the c?-ses 

in which the spread in .the square of the electron oscillation frequency 

(~2) is (a) much larger and (b) much smaller than the contribution to 

the square of the oscillation frequency from the ions (A2 ). It is 

shown that for the ERA, where case (b) applies, the increase in ring 

minor dimensions, for given field errors and rate of resonance crossing, 

is less than in case (a) by a factor of (~A)2. Numerical examples 

show that the degradation of ring quality in case (b) should, with 

suitable attention to the design and construction of the ERA apparatus, 

be acceptably swall. 
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1. INTRODUCTION 

In the electron ringiaccelerators (ERA) now being studied at 

Dubna, 
. i\ 

Berkeley, Karlsruhe, and Garching, } an electron ring is 

I 
compressed in a magnetic field having field index such 

that 0 < n < 1. At the end of compression positive ions are captured 

in the ring, which is subsequently extracted from the compressor and 

brought into an accelerating column having a constant magnetic field 

and hence n = O. 

During the compression process the radial betatron frequency 

ill = Q Q, where Q is the revolution frequency and Q is approximately -r 

given by (1 - n)1/2, stays ~elow Q or, equivalently, Q stays below 

unity. The capture of ions in the electron ring introduces an additional 

focusing force on the electron, which has the effect of increasing Q. 
i 

During the extraction process ngoes to zero, so that, in the absence 

of ions or other additional forces, - Q would become equal to unity. 

As a result of both effects Q crosses the value Q = 1. 

As is well known, when Q = 1 an integer resonance is excited. 

This can produce a large displacement of the electron orbits and hence 

a beam loss. Moreover, even if the beam is not lost it is possible that 

the crossing of the resonance could produce a large increase in beam 

dimension and a corresponding decrease in the electric field that keeps 

the ions inside the ring. As a .consequence, the external electric 

field which is applied so as to accelerate the ring would have to be 

lowered to an uninterestingly small value. 

The increase in oscillation amplitude of a single particle 

crossing an integral resonance at a rate is given 

approximately by 

I ,., 

.1 

I 
I 



'. 

-3- UCRL-19462 

(1-1) 

where R is the beam radius,U the revolution frequency, and (!5BIB) 

the magnetic field perturbation driving the resonance
2

- 5 • 

Formula (1-1) shows, using typical ERA parameters, that in order 

to maintain the increase in amplitude within reasonable limits, the 

requirements on the magnetic field are very strong; for instance, 

0.1 cm., R = 3 cm, and Q = 4 -1 
has assuming x = 10 sec , one 

s 

(!:'BIB) < 10-5• Various possibilities have been suggested for reducing 

Q,so as to avoid crossing the resonance: The use of image forces 

obtained by surrounding the electron ring with a dielectric CYlinder~ 
or.~ slotted metallic CYlinder!), or keeping Q > 1 throughout 

compression and acceleration of the ring by using the azimuthal magnetic 

field generated by a current along the axis of the ring~ • 
The us:e of image forces seems to provide a practical way to 

avoid the resonance crossing when there are only few ions in the-ring, 

but not when the ring is charged with more ions than of the order of 

1% of the electrons. The use of an azimuthal magnetic field to keep 

Q always above unity requires currents in the conductor on the axis 

of the order of 105 A --an inconvenient, but possible, design require- , 

mente 

It has, however, been pointed. out by Van der Meer9), on the, 

basis of qualitative arguments, that the application to the ERA of the 

formula for the single-particle increase of amplitude during the 

resonance crossing may be incorrect. In this paper we study the effect 



-4- UCRL-19462 

of resonance crossing in detail. In particular we consider the case 

when Q would stay below unity in the absence of ions (1. e., the 
I 

coherent integral resonance is not crossed), but is shifted above unity 

by the ion focusing force (i.e., the incoherent integral resonance is 

crossed). We find that in this case the formula (I~l) is not valid and 

that the behavior of the b~am in crossing the incoherent resonance 

depends on the ratio of the spread in the square of the frequency in 

the electron ring, Lf, to the shift in the square of the frequency, 

induced by the ions. 

