
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
FSM-Centric Speculative Parallelization for Scalable Data Processing

Permalink
https://escholarship.org/uc/item/5d5997zb

Author
Qiu, Junqiao

Publication Date
2020

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-ShareAlike License, availalbe at https://creativecommons.org/licenses/by-
nc-sa/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5d5997zb
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

FSM-Centric Speculative Parallelization for Scalable Data Processing

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Junqiao Qiu

September 2020

Dissertation Committee:

Dr. Zhijia Zhao, Chairperson
Dr. Nael Abu-Ghazaleh
Dr. Rajiv Gupta
Dr. Zizhong Chen

Copyright by
Junqiao Qiu

2020

The Dissertation of Junqiao Qiu is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

First and foremost, I am extremely grateful to my PhD. advisor, Dr. Zhijia Zhao,

for his guidance, patience, and support. I would like to thank Dr. Zhijia Zhao for leading

me into the research in the field of Parallel Computing. Without his great support and

guidance, it is impossible for me to get the Ph.D. degree in Computer Science in US.

I would like to thank Dr. Nael Abu-Ghazaleh, Dr. Rajiv Gupta, and Dr. Zizhong

Chen for serving on my Ph.D dissertation committee. They provided me insightful com-

ments and valuable suggestions to help me finish this dissertation and the defense.

I would like to thank my lab-mates and friends for helping me in various ways: Lin

Jiang, Umar Farooq, Amir Hossein Nodehi Sabet, Xiaolin Jiang, Chengshuo Xu, Xiaofan

Sun, Xizhe Yin. I am grateful for the joyful chats we had, encouraging words you gave, and

the time we fought hard together.

I would like to thank a special friend, Wenmei Jiang, for encouraging me not to

give up even though the life might be so difficult. I really hope you can be happy forever.

Words cannot express my gratitude to my family. Without their unconditional

love and unflagging support, I could not have gone this far.

Publication Acknowledgement

I acknowledge part of this dissertation has been published previously in the fol-

lowing conferences.

• Chapter 2 was previously published [99] in Proceedings of the 2016 International

Conference on Parallel Architectures and Compilation (PACT). 2016

iv

• Chapter 3 was published [100] in Proceedings of the International Conference on Su-

percomputing (ICS). 2017.

• Chapter 5 was published [98] in Proceedings of the 25th International Conference on

Architectural Support for Programming Languages and Operating Systems (ASPLOS).

2020.

v

To my parents, and my lost child.

vi

ABSTRACT OF THE DISSERTATION

FSM-Centric Speculative Parallelization for Scalable Data Processing

by

Junqiao Qiu

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2020

Dr. Zhijia Zhao, Chairperson

Parallelism is key for designing and implementing high-performance data analyt-

ics on modern processors. However, many data processing routines cannot be executed in

parallel, due to the sequential nature of their underlying computation models. This disser-

tation focuses on an important class of sequential data processing routines that are driven

by or can be modeled as finite-state machines (FSMs). It proposes a series of speculation-

based parallelization and modeling techniques to improve the parallelism and scalability

of FSM-based computations. Moreover, it successfully applies the FSM-based speculative

parallelization to non-FSM computations, significantly expanding the applicability of the

proposed techniques.

More specifically, we first introduce multi-level speculation by integrating the

instruction-level and SIMD-level parallelism into the existing multicore-level speculative

parallelization. We then systematically model the scalability of speculative FSM paralleliza-

tion and point out its limitations. To address them, we design two novel optimizations: path

fusion and higher-order speculation, which together bring the scalability to another level for

vii

FSMs that are conventionally hard to parallelize effectively. Finally, we demonstrate that,

with rigorous static analysis, we can precisely model bitstream computations with FSMs,

hence solve their parallelization with existing FSM parallelization techniques.

viii

Contents

List of Figures xii

List of Tables xiv

1 Introduction 1
1.1 Dissertation Overview . 3
1.2 Contributions . 4

1.2.1 Fine-Grained FSM Parallelization 4
1.2.2 Scalability-Sensitive Speculative Parallelization 5
1.2.3 Scalable FSM Parallelization . 6
1.2.4 Non-FSM Applications Parallelization 6

2 Fine-Grained Speculative Parallelization for FSM Computations 8
2.1 Introduction . 8
2.2 Background and Problem . 10

2.2.1 FSM and Its Dependences . 10
2.2.2 Coarse-Grained Speculative Parallelization 11

2.3 Fine-Grained Parallelism . 14
2.3.1 Three Dimensions . 14
2.3.2 Efficiency Analysis . 16

2.4 MicroSpec . 22
2.4.1 Overview . 22
2.4.2 Techniques . 23
2.4.3 Optimization . 28
2.4.4 Implementation . 31

2.5 Evaluation . 31
2.5.1 Methodology . 32
2.5.2 Benchmarks . 33
2.5.3 Results . 36

2.6 Summary . 42

ix

3 Scalability-Sensitive Speculative Parallelization for FSM Computations 43
3.1 Introduction . 43
3.2 Motivation . 47
3.3 Overview . 50
3.4 Architecture-Independent Scalability Analysis 55

3.4.1 FSM Characterization . 55
3.4.2 Scalability Analysis . 57

3.5 Towards Architecture-Aware Scalability Analysis 64
3.5.1 Architecture Effects . 64
3.5.2 Integration of Architecture Factors 66

3.6 Implementation . 68
3.7 Evaluation . 68

3.7.1 Methodology . 69
3.7.2 Model Accuracy . 70
3.7.3 Performance Improvement . 72
3.7.4 Energy Saving . 73

3.8 Summary . 74

4 Scalable FSM Parallelization via Path Fusion and Higher-Order Specula-
tion 76
4.1 Introduction . 76
4.2 Background . 78
4.3 Path Fusion . 83

4.3.1 Motivation . 83
4.3.2 Static Path Fusion . 85
4.3.3 Dynamic Path Fusion . 89

4.4 Higher-Order Speculation . 93
4.4.1 Speculation Order . 93
4.4.2 Benefits of Higher-Order Speculation 95
4.4.3 Iterative Speculation . 97

4.5 Parallelization Scheme Selection . 100
4.6 Evaluation . 104

4.6.1 Methodology . 104
4.6.2 Performance . 106
4.6.3 Scalability . 111

4.7 Summary . 113

5 Challenging Sequential Bitstream Processing via Principled Bitwise Spec-
ulation 114
5.1 Introduction . 114
5.2 Background . 119
5.3 Overview . 122
5.4 Static Dependent Bit Analysis . 122

5.4.1 Dependent Bit: Motivation . 123
5.4.2 Dependent Bit Analysis . 126

x

5.4.3 Algorithms . 128
5.5 Modeling Bitstream Programs . 132

5.5.1 FSM Construction . 132
5.5.2 Partial and Virtual FSMs . 136

5.6 Runtime Speculation . 137
5.6.1 FSM-based Speculation . 137
5.6.2 Fast Recovery from Misspeculation 140

5.7 Implementation . 141
5.8 Evaluation . 142

5.8.1 Methodology . 142
5.8.2 Static Analysis and Modeling . 144
5.8.3 Speculative Parallelization . 146
5.8.4 Case Study: Enabling Data-Parallel icgrep 149

5.9 Summary . 150

6 Related Work 151
6.1 Speculative Parallelization . 151
6.2 Enumerative Parallelization . 152
6.3 Bit-Level Analysis and Parallelism . 153

7 Conclusions 155

Bibliography 158

xi

List of Figures

1.1 An FSM Example . 2
1.2 Scalable FSM-Driven Data Processing . 3

2.1 Example of State Convergence. 13
2.2 Performance of Naive Unrolling . 26
2.3 Spec.-Oriented Data Transformation . 30
2.4 Speedups for Biological Benchmarks . 37
2.5 Speedups for Snort Benchmarks . 39
2.6 Speedups for Mixed FSM Benchmarks . 40
2.7 Performance Improvements of specTrans . 41

3.1 Suboptimal Speedup of Existing Methods [138] on Larger-scale Platforms
(256-core Xeon Phi). 45

3.2 Projected Scalability v.s. Actual Scalability 48
3.3 Overview of S3 . 51
3.4 Example of State Convergence in FSM Transitions 56
3.5 Comparison of Speedup Curves from Different Models. (x-axis is the number

of cores; y-axis is the speedup) . 71
3.6 Speedup Comparison between S3 and The State of The Art [138] on Three

Architectures: Xeon Phi, Haswell, and Ivy Bridge 73

4.1 FSM Example . 79
4.2 State Enumeration . 80
4.3 FSM Example with Poor Convergence . 81
4.4 State Speculation . 82
4.5 Sequential Validations . 82
4.6 NFA and Its Execution . 84
4.7 Static Fused FSM for the FSM in Figure 4.3 88
4.8 Number of States in Fused FSMs . 89
4.9 Data Structures for Dynamic Path Fusion 91
4.10 Example Execution with Dynamic Path Fusion 92
4.11 Earlier and Meaningful Validation . 96

xii

4.12 Improved Speculation Accuracy . 97
4.13 Illustration of Iterative Speculation . 99
4.14 Decision Tree for Scheme Selection . 103
4.15 Scalability of Representative Cases . 111
4.16 Speedups of Each Scheme under Different Input Sizes 112

5.1 Bitstream Processing Example (LBSAdd [14]). 115
5.2 Bitstream Programs v.s. Sequential Circuits. 118
5.3 Text Stream to Bitstreams Conversion [75, 76, 15, 41]. 120
5.4 Bitstream Transformations in XML Parsing [76] (to make the bitstreams

easier to read, zeros are marked as dots). 121
5.5 Workflow of Principled Bitwise Speculation (PBS) 123
5.6 Example Entry-Point Liveness Analysis (backward). 129
5.7 Bit Status Analysis (forward&backward). 131
5.8 Calculation of Dependent Bits for Example in Figures 5.7 and 5.6 (for Bunknown,

only the relavent elements are shown). 132
5.9 Example FSM (Mealy machine) and Truth Table. 133
5.10 Truth Table and FSM (partially shown) for the Running Example (see Fig-

ure 5.1 and Section 5.4.3). 135
5.11 Lookback-based Speculative FSM Parallelization. 139
5.12 Example Fast Recovery from Misspeculation. 140
5.13 Speedup of Parallelized Kernels (64-core Machine). 146
5.14 Scalability (Large Inputs on 64-core Machine). 148

xiii

List of Tables

2.1 MicroSpec Framework . 32
2.2 Protein Motifs . 33
2.3 Snort Rules. 34
2.4 Summary of FSM Benchmarks. 36
2.5 Unrolling Factor Selection . 37
2.6 Cost of specTrans (ms) . 41

3.1 Architectures in Evaluation . 69
3.2 FSM Benchmarks and Their Properties . 70
3.3 Optimal Configurations from Different Methods 72
3.4 Energy Saving by S3 (baseline: Default Setting) 74

4.1 Qualitative Comparison of Parallelization Schemes 102
4.2 FSM Benchmarks . 106
4.3 Speedup Comparison . 107
4.4 Statistics of Path Fusion . 108
4.5 Speculation Accuracies . 110

5.1 Bitstream Kernels in Evaluation. 143
5.2 Static Analysis Results . 144
5.3 Evaluation of PBS on icgrep. 150

xiv

Chapter 1

Introduction

As a basic computation model, finite-state machine (FSM) embodies a variety

of important applications, ranging from intrusion detection [134, 71, 114, 9] and data de-

coding [67, 113] to motif searching [109, 29], rule mining [129], and textual data analyt-

ics [92, 42, 30]. For its fundamental role in many performance-critical applications, it is

anticipated that emerging architectures will feature hardware supports for FSM computa-

tions, including accelerators such as automata processor [32].

Unfortunately, the execution of an FSM is known to be “embarrassingly sequen-

tial” [8, 138] due to the inherent dependences among state transitions – in each state

transition, the current state always depends on the prior state 1. Figure 1.1 shows an

example FSM with six states. The valid transitions in an FSM can be represented as a

table, called transition table. Given an input string, the execution of an FSM starts from a

predefined state (called initial state). Each time it reads one symbol from the input string.

1Here, it refers to a deterministic FSM; Non-deterministic FSMs can be converted to deterministic ones via

a classic conversion algorithm [2].

1

BA

F E

CD

0�

1�
0�0�

1�

0�

0�1�
1�

1�

0�

1�
E B
B C
B D
D A
E F
F A

0 1

A
B
C
D
E
F

(a) FSM� (b) Transition Table�

0 1 1 0 … �

(c) Dependences�

A E F A

Chunk 0 Chunk 1

?

Figure 1.1: An FSM Example

The FSM looks up the transition table based on the current state and the read symbol to

find and transition to the next state. The dependence between the current state and next

state exists at every transition step. These dependences form a tight dependence chain,

inherently preventing any parallelism from being exposed. Assume the input to the FSM is

partitioned into two chunks, as shown in Figure 1.1, each of which is then assigned to one

thread to process. Due to the dependences among state transitions, the starting state for

the second thread would be unknown, until the first chunk has been processed – the ending

state of the first chunk is the starting state of the second chunk.

State of The Art. To address the inherent state dependences in FSM computations,

existing work [50, 62, 138, 83, 137, 99, 100] has followed two basic parallelization schemes:

(1) speculative parallelization [138] and (2) parallel prefix-sum [83] . The former breaks

the dependences by predicting the states at the beginning of a divided input chunk. In

the cases that some predictions fail, reprocessing would be needed to ensure correctness.

Instead of making prediction, the latter scheme needs no prediction at the beginning of an

2

input chunk. Instead, it enumerates all the possible states, which always cover the actual

one. With either of the two ways, different input chunks can be processed in parallel.

FSM-based
Data Processing

Non-FSM Applications
(bitstream processing)

P1: Granularity
• fine-grained
• ILP/SIMD

P2: Scalability Modeling
• performance
• energy

P3: Scalability Optimization
• path fusion
• higher-order speculation

P4: Applicability
• non-FSM code
• bitwise analysis

Figure 1.2: Scalable FSM-Driven Data Processing

1.1 Dissertation Overview

The benefits of existing FSM parallelization solutions are restricted in several

dimensions. First, the speculative parallelism is limited to the coarse granularity – they are

unaware of the more fine-grained instruction level and vector level parallelism prevalent on

modern CPUs. Second, the existing FSM speculation frameworks are scalability insensitive

– they aggressively employ all the available cores on the CPUs, which might not only waste

energy, but also suffer from suboptimal performance. Third, despite promising results

of speculative parallelization and parallel prefix-sum, the efficiency of both parallelization

3

schemes highly depends on the properties of the FSM. For FSMs exhibiting limited state

convergence, the former is bottlenecked by the serial reprocessing among the misspeculation

cases, while the latter suffers from the overhead of maintaining multiple execution paths.

Last but not least, the existing solutions are designed for computations that explicitly use

FSMs as the underlying models, limiting their applicability. Figure 1.2 summarizes the

above limitations as the granularity, scalability, and applicability issues.

In this dissertation, we tackle all issues discussed above with practical parallel

programming techniques, systematic performance modeling, and rigorous program analysis

and optimizations.

1.2 Contributions

1.2.1 Fine-Grained FSM Parallelization

First, this dissertation presents MicroSpec, a set of parallelization techniques that

expose fine-grained speculative parallelism to FSM computations. This work makes the

following contributions.

• It proposes two new dimensions to explore the fine-grained parallelism for FSM com-

putations: multi-state speculation and multi-level speculation, which makes the paral-

lelization design more flexible.

• Through a rigorous analysis on three types of parallelism for fine-grained FSM paral-

lelization, it theoretically reveals the efficiency issue in the state-of-the-art and offers

guidelines for the design of efficient FSM parallelization techniques.

4

• It designs and implements four speculation-centric fine-grained parallelization tech-

niques which, for the first time, enable fine-grained speculative parallelization.

• It evaluates the proposed techniques on a large group of real-world benchmarks,

demonstrating significant advancement over the state-of-the-art.

1.2.2 Scalability-Sensitive Speculative Parallelization

In this dissertation, we conduct a systematic scalability analysis for speculative

FSM parallelization. Unlike many other parallelizations which can be modeled by the classic

Amdahl’s law or its simple extensions, the scalability of speculative FSM parallelization is

challenging to analyze due to the non-deterministic nature of speculation and the cost

variations of misspeculation. This work makes the following four-fold contributions.

• This work, for the first time, points out the suboptimality of the state-of-the-art

speculative FSM parallelization when moving to larger-scale parallel platforms.

• It provides a series of rigorous scalability models, including a sample-based conditional

regression technique, that enables the characterization of complex scaling behaviors

in speculative FSM parallelization.

• To facilitate the use of the proposed models, this work designs S3, a scalability-

sensitive speculative parallelization framework that can automatically characterize

the FSM properties and guide the speculative parallelization with the optimal config-

uration at runtime.

• It evaluates S3 on both many-core processor (i.e., the latest Xeon Phi processor) and

5

multi-socket multi-core architectures, and demonstrates large ratio of performance

improvements and significant energy reduction.

1.2.3 Scalable FSM Parallelization

In this dissertation, we introduce two techniques: path fusion and higher-order

speculation, to address the scalability limitation in each basic FSM parallelization scheme,

respectively. This work makes a three-fold contribution.

• First, it introduces the path fusion technique to address the high cost of main-

taining multiple execution paths in state enumeration-based FSM paralleliza-

tion.

• Second, it proposes higher-order speculation for FSM parallelization and de-

signs an iterative speculation scheme to address the serial validation bottleneck

in the existing speculation-based FSM parallelization.

• Finally, this work designs a heuristic-based method to select the better par-

allelization scheme for the given FSM and confirms the effectiveness of the

proposed techniques with a systematic evaluation.

1.2.4 Non-FSM Applications Parallelization

In the dissertation, we look beyond the FSM computations and find an important

class of non-FSM computations, that is, bitstream processing, that may also benefit from

speculative FSM parallelization. This work makes the following major contributions to

bitstream processing.

6

• First, it offers a new perspective to the sequential bitstream processing, bringing

FSM-based dependence modeling to bitstream programs.

• Second, it introduces a static analysis to rigorously find out the dependent bits in

bitstream programs.

• Third, it adopts FSM speculation to bitstream processing with customized mis-speculation

handling.

• Finally, it integrates ideas from static analysis, automata theory, and speculation, into

principled bitwise speculation, and confirms its effectiveness in accelerating real-world

bitstream applications.

7

Chapter 2

Fine-Grained Speculative

Parallelization for FSM

Computations

2.1 Introduction

Exposing parallelism is key to computing efficiency and scalability of software ap-

plications. Modern microprocessors feature a variety of hardware parallelism from instruc-

tion level to on-chip multiprocessors. Effectively leveraging such rich hardware parallelism

critically affects the performance.

This chapter focuses on exposing effective fine-grained parallelism to Finite State

Machine (FSM)-based computations. Even though speculative parallelization and parallel

prefix-sum developed in recent years break the barrier of making FSM computations run

8

parallel, none of them has released the full potential of processing power in today’s proces-

sors. The former relies on sophisticated prediction and only works at thread level; while

the latter only exposes fine-grained parallelism to state enumeration – making transitions

for each possible state. None of them can further shorten the critical execution path of an

individual input segment (see Section 2.3.2).

To address these concerns, this chapter introduces two new dimensions of paral-

lelism, multi-state speculation and multi-level speculation. The former extends the spec-

ulation from commonly used single-value prediction to multi-value prediction, while the

latter expends the speculative parallelism across different layers of hardware parallelism.

