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Prediction of transcript isoforms
in 19 chicken tissues by Oxford
Nanopore long-read sequencing

Dailu Guan1, Michelle M. Halstead1, Alma D. Islas-Trejo1,
Daniel E. Goszczynski1, Hans H. Cheng2, Pablo J. Ross1* and
Huaijun Zhou1*
1Department of Animal Science, University of California Davis, Davis, CA, United States, 2USDA, ARS,
USNPRC, Avian Disease and Oncology Laboratory, East Lansing, MI, United States

To identify and annotate transcript isoforms in the chicken genome, we

generated Nanopore long-read sequencing data from 68 samples that

encompassed 19 diverse tissues collected from experimental adult male and

female White Leghorn chickens. More than 23.8 million reads with mean read

length of 790 bases and average quality of 18.2 were generated. The annotation

and subsequent filtering resulted in the identification of 55,382 transcripts at

40,547 loci with mean length of 1,700 bases. We predicted 30,967 coding

transcripts at 19,461 loci, and 16,495 lncRNA transcripts at 15,512 loci.

Compared to existing reference annotations, we found ~52% of annotated

transcripts could be partially or fully matched while ~47% were novel. Seventy

percent of novel transcripts were potentially transcribed from lncRNA loci.

Based on our annotation, we quantified transcript expression across tissues and

found two brain tissues (i.e., cerebellum and cortex) expressed the highest

number of transcripts and loci. Furthermore, ~22% of the transcripts displayed

tissue specificity with the reproductive tissues (i.e., testis and ovary) exhibiting

the most tissue-specific transcripts. Despite our wide sampling, ~20% of

Ensembl reference loci were not detected. This suggests that deeper

sequencing and additional samples that include different breeds, cell types,

developmental stages, and physiological conditions, are needed to fully

annotate the chicken genome. The application of Nanopore sequencing in

this study demonstrates the usefulness of long-read data in discovering

additional novel loci (e.g., lncRNA loci) and resolving complex transcripts

(e.g., the longest transcript for the TTN locus).

KEYWORDS

transcriptome, annotation, transcript isoform, nanopore, long-read sequencing,
chicken

OPEN ACCESS

EDITED BY

Eveline M. Ibeagha-Awemu,
Agriculture and Agri-Food Canada
(AAFC), Canada

REVIEWED BY

Anthony Bayega,
McGill University, Canada
Amarinder Singh Thind,
University of Wollongong, Australia

*CORRESPONDENCE

Pablo J. Ross,
pross@ucdavis.edu
Huaijun Zhou,
hzhou@ucdavis.edu

SPECIALTY SECTION

This article was submitted to Livestock
Genomics,
a section of the journal
Frontiers in Genetics

RECEIVED 18 July 2022
ACCEPTED 30 August 2022
PUBLISHED 03 October 2022

CITATION

Guan D, Halstead MM, Islas-Trejo AD,
Goszczynski DE, Cheng HH, Ross PJ
and Zhou H (2022), Prediction of
transcript isoforms in 19 chicken tissues
by Oxford Nanopore long-
read sequencing.
Front. Genet. 13:997460.
doi: 10.3389/fgene.2022.997460

COPYRIGHT

© 2022 Guan, Halstead, Islas-Trejo,
Goszczynski, Cheng, Ross and Zhou.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 03 October 2022
DOI 10.3389/fgene.2022.997460

https://www.frontiersin.org/articles/10.3389/fgene.2022.997460/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.997460/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.997460/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.997460&domain=pdf&date_stamp=2022-10-03
mailto:pross@ucdavis.edu
mailto:hzhou@ucdavis.edu
https://doi.org/10.3389/fgene.2022.997460
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.997460


Introduction

Chicken (Gallus gallus domesticus) is the most widespread

domesticated farm animal for egg and meat production, with a

total population of 37.2 billion for the year 2020 (http://www.fao.

org/). Besides its agronomic importance, chicken has contributed

greatly to biological studies on evolution, development, and

immunology. In 2004, the first draft whole chicken genome

was assembled with an estimated set of 20-23,000 protein-

coding genes (PCGs) (Hillier et al., 2004). This effort offered

a genome-wide view for understanding the configuration of the

chicken genome (~1.2 × 109 bp), and the evolution of coding and

noncoding genes in vertebrate genomes. Additional efforts

including high-resolution genetic linkage maps, radiation

hybrid maps, targeted genome sequences, allowed us to know

the chicken karyotype, which consists of 38 pairs of autosomes

and a pair of sex chromosomes (chromosomes W and Z)

(Schmid et al., 2015). Since then, continuous efforts have been

made to improve the completeness of chicken genome. For

instance, Warren et al. (2017) added an additional 183 Mb

sequences and assembled chromosomes 30-33 for the chicken

reference genome. To fill the gaps of the chicken reference

genome, recently two pangenomes were built that reported

additional sequences absent from the GRCg6a reference

genome (Wang K. et al., 2021; Li et al., 2022).