The results described by (I-I) applies only when the condition 

» 1 , (1-2 ) 

since in this case each electron behaves as a single electron having a 

( 2 .2 )1/2 frequency (.l) +,~ , where (.l) is the frequency due to the external 

magnetic field and image forces, and A is the shift in frequency 

caused by the ions. Thus resonance crossing leads to an increase in 

beam minor dimensions, but no change in the beam center of mass. 

On the contrary, in the case more often encountered in the ERA, 

when 

« 1, (1-3 ) 

there is a (small) change in the local beam center of mass, but the 

beam minor dimension increase is smaller, by a factor of (Lf/A2 ), t~n 

that expected on the basis of (I-I). Hence the limit on the tolerable 

magnetic field imperfections, ~/B (which is set by the strong require-

ment of small minor dimensions of the ring), is lowered and can more 

, 
iI.' 

i 
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easily be satisfied. Thus our detailed analysis supports the general 

conclusions of Van der Meer and is in qualitative agreement with 

"l... to 10 ouserva J.on • 

That the ·simple formula (1-1) does not apply to circular 

electron beams partially or totally neutralized by ions is of importance, 

also, forelectro~ storage rings. In this case, too, due to the long 

beam lifetime, a large number of ions are captured by the beam, when 

clearing field el.ectrodes are not used. Once again, the frequency shift 

introduced by the ions can cause a crossing of an integer resonance. 

Both the conditions that Q remain below the nearest integer during the 

ion loading process and condition (1-3) are well satisfied in storage 

rings. However, in this paper we have considered only azimuthally 

uniform beams, while the electron beam of a storage ring is bunched. 

Hence, we cannot directly apply our results to storage rings. Notwith-

standing, we think that, at least to a first approximation, the results 

of this work ·in:dic~te that al,so in the case of the storage ring the 
.. 

crossing-of c·the resonance prOduces only,a~>beam' widening" and "thato -this 

widening is not too dangerous because of the strong reduction introduced 

[5.2/11.2 • by the factor This conclusion is in agreement with the experi-

mental observations performed on electron storage rings. 

2. FORMULATION OF THE ffiOBLEM 

We assume that the electrons move on a circular orbit with a 

constant angular velocity .Q, and that they oscillate in a direction 

orthogonal to this orbit under the action of the focusing forces due 

to the external magnetic field and to the ions. The ions are assumed 

to have .zero angular velocity and to oscillate in the same direction as 

.", fsJ 
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the electrons under the action df the focusing force due to the electro-

- static field of the electrons. vle ignore ion-ion forces, since in 

practice the ion density is sufficiently low that these terms are . 

negligible. 

Let us call xk' ek and S j' '¥ j the transverse and the 

azimuthal coordinates of the kth electron and ~th ion. The e~uations 

of motion can be written as 

'¥j = const, I (II-I) 

where 2 
~~. is the focusing force due to the magnetic field, the 

A(e)2 -It term describes the force. of electron on electrons, 

A~i)2[~ _ I(t,ek )) and Mj
2 [Sj - x(t''¥j)) are the forces between 

ions and electrons and a cos (ne
k 

+ ¢) is the perturbation in the 

guide magnetic field. Note that we consider only field bump errors 

and do not include gradient error terms as they are--in practice--

4\ 
negligible J. We consider only the n-Fourier component in the magnetic 

field perturbation, where n Q ~ ~. 

The electron-ion forces are written, in the linear approximation, 

as proportional to the distance of the ~h particle from the local 

center of mass of the particles of the other species, x(t,9) and 

i 
I' 
I • 

-. 
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t(t,~)O The local center of mass can be defined, with the help of the 

step function 

i'(t, e) 

see), as 

= 

= 

~ "k(t) S(6k - e) s(e + de - 9k) 

'): s (ek - e) s (e + de - ek ) 

k 

\ s.(t) S(ljr. - ljr) S(ljr + dljr - 'If.) L J J J 
j 

, 

(11-2 ) 

The nonlinearities of this force, as well as the nonlinearities in the 

external focusing force, are taken into account approximately by 

" 2 _2 A(e)2, and A(i)2 allowing a dependence of ill, ~, on some of the 

parameters of the JRrticles such as oscillation amplitude or energy. 