Based on a rigorous analysis on parallel prefix-sum and the two new types of parallelism,

this chapter presents MicroSpec, a set of speculation-centric parallelization methods that

maximize the efficiency of FSM computations by effectively exploiting fine-grained specu-

lative parallelism. Specifically, MicroSpec consists of a list of four fine-grained speculation

techniques as well as a speculation-oriented data layout optimization. Together, they are

able to effectively exploit both Instruction-Level Parallelism (ILP) and Single Instruction

Multiple Data (SIMD) parallelism 1.

Our evaluation of MicroSpec on a set of 17 FSM benchmarks from four application

domains demonstrates its effectiveness in accelerating FSM computations, yielding about

14X speedup on 13 benchmarks, boosting the state-of-the-art by up to a factor of four.

1This chapter focuses on vectorization on CPUs, but general ideas are applicable to SIMD parallelism on

GPUs as well.

9

2.2 Background and Problem

2.2.1 FSM and Its Dependences

FSMs form the backbone of a variety of applications, ranging from intrusion detec-

tion and data decompression to compilation and pattern searching. The core computation

of these applications can be formulated as an abstract machine with a finite number of pos-

sible states. Transitions are allowed among certain states when satisfying given conditions.

FSMs can be deterministic or non-deterministic depending on if a condition can lead to a

unique following state. This chapter focus on deterministic ones for their better efficiency 2.

Parallelizing FSM computations are extremely difficult due to their inherent se-

quential characteristics — dependences exist between every consecutive state transitions,

as illustrated by Figure 1.1 (c). A natural way to parallelize its execution is to partition the

input string into to segments, and let thread process segments concurrently, one segment

per thread. However, the starting states are unknown except the first thread (which starts

from initial state ‘A’). A starting state for a segment is essentially the ending state of the

previous segment. These dependences form a chain structure, preventing any concurrent

execution among threads.

Existing work to solve this problem mainly follow two directions: speculative par-

allelization and parallel prefix-sum. Zhao and others [138] followed the first direction and

proposed a coarse-grained speculative parallelization approach to circumvent the depen-

dences. Instead of speculation, Todd and others [83]’s approach enumerates all the possible

cases to leverage classic parallel prefix-sum. They implemented with both coarse-grained

2Non-deterministic FSM can be converted to deterministic ones through subset construction.

10

and fine-grained parallelism to take advantage of different levels of hardware parallelism.

However, each of them has its own limitations. The former is only able to explore coarse-

grained thread-level parallelism, leaving widely available fine-grained hardware parallelism

(such ILP and SIMD) unused. The latter uses fine-grained hardware parallelism only for

enumerating different cases. None of them fully take advantage of the computing power of

today’s microprocessors.

Hence, the goal of this chapter is to maximize the parallel efficiency on modern pro-

cessors by exposing more effective fine-grained parallelism to FSM computations. However,

challenges exist at several levels. First, fine-grained parallelism is notoriously more difficult

to expose comparing to coarse-grained thread-level parallelism due to the lack of friendly

programming models. For example, programming with Intel SSE instruction set requires

knowledge about microarchitecture and is more error-prone. Second, different types of

parallelism exist for FSM computations, it is non-trivial to find out which ones are more ef-

fective at fine-grained levels. Third, fine-grained hardware parallelism varies across different

architectures. For example, some microarchitectures may not support gather instruction,

which is critical for fine-grained FSM parallelization (see Section 2.4.2).

2.2.2 Coarse-Grained Speculative Parallelization

As this chapter mainly follows the first direction – speculation-based paralleliza-

tion, we briefly summarize its ideas for self-containedness. At high-level, there are four

major steps in coarse-grained speculative FSM parallelization. To make it easier to follow,

we use Algorithm 1 to illustrate its basic ideas, followed by a step-by-step explanation.

11

Algorithm 1 Coarse-Grained Speculative Parallelization

1: Π = coarse grained partition(Ncore); /* Step 1 */

2: for thread 1 · · · Ncore do

3: Sstart(i) = predict (suffix of Π(i− 1)); /* Step 2 */

4: process(Π(i), Sstart(i)); /* Step 3 */

5: thread join();

6: for partition 1 · · · Ncore do /* Step 4 */

7: if validate(Sstart(i)) == FALSE then

8: reprocess(Π(i));

1. Partitioning. Given an input string of length L, it first cuts it evenly into Ncore

segments, where Ncore is the number of available cores.

2. Predicting Starting States. For each segment (except the first one), it predicts its

starting state with a technique called lookback. For segment i, lookback examines the

suffix of its prior segment i− 1 and uses it as conditions to rule out impossible states

or states with low chances to be the correct starting state (more details in [138]).

Later, a single state is selected as the predicted starting state.

3. Parallel Execution. With predicted starting states, it then executes each segment

of length Lseg = L/Ncore in parallel. For each individual segment, this execution is

the same as a sequential FSM execution.

4. Validation and Reprocessing. At last, it validates the correctness of the predicted

starting states after the parallel execution. The validation compares the predicted

starting state of segment i with the ending state of segment i− 1, if they are different

(i.e., prediction fails), segment i would be reprocessed.

12

Three things are important to note. First, According to prior results [138], the prediction

accuracy highly depends on segment suffix, rather than how far it is away from the input

beginning. Second, in Step 4, validations among different segments need to be in sequen-

tial order to ensure the correctness; Third, the reprocessing of a segment may stop earlier

thanks to the state convergence property that widely exists in many FSMs. We elaborate

this property using the example in Figure 2.1.

1 1 0 0 1 … 0

A B C B B C … D
D A B B B C … D

Input

Path 1
Path 2

Figure 2.1: Example of State Convergence.

Consider processing a piece of an input string, starting with two different states

A and D. There are two paths of state sequence, each for a different starting state. After

processing the first three symbols 110, both paths get into the same state B. Since then,

these two paths would keep producing the same state sequence as they will observe the

same symbols. This phenomenon is referred to as State Convergence [138, 83].

In the context of reprocessing, as long as the predicted (wrong) state converges

with the actual starting state before reaching the end of the segment, the reprocessing

can safely stop since the remaining states would be the same as the correct ones. In

fact, state convergence is not only useful for speculative FSM parallelization, but also for

parallel prefix-sum, where paths from different starting states may also converge and hence

maintaining one of them is sufficient. We elaborate the details shortly in Section 2.3.2.

13

2.3 Fine-Grained Parallelism

Fine-grained parallelism is becoming increasingly prevalent in mainstream micro-

processors, in a variety of forms, such as deep pipelining, multi-instruction issue, and SIMD

vector units. For example, Intel’s recent microarchitectures, Haswell, supports Advanced

Vector Extensions 2 (AVX2) which features 256-bit vector units that can process 8 integer-

typed data in parallel.

Effectively utilizing such fine-grained hardware parallelism is critical to maximiz-

ing the efficiency of various applications. In this section, we first discuss three types of

parallelism that can be used in fine-grained level, two of which are proposed by this chap-

ter. Then, we compare their effectiveness with a rigorous analysis, which in turn guides the

design of FSM parallelization techniques.

2.3.1 Three Dimensions

The only fine-grained parallelism that has been seen in prior work comes from

associative parallelism [73, 83]. We propose two other types of parallelism that are applicable

to fine-grained levels, namely, multi-state speculation and multi-level speculation. We next

elaborate each of them. For convenience, we refer to them as P1, P2, and P3.

P1: Parallelism in Associative Operations

Computations with associative operations can be trivially parallelized, such as multiplying

a sequence of matrices. In fact, an FSM execution on an input sequence c1c2 · · · cL can

also be associative. This is achieved by enumerating all the states in the FSM and making

transitions for each of them, referred as prefix-sum parallelism by Ladner and Fischer [73].

14

In practice, as described in [83], it first cuts the input into T segments, then it

enumerates all the n states for each segment except the first segment (which starts from

initial state) to start transitions. After a segment has been processed, a mapping between

each starting state and its ending state would be available. With the known initial state, it

finally goes through every resulted mapping in order and selects the correct path. Clearly,

it brings in n − 1 times extra computations, where n is the number of states. It may

be beneficial when the available hardware parallelism is more than n. However, with state

convergence optimization, the extra cost can be dramatically reduced [83] (see Section 2.2.2).

P2: Parallelism in Multi-State Speculation

Existing work on speculative parallelization of FSMs partition the input based on the num-

ber of CPU cores and predict a single starting state for each segment, the one with the

highest potential to minimize the misspeculation penalty. A straightforward extension to

this approach is speculating multiple starting states for each segment, instead of one. The

intuition is that the more candidates are used for prediction, the more likely the correct

starting state gets covered and the more likely the misspeculation penalty gets reduced.

Such extension enables new parallelism as each one of the speculated starting states can

start its own path independently. We refer to it as multi-state speculative parallelism. The

difference between single-state and multi-state speculation is significant because most pre-

vious work was based on single-value prediction, such as the BOP system [64]. Essentially,

multi-state speculative parallelism provides a tradeoff between single-state speculative par-

allelization and parallel prefix-sum. It offers more flexibility to deal with FSMs that are

hard to speculate and FSMs that are hard to enumerate due to a large number of states.

15

P3: Parallelism in Multi-Level Speculation

The third way to expose parallelism is further partitioning the Ncore input segments into

Ncore ∗W l−1 finer-grained segments recursively, assuming that W is the degree of paral-

lelism at fine-grained levels (l is the number of levels). We refer to this type of parallelism

as Multi-Level Speculation. Since hardware parallelism is also hierarchical – a CPU has

multiple computing cores, each with its own SIMD units – multi-level speculation offers

a natural mapping from software parallelism to hardware parallelism. For example, the

first level speculative parallelism can be mapped to coarse-grained thread-level hardware

parallelism (i.e., multicores), while the second level can be mapped to fine-grained ILP or

SIMD parallelism. Note that such parallelism is not free; it may bring more overhead as it

involves more speculation. We will shortly prove that it is still more efficient than the first

two types of parallelism when used properly.

2.3.2 Efficiency Analysis

We next analyze the efficiency of three types of parallelism theoretically. To facil-

itate our analysis, we bring two commonly used metrics into the context of FSM execution.

• Expected Critical Path Length (ECPL). This is the expected number of state transi-

tions on the longest transition path of an FSM execution.

• Degree of Parallelism (DoP). This is the number of processing units that can be

effectively used by an FSM execution.

For example, in a sequential execution, an FSM proceeds on a single transition

path. Hence, ECPL(seq) = L, where L is the input length. As only one processing unit is

16

used for all the transitions, we have DoP (seq) = 1. Since state convergence is used by recent

work [138, 83] for its large efficiency boost, we assume that it is applied in our discussion.

Without loss of generality, we also assume that the input is partitioned into two segments

at a coarse-grained level and the following analysis is on the second segment.

To analyze the effects of state convergence, we introduce two concepts: convergence

length and convergence matrix.

Definition 1 Given an input string I and two different starting states si and sj. The

convergence length between si and sj on I is the least number of transitions for each of

them to take in order to transition to the same state, denoted as LI(si, sj). If by end of I,

they end at different states, set LI(si, sj) =∞.

Consider the example in Figure 2.1, we have LI(A,D) = 3. Based on this, we

define convergence matrix as follows.

Definition 2 Given an FSM with n states, the convergence matrix over an input I is an

n×n matrix, where each element is the convergence length between states si and sj on input

I (i.e., LI(si, sj)), denoted as ML.

ML=



LI(s1, s1) L
I(s1, s2) . . . L

I(s1, sn)

LI(s2, s1) L
I(s2, s2) . . . L

I(s2, sn)

...
...

. . .
...

LI(sn, s1)L
I(sn, s2) . . . L

I(sn, sn)


(2.1)

17

ML has some properties: (i) It is symmetric as LI(si, sj) = LI(sj , si); (ii) LI(si, si)

= 0; (iii) If LI(si, sj) = l1, l1 ≤ ‖I‖ and LI(sj , sk) = l2, l2 ≤ ‖I‖, then LI(si, sk) =

max{l1, l2}, where ‖·‖ means the length or number of transitions.

Convergence matrix embodies information about how states converge at each step

during an FSM execution, it hence can help us reason about the reprocessing cost for P2

and P3.

In P1, each state starts its own transition path (denoted as Path(si)). Once a path

finds that it converges with another path, one of the two paths would be killed (stopped),

the other one would be kept live. Hence, the length of Path(si) is the shortest convergence

length between si and any other states, supposing that si converges with at least one of

other states. Otherwise, its length would equal to the length of the input. Formally, we

have

‖Path(si)‖ = min{LI(si, S − {si}), ‖I‖} (2.2)

where si converges with S − {si} when si converges with at least one state from S − {si}.

Correspondingly, LI(si, S − {si}) = min{LI(si, sj)|sj ∈ S − {si}}.

By definition, it is possible that ‖Path(si)‖ < ‖I‖ for every si. To finish the whole

input, one of the transition paths Path(si), si ∈ S, has to continue ‖I‖ - max1≤i≤n{‖Path(si)‖}

transitions. Hence, the ECPL of P1 is simply the input length.

Lemma 3 Given an input I, the ECPL of P1 is

ECPL(P1) = ‖I‖ (2.3)

On the other hand, the DoP of P1 may vary as the FSM executes depending on

state convergence. Starting from all states S, when the number of live paths at the j-th

18

input symbol, live(S, j), exceeds the number of processing units, PU , the DoP equals to

PU ; Otherwise, the DoP drops to live(S, j).

DoP (P1) = min{live(S, j), PU}, where 1 ≤ j ≤ ‖I‖ (2.4)

In P2, suppose K states, denoted as SK , are selected as the prediction. Since the

selection does not change the path length of any state, if SK covers the correct state, then

ECPL equals to the input length. Otherwise, it needs to reprocess the input until the

correct state converges with one of selected K states. The reprocessing length is

‖redo‖ = min{LI(si, s
∗)|si ∈ SK , s∗ is the true state} (2.5)

Assuming that the reprocessing in P2 runs sequentially, we have Lemma 4 holds

for P2.

Lemma 4 Given an input I, the ECPL of P2 is

ECPL(P2) = ‖I‖+ (1− Pk) · ‖redo‖ (2.6)

where Pk is the probability that SK covers the true state s∗.

Before reprocessing, the DoP of P2 is similar to P1; During reprocessing, the

DoP (P2) drops to one.

DoP (P2) =


min{live(Sk, j), PU} 1 ≤ j ≤ ‖I‖

1 redo

(2.7)

In P3, the input segment is further cut into PU finer-grained chunks, each of them

is processed with a predicted starting state ŝi, 1 < i ≤ PU . Suppose the probability of each

19

predicted starting state is p(ŝi) and the corresponding reprocessing length is redo(ŝi), then

the expected amount of reprocessing is

∥∥redo∥∥ =
PU∑
i=2

(1− p(ŝi)) · ‖redo(ŝi)‖ (2.8)

Note that the reprocessing of different chunks runs sequentially, since the correct-

ness validation of chunk i depends on the validation of chunk i − 1. This is also true at

coarse-grained level. Hence, the expected reprocessing length for the whole input should

include the reprocessing at both coarse-grained and fine-grained levels, that is, replacing

PU in Equation 8 with PU · (T − 1), where T is the number of threads at coarse-grained

level.

Putting them together, we have Lemma 5 for P3.

Lemma 5 Given an input I, the ECPL of P3 is

ECPL(P3) = ‖I‖ /PU +
∥∥redo∥∥ (2.9)

According to Lemma 3, any misspeculation has the potential to lengthen the crit-

ical path, compromising the benefits of speculative parallelization. In the worst case, when

all prediction fails, ECPL(P3) would equal to the input length, the same as a sequential

execution.

As each processing unit processes a different input chunk, no state convergence

would happen. Hence, the DoP of P3 equals to PU before reprocessing and drops to one

during reprocessing.

DoP (P3) =


PU 1 ≤ j ≤ ‖I‖

1 redo

(2.10)

20

Discussion. Based on the above analysis, we compare the three types of parallelism in

terms of both ECPL and DoP .

First, ECPL captures the expected execution length. For P1 and P2, since enu-

merating all states or a set of states do not shorten the critical path, ECPL(P1) and

ECPL(P2) at least equals to the segment length. In comparison, by cutting the segment

into finer-grained chunks, P3 have the chances to further shorten the critical path length.

However, due to the dependence in reprocessing, the ECPL of P3 could be as long as the

whole input length, which happens when all prediction fails.

Second, DoP captures the utilization of fine-grained hardware parallelism. DoP (P1)

and DoP (P2) start dropping when the number of live paths goes below the number of

processing units PU . In another word, some of the processing units become idle. Unfortu-

nately, DoP (P3) cannot guarantee full utilization all the time neither, due to possibility of

sequential reprocessing.

Overall, the efficiency of a type of parallelism depends on the properties of FSMs

and hardware architecture (e.g., PU). In this chapter, we choose P3, mainly based on

our observation that the reprocessing lengths are usually short thanks to the quick state

convergence. This has two positive consequences. First, it ensures that ECPL(P3) is

usually much shorter than segment length (see Section 2.5). Second, it guarantees high

hardware utilization by keeping DoP (P3) mostly as high as PU .

21

2.4 MicroSpec

Guided by the analysis in Section 2.3, we design and implement MicroSpec, a

library that leverages multi-level speculation to maximize the efficiency of parallel FSM

execution on modern processors. We first describes its major techniques, then introduces

an optimization to facilitate its use.

2.4.1 Overview

At high-level, MicroSpec consists of four speculation-centric parallelization tech-

niques (denoted as S1 - S4) plus a speculation-oriented data transformation. The paralleliza-

tion techniques are able to expose fine-grained speculative parallelism to FSM computations

while the data transformation automatically re-layouts the input for better locality.

Predicting Starting States. Since starting states prediction is not the focus of this chapter,

we simply choose a relatively straightforward prediction, named simple lookback, which has

been used by prior work [138, 12].

Basically, it starts from the suffix of a prior segment with a random state, then uses

its ending state after processing the suffix as the predicted starting state. More advanced

predictions can be ported to MicroSpec. However, there will be a tradeoff between accuracy

and overhead, which remains to be investigated. In the following, we elaborate these four

major techniques and the optimization in details.

22

2.4.2 Techniques

In multi-level speculation, each level follows a speculative parallelization scheme

that is similar to the one in Algorithm 1. The key differences lie in the implementations.

In the following, we consider two cases: two-level speculation and three-level speculation.

For the first level, that is, the coarse-grained level, we simply follow the coarse-grained

speculative parallelization in Algorithm 1. For the second and third levels, we mainly

focus on ILP and SIMD parallelism, both of which are common features owned by modern

processors. As the first level is given in Section 2.2, in the following, we only show the

algorithms in the second and third levels. Next, we first present two two-level speculations,

followed by two three-level ones.

S1: Speculative SIMD Gather

We first consider SIMD parallelism only for the second-level speculation. Algo-

rithm 2 shows the pseudo-code of this approach. As this approach mainly relies on SIMD

operation gather, we refer to it as Speculative Gather.

Algorithm 2 Speculative SIMD Gather

1: π = fine grained partition(W);

2: S = predictInitStates(π);

3: for (i=0; i < Lseg/W , i++) do

4: I = readInputVec(i);

5: F = S × Nsym + I;

6: S = gather(T , F);

7: end

23

Basically, given an input segment of length Lseg from the first-level speculation,

speculative gather partitions it based on the SIMD width W (e.g., W = 8 for 256-bit integer

operations) (Line 1). Then, it predicts the starting states for the W smaller segments with

simple lookback (Line 2). Since there are no dependences among predictions, they can be

vectorized with SIMD operations as well.