The functional annotation of the chicken genome is also

being produced in parallel. The two most commonly used

databases, i.e., Ensembl (https://uswest.ensembl.org) and

National Center for Biotechnology Information (NCBI,

https://www.ncbi.nlm.nih.gov/) regularly update the chicken

genome annotation. For instance, Ensembl release (V102)

includes 16,779 PCGs and 39,288 transcripts, representing 2.

34 transcripts per gene, which is quite low compared to human

with ~10 transcripts per gene. The high estimate in human can be

attributed to several large global efforts, such as GENCODE,

which is part of the ENCODE (ENCyclopedia Of DNA

Elements) consortium which aims to identify and classify all

gene features in human and mouse genomes. In farm animals,

likewise, the Functional Annotation of ANimal Genome

(FAANG) consortium was formed in order to improve the

annotation of livestock genomes (Giuffra et al., 2019; Clark

et al., 2020). In prior work, Kern et al. (2021) annotated

noncoding genomes of three important livestock species

including chicken, and predicted 29,526 regulatory element-

gene interactions in chickens. In addition, Kern et al. (2018)

identified a total of 9,393 long non-coding RNAs (lncRNAs)

(including 5,288 novel lncRNAs) by utilizing short-read

transcriptomes from eight chicken tissues.

Transcribed regions, though accounting for only ~3% of the

chicken genome, like in other higher organisms, are very complex

due to alternative usage of transcription start sites, splice

junctions, and polyadenylation sites. Alternative splicing has

been shown to play important roles in evolution, phenotypic

diversity, and organ development (Keren et al., 2010; Baralle and

Giudice, 2017; Wright et al., 2022). For example, Yu et al. (2019)

identified five alternative splice variants of the TYR gene

associated with skin melanogenesis in chickens. To annotate

these features, transcriptome profiling provides important and

useful resources (Yandell and Ence, 2012). Jehl et al. (2020)

annotated 1,199 and 13,009 additional PCGs and lncRNA genes,

respectively, (compared to Ensembl V94) using 364 short-read

transcriptomes derived from 25 chicken tissues. In human, a

comprehensive annotation using transcriptomes of 41 tissues

generated by the Genotype-Tissue Expression (GTEx)

Consortium improved transcript prediction for 13,429 genes,

including 1,831 (63%) Online Mendelian Inheritance in Man

(OMIM) genes and 317 neurodegeneration-associated genes

(Zhang et al., 2020). This analysis demonstrates that a detailed

annotation enhances our understanding of genome-to-phenome

connections. Although short-read sequencing is widely used for

annotating human and animal genomes, it cannot accurately

assemble and, thus, resolve the complex structure of transcript

isoforms.

The contiguity of the long-read sequencing technology can

sequence full-length transcripts, therefore, is better suited for

dissecting the complexity of transcript structure compared to

short-read sequencing (Amarasinghe et al., 2020). Iso-Seq by

Pacific Biosciences is one long-read sequencing technology that

is widely used in profiling full-length transcriptomes in several

species including human (Kuo et al., 2020), pig (Beiki et al.,

2019), and rabbit (Chen et al., 2017). In chickens, Thomas et al.

(2014) used Iso-Seq and identified 9,221 new transcript

isoforms in embryonic chicken heart tissue. Later on, Kuo

et al. (2017) annotated 64,277 additional distinct transcripts

(55,315 in brain and 9,206 in embryo) using Iso-Seq plus 5′ cap
selection in chicken brain and embryo tissues. Despite these

pioneering efforts, only a few tissues were studied making it

unlikely that the majority of chicken transcript isoforms have

been identified.

Oxford Nanopore Technologies has provided an alternative

long-read sequencing approach (Amarasinghe et al., 2020),

which has been applied in cattle (Halstead et al., 2021), duck

(Lin et al., 2021) and many other species, but not yet in

chickens. Nanopore long-read sequencing allows for accurate

identification and quantification of transcript isoforms and for

resolving complex isoforms (Byrne et al., 2017; Soneson et al.,

2019; Chen et al., 2021). In this study, we aimed to identify and

characterize transcripts in a diverse set of 19 chicken tissues

(cerebellum, hypothalamus, cortex, duodenum, jejunum, ileum,

cecum, colon, testis, ovary, adipose, gizzard, heart, kidney, liver,

lung, muscle, spleen, and thymus) from adult birds using

Oxford Nanopore long-read sequencing. The data generated

from this study will be a valuable source to improve our

understanding of the complexity of the chicken

transcriptome, and also aid in efforts to associate gene

expression with phenotypic traits.
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Methods and materials

Sample collection

All animals and samples used in this study were obtained in

concordance with Protocol for Animal Care and Use no. 18464

(approved by Institutional Animal Care and Use Committee at

the University of California at Davis). All tissues were from one

of two FAANG pilot projects (FarmENCODE) (Tixier-Boichard

et al., 2021). In brief, highly inbred ADOL experimental White

Leghorn lines 63 and 72 were intermated to produce F1 progeny,

and 4 male and 2 female individuals were euthanized with CO2 at

20 weeks of age. After euthanizing, all tissues were immediately

collected within 1–2 h and stored at −80°C until further use.