Newton's. third law implies a subs:i,diarycondi:ti0u, Cl.mqngJ3:t ,th~.A~:l.) 
and Mjo We need not invoke this relation, as well be seen below. 

The quantities ~,Mj' A~e), and ~i) are functions of 

time, because of the changes in the external magnetic field and in the 

number of ions with time. Both these variations are assumed to be 
<:,w" ,_' l 

very sloy C9I!lraredwith the ele~tron arid"ion oscUlation peried.. 

We are only interested in studying the closed-orbit perturbation~ 

due to the magnetic field· imperfections, i.e., the JRrticular solution 

of the nonhomogenous (11-1). 

We will first consider the case in which ~, ~e),~, and 

A~1) are constant in time. Since the driving force, a cos(ne + ¢), 
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is periodic with respect to e, we look for a solution having the same 

periodicity. Let us assume 

= B. cos (n IV. + ¢). 
J ,J 

The local centers of mass are then given by 
i 

x(t,e) = A cos(ne + ¢), 

- -I = B cos(nt + ¢) . 

(1I-3) 

(II~4 ) 

The amplitudes A, B are' given, in the case of a beam containing 

N electron and N. ions uniformly distributed along the circ~~erenceJ 
e ~ 

and assuming that the distribution pf the ~, Bk is 

the azimuthal position, by 

A ( 1 ) = N e 

B = ( 1:.. ) 
N. 
~ 

Substituting (II-3) and (n-4 ) 

N e 

L ~, 
k=l 

N. 
~ 

I B
j 

j=l 

into (rr-l ), 

B. = A, 
J 

we obtain 

independent of 

(1I ... 5 ) 

l\: {"k2 + ~e)2 + ~i)2 ;;2ui- ~e)2 A _ ~i)2 B ~ a. 

(rr-6) 

i' 

'. 

1 

.1 
,~ 
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By use of (11-5), the system of (11-6) can be reduced to 

.. ~ {,\:2 + ~e)2 + ~i)2 _ n£'u2}_ ~i)2 A _ ~e)2 A = a. 

(11-7) 

The first of (11-6), together with (11-5), shows simply that, under the 

action of the external perturbation, the local ion center of mass 

undergoes the same displacement as the local electron center of mass. 

This result is also valid for slow changes of ~'Mk' ~e), 
and A~i), so that in general we can reduce the e~uations of (II-I) to 

an e~uation for the electrons only, namely 

(11_8) 

where we have set A 2 
k = When '\ and ~ are 

constant in time this clearly reduces to (11-7). 

3.' NORMAL MODE ANALYSIS 

We 0ave r..educed the 'prohlem 'to solving (II-H), which task is 

accomplished in this and the next two sections. We can limit ourselves 

to the case in which the variation in time of ~ and Ak is small 

compared with rill. It is then possible to perform a power-series 

expansion of these ~uantities, and to con'sider only terms up to first 

order, "namely, to write 

2 '. 2 
l.ll. = 'l.ll. (t) + r (t - to) , K K 0 

(111-1 ) 

, 
We also assume that randr' are different from zero only in a time 
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interval to - tl during which the resonance is crossed, and that the 

initial and final values of 
2 2 

and ~ +~ are respectively well 
. -e 2 

below and well above the resonant value n Q • Notice, also, that we 

have assumed rand r' to be e~ual for all particles. This is a 

good approximation when the fre~uency spreads for both ill and A are 

small compared with nn. 