With the predicted starting states, stored in a vector S, it goes through W smaller

segments in parallel with SIMD operations, as shown through Lines 3 to 6 in Algorithm 2.

The readInputVec() can be implemented either in SIMD operation or a sequence of non-

SIMD read operations. To find next states, it accesses the transition table T , which is stored

in a state-major one-dimensional array. This is finished in two steps. First, it calculates

the address of next states and stores them in the offset vector F . Then it leverages a single

gather operation to load W next states to vector S.

To illustrate the functionality of gather, consider the running example. Suppose

the SIMD width W = 8, current state vector S = [D, C, A, C, F, A, E, B] (i.e., [3, 2, 0, 2,

5, 0, 4, 1]), input vector I = [1, 0, 0, 1, 1, 0, 1, 0], then offset vector F = S × 2 + I = [7, 6,

0, 5, 11, 0, 9, 2]. The next state vector would be S = gather(base, F) = [A, B, E, D, A, E,

F, B].

S2: Speculative Unrolling

Alternatively, we can also consider unrolling for the second-level speculation. Unrolling is

one of the major ways to expose ILP. However exposing such low-level parallelism is not

straightforward. In fact, by default, due to the tight dependences across state transitions,

unrolling does not provide any benefits. As shown in Figure 2.2, the performance of after

24

unrolling is almost the same as the default version. This is mainly because the state tran-

sition dependences turn into instruction dependences, making most unrolled instructions

incapable of executing in parallel.

To overcome the above difficulty, we apply the idea of speculation to unrolling,

aiming to break the most dependences among the unrolled instructions. We refer to it as

Speculative Unrolling, illustrated by Algorithm 3.

Algorithm 3 Speculative Unrolling

1: π = fine grained partition(R);

2: s[0 · · ·R− 1] = predictInitStates(π);

3: B = Lseg/R;

4: for (i=0; i < B, i++) do

5: c[0] = readInput(i);

6: s[0] = T[s[0]][c[0]];

7: c[1] = readInput(i+B);

8: s[1] = T[s[1]][c[0]];

9: · · · · · ·

10: c[R-1] = readInput(i+B ∗ (R− 1));

11: s[R-1] = T[s[R-1]][c[R-1]];

12: end

The basic idea of speculative unrolling is as follows. At first, it takes a coarse-

grained input segment and partitions it into finer-grained segments according to the un-

rolling factor, R. Then it predicts the starting state for each fine-grained segment. So far, it

is the same as S1, speculative SIMD gather. The difference is in the next. Instead of using

25

0	
 200	
 400	
 600	
 800	

dna	

protn	

snort	

performance	
 (ms)

naïve	
 unroll	

default	

Figure 2.2: Performance of Naive Unrolling

some SIMD operations, it unrolls the loop body R times, with a goal to bring in artificial

ILPs. Note that, with starting state prediction, the unrolled loop iterations do not have

any dependences, hence, can be executed in parallel and optimized by microprocessors.

A key question in speculative unrolling is the selection of unrolling factor R. If

choosing R too high, it takes more risks of bringing in misspeculated segments; If choosing

R too low, it may not fully utilize the potential of ILPs in microprocessors. In Section 2.5,

we will examine this with experiments.

Discussion. Note that both of the above approaches rely on speculation to expose fine-

grained parallelism. The former exposes SIMD parallelism while the latter exposes ILP.

They are essentially orthogonal, hence, might be combined to expose even richer paral-

lelism, the third-level speculative parallelism, pushing the utilization of microprocessor to

the extreme. Depending on the order that they are combined, we refer to the combined

approaches as Speculative SIMD Gather+ and Speculative Unrolling+, respectively. We

elaborate them next, namely, S3 and S4.

26

S3: Speculative SIMD Gather+

Intuitively, this approach applies speculative unrolling to speculative SIMD gather. This

essentially requires more speculation, in particular, W ×R times of speculation for a coarse-

grained input segment, where W is the SIMD width and R is the unrolling factor. Algo-

rithm 4 describes this approach. Basically, the loop body in Algorithm 2 is unrolled R times

as that in Algorithm 3. Note that the number of loop iterations drops to Lseg/W/R.

Similarly to speculative unrolling, it also needs to select the loop unrolling factor

R. An interesting question is whether it has a smaller optimal R comparing to that of

speculative unrolling. We show our findings to this question in Section 2.5.

S4: Speculative Unrolling+

Different from S3, speculative unrolling+ first applies speculative unrolling to the second

level of speculation, then applies speculative gather to the third level. The pseudo-code of

this approach is illustrated as in Algorithm 5. Each for-loop corresponds to the unrolling

as in S2. Within each for-loop, a segment is further partitioned into W segments to initiate

speculative gather. Similarly to S3, S4 also aims to realize the maximal utilization of the

processing power by aggressively increasing the amount of speculation.

In sum, S1 and S2 are based on two-level speculation, while S3 and S4 are based

on three-level speculation. The total number of partitions increases from W and R in the

former cases to W ×R in the latter cases.

27

Algorithm 4 Speculative SIMD Gather+

1: π = fine grained partition(W ×R);

2: S[0 · · ·R− 1] = predictInitStates(π);

3: B = Lseg/W/R;

4: for (i=0; i < B, i++) do

5: I[0] = readInputVec(i);

6: F [0] = S[0] × Nsym + I[0];

7: S[0] = gather(T , F [0]);

8: I[1] = readInputVec(i+B);

9: F [1] = S[1] × Nsym + I[1];

10: S[1] = gather(T , F [1]);

11: · · · · · ·

12: I[R− 1] = readInputVec(i+B ∗ (R− 1));

13: F [R− 1] = S[R− 1] × Nsym + I[R− 1];

14: S[R− 1] = gather(T , F [R− 1]);

15: end

2.4.3 Optimization

For coarse-grained speculative parallelization, the input is partitioned evenly into

coarse-grained segments based on the number of cores. Each thread sequentially accesses its

own segment which is stored in a piece of continuous memory (since inputs are arrays). In

this case, the locality is ideal. However, when multi-level speculation is used, the accessing

pattern is not sequential any more, instead, it becomes stride-based. Even worse, the width

of stride is typically large (i.e., the length of a fine-grained segment). This non-coalesced

memory accessing pattern could drag the performance benefits down.

28

Algorithm 5 Speculative Unrolling+

1: π = fine grained partition(W × R);

2: S[0 . . . R− 1] = predictInitStates(π);

3: B = Lseg/R ;

4: for (i=0; i < B/W ; i++) do

5: I[0] = readInputVec(i);

6: F [0] = S[0] × Nsym + I[0];

7: S[0] = gather(T , F [0]);

8: end

9: for (i=B; i < B +B/W ; i++) do

10: I[1] = readInputVec(i);

11: F [1] = S[1] × Nsym + I[1];

12: S[1] = gather(T , F [1]);

13: end

14:

15: for (i=B ∗ (R− 1); i < B ∗ (R− 1) +B/W ; i++) do

16: I[R− 1] = readInputVec(i);

17: F [R− 1] = S[R− 1] × Nsym + I[R− 1];

18: S[R− 1] = gather(T , F [R− 1]);

19: end

To overcome this, we propose a speculation-oriented data transformation that re-

layouts the data according to the accessing pattern in multi-level speculation scheme to

minimize the memory accessing delays. Basically, it transforms the big stride-based access-

ing to simple sequential accessing. It does this by moving each group of stride-based accessed

29

0 1 … 1 0 0 … 0 0 1 … 1 0 1 … 0

0 0 0 0 1 0 1 1 … … 1 0 1 0

W = 4; B = Lseg/W;

for (i = 0; i < B; i++) /* before transformation */
{ I = (in[i],in[i+B],in[i+2B],in[i+3B]);

 …
}

for (i = 0; i < Lseg; i = i + W) /* after trans. */
{ I = (in[i],in[i+1],in[i+2],in[i+3]);

 …
}

Figure 2.3: Spec.-Oriented Data Transformation

data next to each other, as shown in Figure 2.3. Consider S1, speculative SIMD gather 3.

Suppose the SIMD width W = 4, a coarse-grained input segment with length of Lseg is

further partitioned into four fine-grained segments, each with a length of B = Lseg/W . To

get an input vector I (as in Algorithm 2), the original memory accessing has a stride width

of B. After the data transformation, the memory accessing becomes strictly sequential.

Speculation-oriented data transformation can either work offline (pre-layout) or

online (on-the-fly re-layout). In many scenarios, the whole dataset is available and stable

and different FSMs are executed over the same dataset many times. A typical example

is biological sequence analysis, which may search different patterns on the same sequence

database multiple times. Though the database may be updated sometimes, it is expected

that updating rate is much lower than accessing rate. For scenarios like this, it is reasonable

to do offline data transformation as the cost of data transformation will be amortized across

different FSM executions.

3Similar analysis is applicable to other three fine-grained speculation techniques in MicroSpec.

30

2.4.4 Implementation

We prototyped MicroSpec as a C library using Pthread and Intel’s AVX2 instruction

set. The library provides a uniform interface to various FSMs through a set of APIs, which

implement both the four speculative parallelization methods and the data transformation.

The major arguments to the APIs include the FSM FSM* and input char*. Other parameters

such as the number of threads are automatically configured. In terms of FSM formats, it

supports both transition table and dot file (a graphical FSM representation). It can also

take regular expressions as arguments with the help of some off-the-shelf regular expression

processors.

The compilation of MicroSpec depends on the use of the APIs. Since S1 does

not include any SIMD instructions, it can be compiled even on machines without AVX2

using standard C compilers, such as GCC or ICC. In comparison, the implementations of

S2-S4 use mm256 i32gather epi32 instruction from AVX2, hence need to be compiled on

recent Intel microarchitectures, such as Haswell and its successors. We implement the data

transformation in two versions: an API call that can be invoked by S1-S4 at runtime and

a standalone tool that runs the transformation offline.

2.5 Evaluation

In this section, we evaluate the effectiveness of MicroSpec using a set of real-

world FSM applications that are manually collected from different domains, including motif

searching in Bioinformatics, rule matching in NIDS, and Huffman decoding in data decom-

pression, among others.

31

2.5.1 Methodology

The evaluation of MicroSpec includes all four speculation-based fine-grained par-

allelization techniques as well as the speculation-oriented data transformation. Table 2.1

summarizes them and lists their abbreviation used in the evaluation.

Table 2.1: MicroSpec Framework

Techniques in MicroSpec Abbreviation

S1: Speculative SIMD Gather SpecGather
S2: Speculative Unrolling SpecUnroll
S3: Speculative SIMD Gather+ SpecGather+
S4: Speculative Unrolling+ SpecUnroll+

Spec.-Oriented Data Trans. SpecTrans

We compare MicroSpec with prior techniques, the coarse-grained speculative par-

allelization [138] and parallel prefix-sum [83], including both state convergence and range

coalescing optimizations. For convenience, we refer to them as coarseSpec and prefixSum,

respectively. Our implementations are based on our best understanding of their papers.

Our major experiments run on a quad-core machine equipped with Intel 2.8GHz

Xeon E5-1603 v3 processor with AVX2. The machine runs CentOS Linux 7.2.1511 and

has GCC 4.8.5. For comparison, we also tested a machine without AVX2 supports. It is a

quad-core machine equipped with Intel 3GHz Xeon CPU E5-1607 v2 processor with SSE

4.2. It runs Ubuntu 14.04.4 LTS and has GCC 4.9.3. All programs are compiled with “-O3”

optimization flag. The timing results reported are the average of 10 repetitive runs with

all runtime cost included. We do not report 95% confidence interval of the average when

the variation is not significant. In fact, we found that the measurements are usually stable

since FSM executions involve a large amount of repetitive but similar computations.

32

2.5.2 Benchmarks

The benchmarks are selected to cover a wide range of FSM applications with

different levels of complexities. We first elaborate them by groups, then summarize their

statistics.

Biological Sequence Analysis. Pattern searching is a basic way to analyze biological

sequences, such as DNA sequences or protein sequences. For example, a DNA motif is a

short pattern of nucleic acid, while a protein motif is a pattern of amino acids. Usually, pro-

tein patterns are represented as regular expressions. Table 2.2 lists three protein patterns

randomly selected from a widely used protein database PROSITE [34]. In Table 2.2, [·]

means alternative symbols and ‘x’ means any symbol; while (·) is the number of repetition.

For DNA motifs, they are more commonly represented with Hamming distances. In our

benchmarks, dna1 is a DNA motif ATCGGTCC(8,3), which means three of the eight pre-

ceding symbols can be different as specified. Similarly, dna2 and dna3 are two other DNA

motifs TCGAGGACCA(10,4) and AGGGTAAA(8,1), respectively. We converted the above pro-

tein and DNA motifs to FSMs using standard regular expression transformation algorithms.

Table 2.2: Protein Motifs

Bench Description and Regular Expression

protn1 IQ calmodulin-binding motif.
[FILV]Qx(3)[RK]Gx(3)[RK]x(2)[FILVWY]

protn2 Hemopexin domain signature.
[LIFAT]ILx(2)Wx(2,3)[PE]xVF[LIVMFY][DENQS][STA][AV][LIVMFY]

protn3 P-type ’Trefoil’ domain signature.
[KRH]x(2)Cx[FYPSTV]x(3,4)[ST]x(3)Cx(4)CC[FYWH]

33

Intrusion Detection Rule Matching. Network Intrusion Detection Systems (NIDSs)

use regular expressions (called signatures) to detect malicious activities on the internet

traffic. Among various NIDSs, Snort [108] is arguably the most widely used open source

NIDS. It has a rich body of signatures/rules, most of them have a pcre field, where a

Perl-compatible regular expression is used to specify the pattern interested.

In our evaluation, we randomly chose a set of 15 PCRE patterns from 15 signatures

in Snort version 2.9.8.0 as our benchmarks. They are then randomly put into 5 groups,

each with 3 patterns. We created the 6th group by putting all the 15 PCRE patterns

together. Each group then is compiled to a single FSM using off-of-shelf PCRE to FSM

tools. Table 2.3 lists the 6 groups with their PCRE patterns. The inputs to the Snort FSMs

are network traffic trace collected from a Linux server and a laptop via tcpdump.

Table 2.3: Snort Rules.

Bench Description and Regular Expression

snort1 (\xff{32})|([0-9A-F]{22})|(Color|Motion)
snort2 (\xFF\x41)|(Start)|(\/999)
snort3 (admin|axis2)|(\x3d?\x3d\r\n)|([rs]{4})
snort4 (\x2F\d{10})|(L\d\d\x00)|(POST\s)
snort5 (asp\x5C)|(2x\/.*php)|(htr\x5C)
snort6 snort1 | snort2 | snort3 | snort4 | snort5

Mixed FSM benchmarks. This group contains a mixed set of FSM benchmarks, including

Huffman decoding, mathematical testing and a couple of searching patterns.

For its optimality, Huffman algorithm has been widely used for encoding and

decoding digital data (e.g., text, JPEG and MPEG). During the decoding stage, an FSM is

employed to automate the decoding process. Basically, a Huffman decoding FSM contains a

set of accept states, each of them corresponding to a code. It runs over an encoded (binary)

34

file. Each time it reaches an accept state, a code is recognized. Note that this chapter

targets the decoding phase, as the encoding phase is embarrassingly parallel [53].

Our Huffman FSM benchmark huff is built based on a collection of e-books down-

loaded from Project Gutenberg (as of Dec 15th, 2015). To make the decoding FSM more

applicable, we created a single Huffman tree and a single decoding FSM that are capable

of encoding any text files with ASCII symbols and decoding them, respectively. Since ex-

tended ASCII contains 256 symbols, there are 256 accept states (i.e., leaf nodes of Huffman

tree). Together with 255 non-accept states, huff consists of 511 states. The inputs to huff

are binary files that encode a large collection of e-books.

Mathematical testing benchmarks include div and evenodd. The former tests if a

binary sequence is divisible by seven while the latter tests if a text file of {a, b, c, d} satisfies

that |a|+ |b| is even and |c|+ |d| is odd, where | · | means the number of appearances in the

file.

We also include two searching patterns that are more challenging to speculate,

namely, commadot and likeapple. Their patterns are ((.+, .+n.){4}|(.+n,){4}|(.+n.){4}){3}

and (. ∗ l. ∗ i. ∗ k. ∗ e){6} | (. ∗ .a. ∗ .p. ∗ .p. ∗ .l. ∗ .e){5}.

Table 2.4 summarizes the benchmarks used in our evaluation, including the total

number of states, the number of accept states, state visiting frequency range and the state

range after range coalescing optimization [83].

35

Table 2.4: Summary of FSM Benchmarks.

Bench #States #Accept FRange CRange

dna1 371 76 0 - 3.6% 133
dna2 2871 583 0 - 2.1% 953
dna3 40 5 0 - 32.9% 15
protn1 69 6 0 - 73.4% 31
protn2 281 14 0 - 24.7% 99
protn3 832 48 0 - 61.9% 509

snort1 86 4 0 - 56.0% 32
snort2 10 1 0 - 99.4% 4
snort3 15 2 0 - 91.3% 5
snort4 19 1 0 - 98.7% 13
snort5 20 3 0 - 91.3% 5
snort6 299 22 0 - 44.7% 72

huff 511 256 0 - 11.3% 255
div 7 1 14.28% 7
evenodd 4 1 25% 4
commadot 130 7 0 - 97.1% 81
likeapple 495 1 0 - 88.3% 494

2.5.3 Results

Unrolling Factor. Since the selection of the unrolling factor R may affect the performance

of MicroSpec, we first discuss it. Table 2.5 shows the execution time of dna4 on a small

testing input using different unrolling factor values. The results answer the question in

Section 2.4.2 – the best R varies across methods, 6 or 8 for SpecUnroll, 2 for SpecGather+

and SpecUnroll+. This implies that the ILP for SIMD operations is less effective than the

one for non-SIMD operations. Since we found that the best Rs are stable across different

benchmarks, we empirically set R = 8 for SpecUnroll and R = 2 for SpecGather+ and

SpecUnroll+ in the following.

Group A: Motif Searching. Figure 2.4 shows the performance results for motif searching

benchmark group. Overall, the performance of four speculation-based methods in MicroSpec

36

Table 2.5: Unrolling Factor Selection

exec. time(ms) unrolling factor

method 1 2 4 6 8

SpecUnroll 397.3 199 100.7 73.3 75.6
SpecGather+ 145.6 97.6 188 484.1 251.7
SpecUnroll+ 147.9 94.6 129.7 299.6 210

0
2
4
6
8

10
12
14
16

specUnroll specGather specGather+ specUnroll+ coarseSpec prefixSum

(MicroSpec) (asplos14a) (asplos14b)

Sp
ee

du
p

dna1 dna2 dna3 protn1 protn2 protn3

Figure 2.4: Speedups for Biological Benchmarks

outperform previous two methods substantially, achieving about 14X speedups among all

six benchmarks.

More specifically, specUnroll yields the best speedups among all tested methods.

This implies that even though modern processors come with highly optimized ILP, they

can be barely utilized by the default version. specGather yields about 8X speedup on

average, also exceeding prior methods. It demonstrates the benefits of utilizing gather

intrinsic from Intel AVX2 for FSM computations. However, on the other hand, it barely

reaches around 60% performance of specUnroll, which indicates that the limitation of current

37

gather compromises the speculation benefits. Methods specGather+ and specUnroll+, yield

similar speedups, higher than specGather but lower than specUnroll.