RNA extraction and library preparation

RNA extraction and library preparation were performed as

described in Halstead et al. (2021). In brief, frozen tissues were

mashed using a pestle in a mortar filled with liquid nitrogen. Next

Trizol reagent (Invitrogen, Carlsbad, CA, United States) was

added to extract total RNA using the Direct-zol RNA Mini Prep

Plus kit (Zymo Research, Irvine, CA, United States). The integrity

and quality of the extracted RNA was checked using an Experion

electrophoresis system (Bio-Rad, Hercules, CA, United States)

and samples passing quality control were used for library

preparation. First, 50 ng of total RNA in a volume of 9 μl was

mixed with 1 μl 10 μMVNP primer and 1 μl 10 mM dNTPs, then

incubated 5 min at 65°C. The resulting products were used for

strand-switching and reverse transcription reactions (Halstead

et al., 2021). Then barcodes were ligated to the cDNA products

generated from the last step using the Oxford Nanopore PCR

barcoding expansion 1-96 kit (cat. no. EXP-PBC096), which were

further ligated with adapters from the SQK-DCS109 kit following

the manufacturer’s guidelines. Products were loaded onto a

PromethION flow cell (vR9.4.1) for sequencing.

Base calling, quality control, and
preprocessing

After base calling and de-multiplexing with the ont-guppy-

for-minknow (v3.0.5) tool (https://nanoporetech.com/),

NanoPlot (v1.0.0) software was used to summarize read

length and average quality, among others. Then, the

Pychopper v2 software (https://github.com/nanoporetech/

pychopper) was employed to identify and orient full-length

reads, which were mapped to reference genomes (GRCg6a,

Ensembl V102) with options of “-ax splice -uf -k14 -G

1000000” using the minimap2 software (Li, 2018). We

discarded chimeric and multi-mapped reads, as well as reads

with a minimum quality score of 10 using SAMtools (v1.9) (Li

et al., 2009). The HTSeq 0.13.5 software (Anders et al., 2015) was

used for summarizing read counts of genes, which were further

normalized using the “variance stabilizing transformation

(VST)” function with the DEseq2 software tool (Love et al.,

2014). Principal component analysis (PCA) based on normalized

read counts was carried out using the “plotPCA” function of the

DEseq2 (Love et al., 2014).

Reference-guided prediction of transcript
isoforms

To predict transcripts, we used a computational pipeline

supported by the Oxford Nanopore Technology community

(https://github.com/nanoporetech/pipeline-nanopore-ref-

isoforms). Briefly, the oriented full-length reads with fastq format

were pooled together and then mapped to the Ensembl

annotation (GRCg6a, V102) using minimap2 (Li, 2018) in

order to carry out a reference-guided transcriptome assembly.

Before performing transcript assembly, we predicted the length

of the poly A tail using the PolyAtailor tool (Liu et al., 2022).

Then, mapped reads were used to annotate transcripts using the

StringTie2 software (Kovaka et al., 2019) in the long-read mode

(with the option of “-L”). Transcripts on unplaced scaffolds, as

well as those with exon coverage <100% and read depth <2 were
excluded. Only single-exon transcripts with expression

TPM >1 in >2 samples of a tissue, and multi-exon transcripts

with expression TPM >0.1 in >2 samples of a tissue were

retained. Finally, we excluded transcripts categorized as

potential artifacts (see the Comparing predicted transcripts to

previous annotations section).

Prediction of coding and non-coding
transcripts and loci

To predict the coding potential of predicted transcripts, we

employed TransDecoder (https://github.com/TransDecoder/

TransDecoder) and CPP2 (Kang et al., 2017). After prediction

of coding potential, the list of non-coding transcripts was

obtained, which was used to predict whether they are lncRNA

loci using FEElnc (Wucher et al., 2017).

Comparing predicted transcripts to
previous annotations

The predicted transcripts were compared to the Ensembl

(V102) and NCBI reference (V105) annotations using

GffCompare (version 0.11) (Pertea and Pertea, 2020) and

classified into 14 classes. According to Halstead et al. (2021),

the predicted transcripts could be grouped into four categories:

exact match (class code “=”), which means the intron chains of
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our annotated transcripts exactly matched reference annotations;

novel isoform (class codes ‘c,’ ‘k,’ ‘j,’ ‘m,’ ‘n,’ or ‘o’), which means

predicted transcript did not match a reference transcript but

could match a reference gene; novel loci (class codes ‘i,’ ‘u,’ ‘y,’ or

‘x’), which means the predicted transcript did not match either a

reference transcript or a reference locus; and potential artifacts

(class codes ‘e,’ ‘s,’ or ‘p’), which are possibly due to mapping

error, e.g., pre-mRNA fragments, polymerase run-on, etc. To

compare our prediction with novel transcripts reported by

Thomas et al. (2014), we first converted positions of their

transcripts from galGal4 to GRCg6a using the liftover

software (Kuhn et al., 2013). Then the GffCompare tool was

used for comparing our annotation to their transcripts (Pertea

and Pertea, 2020).