We can now obtain a solution of (11-8), assuming x
k 

to be of 

the form 
N 

r 
n=l 

A (t') C (n) exp[i(n8
k 

+ ¢)] , 
n , k 

where the A (t) are unknown functions and the C (n) 
. n k 

(111.2) 

are a complete 

orthonormal set of vectors defined as the eigenvectors of the linear 

system of e~uations 

(III-3 ) 

where -en) C is defined as 

N 
-en) 1 

~ 
C(n) C = 

N k ' e 

as follows from (11-2) aricf(111-2); and r(n) is an eigenvalue. 

Substituting (1II-2) into (11-8) and using (111-1) and (111-3), we get 
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N e 

I 
n=l LA + 2inM. 

n n 

A c(n) -. a • 
n 

Using the orthonormality property of the G~n) , we obtain 

- r' (t - t )N o e 

N e 

\ 
L 
m=l 

(II1-4) 

= aN c(n). 
e 

(III-5 ) 

We assume that A (t) is a function varying slowly with respect to the 
n 

characteristic oscillation periods, so that it is possible to neglect 

the second derivatiye of A (t) in (111-5) and write it as 
n 

2inQ An 7- '[r(n) - ~Q2 + (r + r')(t - to»)An 

N 

- r' (t - t )N o e 

e 

L 
m=l 

= a N c(n) 
e 

(111-6) 

The problem is now reduced to finding the c~ n) and An Ct), i. e., to 

solving (111-3) and (11I-6). 

The solution will depend on the ratio 6
2/A02 , where '6

2 ' is 

the vTidth of the distribution of the freqUenCies~2, and AO 2 is the 

average value of Ak
2 

(We assume that the widths of the distribution 

of ~ and ~ are small compared with the average values of ~ and 

~. ) 
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In the remainder of this paper we will study only the two cases 

I 

/:::,2 
(a) 

A2 
« 1 , 

and ° 
(b) 

/:::,2 
» 1 , 

A 2 

° 
for both of which solutions of (III-3) and (III-6) can be obtained. 

We also notice that we are interested in the determination of 

the two quantities 

-x = 

and 

1 
N 

e 
= (III-7) 

n 

(III-8) 

which are the local center-of-mass amplitude and the root-mean-square 

(rms) beam size. Both x and 0
2

, as well as (III-6), depend on the 

C(n) only through the average values C(n) 
k 

4.DEI'ERMINATION OF THE EIGENVECTORS 

In this section we determine the eigenvectors and eigenvalues . 

of (III-3) in the two cases: (a) /:::,2/A02« 1, and (b) l/A02» 1-

We consider case (a) first; case (b) is rather trivial and is discussed 

at the end of this section. It is convenient to start by solving (111-3) 

for the case of zero frequency spread .. The eigenvectors c(n)o are 
k . 

gi ven, for /:::, = 0, by 

I. 

'oj 

,. 

;-

I 
, ! 

, . 
I 
I , 
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c(n)O 1 2nink/N 
= 

Vi 
e , 

k 
(IV-l) 

6"(n)O 1 ° . = Vi 
, 

n,O 
(IV-2 ) 

where we have employed N as a notation for N . 
e 

The corresponding 

eigenvalues are 

r(n)o = (IV.3 ) 

Notice that all the r(n) are equal, with the exception of reo) • 

For a small frequency spread, we can use perturbation theory 

to determine the C
(n) 
k • Let us rewrite Eq. (111-3) as 

~(O) + l!(l») £(n) = ~ C(n) 
(n) "". 

, (Iv-4) 

where c(n) is a vector of components C(n) 
'" k ' 

~) 2 . 2) 
11. 2 

°kt 
0 

= (illO + 11.0 . - , 
N (IV-5 ) 

(Iv-6) 

222 
and 11.0 are the average values of ~, II.k . For 

fen) is equal to £(n)o as ~iven by (IV-l), and r(n) = tn)O 

as given by (IV-3) 