Note that prefixSum yields inconsistent speedups across different benchmarks. The

reason is that its performance depends on the properties of FSMs. For FSMs with fast con-

vergence length and less number of states, it tends to perform much better. For example, it

gets about 7X speedup on benchmark dna3, which has only 40 states. These states converge

quickly to a single state within 50 transitions. In comparison coarseSpec shows consist but

limited speedups due to its unawareness of fine-grained parallelism.

Group B: Snort Rules Matching. Figure 2.5 shows the performance results for Snort

rules benchmarks. In general, the results are similar to those in the first group. The main

differences come from prefixSum, which achieves the best speedups for two benchmarks

snort2 and snort3. The reason is that both benchmarks have less than 16 states, smaller

than the maximal number of states that a single SIMD shuffle (mm shuffle epi8) can han-

dle. This means it only needs a single shuffle instruction for each transition. Hence, this

shows the optimal speedup of prefixSum. Comparing with specGather, this also validates

that shuffle is much more efficient than gather on current processors.

Group C: Mixed FSM benchmarks. Figure 2.6 shows the performance results of the

last benchmark group, which are mixed with Huffman decoding (huff) and some hard-to-

speculate FSM benchmarks div, evenodd, commadot, and likeapple. After range coalescing,

huff has a state range of 255. Though it can be executed by prefixSum using a mix of

38

0
2
4
6
8

10
12
14
16

specUnroll specGather specGather+ specUnroll+ coarseSpec prefixSum

(MicroSpec) (asplos14a) (asplos14b)

Sp
ee

du
p

snort1 snort2 snort3 snort4 snort5 snort6

Figure 2.5: Speedups for Snort Benchmarks

shuffle and blend operations, it hardly gets any benefits due to the large number of

SIMD operations involved. In comparison, the four methods from MicroSpec show similar

speedups on huff as those in the previous two groups.

The other four benchmarks in this group are more difficult to speculate due to their

special structures. For div and evenodd, no states converge no matter what input sequences

they are given. In this case, MicroSpec either shows limited improvement, about 2X speedup

on evenodd or even performance degradation, about 10% slowdown on div. In comparison,

prefixSum reaches 1.39X and 14X speedups, respectively, thanks to its speculation-free

property and the small number of states in these two benchmarks (7 and 4). The other

two benchmarks, commadot and likeapple, have relatively large number of states, mean-

while most states take long distances to converge (often exceeding 10K transitions). In this

situation, MicroSpec gets about 8-9X speedup on average. Note that specUnroll+ and spec-

Gather+ all get similar or better performance than their counterparts, demonstrating the

39

0

5

10

15

huff div evenodd commadot likeapple

Sp
ee

du
p

specUnroll specGather specGather+
specUnroll+ asplos14a asplos14b

Figure 2.6: Speedups for Mixed FSM Benchmarks

potential of combining SIMD gather and with speculation unrolling. In comparison, prefix-

Sum could not get any speedups due to a large number of states in these two benchmarks

(130 and 495).

Optimization specTrans. Table 2.6 shows the cost of specTrans optimization. In fact,

the cost is quite comparable to the FSM execution time, about 1/3 of the sequential FSM

execution time for input size of 100MB. Hence, it is recommended to used only offline,

where the same datasets are reused across different FSM executions, such as different motif

queries to the same DNA or protein sequence database. Figure 2.7 shows the improvements

of specTrans optimization. On average, it brings about 8.5% extra speedup.

Comparison on Different Architectures. Finally, we also tested MicroSpec on an archi-

tecture without SIMD gather. In this case, only S2, specUnroll is experimented. Figure ??

40

Table 2.6: Cost of specTrans (ms)

num. of chunks

input size 2 4 8 16

10MB 15 13 13 12
100MB 122 105 93 99
1GB 63K 63K 83K 64K

0

5

10

15

sp
ec

Un
ro

ll

sp
ec

Ga
the

r

sp
ec

Ga
the

r+

sp
ec

Un
ro

ll+

sp
ec

Un
ro

ll

sp
ec

Ga
the

r

sp
ec

Ga
the

r+

sp
ec

Un
ro

ll+

sp
ec

Un
ro

ll

sp
ec

Ga
the

r

sp
ec

Ga
the

r+

sp
ec

Un
ro

ll+

sp
ec

Un
ro

ll

sp
ec

Ga
the

r

sp
ec

Ga
the

r+

sp
ec

Un
ro

ll+

dna4 snort3 huff commadot

Sp
ee

du
p

w/o specTrans w/ specTrans

Figure 2.7: Performance Improvements of specTrans

summarizes the results. Haswell has AVX2, which supports an 8-way integer SIMD gather

(mm256 i32gather epi32). In comparison, Sandy Bridge EP only comes with an earlier

version of instruction set AVX. Overall, the performance on Sandy Bridge EP is slightly

less than Haswell; but both follow a similar pattern. This demonstrates the potential of

MicroSpec in a larger scope, across different architectures.

41

2.6 Summary

This chapter provides a rigorous analysis among three types of parallelism that

can be exposed at fine-grained levels for FSM computations. It deepens the understand-

ing to the efficiency of different FSM parallelization schemes. Guided by the analysis, it

presents MicroSpec, a set of speculation-centric parallelization techniques that expose fine-

grained speculative parallelism into FSM computations, along with a data transformation

optimization. MicroSpec extends the available parallelism in FSM computations to a new

level. Experiments show that MicroSpec outperforms the state-of-the-art by up to a factor

of four, demonstrating the benefits of fine-grained speculative parallelism.

42

Chapter 3

Scalability-Sensitive Speculative

Parallelization for FSM

Computations

3.1 Introduction

Scalability is fundamental to the high-performance applications. An accurate scal-

ability analysis not only helps realize the optimal performance, but also avoid unnecessary

use of additional computing resources. In this chapter, we aim to provide an accurate

scalability analysis for the speculative parallelization of finite state machine (FSM) compu-

tations.

For the fundamental role of FSMs in many performance-critical applications, it is

anticipated that emerging architectures will feature hardware supports for FSM computa-

43

tions, including accelerators such as automata processor [32]. However, due to the tight

dependences among state transitions, FSM computations are extremely difficult to paral-

lelize. As shown in the code snippet below, at each transition, the current state state not

only depends on the input symbol c but also the prior state prior. Such dependences es-

sentially form a dependence chain, inherently prevent any FSM computations from running

in parallel.

prior = init;

while c!=EOF do {

c = read();

state = trans(prior, c); // dependence

φ(state, c); // action at a state

prior = state;

}

State of the Art. To overcome the dependences, existing methods often rely on speculative

parallelization [97, 138, 83]. Basically, they first partition the input sequence evenly into

Ncore chunks where Ncore is the number of available cores, then process the chunks in

parallel, each with a predicted starting state, except the first chunk. In the case where

a prediction fails, they need to reprocess the wrong part to ensure the correctness (more

details in Section 3.2). This strategy has shown promise on small-scale multicore processors

(up to eight cores). However, it is still poorly understood how well it can scale to larger

44

31.1X

14.2X

15.9X

3.2X

0 10 20 30

Optimal	

ASPLOS14	

Optimal	

ASPLOS14
FS
M
	b

FS
M
	a

Speedup

(256	cores)

(34	cores)

(60	cores)

(256	cores)

Figure 3.1: Suboptimal Speedup of Existing Methods [138] on Larger-scale Platforms (256-
core Xeon Phi).

parallel platforms with tens of or even hundreds of processing cores 1 (such as Xeon Phi

processors).

In particular, is it always the best practice to use all available cores (i.e., Ncore)

to achieve the best performance? If not, what is the optimal number of cores to employ to

maximize the benefits of speculative FSM parallelization?

Without answering these questions, existing methods may not only suffer from

suboptimal performance, but also waste precious computing resources that would be oth-

erwise used for other computations. As illustrated by Figure 3.1, when executed on a

Xeon Phi processor with 256 logical cores, existing methods [138, 137] result in suboptimal

speedup on two FSM benchmarks, up to nearly 5X performance degradation, comparing

to the optimal ones. It is also important to note that the optimal number of cores varies

across different FSMs.

Unlike prior work that focus on either designing sophisticated speculation tech-

niques [138] or reducing the cost of profiling [137], this chapter aims to achieve the optimal

1By default, this chapter refers to logical cores as cores, unless noted otherwise.

45

performance gain for speculative parallelization of FSM computations by offering an accu-

rate scalability analysis.

However, accurately analyzing the scalability for speculative FSM parallelization

is challenging for four-fold reasons. First, by nature, speculative parallelization is non-

deterministic. Its overall performance highly depends on the accuracy of the speculation.

Second, when a speculation fails (misspeculation), it is required to reprocess the incorrect

part. But the processing cost may vary across different chunks, depending on the conver-

gence. Consequently, the total cost of misspeculation correlates with the number of cores

non- linearly, making existing models fail to capture its scalability. Finally, the actual scala-

bilities of FSM computations are also constrained by the machines where they are executed

via resource contention and relative execution speed.

To address the above complexities, this work introduces a series of scalability

models for speculative FSM parallelization. The models integrate a probabilistic analysis

to capture the non-deterministic behaviors of speculation and an offline sample-based con-

ditional regression (SCR) technique to characterize the cost variation of misspeculation.

Unlike existing FSM characterization [138, 137] that requires to profile the convergence

property for every pair of states, SCR only profiles state pairs that are more likely to ap-

pear in the actual speculative execution. Based on the probabilistic models and SCR, this

work designs both architecture-independent scalability analysis and architecture-aware scal-

ability analysis. The former analyzes the scalability solely based on the design of speculative

parallelization and the properties of an FSM. It guides the designers to tune speculative

parallelization scheme and helps developers compare the scalabilities of various FSMs. In

46

comparison, the latter further characterizes the architecture factors that may affect the

actual scalability, making the scalability analysis practical in real- world computing envi-

ronments.

To effectively leverage the above scalability analyses, this chapter develops S3 – a

scalability-sensitive speculative parallelization framework for FSM computations. At high

level, S3 works in three steps: (1) it first characterizes the FSM’s properties and measures

the architectural factors of the machine; (2) With the measurements, S3 next automatically

reasons about the scalability and infers the optimal number of cores n∗ to use; (3) Finally,

it feeds n∗ into the speculative parallelization to maximize its performance gain.

Experiments on a set of real-world FSM benchmarks demonstrate the accuracies

of the proposed models and show that S3 can boost the performance of existing techniques

up to 5X, with significant energy savings in most cases (up to 77%).

3.2 Motivation

In this section, we first illustrate the basic approach of speculative parallelization

used by existing work for FSM computations, then point out the suboptimality of perfor-

mance in existing solutions due to their unawareness of scalability, hence the necessity to

enable scalability-sensitive speculative parallelization.

Speculative Parallelization. To address the tight dependence among state transitions in

FSM computations, existing solutions often rely on speculative parallelization techniques,

which is based on a predict-validate-reprocess strategy. Next, we describe the high-level

ideas of speculative FSM parallelization, which consists of three major phases.

47

0

10

20

30

40

0 50 100 150 200 250

Sp
ee
du

p

#	of	cores

linear	 speedup
Amdahl's	law	(serial=3%)
actual	speedup

prior	work

this	work

Figure 3.2: Projected Scalability v.s. Actual Scalability

1. Partition: Divide the input sequence into equal-sized chunks according to the total

number of CPU cores Ncore.

2. Predict & Process: For each chunk i, predict its starting state sipred and assign a

thread to process 2.

3. Validate & Reprocess: Once every thread has finished its chunk, check if the

predicted state equals to the true state (i.e., sitrue = sipred) one by one. If a prediction

fails, reprocess its corresponding chunk before validating the next starting state. Note

that the reprocessing may stop earlier when states sitrue and sipred both transition to

the same state (known as state convergence, see Section 3.4.1).

According to the first phase, the basic speculative parallelization approach assumes

that it can scale up to the total number of CPU cores Ncore. While this might be true

for small-scale multicore processors (e.g., quad/oct-core processors), but may not hold for

larger-scale platforms with tens of or hundreds of CPU cores.

2More details about the design of the prediction can be found in prior work [138, 137].

48

Performance Suboptimality. Figure 3.2 shows the speedup curve for an FSM bench-

mark on a Xeon Phi machine with 256 cores. As the blue line shows, the actual speedup

increases linearly at the beginning before reaching about 10 cores, which is confirmed by

prior work [138, 137]. However, the increase becomes non-linear thereafter and even starts

dropping after about 30 cores. Finally, the speedup drops to merely 5.7X when all 256 cores

are used. This result clearly demonstrates that using all available cores may not lead to the

optimal performance.

On the other hand, unlike many parallel applications, the speedup curve of specu-

lative FSM parallelization is difficult to model using the classic Amdahl’s law and its simple

extensions. As Figure 3.2 shows, the speedup curve predicted by Amdahl’s law, with 3%

of serial execution (green line), follows an obviously different trend comparing with actual

speedup curve.

The principle reason to such a discrepancy is due to the inherent complexities

of speculative FSM parallelization. First, during a speculative FSM execution, not only

the parallel part (i.e., Phase 2) depends on the number of cores, but also the sequential

execution part (i.e., Phase 3). In comparison, the serial part in Amdahl’s law, by default,

is assumed to be a constant. Furthermore, the relation between the sequential execution

performance and the number of cores in parallel part is non-linear, due to the variation of

state convergence. The two complexities make existing scalability models fail to faithfully

capture the scalability of this advanced parallelization technique.

To address the challenges and seek for the optimal performance, we propose S3, a

speculative parallelization framework that can automatically characterize the scalability of

49

a given FSM and calculates the best configuration to maximize the performance. We next

give an overview of S3 before presenting its details.

3.3 Overview

At high level, S3 includes three layers. From bottom to top, they are characteri-

zation, modeling and guidance, as shown in Figure 3.3. We next briefly present each of the

three layers in order.

Characterization. As both FSM computations and the underlying architecture can affect

the scalability of speculative parallelization, but from completely different perspectives,

it is natural to separate the characterization on two orthogonal dimensions: application

dimension and architecture dimension. Symbolically, we refer to the characterization results

on the application side and architecture side as FSM.properties and Arch.properties,

respectively.

1 On one side,FSMs exhibit dramatically different behaviors when executed spec-

ulatively. Some FSMs are easier to speculate while others may be much more challenging

(such as div in [138]), depending on their transition structures and the characteristics of

their input domains. Furthermore, when a misspeculation happens, the penalty not only

varies across different FSMs, but also varies across different speculatively processed chunks

of the same FSM, depending on how fast the predicted (wrong) state spred converges with

the correct starting state strue. The faster they converge, the less penalty the misspecu-

lation incurs. Prior work [138, 137] introduce a couple of metrics, namely state feasibility

and expected convergence length, to quantify some of the above characteristics. While being

50

FSM Characterization

Scalability-Sensitive Speculative Parallelization

Architecture Effects 1 2

4

Scalability Analysis3

• relative speed

• architecture-independent • architecture-aware

• convergence length • contention

Optimal Performance

Figure 3.3: Overview of S3

useful to tune the design of the predictor, these metrics are inadequate to accurately model

the details of the non-deterministic behaviors of speculation, such as the distribution of

misspeculation penalty across different chunks.

Rather than computing the expected convergence length by averaging the samples,

S3 maintains a short list of raw convergence length samples (typically < 150) for each state

pair. The list of samples encapsulates not only the average convergence length, but also its

distribution, which is the key to accurately model the variation of misspeculation penalty

(Section 3.4.2). To reduce the overhead of characterization, unlike existing methods which

require to profile the convergence property for every pair of states, S3 only profiles the state

pairs that are more likely to appear in actual speculative executions. We will elaborate

FSM characterization and its uses in Section 3.4.

2 On the other side, the characteristics of the architecture also directly affect

the scalability of speculative FSM parallelization in various ways, depending on the specific

design of the architecture. In this chapter, we focus on two main factors that play critical

51

roles in the scalability analysis: resource contention and relative execution speed. Resource

contention happens when different threads share the same computing resources, such as

last level cache (LLC) and memory bandwidth. Depending on the design of the architec-

ture and the number of concurrent threads, such contention could vary significantly. Note

that resource contention only happens in the parallel phase of speculative FSM execution.

When moving into the reprocessing phase, only a single thread is left due to dependences,

the contention hence reduces to zero. However, due to the tracking of state convergence,

the execution speed in the reprocessing phase might be slightly slower than the parallel

phase. This difference directly influences the scalability, but may vary across architectures.

Therefore, it is necessary to capture the relative execution speed between the two phases,

in order to precisely quantify the scalability. We will present architecture characterizations

in Section 3.5.1.

Scalability Modeling. In this chapter, the scalability is defined as the capability of spec-

ulative parallelization to scale up to larger amount of computing units (i.e., CPU cores). In

particular, given an FSM with a fixed-size input, the scalability concerns how the execution

time varies with the number of CPU cores used 3.

3 With the characterization results, S3 can automatically reason about the scala-

bility using a series of scalability models that are derived based on the design of speculative

FSM parallelization.

In specific, the models define the speedup of speculative FSM parallelization S as

a non-linear function of the number of cores employed n, along with other parameters, such

3This is commonly referred to as strong scaling.

52

as the properties of FSM computations FSM.properties and the architecture properties

Arch.properties 4. Depending on if Arch.properties is considered, the models fall into two

types:

architecture-independent scalability model:

S = f(n, FSM.properties) (3.1)

architecture-aware scalability model:

S = f ′(n, FSM.properties, Arch.properties) (3.2)

where n is the number of cores used in speculative execution, FSM.properties represents

convergence properties of the given FSM, and Arch.properties contains architecture charac-

teristics such as resource contention among threads and relative execution speed of different

FSM operations. The architecture-independent models can be used to compare the scalabil-

ities of different FSMs and guide the design of speculative parallelization; The architecture-

aware models provide more accurate scalability analysis results that are customized for a

specific architecture.

At high level, the modeling breaks down the entire speculative FSM execution

time Tspec into two parts: the parallel processing time Tpara and the sequential reprocessing

time Trepr. Let Tseq be the sequential execution time, then the speedup of speculative

parallelization can be defined as follows:

S =
Tseq
Tspec

=
Tseq

Tpara + Trepr
(3.3)

4Note that some architecture properties, such as resource contention, also depend on the number of cores

used n.

53

Unlike the classic Amdahl’s law that assumes a constant ratio for the sequential

part, in Equation 3.3, both the parallel part Tpara and the sequential part Tseq primarily

depend on the number of cores n. Moreover, the relation between Trepr and n follows a non-

linear pattern, making standard scalability models fail to faithfully capture its scalability.

We address the challenges with a novel sample-based conditional regression (SCR) technique.

Different from traditional regression models, SCR conditionally accept convergence length

samples (i.e., FSM.properties) based on the parameters of speculative parallelization. With

such fine-grained customization, SCR can precisely model the above non-linear relation.

We will describe the basic scalability analysis in Section 3.4.2 and the integration

of architecture properties in Section 3.5.2.

Scalability-Sensitive Speculative Parallelization. The goal of S3 is to maximize the

efficiency of speculative parallelization by reasoning about its scalability and discovering

the optimal number of cores to use (i.e., n∗).

4 With the scalability models, this problem can be formalized as the following

discrete optimization problem.

max S

s.t. 1 ≤ n ≤ Ncore

(3.4)

where the number of cores used by speculative FSM parallelization is bounded by the total

number of cores on the machine. When n = 1, the FSM execution becomes sequential.