Quantification of predicted transcripts

We extracted sequences of predicted transcripts using GffRead

v0.12 (Pertea and Pertea, 2020), which constituted a reference

transcriptome in the FASTA format. Then, we mapped full-length

reads generated by Pychopper (https://github.com/nanoporetech/

pychopper) to the predicted transcriptome using minimap2 (v2.1)

(Li, 2018). The transcript expression was quantified using

Nanocount (v0.2.4) (Leger, 2020). Based on the metric of the

transcripts per million (TPM), we categorized transcripts as highly

(average TPM >10), moderately (1 < average TPM ≤10), or lowly
expressed (average TPM ≤1) (Halstead et al., 2021).

Tissue-specificity analysis

The tissue specificity of transcripts expression across tissues

were evaluated by using a tissue specificity index (TSI) (Julien

et al., 2012; Halstead et al., 2021):

TSI �
max
1≤ i≤ n

(xi)
∑

n
i�1xi

where xi is an average of transcript expression (TPM) in a given

tissue, n is the number of tissues. Transcripts were then

categorized as tissue-specific (TSI ≥0.8), broadly expressed

(TSI <0.5), or biased towards a group of tissues (0.5 ≤
TSI <0.8). To reveal functional biology of tissue-specific

transcripts, we extracted tissue-specific transcript sequences

and aligned them to the SwissProt (protein sequence

database, V5) using the Diamond blastx tool (v2.0.11.149)

(Buchfink et al., 2015). Next, we then carried out functional

enrichment (only considering Gene Ontology Biological Process

terms) using the matched UniProt identifiers via the PANTHER

tool (Mi et al., 2013). The false discovery rate (FDR) approach

(Benjamini and Hochberg, 1995) was used for multiple testing

corrections and FDR value less than 0.05 was set as the

significance threshold.

Differential alternative splicing analysis

To detect differential alternative splicing (DAS) events, we

employed the LIQA software (Hu et al., 2021). Based on our

annotation, we quantified isoform expression using the

“quantify” function. Then DAS events between tissues were

detected using “diff” within the LIQA tool (Hu et al., 2021).

After multiple testing correction (Benjamini and Hochberg,

1995), the threshold of significance was set as FDR <0.05.

Results

To annotate transcripts of the chicken genome, we sequenced

68 samples that covered 19 different and diverse tissues collected

from six individual adult White Leghorn birds (two females: CC

and CD; and four males: CA, CB, M1, M2) (Supplementary Table

S1). The 19 tissues collected were cerebellum, hypothalamus,

cortex, duodenum, jejunum, ileum, cecum, colon, testis, ovary,

adipose, gizzard, heart, kidney, liver, lung, muscle, spleen and

thymus. Long-read sequencing generated a total of 23.8 million

reads, with an average of 344,650 reads per tissue and average

length of 790 bases (Figure 1A; Supplementary Table S2).

PCA and hierarchical clustering of mapped sequencing reads

to the Ensembl annotation (GRCg6a, version 102) revealed that

samples generally clustered according to the origin of tissue as

expected (Figure 1B; Supplementary Figure S1; Supplementary

Table S3). Moreover, we found samples from the same biological

system tended to cluster together, such as brain cortex,

cerebellum and hypothalamus from the central neural system;

and cecum, colon, duodenum, ileum, and jejunum from the

intestinal system (Figure 1B). The one exception was Cecum_CA

as seen in both the PCA plot and hierarchical clustering

(indicated by the red arrow in Figure 1B; Supplementary

Figure S1). Overall, there was a strong correlation between the

number of sequenced reads and the number of expressed genes

(Pearson’s correlation = 0.71, p = 1.30 × 10−11) with the exception

of Cecum_CA, which had extremely low number of sequencing

reads (1,279), suggesting the unexpected clustering is possibly

due to insufficient sequencing depth (Figure 1C). Further

analysis indicated that 672 out of 1,003 full-length reads from

Cecum_CA could align to the GRCg6a genome, corresponding

to a mapping rate of 67%, while the average mapping rate of the

remaining samples is 94.3%. In the light of these findings, we

excluded Cecum_CA in all further downstream analyses.

To assemble potential transcripts, we identified, oriented,

and trimmed full-length reads using Pychopper v2. Further

analysis indicated that all full-length reads had poly(A) tails

with average length of 19 bases (range was 8-637 bases)

(Supplementary Figure S2). Then, StringTie in the long read

mode was used to predict transcripts (https://github.com/

nanoporetech/pipeline-nanopore-ref-isoforms). As a result,

79,757 transcripts in 54,551 loci were identified. After filtering
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out transcripts on unplaced scaffolds, as well as those with exon

coverage <100% and read depth <2, we obtained

74,665 transcripts in 50,569 loci, of which there were

45,132 multi-exon and 29,533 single-exon transcripts.