To apply perturbation theory when 0, one must remember 

that the unperturbed solution is degenerate (all eigenfunctions, 

(0)0 ) except £ ,belong to the same eigenvalue , and use instead of 
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the c(n)O,s for n 1 0 a linear combination of these vectors such _ , r , 

that ,g(1) is dbgona1ized. Calling these new vectors pen), one has 
'" 

p(O) 
:;;: 

c(O)O 
"- '" , 

and 
N-1 

~(n) \ B n C(t)O for n f ° ~ ::;;; 

L t ...., 

t=l 

where 

B n 1 2~int/(N-1) 
= 

(N _ 1)1/2 
e '·t 

It is easy to verify that 

and 

and that 

N-1 N-1 

= ~ L Y 
k=O t=l 

N-1 N-1 

~ > 2 ("\2_ 

k=O t=l 

2 
co ) o 

n f ° , 

1 r ~ 0t f n k11 
X J./2 < ex? _r.1 I·,f_l + N Jr 

(N - 1) L . ...~ ,!) 

, .....•. 

(IV-7) 

(IV-B) 

(IV-9) 

(IV-10) 

(IV-11) 

(!V-1'2 ) 

• 

• 
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The solutio!1 of (rv-4} is no'{ given by 

c(n) 
'" . 

= ern) + L Amn ~(m) , 

mIn 

and, to first order in the perturbation, one has 

( ~*(m) .li(l) ~(n)) 

? r2 
r:(n) - - ( ) .m .0 

'I~ r2 f",*(!1) ~(l)",(n) ) 
(n)::;: (n)O + ~ ~ ~ 

Notice th;:;.t with our choice of o!1e MS also 

(e*(O) M(l) ~(O) _ 0) 

UCRL-19462 

(rV-13 ) 

(rv-lh) 

(rV-15 ) 

so that there is no first-order cQrrection to the coherent fre~uency 
2_(n) 

r(O): The q~nntities C are now easily obtained, and, to first 

order, one has 

c( 0 ) = ~ + first order term) 
'iN 

(rv-16) 

~(n) 1 
( ~*(O) .li(l) ~(n) .> 

C ::;: 

'iN A 2 
0 

(IV-17) 

1 tt 2 2 
::;: 

N'\ 2 
(~ .- Wo ) 

0 
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We can now use these results to simplify (III-6). In the case 

n = 0 the equation contains zero-order terms and first-order terms in 

6
2/A02. Neglecting the first-order terms, one has 

2inQ A . + o = a-{N. (IV-18) 

For n! 0 (III-6) contains first- and second-order terms in 3-/ AO 2 • 

Keeping only lowest-order terms, one has 

- . 2inQ A + 
n 

r' (t - t j{N C(n) A = a N C(n) o 0 (IV-19) 

In case (b) the coupling between particles is negligible and 

the eigenvalues are almost equal to the single particle frequencies, i.e., 

r(n) 2 = ru n 
+ A 2 

n 

The corresponding eigenfunctions are 

and the C(n) 

. 2 2 
= 6 n, k + O[ (AO /[5, )] , 

are given, to lowest order, by 

-en) c 1 
= N .' 

(rv ... 20) 

(IV-2l) 

. (rv-22) 

Equation (III-6) now becomes, neglecting the coupling between particles, 

2inQ A + [ru 2 + A 2 _ rF-Q2 + (r + r')(t to)]An = a. 
n n n 

(IV-23 ) 

• 

• 
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5. DETERMINATION OF THE AMPLITUDE FUNCTIONS 

In this section we solve (IV-18), (IV-19), (IV-23) for the 

functio~s A (t). 
n 

5.1. Case b 

We start from (IV-23), which we write in the form 

where 

l (t) - i g (t) A (t) == -i a , n n n 

-a == 
a 

2!m 

(V-l) 

(V-2 ) 

(V-3 ) 

The solution of (V-l), with the initial 'condition A(tO) == 0, 

is 

A (t) 
n 

::::: -ia [ 

rtf ] 
.. I - "tt 

exp -1 { gn (t )dt 

o 

(v-4) 

Evaluating the integrals, and using the notation 

2 2 -£2/-D = (ill + A - n Q ) 2nQ , n n n 

p = (r + r' )/2nQ , (V-5 ) 
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where 

h(x) ::; C(x) - i S(x) , (v-7) 

and C(x), s(x) are the Fresnel integrals. 