To solve the optimization problem, depending on the models, S3 either simply

enumerates each configuration and chooses the one with the highest speedup, or directly

computes the optimal configuration from a closed-form expression. By setting n∗ in the

54

speculative parallelization, S3 can maximize the benefits of the objective. We refer to this

scheme as scalability-sensitive speculative parallelization.

In sum, the three layers closely depend on each other from top to bottom. They

together enable a new speculative parallelization scheme for FSM computations on larger-

scale parallel platforms. In the following, we elaborate architecture-independent scalability

analysis and architecture-aware scalability analysis, respectively.

3.4 Architecture-Independent Scalability Analysis

This section presents the scalability analysis that does not assume any particular

architecture, but solely based on the properties of the FSM computations and the design of

speculative parallelization.

3.4.1 FSM Characterization

As a basic computation model, FSMs feature many properties. In this work,

we focus on a type of characteristics that has a significant influence on the penalty of

misspeculation – the convergence length.

As mentioned in Section 3.2, when a misspeculation happens, the speculative par-

allelization framework may not have to reprocess the whole chunk, thanks to the fact that

the predicted (wrong) state spred may converge with the actual state strue. The shorter

it takes for them to converge, the less penalty of the misspeculation incurs. To effectively

model such behaviors, we leverage the concept of state convergence length [138], defined as

follows.

55

s1 s2 s3 s2 s2 s3 … s4
s4 s1 s2 s2 s2 s3 … s4

input

transition path s1 :
transition path s4 :

1 1 0 0 1 0

Figure 3.4: Example of State Convergence in FSM Transitions

Definition 6 Given an input string I and two different starting states si and sj. The

convergence length between si and sj on I is the least number of transitions for each of

them to take in order to transition to the same state, denoted as LI(si, sj). If by end of I,

they end at different states, set LI(si, sj) =∞.

In Figure 3.4, though starting from two different states, transition paths s1 and

s4 reach the same state s2 after consuming the third input symbol, hence the convergence

length between s1 and s4 on this piece of input is LI(s1, s4) = 3.

Given an FSM, its convergence length properties can be profiled either offline using

a set of training inputs [138], or online using the testing inputs [137]. Note that prior work

require to profile the average state convergence length for every pair of states, in order to

guide the design of the starting state predictor [138, 137]. In comparison, S3 maintains a

pool of raw convergence length samples for state pairs that are more likely to appear in

actual speculative executions, in order to facilitate a high-precision scalability analysis, as

explained in the next subsection.

56

3.4.2 Scalability Analysis

The goal of scalability analysis is to examine how speedup S varies as the number of

cores used n changes. Based on the definition of S in Equation 3.3, this requires to model the

ratio between sequential execution time and its corresponding speculative execution time.

In architecture-independent scalability analysis, we use the number of state transitions to

quantify the relative execution time, instead of the concrete execution time which may vary

across different architectures. For example, given an input of length ‖I‖, when processed

sequentially, the execution time is Tseq = ‖I‖.

For speculative execution, the total time Tspec mainly consists of the parallel pro-

cessing time Tpara and the sequential reprocessing time Trepr (Phases 2 and 3 in Section

3.2) 5.

Tspec = Tpara + Trepr (3.5)

In parallel processing phase, each thread first predicts the starting state, then

processes its corresponding chunk with the predicted starting state. In general, there is a

tradeoff between the prediction accuracy and prediction cost. However, after the design

of predictor is fixed, the prediction cost becomes a constant (more details in [138, 137]).

We use Cpred to represent the prediction cost and Tproc to represent the processing time of

chunks. Since the input is evenly partitioned based on the number of cores n, we have Tproc

= ‖I‖ /n. Hence, the parallel phase execution time Tpara is

Tpara = Cpred + Tproc = Cpred +
‖I‖
n

(3.6)

5The partitioning time in Phase 1 is typically negligible.

57

Next, we analyze the execution time of the reprocessing phase, which is more chal-

lenging due to two complexities inherited in the design of speculative FSM parallelization.

Complexitiy I: Undeterministic behaviors of speculation. By its nature, speculation

is non-deterministic. If a speculation succeeds, there would be no cost of reprocessing;

otherwise, the speculation framework has to initiate reprocessing to correct the mistakenly

processed parts. As only the latter case degrades the scalability, an effective scalability

model needs to distinguish the two cases. However, since the speculation happens during

the actual runs, such a distinction is as hard as the speculation itself.

Complexity II: Variation of reprocessing costs. To reduce the penalty of mis-

speculation, existing methods [138, 137] leverage the convergence property of FSMs (see

Section 3.4.1) by tracking if the misspeculated state spred converges with the actual state

strue. Once they converge, the reprocessing can safely stop. On one hand, this design helps

reduce the reprocessing costs of misspeculation. On the other hand, it also complicates the

modeling of speculative parallelization, as the reprocessing costs for different chunks may

vary significantly, depending on their convergence lengths.

In the following, we present an analytical model that address both complexities

together, referred to as sample-based conditional regression model. Before introducing the

model, we first formalize the total execution time of reprocessing.

In reprocessing phase, due to dependences, all chunks, except the first one, have

to be validated and reprocessed sequentially. Therefore, the total reprocessing time Trepr is

composed of the reprocessing time of each chunk T i
repr, where 1 < i ≤ n. Let Li(sipred, s

i
true)

be the convergence length between the misspeculated state sipred and the actual state sitrue

58

for chunk i. Then the total reprocessing time can be represented as

Trepr =
n∑

i=2

T i
repr =

n∑
i=2

Li(sipred, s
i
true) (3.7)

Two points worth to mention here. First, to address the above two complexities

together, we unify the representations by referring to a successful speculation as a “mis-

speculation” with reprocessing length of zero, that is,

Li(sipred, s
i
true) = 0, if sipred = sitrue (3.8)

Second, the reprocessing of a chunk cannot go beyond the size of the chunk, hence

the following constraint holds:

Li(sipred, s
i
true) ≤

‖I‖
n

(3.9)

Sample-based Conditional Regression. A key challenge in the scalability analysis

of speculative FSM parallelization is precisely estimating Equation 3.7 in practice. We

address this challenge with sample-based conditional regression (SCR). Different from a

classic regression analysis, SCR considers samples conditionally – only if they satisfy the

given constraint.

In the context of reprocessing time modeling, a sample in SCR is the convergence

length for a pair of states Lk(si, sj) on a piece of training input k. The constraint for the

samples is the chunk size ‖I‖ /n. For a given state pair (si, sj), SCR maintains a short

list of K samples 6. However, during the regression analysis, SCR only chooses samples

with convergence length shorter than the constraint (i.e., Lk(si, sj) < ‖I‖ /n). Note that

6K is tunable to balance the accuracy and cost. In our evaluation, K is set to 120.

59

the constraint can vary, depending on the input size ‖I‖ and the number of cores n. This

flexibility allows the customization of SCR based on the needs of scalability analysis. On the

other hand, with a pool of samples, the differences among samples resemble the variation

of reprocessing costs among different chunks.

Note that convergence length profiling for different state pairs is already required

by existing speculative FSM parallelization [138, 137], in order to improve the starting state

prediction. In these cases, SCR does not require any extra profiling.

However, maintaining a list of samples for every pair of states could be expensive

in terms of both space cost and the cost of regression analysis, especially when the number

of states is large. To reduce the total amount of samples, SCR maintains samples only for

state pairs that are more likely to appear in actual runs. To find out these state pairs,

SCR performs a lightweight state pair frequency profiling offline, by invoking a speculative

execution with a large number of parallel threads 7. Let the set of high-frequency state

pairs be S2
f , then

S2
f = {(s, s′)|frequency(s, s′) > Hf} (3.10)

where Hf is a predefined frequency threshold.

With the samples of high-frequency state pairs, SCR computes the total repro-

7In our experiments, this number is set to 1000.

60

cessing cost estimate T ′repr for a configuration n with the following equation:

T ′repr(n) =
n− 1∥∥∥S2
f

∥∥∥ ·K
∑

(s,s′)∈S2
f

K∑
k=1

Lk(s, s′), where

Lk(s, s′) =


Lk(s, s′), Lk(s, s′) < ‖I‖ /n

‖I‖ /n, otherwise

(3.11)

Note that each sample Lk(s, s′) is considered only if it satisfies the constraint, that

is, Lk(s, s′) < ‖I‖ /n. Statistically speaking, if set Hf = 0, then we have

lim
K→∞,n→∞

T ′repr(n) = Trepr(n) (3.12)

Model M1. Putting all together, we have the estimated speculative execution time

Tspec = Cpred +
‖I‖
n

+ T ′repr(n) (3.13)

As the sequential execution time Tseq = ‖I‖, we have the first scalability model M1:

SM1 =
Tseq
Tspec

=
‖I‖

Cpred + ‖I‖ /n+ T ′repr(n)
(3.14)

Based on Equation 3.14, for a given FSM and an input size ‖I‖, Model M1 can compute

the speedup of speculative FSM parallelization for any configuration n, with the help of

SCR (Equation 3.11), hence, find out the optimal configuration n∗, such that,

SM1(n
∗) = max{SM1(n)|1 ≤ n ≤ Ncore} (3.15)

Depending on the number of state pairs
∥∥∥S2

f

∥∥∥ and the number of samples for

each state pair K, the calculation of Equation 3.11 may introduce some runtime cost.

One way to reduce the cost is by tuning the state pair frequency threshold Hf and the

61

number of samples K, which in turn may compromise the accuracy. Next, we will discuss

another way to balance the accuracy and modeling cost, by simplifying the SCR model.

The simplification will lead to a closed-form representation of the optimal configuration.

Model M2. Considering the SCR model in Equation 3.11, there are two scenarios in

which the model can be simplified by eliminating the constraint. First, when the input size

is large enough or the convergence lengths between state pairs are relatively short, such that

Lk(s, s′) is often smaller than ‖I‖ /n, then we can assume that Lk(s, s′) = Lk(s, s′). Second,

when the speculative parallelization does not adopt the state convergence optimization (e.g.,

because few states can converge, like FSM div in [138]), or the convergence length is so long,

such that Lk(s, s′) is often larger than the chunk size, then we assume Lk(s, s′) = ‖I‖ /n.

Putting two scenarios together, we have a new model for reprocessing time estimation:

T ′′repr(n) =


L̄ · (n− 1), L̄ < ‖I‖ /n

(1− Ps) · (n− 1) · ‖I‖ /n, otherwise

(3.16)

where L̄ is the average convergence length among all samples and Ps is the probability of

successful speculation, that is, P (s = s′). Depending on the ratio between input size and

number of cores, the new model T ′′repr(n) switches between two equations.

By substituting the corresponding term in Equation 3.14 with the new model, we

get the second scalability model M2:

SM2 =
Tseq
Tspec

=
‖I‖

Cpred + ‖I‖ /n+ T ′′repr(n)
(3.17)

One advantage of Model M2 is that the optimal number of cores n∗ can be rep-

resented in a closed-form expression, hence calculated directly without going through the

62

pool of samples (required by Model M1). Considering Equation 3.16 and Equation 3.17

together, we can solve speedup maximization problem in Equation 3.3 and get the following

optimal configuration:

n∗ =


√
‖I‖ /L̄, L̄ < ‖I‖ /Ncore

√
1/(1− Ps), otherwise

(3.18)

where L̄ and Ps capture the convergence properties of the FSM and the speculation accuracy,

respectively.

Equation 3.18 quantitatively reflects two basic intuitions behind scalability anal-

ysis. First, as the convergence length L̄ increases, the optimal configuration n∗ should be

reduced. Second, when the speculation accuracy Ps increases, the speedup tends to be

better when choosing to use more available cores.

Discussion. Comparing models M1 and M2, there is a tradeoff between the accuracy

and the modeling cost. On one hand, with the SCR, Model M1 captures more details of

misspeculation cost variation, hence tends to be more accurate in most cases. Meanwhile,

M1 incurs more overhead as it needs to go through the pool of samples to calculate the

speedup for each configuration. On the other hand, though Model M2 directly computes the

optimal configuration, it may lose some accuracy, especially when the average convergence

length L̄ is close to the chunk size ‖I‖ /n.

Both models M1 and M2 are solely based on FSMs’ properties, and can be used for

comparing the scalability of different FSMs when being executed speculatively. In practice,

the actual scalability also depends on the characteristics of underlying architecture. Next,

63

we will discuss how to extend the FSM properties-based scalability models to architecture-

aware scalability models.

3.5 Towards Architecture-Aware Scalability Analysis

On different architectures, the scalability of a type of computations may vary sig-

nificantly, not only depending on the characteristics of the architecture, but also depending

on their interaction with the computations. To enable accurate and practical scalability

analysis for a given computing platform, this section presents architecture characterizations

and discusses how to integrate them into the scalability models introduced in Section 3.4.

3.5.1 Architecture Effects

Considering the complexity of modern architectures, the interplay between an ar-

chitecture and an application can be quite involved. Here, we focus on the end-to-end

architecture effects that are closely relevant to the performance of speculative FSM paral-

lelization. In another word, our architecture characterizations are customized for speculative

FSM parallelization.

Since the execution time of speculative FSM execution mainly consists of two

phases: parallel processing phase and sequential reprocessing phase (Section 3.4.2), we

separate our discussion on the two phases. In specific, for each phase, we identify the major

factor(s) that directly influences the performance.

Resource Contention in Parallel Phase. During the parallel phase, a group of n threads

are created, each of them occupying a separate (logical) core. Based on their predicted

64

starting states, these threads proceed with their own input chunks individually, and do not

need to communicate either other. Thus, they do not suffer from any lock contention that

is often caused by concurrent access of the shared data structures 8. However, different

cores physically share hardware resources, such as last level cache (LLC) and memory

bandwidth, and even more resources among logical cores in a hyper-threaded core. The

sharing of resources leads to contentions that directly influence the performance of this

phase.

As the number of cores used increases, the resource contention tends to increase as

well. However, the contention may not increase linearly or even monotonically, depending

on the design of the architecture as well as the mapping between threads and logical cores.

Without loss of generality, this chapter assumes that S3 uses the default mapping that is

chosen by the operations system (defined in /proc/cpuinfo).

To quantitatively measure the resource contention, we introduce the metric con-

tention factor, denoted as α(n).

α(n) = T (n)/T (1) (3.19)

where T (i) is the execution time of processing i input chunks of the same length with i

cores. Contention factor α(n) captures the degree of resource contention when executing

with n parallel threads, comparing with a single thread execution. For commonly used

architectures, it is expected that α(n) > 1. For a given architecture, the contention factor

α(n) can be easily measured by running a micro benchmark Ncore times.

8Threads do share the same FSM transition table, but only perform read operations.

65

Relative Execution Speed of Reprocessing. After entering into the reprocessing phase,

only one thread is left, responsible for validating the correctness of each speculation and

correcting the mistakenly processed parts caused by misspeculation. This implies there

is no resource contention in this phase (i.e., α(1) = 1). However, due to the tracking of

state convergence (between spred and strue), the execution speed (i.e., processing time per

symbol) in reprocessing phase might be relatively slower than regular state transitions. The

actual difference depends on the architecture, meanwhile, affects the scalability: the slower

the reprocessing is, the less scalability the speculative parallelization can achieve.

To capture the relative execution speed, we introduce the relative speed factor,

denoted as γ.

γ = T 0
repr/T

0
seq (3.20)

where T 0
repr and T 0

seq are the processing time of a single symbol during reprocessing and

a sequential execution, respectively. It is also expected that γ > 1. Similar to contention

factor, γ can be measured with a micro FSM benchmark, but just running twice.

For a given architecture, α(n) and γ only need to be profiled once. Next, we

discuss how to integrate these two architecture factors into the scalability models presented

in Section 3.4. The integration will lead to a pair of architecture-aware scalability models

that are more accurate and practical than their counterparts.

3.5.2 Integration of Architecture Factors

We first consider the resource contention factor α(n) in the parallel phase, then

the relative speed factor γ in the reprocessing phase, and finally put them together.

66

The parallel phase execution time model in Equation 3.6 assumes that the parallel

processing time Tproc equals sequential processing time (modeled as ‖I‖) divided by the

number of cores n. When considering the resource contention factor (Equation 3.19), that

is, α(n) = Tproc/(Tseq/n), we can easily infer

Tproc = α(n) · Tseq
n

= α(n) · ‖I‖
n

(3.21)

Equation 3.21 implies that the higher the resource contention is, the longer the

parallel processing time would become.

Similarly, we can extend to the reprocessing phase model in Equation 3.7 by inte-

grating relative speed factor γ

Trepr = γ ·
n∑

i=2

Li(sipred, s
i
true) (3.22)

Putting all together, we have two enhanced scalability models M1+ and M2+,

corresponding to models M1 and M2, respectively.

Model M1+. Based on Model M1 in Equation 3.14, we have the following extended Model

M1+ with architecture factors.

SM1+ =
Tseq
Tspec

=
‖I‖

Cpred + α(n) · ‖I‖ /n+ γ · T ′repr(n)
(3.23)

Model M2+. Similarly, based on Equations 3.16 and 3.17, we extend Model M2 to Model

M2+ as follows.

SM2+ =
Tseq
Tspec

=
‖I‖

Cpred + α(n) · ‖I‖ /n+ γ · T ′′repr(n)
(3.24)

where T ′′repr(n) is defined the same as that in Equation 3.16.

Augmented with architecture factors, models M1+ and M2+ are expected to pro-

vide more accurate scalability analysis results that are customized to a specific architecture.

67

3.6 Implementation

We implemented S3 based on the OptSpec library [138, 137], which is implemented

in C language and leverages Pthread for multi-threading. At high level, there are three ma-

jor components: (i) An FSM property collector for profiling state convergence properties.

The collector can be tuned either online using testing inputs or offline using training in-

puts. The cost of online profiling has been optimized with techniques from prior work [137]

(typically less than 5%); (ii) An offline architecture property collector which runs a small

set of micro FSM benchmarks on the target machine to measure the resource contention

α(n) and relative speed factor γ; And (iii) a runtime controller that implements the scala-

bility models. Based on the collected the FSM and architectural properties, the controller

calculates the optimal configuration n∗, and feeds it into speculative parallelization setting

at runtime.

3.7 Evaluation

In this section, we evaluate S3 on large-scale shared memory architectures, includ-

ing a standalone Xeon Phi processor with 256 logical cores. The evaluation mainly focuses

on two aspects: the accuracy of scalability analysis and the performance and energy benefits

from using S3. We also discuss of scalabilities of some specific FSM computations based on

experimental results.

68

3.7.1 Methodology

We compare S3 with two methods. One is the default setting of OptSpec [138,

137] which uses all available cores on the machine; The other is the exhausted searching

that provides the ground truth of optimal configuration. In specific, given a FSM, the

input size and an architecture with Ncore cores, the exhausted searching executes the FSM

with its inputs on the architecture using 1 to Ncore cores to find the optimal number of

cores. Obviously, it is unreasonable to use exhausted searching in real situations as trying

one configuration is already at least as costly as the executing the best configuration, not

mentioning enumerating all configurations.

We run our experiments on three different architectures, which are summarized in

Table 3.1. Due to space limit, we mainly focus on the results on Xeon Phi architecture.

Xeon Phi runs Linux 3.10.0 with GCC 4.8.5, while the other two run Linux 3.10.0 with

GCC 4.47. All programs are compiled with “-O3” optimization flag. The timing results

reported are the average of 10 runs on 10 inputs, with all runtime cost included.