Moreover, we required multi-exon transcripts with expression

TPM >0.1 and single-exon transcripts with expression

TPM >1 in at least 2 samples of a tissue. By doing so,

61,556 transcripts in 45,284 loci were remained. To further

exclude potential artifacts, we compared assembled transcripts

with NCBI (V105) and Ensembl (V102) reference annotations.

The results are shown in Figure 2A and Table 1. Overall, we

found ~14% of predicted transcripts exactly matched the

reference annotations (Figure 2A). With the Ensembl

annotation, 77% of them were considered as novel transcripts,

either novel isoforms (35%) or novel loci (42%). In addition, ~8%

were potential artifacts, possibly caused by pre-mRNA

fragments, polymerase run-on, or mapping errors (Figure 2A;

Table 2). After excluding these potential artifacts, we kept

55,382 transcripts in 40,547 loci, representing ~1.4 transcripts

per locus (Supplementary Data S1).

The length of predicted transcripts ranged from 49 to

34,500 bases, with a mean length of 1,767 bases (Figure 2B).

The longest transcript is located on chromosome 7 (15,343,033-

15,384,347), and matched the TTN gene encoding the giant

protein titin (NCBI reference sequence XM_046921719.1,

E-value = 0.0, percent of identity = 99.99%) (Figure 2D). This

protein plays an important role in skeletal muscle movement, but

its gene locus has not been annotated in both NCBI (V105) and

Ensembl (V102) GRCg6a references (Figure 2D). Moreover, we

found the annotated 55,382 transcripts are supported by

171,651 unique exons, with an average estimate of 4.34 exons

per transcript (Figure 2C).

To determine the coding potential of the predicted

transcripts, we employed CPC2 and TransDecoder. The

former predicted 21,984 transcripts at 12,999 loci with

coding potential, and the latter one predicted open

reading frames for 30,727 transcripts corresponding to

19,306 loci. In total, we predicted 30,967 uniquely

potential coding transcripts at 19,461 loci, representing

1.6 transcripts per locus (Supplementary Table S4).

Furthermore, we surveyed whether the remaining

24,415 transcripts were lncRNAs. To do so, we employed

the FEELnc and found 16,495 potential lncRNA transcripts

at 15,512 loci (Supplementary Table S4).

FIGURE 1
Data summary of 68 chickenNanopore long-read transcriptome datasets. (A) Bivariate plot (DeCoster et al., 2018) depicting read length (x-axis)
and quality (y-axis) of Nanopore long-read transcriptome reads (B)Hierarchical clustering of 68 chickenNanopore long-read transcriptome samples
used in this study. The dendrogram is built based on gene expressions quantified with transcripts per million (TPM ≥0.1). The distance between
individuals is indicated by 1-r, where r is the Pearson correlation coefficient. The red arrow indicates sample Cecum_CA, which did not cluster
with other cecal samples. (C) Correlation between the number of sequencing reads (x-axis) and the number of expressed genes (y-axis, TPM >0.1).
The Pearson’s correlation is 0.71 (p = 1.30 × 10−11).
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We compared our predictions to two reference annotations

and found the number of transcripts per locus of our annotation

(~1.4) was lower compared to both reference annotations

(Ensembl v102: ~1.8 transcripts per locus; NCBI v105:

~3.3 transcripts per locus), but we predicted ~20,000 more

loci, of which a substantial proportion are lncRNA loci

FIGURE 2
Transcript assembly using Nanopore long-read transcriptome data. (A) Comparisons of predicted transcripts against Ensembl (V102, vsEMBL)
and NCBI annotation (V105, vsNCBI). The transcripts were classified according to the GffCompare software (Pertea and Pertea, 2020). The panels
(B,C) depict the distributions of predicted transcript length and exon numbers, respectively. (D) A screenshot showing the predicted longest
transcript, which is located on chromosome 7 (15,343,033-15,384,347). Blast analysis indicated the transcript matched to the TTN gene locus
encoding the titin protein.

TABLE 1 Comparison of reference and predicted transcripts using GffCompare tool.

Predicted vs. Ensembl Predicted vs. NCBI NCBI vs. Ensembl

Level Sensitivity Precision Sensitivity Precision Sensitivity Precision

Base 70.9 30.6 54.1 41.3 86.6 43.6

Exon 62.6 55.3 55.1 55.6 78.5 64.5

Intron 66.3 74.2 58.8 77.5 88.6 72.2

Transcript 38.7 14.5 21.1 14.5 41.6 21.1

Locus 57.8 17.5 54.3 17.0 59.7 47.3

Missed exons 44,538/179919 (24.8%) 60,304/211468 (28.5%) 10,378/202,369 (5.1%)

Novel exons 63,322/201,393 (31.4%) 54,465/201,393 (27.0%) 50,528/252,210 (20.0%)

Missed introns 41,164/157,463 (26.1%) 53,133/185,508 (28.6%) 6,790/175,889 (3.9%)

Novel introns 22,985/140,865 (16.3%) 19,416/140,865 (13.8%) 30,813/215,950 (14.3%)

Novel loci 32,725/50,569 (64.7%) 29,332/50,569 (58.0%) 5,656/23,336 (24.2%)

The annotation versions of NCBI and Ensembl are V105 and V102, respectively.
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TABLE 2 Number of transcripts as a function of Gffcompare codes.