It is usually possible, when p is small and the integral 

extends from well below to well above the resonance, to make the 

approximation 

Since C (:t (0) 

The value of 

A 
n 

= 

D 
n 

~ 
« -1, 

» 1. 

= S(±ro) = + 1 - 2" one has in this case 

- br/4J. 

A after crossing the resonance is then given by 
n 

The final amplitude after crossing the resonance is therefore 

IA I n 

a well-known result. 

(v-8 ) 

(v-9) 

(V-il) 

• 
i 
I 
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5.2. Case a 

In this case the frequency spread 62 is small compared with 

2 
the frequency shift AO' The situation is described by (IV-l8) and 

(IV-19), and is clearly more complicated than case (b). The procedure 

is to solve (IV-l8) for A~ substitute the result in (IV-19), and 

solve for A. The result will be different according to whether the 
n 

coherent frequency, rn~ does or does not cross the resonance. We will 

consider here only the case,in which rnO does not cross the resonance 

(i.e., the coherent integral resonance is not crossed), since this is 

the situation which usually confronts us in practice. Under this 

assumption one can neglect the variation in time of the coherent 

frequency and of A~ and obtain from (IV-l8) 

2 - 2' rno - (n Q) 
(V-12 ) = 

Substituting this, in (IV-l9) one obtains 

where 
2 2 rf-n2 

rno + AO -
D = , 

2nn 

r + r' p = , 
2nQ 

a a '- , 
2nQ 

r' 
(v-l4) q - 2 rfsl rno -
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The solution can again be written, assuming An(tO) = 0, as 

t' 

-i J [D + p(t" 

to 

(V-15 ) 

The integrals of (V-15) can be evaluated by using (v-6) and 

2 

+ D).. DF 1-
+i cos 2p J (v-16) 

Assuming the conditions (V-B) to be satisfied, one obtains an amplitude, 

after crossing the resonance, 

A (t) ~ -i a N c(n) 
n 

exp i [p_~--.;~:O_) +_Dr - i44} , 
(V-I?) 

where negligible contributions from the last term of (v-16) have been 

dropped. By use of (v-14), (V-I?) can be written as 

I 
;. 

:) 
I. 
I 

i· 
! 
I 

j. 

I 



A (t) ~ 
n 

_ i _--:;a_Y"'!"'_n:_Tl_rc_C-:-n....,)...,.. r 1 

C~QCr + r') )1/2 l 
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6. EVALUArCIO:J OF 3F~··1 FCSITIOH NrD SIZE 
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A 2 \J O! 
-e 2 \ 

- n rt) 

n: 
- i 4' 

We arc nmr in a position to eV2.1'lE1.te the local center-of-u.2.ss 

displacement, x, and the rillS beam .... rid th) 5) ... ·rhic!1 "Tere defilled ir-l 

(111-7) and (111-8). 

6.1. Case a: !/\o2 « 1 

Using (IV-J.6)} (IV-1?), (V-12), and (V-1S)} a:1dintroducing the 

quantities 
N-1 

[\4 1 I 2 2 2 
= N { (Dk (DO ) . J (VI-I) 

k=O 

N-l 
2 2 ~4= I \-- 2 -2;rik/N 

N 
(W

k - cc ) e J 

1._ 0 
(VI-2 ) 

k=O 

so th3.t 6
2 

is the ra:s spread in the sqt.:are of t:1.e frequency shi:'tJ 

one obt::.ins 
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- a 
x = 

) 
: i 

[ 
2 2 -£ 2 ]2 wa + AO - n n + (r+rl)(t-tO) n 

X exp i - i 4' 
4iill(r + r' ) 

) 