Table 3.1: Architectures in Evaluation

Arch. model freq. #cores∗ #SMT #Sockets

Xeon Phi Xeon Phi 7210 1.30 Hz 256 4 1
Haswell Xeon E5-2698 2.30 Hz 64 2 2
Ivy Bridgy Xeon E7-8860 2.27 Hz 80 1 8

*The numbers of cores shown are the number of logical cores recognized by operating systems.

The benchmarks are collected from real-world FSM applications, primarily from

Snort [108], one of the most widely used open source Network Intrusion Detection Systems

(NIDSs). It has a rich body of signatures/rules, most of which are specified by a Perl-

69

Table 3.2: FSM Benchmarks and Their Properties

FSM #states avg(L) FSM #states avg(L)

openview 501 1.27E+07 spirit 2041 8.09E+01
tomcat 10 6.56E+06 jnlp 1211 8.09E+01

iis 32 1.27E+07 postgre 28 9.98E+04
cnc 115 9.93E+04 apache 6 2.55E+05
rtf 768 8.66E+04 mutiny 21 2.53E+05

warehouse 82 1.81E+06 buffer 10 1.12E+06
dfs 26 6.83E+04 adware 5265 1.20E+02

compatible regular expression (PCRE). We converted the PCREs to FSMs using standard

regular expression to FSM conversion algorithms [2]. The inputs to the FSMs are network

traffic traces collected from a Linux server and a laptop via tcpdump, with a total size

of 18GB. Table 3.2 summarizes the 14 benchmarks used in our evaluation, including the

number of states and the average convergence length collected from high-frequency state

pairs, each with 120 samples.

3.7.2 Model Accuracy

Table 3.3 reports the optimal configuration n∗ found by exhausted searching and

the four models of S3, on architectures Xeon Phi and Haswell 9. “Exs” shows the actual

optimal number of cores by enumerating all configurations (i.e., the “ground truth”). Note

that, the predicted optimal number of cores is bounded by the total number of cores in the

tested platforms. Overall, architecture-aware models (M1+ and M2+) are more accurate

than architecture-independent models (M1 and M2), especially for benchmarks with better

scalabilities, thanks to their consideration of architecture factors α(n) and γ. The differences

between M1+ and M2+ are not significant for most benchmarks, similar to M1 and M2. The

9The results on Ivy Bridge follow similar patterns.

70

largest difference happens on benchmark rtf, where M2 turns to be much over optimistic

(80 v.s. 42). In comparison, the result of M1 is very close to the actual optimal (43 v.s.

42). Also note that the results of M2 is closer to the ground truth than M1 in general. On

one hand, due to the simplification of SCR model, M2 predicts less accurately than M1 in

reprocessing length (more pessimistic in most cases). On the other hand, both M1 and M2

miss the architecture factors as mentioned above, and tend to be more optimistic. Because

of the “balance” that happens to M2, results from M2 turn to be closer to the real cases

than M1.

0

5

10

15

20

25

30

0 50 100 150 200 250

apache

0

1

2

3

4

5

6

0 50 100 150 200 250

cnc

0

30

60

90

120

150

0 50 100 150 200 250

adware

0

5

10

15

20

25

30

0 50 100 150 200 250

mutiny

0

2

4

6

8

10

12

0 50 100 150 200 250

warehouse

0

10

20

30

40

50

60

0 50 100 150 200 250

dfs

0

5

10

15

20

0 50 100 150 200 250

buffer

0

1

2

3

4

0 50 100 150 200 250

openview
Actual M1

M1+ M2

M2+

Figure 3.5: Comparison of Speedup Curves from Different Models. (x-axis is the number
of cores; y-axis is the speedup)

To further examine the overall accuracy in scalability analysis, we collected the

speedup curves for each benchmark on each architecture. Due to space limit, we only

report some representative results in Figure 3.5. In general, the speedup curves clearly show

the effectiveness of the two architectural-aware models (M1+ and M2+), whose speedup

curves precisely align with the actual speedup curve for most benchmarks. Between M1+

and M2+, M2+ performs less reliable than M1+, especially on benchmarks openview and

71

Table 3.3: Optimal Configurations from Different Methods

Xeon Phi Haswell
Exs M1 M1+ M2 M2+ Exs M1 M1+ M2 M2+

openview 6 7 6 7 6 7 7 7 7 7
tomcat 8 9 8 8 8 12 9 11 9 11

iis 6 7 6 7 6 7 7 7 7 6
warehouse 15 18 15 18 15 21 18 22 18 22

apache 37 48 40 47 37 53 48 49 47 49
mutiny 34 49 39 47 37 44 49 47 47 47
buffer 26 33 27 22 17 34 33 40 22 22

cnc 51 83 60 75 54 62 62 59 64 59
rtf 42 43 41 80 63 54 43 49 64 62
dfs 54 100 62 90 62 59 64 57 64 57

postgre 50 85 57 74 57 56 63 55 64 55
adware 110 256 112 256 112 58 64 57 64 57

spirit 116 256 116 256 116 62 64 58 64 58
jnlp 116 256 114 256 114 60 64 59 64 59

buffer, due to its simplification of the SCR model (Section 3.4). Model M1+ shows some

slight discrepancy on benchmarks buffer, openview, and mutiny. This is mainly caused

by the characteristic differences between the samples and the testing inputs.

3.7.3 Performance Improvement

We next present the performance benefits of S3, comparing with the default setting

of speculative FSM parallelization [138, 137]. Figure 3.6 shows the speedup (baseline is

sequential FSM execution) of all five methods on 14 benchmarks and three architectures.

“Exhaust” represents the ideal speedup that can be achieved by tuning the number of cores.

The most performance gains come from the results on Xeon Phi, for its larger number of

available cores. On average, S3 boosts the speedup from 6.1X to 16.7X with Model M1+.

For architecture-independent models (M1 and M2), the improvements are slightly less, but

still reaching 15X. For benchmark buffer, the speedup is improved by a factor of five (3.2X

72

6.1X

3.2X

15.3X

15.6X

16.7X

17.1X

0 10 20 30 40 50 60

geomean

openview

tomcat

iis

warehouse

apache

mutiny

buffer

cnc

rtf

dfs

postgre

adware

spirit

jnlp

Xeon	Phi

Exhaust

ScalaFSM-M2+

ScalaFSM-M1+

ScalaFSM-M2

ScalaFSM-M1

Default	(ASPLOS14)
11.6X

14.3X

14.3X

14.8X

0 10 20 30 40

geomean

openview

tomcat

iis

warehouse

apache

mutiny

buffer

cnc

rtf

dfs

postgre

adware

spirit

jnlp

Haswell

7.2X

9.9X
10.7X

10.9X

0 5 10 15

geomean

openview

tomcat

iis

warehouse

apache

mutiny

buffer

cnc

rtf

dfs

postgre

adware

spirit

jnlp

Ivy	Bridge

Figure 3.6: Speedup Comparison between S3 and The State of The Art [138] on Three
Architectures: Xeon Phi, Haswell, and Ivy Bridge

v.s. 15.6X). Results on Haswell and Ivy Bridge follow similar trends in general, but are

less significant due their limited number of available cores. Overall, the results imply the

necessity of scalability-aware speculative FSM parallelization, especially considering future

parallel platforms with even more number of processing units.

3.7.4 Energy Saving

Finally, we briefly discuss one side benefit of scalability-sensitive speculative FSM

parallelization – energy saving. The energy saving primarily comes from the use of less

number of processors. Table 3.4 reports the energy saving in percentage on Xeon Phi and

Haswell architectures. On Xeon Phi, the energy saving is more significant, up to 77%,

because it has more room to reduce the amount of core uses. However, on Haswell, we also

observed cases with even more energy consumption. This is because when using all available

cores (64 cores), though the power consumption is higher, the execution time becomes

73

Table 3.4: Energy Saving by S3 (baseline: Default Setting)

Xeon Phi Haswell
M1 M1+ M2 M2+ M1 M1+ M2 M2+

openview 67.7% 67.1% 67.7% 67.1% 37.2% 37.2% 37.2% 37.2%
tomcat 78.6% 75.7% 75.7% 75.7% 46.0% 44.0% 46.0% 44.0%

iis 69.5% 67.7% 69.5% 67.7% 41.2% 41.2% 41.2% 40.4%
warehouse 79.9% 80.3% 79.9% 80.3% 18.7% 19.6% 18.7% 19.6%

apache 67.2% 68.0% 67.1% 68.3% -1.4% -1.8% -2.4% -1.8%
mutiny 68.0% 69.2% 69.6% 69.5% -0.8% -0.6% -0.6% -0.6%
buffer 76.9% 77.3% 77.2% 75.3% -11.4% -1.4% -18.9% -18.9%

cnc 49.7% 54.8% 51.8% 55.8% 0.3% 1.2% 0.0% 1.2%
rtf 66.3% 66.3% 57.2% 64.1% -8.9% -4.7% 0.0% 0.7%
dfs 35.4% 48.1% 37.6% 48.1% 0.0% 5.0% 0.0% 5.0%

postgre 47.3% 54.5% 50.9% 54.5% -1.6% 1.0% 0.0% 1.0%
adware 0.0% 13.7% 0.0% 13.7% 0.0% 3.6% 0.0% 3.6%

spirit 0.0% 15.2% 0.0% 15.2% 0.0% 3.9% 0.0% 3.9%
jnlp 0.0% 12.9% 0.0% 12.9% 0.0% 4.8% 0.0% 4.8%

shorter (due to smaller chunk size ‖I‖ /n), comparing with the optimal core predicted

by the models (e.g., 22 cores for M2 and M2+). In another word, for speculative FSM

parallelization, it is not necessary that more number of cores always leads to higher energy

consumption. We leave further investigation as future work.

3.8 Summary

With a systematic scalability study, this chapter points out a principal fallacy in

the existing design of speculative FSM parallelization when being ported to a larger parallel

platform. To address the issue, this work introduces a series of scalability analysis models,

which are tailored to both the properties of FSM computations and the characteristics

of the underlying architecture. To leverage the proposed models, this chapter develops an

automatic speculative FSM parallelization framework S3, which, for the first time, enables a

74

scalability-sensitive speculative parallelization for FSM computations. For a given FSM, its

input size and the architecture, S3 can automatically compute the optimal number of cores

to use and guide the speculative parallelization towards the best performance. Evaluation

on FSM benchmarks with a spectrum of scalabilities demonstrates the effectiveness of the

new speculative parallelization scheme, showing up to 5X speedup comparing to the state-

of-the-art methods as well as up to 77% energy saving.

75

Chapter 4

Scalable FSM Parallelization via

Path Fusion and Higher-Order

Speculation

4.1 Introduction

The effectiveness of the existing parallelization schemes highly depends on the

state convergence properties of the FSM. For FSMs exhibiting limited state convergence,

they suffer from high overhead and poor scalability.

In this work, we introduce two techniques: path fusion and higher-order specula-

tion, to address the scalability limitation in each basic FSM parallelization scheme, respec-

tively. For state enumeration, to reduce the cost of maintaining multiple execution paths,

we propose to fuse different paths into a single execution path. Unlike path merging, path

76

fusion is not based on the state convergence of different execution paths. Instead, its idea

stems from the classic NFA to DFA 1 conversion [2] – a way to remove the non-deterministic

behaviors of NFA. Basically, path fusion encodes a vector of states (rather than a subset

of states as in the NFA-DFA conversion) in the original FSM into a new state, based on

which it generates a fused FSM. Thus, a single execution path of the fused FSM mimics

multiple state execution paths of the original FSM. However, in principle, the fused FSM

could be much larger than the original one. To address this, we explore dynamic fused FSM

generation techniques, which leverage biased transitions to generate a partially fused FSM

on the fly.

For state speculation, the scalability is bottlenecked by the serial validation – the

validation of a speculated state has to wait for the ground truth to be propagated from

the first chunk to its own chunk. To address it, we propose to speculatively validate the

correctness of the speculated state, referred to as higher-order speculation. In another word,

in the scheme of higher-order speculation, the “ground truth” for the validation itself could

be speculated.

Based on this concept, we design an iterative speculation scheme for FSM par-

allelization, where the whole processing is organized into a series of iterations. In each

iteration, a worker thread always validates its starting state using the ending state of the

prior chunk (which may be incorrect). The iteration finishes when the actual ground truth,

called frontier, reaches the last chunk. In essence, iterative speculation allows different in-

put chunks to be validated in parallel (though speculatively), thus potentially accelerating

the propagation of the ground truth, shortening the total time.

1Non-deterministic finite automata and deterministic finite automata.

77

Furthermore, to cope with the rich yet diverse properties of FSMs, we design a

heuristic to automatically select the FSM parallelization scheme that can maximize the

performance benefits. Finally, we implemented the proposed techniques into an FSM par-

allelization framework, named BoostFSM. Our evaluation using a set of real-world FSMs

with a spectrum of state convergence properties confirms the effectiveness of the proposed

techniques. For FSMs exhibiting limited state convergence properties, BoostFSM im-

proves the speedups from 1.1X-4.6X to 12.3X-35.5X on a 64-core machine.

Next, we start with the background of this work.

4.2 Background

In this section, we first introduce the basics of FSM and the inherent dependences

in its execution, then present the details of the two basic parallelization schemes.

FSM and Its Dependences. As shown in Figure 4.1-(a), an FSM can be represented

as a directed graph, where nodes represent the states, edges represent the transitions, and

labels on the edges indicate the conditions for the transitions to happen. The transitions

can be stored in the memory as a transition table, as shown in Figure 4.1-(b). The size of

the table is N ×M , where N is the number of states and M is the number of symbols.

The execution of an FSM starts from the initial state (S0 in the example) and

makes transitions by consuming input symbols one by one, as shown in Figure 4.1-(c). An

FSM may consist of accept states, denoted as nodes with double circles. The meaning of

accept states varies across FSM applications. For example, they may correspond to the

codes in Huffman decoding [67] or matches in pattern searching [134].

78

Figure 4.1: FSM Example

From the FSM execution shown in Figure 4.1-(c), it is easy to find that every state

(except the starting state) in the transition sequence depends on not only the input symbol

but also the prior state. Together, they form a chain of dependences, which inherently

prevent the FSM from running in parallel. A series of studies [50, 62, 138, 83, 137, 99, 100]

have been conducted to “break” the dependence chain. Despite the differences in detail, they

fall into two basic categories: state enumeration and state speculation. Next, we describe

each of them with examples.

State Enumeration. Considering the parallelization of the FSM execution in Figure 4.1-

(c), we partition the input into two chunks (see Figure 4.2). For the first chunk, we start

the FSM execution from the initial state S0. However, for the second chunk, we do not

know its starting state, as it depends on the processing of the first chunk. The basic idea

of state enumeration [50, 83] is to fork an execution path for each state (S0, S1, and S2)

in the FSM. Certainly, one of the execution paths must be correct. As demonstrated in

Figure 4.2, S1 is later found to be the actual starting state, based on the ending state of

79

chunk 0. Hence, its execution path will be connected to that of the prior chunk, while the

others will be discarded.

Figure 4.2: State Enumeration

Obviously, maintaining multiple execution paths may create significant overhead,

which can compromise or even outweigh the benefits of parallelization. To reduce the

overhead, prior work [83] has made an interesting observation: after certain number of

transitions, different execution paths may merge. For example, the first and second paths

(started with S0 and S1) both transition into S0 after reading the first symbol 0. Later,

the third path (started with S2) also merges with the rest. After paths merge, only one of

them needs to be maintained, thus reducing the cost of paths maintenance.

However, the effectiveness of path merging highly depends on the convergence

properties of the FSM. A recent study [83] has shown that, for many real-world FSMs

(from Snort [108]), most states tend to converge quickly, but a few states fail to converge

after a large number of transitions. As an example, Figure 4.3 shows an FSM slightly

different from that in Figure 4.1. But it exhibits a very different convergence property: no

matter what input is given, none of the states converge.

80

To address this limited state convergence, prior work [83] explores SIMD paral-

lelism – using different SIMD lanes for different execution paths. However, such hardware

parallelism can be otherwise used to enable more fine-grained data-level parallelization –

partitioning the input into more chunks [99]. Moreover, its efficiency is restricted by the

SIMD width. When the number of remaining paths is more than the SIMD width, a tran-

sition needs multiple rounds of SIMD operations.

Figure 4.3: FSM Example with Poor Convergence

State Speculation. Instead of enumerating all the states at the beginning of a chunk

(except for the first), another strategy is to speculate the starting state. As illustrated in

Figure 4.4, state S2 is speculated to be the starting state, with which chunk 1 is processed.

However, the speculation could be incorrect – misspeculation, in which case the correspond-

ing chunk needs to be reprocessed. In the example from Figure 4.4, S1 is later found to

be the correct starting state. As a result, chunk 1 gets reprocessed. Luckily, path merging

can also be applied here between the reprocessing path and the speculated processing path.

Once they merge, the reprocessing can safely stop.

As to how the speculation (state prediction) is performed, prior work [138] has

made a comprehensive study. The basic idea is to use the suffix of the prior chunk as a

81

Figure 4.4: State Speculation

“partial context” to infer the chance that each state is the starting state. We will provide

more details about state prediction in Section 4.4.

…

…

…

chunk_0 chunk_1 chunk_2 chunk_3

u
v

w

………

Figure 4.5: Sequential Validations

The scalability bottleneck in this speculative parallelization lies in the sequential

validations. When the input is partitioned into multiple chunks, the validations have to be

conducted in order from the second chunk to the last, as shown in Figure 4.5. Because,

before the prior chunk is validated (and reprocessed under misspeculation), we are not sure

if its ending state is correct. In another word, the ground truth has to be propagated from

the first chunk, chunk by chunk. This is less a concern when the speculation accuracy is

high or the reprocessing lengths are short. However, when the speculation accuracy drops

and the reprocessing paths fail to converge with their speculative processing paths quickly,

the bottleneck could seriously limit the scalability of speculative parallelization.

82

In summary, the efficiency of both parallelization schemes relies on the underlying

state convergence properties of the FSM. For FSMs exhibiting limited state convergence,

they all suffer from high overhead, leading to poor scalability. In the following, we will

introduce two techniques, path fusion and higher-order speculation, to address the scalability

limitations in the two schemes, respectively. After that, we will present a heuristic-based

approach to facilitate the selection between the two augmented parallelization schemes.

4.3 Path Fusion

In this section, we present path fusion, a technique that fuses different FSM exe-

cution paths into a single path, to boost the efficiency of enumerative parallelization. Note

that, unlike the path merging mentioned in Section 4.2, path fusion is not based on the

state convergence property of FSMs. Instead, its idea is inspired by the classic NFA to

DFA conversion [2]. For this reason, we first briefly review the NFA to DFA conversion and

compare it with path fusion intuitively, then we present the basic algorithm of path fusion

and discuss how to adopt it dynamically during the enumerative parallelization.

4.3.1 Motivation

According to automata theory, NFAs exhibit non-deterministic behaviors – a state

in an NFA may transition to multiple states after reading an input symbol. Take the NFA

in Figure 4.6 as an example, state S0 transitions to both itself and S1, after reading symbol

1. Similar non-deterministic behaviors are also shown in states S1 and S2. As a result, an

NFA execution needs to maintain multiple current states (bounded by the total number of

83

states), which leads to poor execution efficiency. A well-known solution to this problem is

converting an NFA to a DFA using the subset construction algorithm [2].