Codea Description Category Number of predicted
transcriptsb

Number of filtered
transcriptsb

= Complete, exact match of intron chain Exact match 10,818 9,207

c Contained in reference (intron compatible) Novel isoforms 2,596 2,150

k Containment of reference (reverse containment) Novel isoforms 627 551

m Retained intron(s), all introns matched or retained Novel isoforms 1,119 980

n Retained intron(s), all introns matched/covered Novel isoforms 1,832 1,520

j Multi-exon with at least one junction match Novel isoforms 18,460 13,666

e single exon transfrag partilly covering an intron, possible pre-mRNA fragment Potential artifacts 1,138 —

o Other same strand overlap with reference exons Novel isoforms 1,710 1,362

s Intron match on the opposite strand (likely a mapping error) Potential artifacts 3,479 —

x Exonic overlap on the opposite strand (like o or e but on the opposite strand) Novel loci 3,683 2,807

i Fully contained within a reference intron Novel loci 17,495 15,782

y Contains a reference within its intron(s) Novel loci 193 134

p Possible polymerase run-on (no actual overlap) Potential artifacts 1,695 —

u None of the above (unknown, intergenic) Novel loci 9,820 7,223

Total transcripts 74,665 55,382

aThe explanation of Gffcompare codes is retrieved from https://ccb.jhu.edu/software/stringtie/gffcompare.shtml.
bThe number of transcripts were summarized according to the comparing results of the Gffcompare with Ensembl (V102) annotation.

FIGURE 3
Characterization of assembled transcripts. (A) Number of loci in NCBI (V105), Ensembl (V102) and our annotations. (B) Pie chart depicting
GffCompare types to Ensembl annotation (V102). (C) Number of transcripts as a function of protein-coding, lncRNA, and other non-coding loci.
(D) Transcript expression measured as transcript per million (TPM) as a function of different types of transcripts classified by GffCompare tool.
Exact match: GffCompare code “=”, which means the intron chains of our annotated transcripts can exactly match to reference
annotations; Novel isoform: GffCompare codes ‘c,’ ‘k,’ ‘j,’ ‘m,’ ‘n,’ or ‘o’, whichmeans predicted transcript cannot match a reference transcript but
can match a reference gene; novel loci: GffCompare codes ‘i,’ ‘u,’ ‘y,’ or ‘x’, which means predicted transcript cannot match either a reference
transcript or a reference locus. The type ‘y’ only has 134 transcripts, a small proportion that is not visible in the pie chart. Student’ t tests were
carried out between two groups of transcripts, and p values were adjusted by using false discovery rate (FDR) method (Benjamini and Hochberg,
1995).
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(Figures 3A,C). At the transcript level, we classified transcripts

into three categories: 1) exact match: predicted transcripts

completely matched to reference annotations; 2) novel

isoform: predicted transcripts did not match reference

transcripts but matched reference loci; 3) novel loci: predicted

transcripts did not match any reference loci or transcripts

(Figure 3B). Concordantly, we found our prediction identified

a high proportion of “novel loci” transcripts (47%), followed by

“novel isoforms” (37%) when compared to the Ensembl

annotation (V102) (Figure 3B). A similar pattern was

observed when compared to the NCBI annotation

(Supplementary Figure S3). By further comparing lncRNA loci

predicted in this study with those predicted by Jehl et al. (2020),

we found ~83% of our predicted lncRNA transcripts matched

their annotations (Supplementary Figure S4). Thomas et al.

(2014) also generated 1,849,786 cDNA sequencing reads that

identified 9,221 novel transcripts in embryonic chicken heart

using Pacific Biosciences long-read technology. However, the

unavailability of their full annotation prevented us to make a

complete assessment, but when comparing their available novel

transcripts with our annotation, we found 89% of them

completely or partially matched. There are still

1,000 transcripts categorized as “novel loci” (Supplementary

Figure S5). Moreover, we found the transcripts grouped into

the “novel isoform” and “novel loci” categories tended to be lowly

expressed, while the expressions of transcripts in “exact match”

group are significantly higher (Student’s t-test, FDR <0.01,
Figure 3D).