(VI-3 ) 

a 

( 
2 2 -£ 2 J2 Wo + AO - n Q + (r+rl)(t-to) • rc 

4nn(r + r-' ) 
- ~ 4' -

(VI-4 ) 

If 

1/2 
. (_ rc J » 
~(r + r'V 

1 
2 -£ 2 ' 

W - n n o 
) 

and 

.~ , 



( 

then (VI-3) and (VI-4) become 

a 
-£ 2 ' n .Q 
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~ o 
« 1 

-£ 2 ' n Q 
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(VI-6) 

(VI-8 ) 

Equation (VI-7) shows that, when the rate of change of ill and 

A and the frequency spread are such as to satisfy ·(vr-5) and (VI-6), 

the local beam center of mass is essentially not influenced by the 

resonance crossing (but only by the proximity of the coherent integral 

resonance). However, and under the same conditions, the crossing of 

the resonance can lead to an 111crease of beam size, as shown by (vr-8). 

It is interesting to compare these results with the increase in 

amplitude of a single particle crossing the resonance. For a single 

particle the amplitude after crossing is given by 

Taking, for the sake of comparison, r' ~ 0 the increase in beam size, 

0, is seen to be equal to Xs multiplied by the factor ~2/A02, i.e., 

the ratio of frequency spread to frequency shift. 
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As a numerical exo.mple consider the case of an ERA with parameters 

10 -1 ( ) . -2 . n = 10 sec , R ring r3.dius ~ 3 cm, . LO
O 

-u ~ 2 X 10 0, 

r = 2Cl.b (d(l)ddt) ~ 2 )(10
24 sec-3

J r':= OJ (t/A) ~ 10-
1 

, 

a = _M2 (I5B/B) ~ 3 >< 10
20 (!5B/B) sec -2 J n = 1. The C].uantity r 

corresponds to a case such that 0)010 cr~nges by 0.1 in 10 ~sec, a 

value typica.1 for the ERA. One sees that (VI-5) and (VI-6) are 

satisfied for these parameters. From (VI-7) and (VI-8) one has 

5 ~ 37.5 (LB/3) cm, 

so that a V2.1ue of t::a/B less t~n 10-3 s:.o:.t1d sl.;..ffice to keep the 

effect of the re30r'.B.nCe crossing iTi tr.in t:.ole:-:::..b:Le limits. 

6 2 Ca b A2/ ,\' 2 •• se: L:. • 0 »1. 

From (V-10), (rV-21)J and (1V-22) and from (m -7) and (111-8 L 

we have 

x = e. (." ')1/2 
\en(r + r') j 

and 

2 f 
_-...:a--.;...1r__ <, 1 

nn(r + :-f) L 

2 

1 \ f. (Dk + P (t - to») 
- r?-. L~ exp e ~2p - -; 

k,h 

_ 1 (Dh + P~ -t o),
2 
J 

. Y2p -; 
(VI-10) 

j ! 

• ! , 
;; , . i 

I 

) 



-25-

Assuming ... ag;J.in, tha~~ co~dition (V-e) is satisfied, (VI-9) ar.d (VI-lO) 

become, to a good e.pproxiTi3.tion, 
" 

(\ 

X 
...., o , (VI-II) ...., 

(i ·r 1/2 

5 - :rr (VI-12) -
a li1ll (r + r' ) 

These last results are e~ui\'alent to saying that each particle 

beha.ves as a si~gle rartlcle; so th£:.t; because of the large frequency 

differenc:e b(:tween rarticles} their ce!lter of t:'o.3..SS averaGes to zero 

-
and one g=ts essshti1:'.ll~r onl.T 8. beam wideni!'.g.. But the vTidth increase 

P ? . 
is large:', bj' a f:.tctor of C //~O - J thEm t':!at obtained i:1 case (a). 

VIe are h.c.ebted to G. L'3.moe:::-tson, a::d S. Van· der l~eer 

for stinuls.tb3conversatio:ls a:ld, in ps.rticular, to L. Smith who pointed 

out an error in the original rranuscr:i.pt. 
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