Figure 4.6: NFA and Its Execution

The basic idea behind the subset construction is to map a subset of NFA states to

one state of the constructed DFA. In this way, a DFA execution with one current state can

simulate an NFA execution with a set of current states. For the example in Figure 4.6, by

mapping {S0} → S′0, {S0, S1} → S′1, and {S0, S1, S2} → S′2, we can convert the NFA to the

DFA in Figure 4.1. To find out the mapping, the construction starts from the initial state

of the NFA, then it uses a worklist strategy to iteratively discover new sets of reachable

states (i.e., DFA states) by making transitions on every input symbol. More details of this

construction algorithm can be found in [2].

NFA vs. State Enumeration. One interesting observation we had is that state enumera-

tion and NFA suffer from similar kind of inefficiency issues in their executions – both of them

need to maintain multiple current states in general (compare Figure 4.3 and Figure 4.6).

However, there are some critical differences:

• First, state enumeration maintains a vector of states for an ordered sequence of

FSM execution paths. The ordering is essential to selecting the right execution

84

path later during the enumerative parallelization. By contrast, an NFA only

maintains a subset of states, without any ordering.

• Second, while the number of current states in an NFA execution may increase

or decrease (see Figure 4.6), the number of current states in state enumeration

can only decrease, which happens during path merging.

Despite the differences, a natural question we asked is: can we design a technique

similar to the NFA to DFA conversion for the state enumeration to address its execution

inefficiency? Fortunately, we found the positive answer to the question. In fact, by adopting

a worklist-based strategy like the one used in the subset construction algorithm [2], we can

generate a new (fused) FSM whose single execution path simulates multiple execution paths

of the original FSM. We refer to this technique as path fusion. Next, we introduce its basic

algorithm.

4.3.2 Static Path Fusion

The key to path fusion is to construct a new FSM, referred to as fused FSM,

where each state corresponds to a vector of states in the original FSM. Similar to the subset

construction in NFA to DFA conversion [2], we can statically construct a fused FSM without

any actual inputs.

85

Algorithm 6 Fused FSM Construction

1: Input: FSM with trans[Sj][ci], j ∈ [0, N), i ∈ [0, C)

2: Output1: Fused FSM with Trans[Sj][ci], j ∈ [0,M), i ∈ [0, C)

3: Output2: Mapping from fused states S to state vectors V : map

4:

5: V0 = [S0, S1, · · · , SN]

6: map.insert(V0, S0)

7: cnt = 1 /* counter of fused states */

8: worklist = {V0}

9: while worklist is not empty do

10: remove an item V from the worklist

11: S = map.find(V)

12: for each input symbol ci do

13: for each state Sj in V do

14: Vnext[j] = trans[Sj][ci]

15: if map.find(Vnext) == null then /* first time meet it? */

16: map.insert(Vnext, Scnt)

17: cnt = cnt + 1

18: add Vnext to worklist

19: Snext = map.find(Vnext)

20: Trans[S][ci] = Snext /* record fused state transition */

21: reverse the key and value in map

Algorithm. Algorithm 6 presents a worklist-based strategy to construct a fused FSM with

states {S0,S1, · · · ,SM} from a given FSM with states {S0, S1, · · · , SN}. Initially, it sets

86

V0 = [S0, S1, · · · , SN], which represents the initial state S0 of the fused FSM, because we

fork an execution path for each state Si (0 ≤ i < N) in the enumerative parallelization.

After that, the algorithm initiates a worklist with V0. From there, it iteratively removes a

state vector from the worklist, finds out its next state vector Vnext for each input symbol ci

(0 ≤ i < C). If Vnext represents a new fused state Scnt, record their correspondence and add

Vnext back to the worklist (Line 15-18). Then, record the fused state transition (Line 20).

Finally, it creates a map from fused states to state vectors (Line 21) which is to separate a

fused path back to a state vector in the end of the processing.

Note that, by only adding new fused states to the worklist, the algorithm will

always terminate, as the number of states in the fused FSM is bounded by the size of

the N -dimensional vector space NN . However, in practice, the algorithm only traverses a

very small fraction of the entire vector space, as we will demonstrate shortly after a quick

example.

Example. Figure 4.7 shows the fused FSM generated for the FSM example in Figure 4.3.

The fused FSM consists of 6 states, whose IDs follow the order that the states are created.

With the fused FSM, the three execution paths on chunk 1 shown in Figure 4.3 can be

reduced to a single execution path of the fused FSM: S0 → S1 → S3 → S1 → S0 → S1.

Later, if S2 turns out to be the actual starting state of chunk 1, we can then immediately

find that the actual ending state of chunk 1 is S2, the third element in the state vector

corresponding to S2. This shows the importance of using vectors instead of subsets as the

states of fused FSM – keeping the order of current states allow us to map the starting state

to its ending state.

87

1s1s0 s3
0

10

0s4s2 s5

1
0

00

1 11

K V K V
S0 [S0, S1, S2] S3 [S1, S2, S0]
S1 [S0, S2, S1] S4 [S2, S0, S1]
S2 [S1, S0, S2] S5 [S2, S1, S0]

(a) Fused State Transitions (b) Fused States à State Vectors

Figure 4.7: Static Fused FSM for the FSM in Figure 4.3

Note that, though the vector space for the FSM example in Figure 4.3 is 33 = 27,

the statically generated fused FSM only consists of 6 states. Next, we show this is not a

special case, but a prevalent property of the fused FSMs.

Cost in Practice. Similar to the NFA to DFA conversion [2], the actual costs of fused FSM

construction for real-world FSMs are significantly less than the theoretical complexity. To

demonstrate this, we randomly selected 392 FSMs from the Snort [108] library. Figure 4.8

reports the actual number of states in the fused FSMs for 377 out of the 392 FSMs. We

can find that, for most FSMs, the numbers of states in their fused FSMs are below N2 (red

diamonds), where N is the number of states in the original FSM. These results confirm the

feasibility of static fused FSM generation for many real-world FSMs.

Despite the promises of static fused FSM generation for many real-world FSMs,

we still found that, for 15 out of 392 FSMs, the algorithm fails to generate fused FSMs in 3

minutes or generates fused FSMs with over 1 million states. When the size of the generated

FSM is very large, it not only requires significant amount of memory, but also may slow

down the FSM execution, as the transition table would largely reside in the memory, rather

88

1.0E+00

1.0E+02

1.0E+04

1.0E+06

1.0E+08

1 10 100 1000

#F
us

ed
 S

ta
te

s

#States in FSM (N)

#States in Fused FSM N^2 N^3

Figure 4.8: Number of States in Fused FSMs

than CPU caches. For this reason, we next explore the possibility of dynamically generating

a partially fused FSM during the enumerative FSM execution.

4.3.3 Dynamic Path Fusion

Unlike static path fusion which builds the entire fused FSM with states and tran-

sitions for all possible inputs, dynamic path fusion constructs a partial fused FSM that only

consists of states and transitions for a single input, with the goal to reduce the memory

needs and improve the data locality. This is especially critical for FSMs whose fused FSMs

otherwise could not be constructed statically in practice.

Algorithm. The application of dynamic path fusion resembles the just-in-time (JIT) com-

pilation strategy used in modern compilers. It consists of two execution modes:

• Basic Mode. Given a vector of current states V and an input symbol c, this

mode makes individual transitions for each state in the vector to obtain the

89

next state vector Vnext:

Vnext[i] = trans[V [i]][c], 0 ≤ i < N (4.1)

In addition, it generates a single transition at the fused FSM level: Snext =

Trans[S][c], where S and Snext are the fused states corresponding to V and

Vnext, respectively.

• Fused Mode. Under this mode, the current state of the fused FSM S is given.

After reading input symbol c, this mode attempts to make a transition at the

fused FSM level Snext = Trans[S][c]. If the needed transition information is

not available, it switches back to the basic mode.

With dynamic path fusion, the state enumeration scheme starts from the basic

mode, then it switches to the fused mode once the transition information Trans[S][c] be-

comes available, and switches back to the basic mode otherwise.

Data Structures. A key design question in implementing the dynamic path fusion is

how to store the transition information Trans[S][c]. A straightforward solution is using a

hash map, where the key is a combination of S and c, and the value is the next fused state

Snext. While being intuitive, it requires an invocation of a hash function for each fused state

transition. Comparing to the default two-dimensional table (Figure 4.1-b), we found the

cost of hash-map-based state transitions is about 7X higher. Instead, we employ a vector of

arrays for storing the transitions of fused states (see Figure 4.9-a). Each time a new fused

state is created, a “row” is added to the vector of arrays. In theory, if the transitions of an

execution are scattered sparsely across many fused states, this data structure may waste

90

space, similar to the two-dimensional table. However, in practice, we found that for a single

input, the transitions are often concentrated to a few number of “hot” states, leading to

small memory footprints even for FSMs with very large static fused FSMs (more details in

Section 4.6).

…

c0 c1 c2 c3 c4

…
(b) Fused State (a) Transitions (c) Hash Map

…

K V

[S0, S1, S2, S3]

[S1, S2, S0, S3]

[S3, S1, S2, S0]

struct
FusedState{

int id;
int *stateVec;
int vecSize;

};

𝐒𝟏∗

𝐒𝟏∗

𝐒𝟏∗
𝐒𝟎∗

𝐒𝟎∗

𝐒𝟎∗𝐒𝟐∗

𝐒𝟐∗

𝐒𝟐∗ 𝐒𝟐∗
𝐒𝟏∗
𝐒𝟎∗𝐒𝟎

𝐒𝟏
𝐒𝟐

Figure 4.9: Data Structures for Dynamic Path Fusion

(S∗
i is a pointer to a fused state; [Si, · · · , Sj] is a state vector)

The FusedState, as shown in Figure 4.9-b, is defined with both a state id and its

corresponding state vector to quickly switch back to the basic mode once the fused state

transition is unavailable. Finally, to find chances of switching from the basic mode to the

fused mode, a hash map from state vectors to fused states (see Figure 4.9-c) is maintained.

Note that, to reduce memory cost, only pointers to FusedState are kept in the vector of

arrays and the hash map. Both the sizes of the vector and the hash map equal to Mdyn,

the number of unique fused states encountered in a single execution.

Example. Figure 4.10 illustrates an example execution with dynamic path fusion using

the FSM from Figure 4.3. The thick arrows indicate the switchings between the basic mode

91

S0 S1 S0 S0 S1S0
S2 S2 S2 S1 S0S1
S1 S0 S1 S2 S2S2

0 1 1 0 0 1 1 0 1 1

S1 S2 S1 S0 S1S0 S2 S1 S0 S3 S0

S0
S1
S2

S0
S1
S2

basic

fused

Figure 4.10: Example Execution with Dynamic Path Fusion

and the fused mode. The fused states and transitions in gray are generated during the

basic mode execution. As shown later in Section 4.6, for real-world FSMs and inputs, the

executions tend to be dominated by the fused state transitions, resulting in much better

efficiency than the basic state enumeration.

Optimization. As mentioned earlier, path fusion is radically different from the path merg-

ing optimization (Section 4.2). In fact, they can be combined to further boost the execution

efficiency. A straightforward way is separating the execution of state enumeration into two

phases: (i) path merging phase, and (ii) path fusing phase, and apply the two optimizations

in the two phases respectively. This design is based on the fact that states of different

execution paths tend to merge quickly at the beginning of the execution [83]. Thus, once

the number of current states is below a pre-defined threshold τn or remains unchanged for

τl transitions, we move to the second phase and start dynamic path fusion. In cases where

the path merging reduces the size of the state vector, the following dynamic path fusion will

consume even less memory and make faster switches between the basic and fused execution

modes.

92

So far, we have presented the path fusion technique which addresses the low exe-

cution efficiency of state enumeration for FSMs with limited state convergence. Next, we

move to the other FSM parallelization scheme – state speculation, which also suffers from

a critical scalability issue when the FSM exhibits limited state convergence.

4.4 Higher-Order Speculation

Unlike state enumeration, speculative FSM parallelization [138, 137, 99, 100] pre-

dicts it when the starting state of an input chunk is unknown, then it relies on validations

and reprocessing to ensure the correctness. However, as explained in Section 4.2, when the

reprocessing path fails to converge quickly with the speculative execution path, the cost

would be high. This becomes especially serious when the reprocessing of different chunks

is “chained” together, forming a serial bottelneck.

In this section, we address the serial reprocessing issue by introducing the concept

of speculation order. We show that the existing FSM speculation scheme belongs to first-

order speculation, and by raising the speculation to higher orders, it is possible to validate

and reprocess different input chunks in parallel, without compromising the correctness.

4.4.1 Speculation Order

For easy reference, we formally denote the speculation at the beginning of input

chunk chunk i as:

Spec(i, S, C) (4.2)

where S is the predicted starting state and C is the correct starting state, also referred to

93

as the correctness criterion. A speculation Spec(i, S, C) can be validated by replacing the

predicted state S with the correct one C, denoted as:

Spec(i, S, C)
validate−−−−−→ Non-Spec(i, C) (4.3)

The validation results in a non-speculative status regarding the starting state at

the beginning of input chunk chunk i.

If we refer to the above speculation Spec(i, S, C) as the first-order speculation,

then we can generalize the concept of speculation to higher-order speculation, recursively:

Definition 7 The order of speculation Spec(i, S, C) is

• (k+1)-th, if and only if its validation leads to a k-th order speculation, denoted

as

Speck+1(i, S, C)
validate−−−−−→ Speck(i, C,C ′) (4.4)

where C ′ is the correctness criterion for Speck(i, C,C ′);

• first order, if and only if its validation makes the starting state non-speculative,

denoted as

Spec1(i, S, C)
validate−−−−−→ Non-Spec(i, C) (4.5)

It is important to note that in Equation 4.4, the predicted state in Speck(i, C,C ′)

is in fact the correctness criterion from Speck+1(i, S, C). In another word, the correctness

criterion C itself is speculative, adding another “level” of speculation.

94

Revisiting Existing Speculative FSM Parallelization. Based on the above formaliza-

tion, it is not hard to find that all the existing speculative FSM parallelization [62, 138, 137,

99, 100], in fact, belongs to first-order speculation, as the correctness criteria used in their

validations are always non-speculative. As shown earlier in Figure 4.5, the non-speculative

correctness criterion is the correct ending state of the prior chunk Send i (0 ≤ i <#chunks

−1), which would not be available until the prior chunk has been validated and properly re-

processed if needed. Therefore, chunk i (0 < i ≤#chunks −1) has to wait for the correctness

criterion to be propagated from the first chunk, whose ending state is non-speculative by

default. This essentially creates “a waiting queue” that fundamentally limits the scalability

of speculative FSM parallelization. Next, we show that, by raising the speculation to higher

orders, we can effectively alleviate this “waiting queue” problem.

4.4.2 Benefits of Higher-Order Speculation

In general, raising speculation order(s) for speculative FSM parallelization could

bring benefits in two major aspects.

• Earlier & meaningful validation. To illustrate this benefit, let us reexamine the

conventional (first-order) speculation in Figure 4.5, where the validation of chunk 3

has to wait for the completion of chunk 2’s validation, in order to obtain the non-

speculative correctness criterion, the correct ending state of chunk 2, Send 2. However,

as shown in Figure 4.11, if we raise the speculation at chunk 3 to the 2nd order and use

the speculative ending state of chunk 2, S′end 2, as the correctness criterion, then we can

immediately start its validation and reprocessing, in parallel with the validation and

95

…

…

chunk_0 chunk_1 chunk_2 chunk_3

u
v

u

………

SPEC2(3, S’start_3, S’end_2)

…

Figure 4.11: Earlier and Meaningful Validation

reprocessing of chunk 1. If S′end 2 turns out to be the correct ending state of chunk 2,

like the case shown in the figure, then the reprocessing of chunk 3 would be valid. In

summary, higher-order speculation enables deeper-level speculative parallelism that

opens chances for earlier and meaningful validations of later input chunks.

• Improved speculation accuracy. Besides extra parallelism, the other benefit of

higher-order speculation comes from the improved speculation accuracy. Without

loss of generality, consider chunk 2 and chunk 3 in Figure 4.12, whose starting states

are predicted using an existing technique [62, 138, 99], denoted as S′start 2 and S′start 3.

Statistically speaking (across many inputs), their probabilities of being the correct

starting states (i.e., speculation accuracies) are the same. Assume the ending state

after speculatively processing chunk 2 is S′end 2, then the probability that S′end 2 is the

correct starting state of chunk 3 should be no less than that of S′start 3; in fact, S′end 2

is more likely to be correct starting state of chunk 3, thanks to the potential state

convergence during the speculative processing of chunk 2. That is, even if S′start 2 is

incorrect, its execution path may converge with the correct path during the processing

of chunk 2, resulting in a correct ending state (i.e., S′end 2 = Send 2).

96

… …

SPEC2(3, S’start_3, S’end_2)

chunk_2 chunk_3
… …

S’start_2 S’start_3S’end_2

If P2(S’start_2) = P3(S’start_3), then P3(S’end_2) ≥ P3(S’start_3)

state convegence

Figure 4.12: Improved Speculation Accuracy

(Pi(S): the probability that S is the correct starting state of chunk i)

When the speculation of chunk 3 is second order, as shown in Figure 4.12, and using

S′end 2 (the correctness criterion) to validate (replace) S′start 3 as the starting state of

chunk 3, the speculation accuracy can potentially increase.

To take the above benefits from the higher-order speculation, we next present a

new speculative FSM parallelization strategy, referred to as iterative speculation.

4.4.3 Iterative Speculation

Unlike existing speculative FSM parallelization [62, 138, 137, 99, 100], iterative

speculation organizes the whole processing into a series of iterations. Algorithm 7 sum-

marizes its basic ideas. First, it initializes the starting state for each chunk, just like the

conventional speculation, except that it also initializes an active flag for each thread (Line

6). After initialization, the algorithm enters into a series of iterations. In each iteration,

chunk i is processed only if active[i] is true (Line 10-11). Note the processing checks

its path convergence with that of the last processing of chunk i, that is, path merging is

97

applied. The value of flag active[i] is set at the end of the prior iteration (see Line 14-

19): if the starting state si in the last iteration is different from the ending state of the

prior chunk ei−1, active[i] is set to true. The algorithm terminates once all active flags

become false.

Algorithm 7 Iterative Speculation

1: for each chunk i do /* initialization */

2: if i == 0 then

3: si = s0

4: else

5: si = predict(i)

6: active[i] = true /* all threads are active initially */

7:

8: while some active[i] is true do /* iterations */

9: for each chunk i do in parallel

10: if active[i] == true then

11: ei = process(chunk i, si) /* w/ path merging */

12: barrier() /* synchronize */

13:

14: for each chunk i do in parallel

15: if si 6= ei−1 then /* validation */

16: si = ei−1

17: active[i] = true

18: else

19: active[i] = false

98

order increases

Iter. 0
Iter. 1
Iter. 2

Iter. 3

order decreases

non-spec

1st-order
2nd-order

3rd-order

validation

chunk_0 chunk_1 chunk_2 chunk_3

skip

Figure 4.13: Illustration of Iterative Speculation

(for clarity, all validations fail and no path merging occurred)

Next, we explain how higher-order speculation is reflected in the above algorithm

and why the algorithm in fact always terminates in #chunks iterations. As illustrated in

Figure 4.13, we use different grayscale levels to represent different orders of speculation,

with the darkest one used for the non-speculative processing. Initially, we assume that the

chunks are assigned with increasing speculation orders: chunk i is in i-th order speculation.

Then, during each iteration, the latest speculation of each chunk is validated using the latest

ending state from the prior chuck. As a result, its speculation order is reduced by one. Once

the speculation order of a chunk becomes 0th (i.e., non-speculative), it will stay inactive,

because the ending states of all its prior chunks are already fixed. Obviously, the chunk with

the highest speculation order (the last chunk) determines the maximum iteration number,

thus the algorithm takes exactly #chunks iterations to terminate.