Next, we sought to identify tissue-specific transcripts. By

quantifying transcript expressions, we found the number of

FIGURE 4
Analysis of tissue-specificity across tissues. (A) Tissue specificity index (TSI) as a function of different types of transcripts classified by
GffCompare. Code “= ”means the intron chains of our annotated transcripts can exactlymatch to reference annotations (Exactmatch); Codes ‘c,’ ‘k,’
‘j,’ ‘m,’ ‘n,’ or ‘o’mean predicted transcript cannot match a reference transcript but canmatch a reference gene (Novel isoform); Codes ‘i,’ ‘u,’ ‘y,’ or ‘x’
means predicted transcript cannot match either a reference transcript or a reference locus (novel loci). (B) Transcript expression measured as
transcript per million (TPM) as a function of TSI. We grouped transcripts according to their expressions. (C) Number of tissue-specific transcripts in
each tissue. (D) A screenshot showing a novel transcript only predicted by our data, which is located on chromosome 4 (52,482,563–52,492,561).
(E) TPM expressions of the predicted lncRNA transcript shown in the panel (D). The transcript is highly expressed in testes samples, but not any other
tissue. The FEELnc predicted it as a sense intergenic lncRNA.
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expressed transcripts and loci ranged from 14,841 (liver) to

28,648 (cerebellum), and from 10,285 (liver) to 21,662

(cerebellum), respectively (Supplementary Figure S6). The

tissue specificity index (TSI) indicated that the set of “exact

match” transcripts tended to be lowly tissue-specific, while “novel

isoform” and “novel loci” transcripts are highly tissue-specific

(Figure 4A). We observed that the set of transcripts with low

expression tended to have high tissue-specificity, while in

contrast, highly expressed transcripts are commonly found

across many tissues (Figure 4B). Moreover, we identified

tissue-specific transcripts and found the reproductive tissues

(i.e., testis and ovary) have a high proportion of tissue-specific

transcripts, followed by two brain-related tissues (i.e., cerebellum

and cortex) (Figure 4C). For instance, we identified a novel

transcript located on chromosome 4 (52,482,563-52,492,561),

which is specifically expressed in the testes samples (Figures

4D,E). This transcript was predicted as a sense intergenic

lncRNA by the FEELnc software (Wucher et al., 2017)

(Supplementary Tables S4, S5). By aligning sequences of

tissue-specific transcripts to SwissProt (V5) (Buchfink et al.,

2015) and carrying out functional enrichment analysis with

PANTHER (Mi et al., 2013), we found that tissue-specific

transcripts recapitulated tissue biology (Figure 5A;

Supplementary Table S6), e.g., muscle contraction, muscle cell

differentiation enriched in muscle and heart tissues, trans-

synaptic signaling and nervous system development in

cerebellum and brain cortex, and B cell receptor signaling

pathway in spleen (Figure 5A; Supplementary Table S6), a

finding concordant with previous results (Yang et al., 2018;

Fang et al., 2020).

The utilization of large scale of tissues allowed us to

investigate which tissue is best able to capture the most

transcripts and annotate the chicken genome. Herein we

tried to detect the number of unique transcripts expressed as

a function of more tissues added. By doing so, we found brain-

related tissues (i.e., cerebellum and cortex) could detect higher

FIGURE 5
Functional enrichment of tissue-specific transcripts and differential alternative splicing analysis. (A) Heatmap depicting the negative log10FDR
(false discovery rate) values for the top 10 Gene Ontology (GO) Biological Process terms. At the right side, we show several examples of GO terms, as
well as their FDR values. (B) Number of unique transcripts detected as a function of tissues added. Transcripts are categories into three types (see
Methods). (C). Sashimi plots of CYB561A3 gene that showed DAS between heart (red) and testis (blue).
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number of transcripts as expected (Figure 5B; Supplementary

Table S7). In addition, our design that includes a diverse set of

19 chicken tissues offers the opportunity to analyze DAS events

between chicken tissues. To do so, we quantified isoform

expression and identified differential alternative splicing

events using LIQA (Hu et al., 2021). As shown in

Supplementary Figure S7 and Supplementary Table S8, we

found 4,211 loci showing DAS events between tissues

(FDR <0.05). For instance, the most significant locus is the

CYB561A3 gene showing DAS between heart and testis (FDR =

9.12 × 10−16, Figure 5C). This gene encodes cytochrome

B561 family member A3 whose functions are related to

cellular iron homeostasis and mitochondrial respiration

(Wang et al., 2021).

Discussion

A well-annotated chicken genome is essential in associating

genetic variation to phenotypic variation, and there are a number of

ongoing efforts through the Functional Annotation of Animal

Genomes (FAANG) consortium (Andersson et al., 2015), which

primarily focuses on non-coding functional elements in farm

animals including chicken (Kern et al., 2021). In this study,

using Oxford Nanopore long-read sequencing on 68 samples

from 19 different chicken tissues, we initially annotated

79,757 transcripts in 54,551 loci, while the subsequent filtering

resulted in the exclusion of ~2,000 transcripts. Though all reads

used for transcript assembly were predicted to have poly A tails, we

also had TPM expression of multi-exon transcripts >0.1, a

threshold widely used in the human GTEx project that is robust

and sensitive for lowly-expressed genes (Gu et al., 2022; The GTEx

Consortium, 2020). Since detection of single-exon transcripts is

error-prone, we used amore stringent threshold (TPM>1 in at least
two samples of a tissue). Finally, our prediction resulted in the

identification of 55,382 filtered transcripts derived from 40,547 loci,

representing ~1.4 transcripts per locus, an estimate lower than the

Ensembl (~1.8 transcripts per locus), and the NCBI annotations

(~3.3 transcripts per locus). The lower estimate in our study might

be due in part to the higher number of annotated loci (N = 40,547),

i.e., around 2.6-fold higher than both reference annotations.

The number of predicted loci with a transcript in this study

was substantially higher than two reference annotations (Esembl

V102: 27,955 transcripts in 15,305 loci; NCBI V105: 51,222 in

15,706 loci), while our prediction is lower than Kuo et al. (2017)

who annotated 60,000 transcripts and 29,000 genes using the

Pacific Biosciences Iso-Seq approach. Unfortunately, the

unavailability of their annotation hindered us to make a full

comparison. Specifically, we predicted a higher proportion of

lncRNA loci, indicating that reference annotations did not

annotated lncRNAs well. Indeed, Jehl et al. (2020) annotated

an additional 13,009 lncRNA genes (compared to Ensembl V94)

using 364 chicken short-read transcriptomes derived from

25 tissues. Furthermore, when we compared our lncRNA

transcripts to Jehl et al. (2020), we found over 80% of them

completely or partially matched. Still, our annotation contains

4,953 additional novel lncRNA transcripts in spite of using the

lncRNA prediction tool FEELnc (Wucher et al., 2017), which was

also used by Jehl at al. (2020). This increase might be due to the

higher sensitivity of long-read sequencing (Lagarde et al., 2017).

Moreover, we found >89% of novel transcripts reported by

Thomas et al. (2014) could match our prediction. These

results collectively suggest that our annotations are reliable.

Compared to the reference annotations, we observed a

higher percentage of novel loci (~47%) compared to a

parallel effort in cattle (Halstead et al., 2021) where 6% of

the predicted transcripts did not match to a reference gene).

Also, the exact matched transcripts predicted in this study were

lower (16% in our study vs. 21% in cattle) though the cattle

study did include more tissues (32 in total). Potential reasons

for these differences are low number of samples, possible

degradation of RNA, or low sequence depth. We also cannot

rule out the possibility that the annotation of the bovine

reference genome is better compared to the one for chicken.

It should be noted that a substantial proportion of novel loci

predicted by us are lncRNA with many matching a previous

study (Jehl et al., 2020). These results suggest more efforts for

annotating the chicken genome are needed in the future.

Improved annotation remains even true for the human

genome where a recent study found that 36.4% of full-length

transcripts were classified as “novel” in the human cortex

(Leung et al., 2021). Similarly, another study also reported

17%–55% novel isoforms in human breast cancer samples

(Veiga et al., 2022). These studies, together with ours,

indicate long-read sequencing is a superior approach for

discovering novel isoforms and annotating genomes.

The number of transcripts reported by this study, other

studies, and reference genome annotations varies widely,

ranging from 27,955 to 74,665. One possible explanation is

differences in sequencing depth. Our study generated on

average 300,000 reads per sample, ranging from 99,798

(Spleen_CD) to 686,752 (Spleen_CC), while Kuo et al. (2017)

generated 805,606 reads in brain and 247,626 reads in embryo.

Another possible interpretation is that the number of detectable

transcripts is tissue-dependent. Indeed, our study with similar

sequencing depth also detected variable number of expressed

transcripts across tissues, ranging from 14,841 (liver) to 28,648

(cerebellum). These observations suggest that surveying as many

diverse tissues as possible will aid in the detection of tissue-

specific transcripts and, thus, better annotate the genome of

interest. It is reported that brain tissues have a higher level of

alternative splicing, such as skipped exons, alternative 3′ splice
site exons, or 5′ splice site exons (Yeo et al., 2004; Melé et al.,

2015). Our analysis supports this notion, suggesting brain-related

tissues are better for annotating an animal genome. The

consistent pattern of the higher number of transcripts
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observed in brain possibly reflects the complexity of the tissue

biology (Naumova et al., 2013; Fang et al., 2020). Moreover,

whole embryo is also expected to contain many transcripts since

it contains all organs. Unfortunately, our study design did not

include the whole embryo, but in the Kuo et al. study (2017), this

expectation was not found as 55,932 transcripts were identified in

the brain while only 9,368 transcripts were revealed in the

embryo.

Previous reports (Sims et al., 2014; Su et al., 2014;

Oikonomopoulos et al., 2020) have estimated the power of

long and short read RNA sequencing, e.g., Nanopore

sequencing needs 40-fold less reads. Based on this estimate, at

least 7.5 million long-reads are required per sample, which is

becoming more economically feasible given the continued

decline in sequencing costs across all platforms. Our study

generated ~300,000 reads per sample, indicating our study

likely missed a proportion of lowly expressed transcripts due

to the low sequencing depth. This interpretation is also reflected

where each gene in our study only produced ~1.4 transcripts per

locus, while each human gene is annotated with ~10 isoforms

(Mathur et al., 2019). In closing, although our study annotated a

substantial proportion of novel transcripts, as pointed out earlier,

future efforts such as pursuing additional developmental stages

and deeper sequencing of transcriptomes are required to fully

annotate the chicken genome.
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