Note that Figure 4.13, in fact, demonstrates the worst-case scenario of iterative

speculation: all validations fail and no path merging occurred in any case. Consequently,

iterative speculation would be equivalent to sequential processing; the same applies to the

99

conventional speculation. In practice, as shown later in Section 4.6, iterative speculation

substantially improves the performance, thanks to the improved speculation accuracy and

successful earlier validations (Section 4.4.2).

So far, we have introduced path fusion and higher-order speculation to address the

scalability limitations in the two basic FSM parallelization schemes, respectively. Still, an

open question is which scheme works the best for a given FSM and its inputs. We address

the scheme selection next.

4.5 Parallelization Scheme Selection

Including the two basic schemes, we have discussed five FSM parallelization schemes

in total:

• B-Enum: basic state enumeration

• B-Spec: basic state speculation

• S-Fusion: state enumeration with static path fusion

• D-Fusion: state enumeration with dynamic path fusion

• H-Spec: higher-order (iterative) speculation

We also refer to the last three as augmented schemes. Which scheme works best

depends on the characteristics of the FSM and its inputs. Based on the design of the

schemes, we focus our discussion on five key properties of the FSM and its inputs: (i)

number of states, (ii) state convergence rate, (iii) speculation accuracy, (iv) the feasibility

100

to generate a static fused FSM under a memory budget, and (v) the skewness of state vector

distribution. The second and last properties are defined below:

Definition 8 State convergence rate conv(l) is the number of unique current states after

consuming l input symbols in an enumerative execution.

Definition 9 Skewness of state vector distribution uniq(l) is the number of unique state

vectors encountered during the processing of l input symbols in an enumerative execution.

Note that our goal is NOT to precisely model the execution time of each scheme,

which could be extremely challenging given the diverse and complex FSM transition behav-

iors, not to mention external factors like the design of state predictor and the underlying

architecture. Instead, we intend to qualitatively reason about the conditions under which

each scheme would work well in general. This qualitative performance reasoning will provide

insights for us to guide the scheme selection.

Table 4.1 summarizes the suitability of each scheme under different value combi-

nations of three out of the five properties, where ‘H’ means the value is high and ‘L’ means

the opposite. For the other two properties, we assume the number of states is ‘L‘ and it is

feasible to generate a static fused FSM, in order to avoid exploding the size of the table.

There are several key points worth to mention. First, under ‘HHL’ and ‘HHH’, all

schemes would work very well, except for D-Fusion which does not run efficiently when the

number of unique state vectors is high. Also note that the speculation schemes B-Spec and

H-Spec work slightly better than the enumerative schemes, because the latter require two

passes of processing (see Section 4.3). Second, S-Fusion works well across all situations in

the table, thanks to its offline fused FSM generation. However, this is under the assumption

101

Table 4.1: Qualitative Comparison of Parallelization Schemes

(C: state conv. rate, S: spec. accuracy, K: skewness of state vectors)

Basic Schemes Augmented Schemes
C | S | K B-Enum B-Spec S-Fusion D-Fusion H-Spec
H | H | H ✩✩✩✩ ✩✩✩✩✩ ✩✩✩✩ ✩✩✩✩ ✩✩✩✩✩
H | H | L ✩✩✩✩ ✩✩✩✩✩ ✩✩✩✩ ✩✩✩✩✩
H | L | H ✩✩✩✩ ✩✩✩ ✩✩✩✩ ✩✩✩✩ ✩✩✩✩
H | L | L ✩✩✩✩ ✩✩✩ ✩✩✩✩ ✩✩✩✩
L | H | H ✩✩ ✩✩✩✩ ✩✩ ✩✩✩
L | H | L ✩✩ ✩✩✩✩ ✩✩✩
L | L | H ✩✩✩✩ ✩✩ ✩✩
L | L | L ✩✩✩✩ ✩✩

that the static fused FSM is feasible to generate under the memory budget. Third, unlike

B-Spec, H-Spec still works well under low speculation accuracy as long as the state conver-

gence rate is high (i.e., ‘HLL’ and ‘HLH’), because state convergence can improve the rate

of successful validations (see Figure 4.12). In addition, even with high state convergence

rate, if the number of states is high (not shown in the table), both B-Enum and D-Fusion

will suffer from higher overhead at the early stage of the processing (i.e., before many states

converge).

Overall, no scheme works well in all situations, however, Table 4.1 clearly shows

that the augmented schemes extend the scope of effective FSM parallelization towards the

lower rows of the table – the more challenging situations.

Based on the above qualitative analyses, we propose a series of heuristics to guide

the FSM parallelization scheme selection, summarized by the decision tree in Figure 4.14.

The heuristics start from the best parallelization scenario checking – whether the speculation

accuracy is high (greater than a threshold). If so, either B-Spec or H-Spec will be selected.

102

S-Fusion

H-SpecD-Fusion

feasible static fused FSM?
n

n

high spec. accuracy?

B-Spec

H-Spec

high state conv. rate?

y n

y n

H-Spec
y

y

B-Enum

D-Fusion

u

v

w

x y

high 𝑠𝑘𝑒𝑤 𝑙 ×𝑐𝑜𝑛𝑣(𝑙)?

Figure 4.14: Decision Tree for Scheme Selection

They then examine the state convergence rate. If it is high, they further check the number

of states. For FSMs with a large number of states, they can only choose H-Spec; otherwise,

they can pick either H-Spec or B-Enum. On the other hand, without high convergence

rate, they will try to generate a static fused FSM under the given memory budget. If

that succeeds, they will use S-Fusion; otherwise, they will further consider D-Fusion by

checking the skewness of state vector distribution. If it is highly skewed, they will surely

pick D-Fusion; otherwise, it becomes the worst case scenario – the speedup would be low

anyway. Three options are provided in this case, which are H-Spec, B-Enum, and D-Fusion.

Note that it is practically very different to select the scheme online for a given

FSM and a particular input, because the cost of collecting the properties easily outweighs

103

(or compromises) the benefits of parallelization. Instead, we target the scheme selection for

the given FSM and a group of its inputs. That is, a few inputs are (randomly) selected for

collecting the properties offline, based on which the scheme is selected and used online.

4.6 Evaluation

In this section, we evaluate our proposed techniques in detail, with a focus on the

extra speedups they bring over the two basic parallelization schemes.

4.6.1 Methodology

We implemented the five FSM parallelization schemes that are summarized in

Section 4.5, in C++ language and used Pthread for their parallel executions. Then, we

integrated these five schemes along with the scheme selector into one multi-scheme paral-

lelization framework, called BoostFSM.

Benchmarks. Table 4.2 lists the FSM benchmarks used in our evaluation with their

relevant properties. The 16 benchmarks are collected from the Snort library [108], a pool

of signatures in PCRE format used by the state-of-the-art Network Intrusion Detection

Systems (NIDS). They are chosen to provide a good coverage of the diverse properties

of FSMs and their inputs. The second column in the table shows the number of states,

which ranges from 17 to 4736 (one of the largest). The next two columns report the state

convergence rates for 103 and 106 input symbols, respectively (smaller is better). The fifth

column shows the speculation accuracy, ranging from 0% to 100%. The next column tells

the feasibilities to generate static fused FSMs (under the memory budget of 1GB/FSM, or

104

equivalently 106 fused states): for five of the benchmarks, the generation is feasible. The

last column reports the skewness of state vector distribution – the number of unique state

vectors observed after consuming 105 input symbols.

The inputs to the FSMs are 20 traces of real-world network traffics collected from

a Linux server using tcpdump. Each trace consists of 4 × 108 symbols (i.e., 400MB). The

total size of inputs is 8GB. For each FSM, five traces are randomly selected to collect

the properties reported in Table 4.2. More specifically, we ran B-Enum on the training

inputs up to 103 and 106 symbols, respectively, to collect the state convergence rates. The

speculation accuracies are the average of 100 times of speculation over the first 105 symbols

of each trace. For the skewness of state vectors, we ran B-Enum (with path merging) over

the first 1K symbols, then recorded the unique number of state vectors for the next 9K

symbols of each input.

Platform. All experiments ran on a 64-core machine equipped with an Xeon Phi 7210

processor (1.3GHz/core) and 96GB RAM. The machine runs Linux 3.10.0. All programs

were compiled by GCC 4.8.5 with the “O3” optimization flag. The timing results reported

are the average of three repetitive runs over 20 inputs and we do not report 95% confidence

intervals of the average when the variation is not significant.

In the following, we first evaluate the augmented schemes and the scheme selection,

then, reports the scalability of each scheme over different number of cores and input sizes.

105

Table 4.2: FSM Benchmarks

(conv(l): state convergence rate; Static: feasibility to generate

a static fused FSM; uniq(l): skewness of state vectors)

FSM #States conv(103) conv(106) SpecAcc Static uniq(105)

F1 207 2.0 2.0 0% Yes 6.1
F2 17 2.0 2.0 5% Yes 5.9
F3 193 46.7 20.1 1% No 130.3
F17 507 2.0 2.0 0% No 1040.1
F5 31 5.0 5.0 0% Yes 4.2
F6 31 5.7 1.0 5% No 4602.5
F7 53 3.8 1.0 9% No 529.7
F8 22 7.3 1.0 5% No 1948.8
F18 4736 1.0 1.0 100% No 78.7
F10 30 1.9 1.6 76% Yes 7.2
F11 34 7.9 1.0 4% No 3079.3
F12 65 2.0 2.0 100% Yes 4.2
F13 145 5.0 5.0 0% No 8.9
F14 1045 2.0 2.0 0% No 3.1
F15 2012 2.0 2.0 0% No 5.3
F16 1179 2.0 2.0 34% No 7.7

4.6.2 Performance

Table 4.3 reports the speedups of different FSM parallelization schemes using 64

cores over the sequential FSM execution. The second column shows the execution time

of sequential FSM execution. Since the inputs to different FSMs are of the same size,

their execution time only varies slightly. This also indicates that the number of states,

in practice, have limited impacts on the execution time, as the frequently accessed state

transitions often well fit into CPU caches. In the following, we first evaluate each of the

augmented schemes separately, then examine the effectiveness of the scheme selection.

Static Path Fusion. First, for those benchmarks whose static fused FSMs can be gener-

ated (F1-2, F5, F10, F12), S-Fusion significantly raises the speedups comparing to B-Enum,

106

Table 4.3: Speedup Comparison

(Baseline: sequential execution; #threads: 64; input size: 4× 108)

Basic Schemes Augmented Schemes

FSM Seq(s) B-Enum B-Spec S-Fusion D-Fusion H-Spec BoostFSM

F1 7.47 12.9 0.6 31.2 23.6 17.6 31.2
F2 7.45 13.7 1.9 30.9 25.1 17.8 30.9
F3 7.37 7.3 1.9 - 8.5 13.0 7.3
F17 7.53 12.9 0.5 - 3.6 8.7 12.9
F5 7.43 11.1 0.6 31.1 25.5 13.9 31.1
F6 7.43 28.5 22.9 - 13.1 30.1 30.1
F7 7.49 29.8 29.7 - 25.5 32.7 32.7
F8 7.48 29.1 20 - 19.6 32.6 32.6
F18 7.51 19.3 37.2 - 17.9 36.5 37.2
F10 7.39 14.2 1.4 30.8 25.1 18.3 30.8
F11 7.57 26.9 21.6 - 16.1 32.6 32.6
F12 7.46 13.0 39.8 30.9 24.9 39.2 39.8
F13 7.44 11.6 0.6 - 23.9 10.4 23.9
F14 7.40 12.2 0.6 - 22.5 16.7 22.5
F15 7.35 13.0 0.6 - 23.4 17.1 23.4
F16 7.46 12.7 0.9 - 23.5 11.2 23.5

Geo 7.45 15.4 3.1 31.0 18.3 19.5 25.8

from 12.9X to 31.0X on average, thanks to its path fusion and offline fused FSM generation.

According to Table 4.2, after consuming 106 symbols, there are still 2.3 paths left on average

for these FSMs. S-Fusion completely eliminates such overhead. On the other hand, for

those FSMs whose static fused FSMs are too large to generate (i.e., over the memory bud-

get), static path fusion cannot help. Table 4.4 reports the sizes of the statically generated

fused FSMs (column “Static Fusion / #FS”) and the time taken for fused FSM generations

(column “Static Fusion / Time”). The memory budget is set to 1GB, equivalent to 106

fused states. With a larger sample set, as reported earlier in Figure 4.8, the sizes of fused

FSMs are often below or close to N2, where N is the number of states in the original FSM.

Dynamic Path Fusion. D-Fusion works around the memory limitation of S-Fusion

107

Table 4.4: Statistics of Path Fusion

(#FS: num. of fused states; Time: generation time; #SW: num. of switches)

Static Fusion Dyn Fusion Static Fusion Dyn Fusion

FSM #FS Time #FS #SW FSM #FS Time #FS #SW

F1 19899 37.1 14 1223 F18 - - 4736 0
F2 173 0.06 7 1133 F10 2876 1.25 11 1311
F3 - - 116 10465 F11 - - 246 21121
F17 - - 1209 161796 F12 6655 4.80 5 897
F5 486 0.22 5 961 F13 - - 10 1339
F6 - - 149 10981 F14 - - 4 641
F7 - - 57 830 F15 - - 6 1025
F8 - - 131 17129 F16 - - 8 1245

by generating a partial fused FSM that only captures one execution. In Table 4.4, column

“Dyn Fusion / #FS” reports the numbers of fused states actually generated during dynamic

path fusion. Interestingly, the numbers are not only less than those in the static fused

FSMs, but also often less than those in the original FSMs (F1-3, F5, F10, F12-16). In

terms of performance, as reported in Table 4.3, the speedups of D-Fusion vary a lot across

benchmarks, ranging from 3.6X to 25.5X. In fact, for some FSMs, D-Fusion performs worse

than B-Fusion (F17, F6-8, F18, F11). As explained in Section 4.3.3, the effectiveness of

D-Fusion highly depends on the number of unique fused states encountered. In Table 4.4,

column “Dyn Fusion / #FS” reports these numbers, which roughly align with the speedups

of D-Fusion. Note that F18 is a special case in that the state vector size quickly drops

to one during the path merging phase, so when it enters into the path fusion phase, its

fused FSM is just the original FSM. The next column in Table 4.4 (“Dyn Fusion / #SW”)

reports the number of switches between the basic and fused modes. The switches are the

main source of overhead in dynamic path fusion due to their accesses to the hash tables

(see Section 4.3.3).

108

Higher-Order Speculation. At last, we compare H-Spec with B-Spec. As shown in

Table 4.3, H-Spec significantly boosts the speedups from 3.1X to 19.5X on average. More

importantly, its improvements are consistent across all benchmarks, except for F12 and F18,

in which cases, both H-Spec and B-Spec work very well (over 36X speedups), with B-Spec

showing marginally better speedups. These results are consistent with our earlier discussion,

that is, H-Spec performs no worse than B-Spec in principle. The improvements come

from the two benefits of higher-order speculation: earlier and meaningful validations and

improved speculation accuracy. Table 4.5 reports both the speculation accuracies of B-Spec

and H-Spec. The initial speculation accuracy of H-Spec (Iteration-1) is the same with or

similar to that of B-Spec (23% vs. 24% on average). But, over iterations, the speculation

accuracies of H-Spec get improved quickly. By the third iteration, all benchmarks reach

100% speculation accuracy. On average, it takes 2.1 iterations for H-Spec to complete the

processing.

In summary, the augmented schemes substantially boost the performance over the

basic schemes. However, their speedups vary a lot across benchmarks, and one of them,

D-Fusion, may perform even worse than its basic scheme. As shown in Table 4.3, the best

schemes (in bolded font) for the benchmarks are scattered across the five parallelization

schemes, which confirms the needs of scheme selection.

Scheme Selection. The FSM properties used by the scheme selector are already shown in

Table 4.2. Following the heuristics in Section 4.5, the selector first checks the speculation

accuracy against the threshold (98%) and finds that only benchmarks F18 and F12 meet

the requirements. Thus, it selects B-Spec for these two FSMs. Then, it checks if the

109

Table 4.5: Speculation Accuracies

Higher-Order Speculation

FSM B-Spec Iteration-1 Iteration-2 Iteration-3 #Iterations

F1 0% 0% 100% - 2.0
F2 61% 61% 100% - 1.9
F3 62% 62% 97% 100% 2.6
F5 0% 0% 98% 100% 2.4
F6 5% 5% 100% - 2.0
F7 9% 9% 100% - 2.0
F8 5% 5% 100% - 2.0
F10 0% 0% 100% - 2.0
F11 5% 5% 100% - 2.0
F12 100% 100% - - 1.0
F13 0% 0% 2% 100% 3.0
F14 0% 0% 100% - 2.0
F15 0% 0% 98% 100% 2.1
F16 33% 33% 57% 100% 3.0
F17 2% 2% 57% 100% 3.0
F18 100% 100% - - 1.0

Avg 24% 23% 86% 100% 2.1

state convergence rate conv(106) reaches one. If so, it chooses H-Spec, which happens to

benchmarks F6, F7, and F8. For the remaining benchmarks, the selector further examines

the feasibility to generate a static fused FSM. It obtains positive answers for benchmarks F1,

F2, F5, and F10, thus assigns S-Fusion to them. Finally, the selector checks the skewness

of the state vector distribution against the threshold (15) which shows benchmarks F13,

F14, F15, F16 all satisfy the requirement. So, these FSMs are assigned with D-Fusion.

At this point, there are still two benchmarks left: F3 an F17. Since our selector does not

further examine the properties based on more specific values, by default, it selects B-Enum.

The last column of Table 4.3 shows the choices of the scheme selection. Out of 16 cases,

it only fails to pick the best scheme for F3. The failure is simply due to the fact that the

heuristics stops reasoning about the performance at more fined-grained levels, which can

110

0

10

20

30

40

0 20 40 60

M1

0

10

20

30

40

50

0 20 40 60

M8

0

10

20

30

40

0 20 40 60

M2

0

5

10

15

20

25

0 20 40 60

M13Sp
ee
du
p

#cores

Figure 4.15: Scalability of Representative Cases

(F2, F8, F12, and F14 represent the best cases of S-Fusion,

H-Spec, B-Spec, and D-Fusion, respectively)

be improved with more detailed performance modeling.

4.6.3 Scalability

In this section, we examine the scalability of different schemes in terms of both

the number of cores and the input size.

Varying Number of Cores. Due to the space limit, we report the scalabilities over dif-

ferent number of cores for a subset of representative benchmarks, as shown in Figure 4.15.

They are chosen to represent the cases where S-Fusion performs the best (F2), H-Spec

111

0

10

20

30

40

M10 M9 M8 M15 M2 M7 M12 M11 M10 M1 M8 M16 M3 M1 M11 M8 M4 M12 M10 M9 M11 M8 M7 M12 M9 M11 M3 M8 M16

B-Enum B-Spec S-Fusion D-Fusion H-Spec

Small Medium Large

Figure 4.16: Speedups of Each Scheme under Different Input Sizes

(Due to space limits, for each scheme, we ranked the benchmarks by the speedup of Large input, then

selected the top two,

the middle two, and the bottom two benchmarks to show, except for S-Fusion, for which all feasible ones

are shown.)

performs the best (F8), B-Spec and H-Spec performs the best (F12), and D-Fusion per-

forms the best (F14), respectively. In general, when the desired properties are present (see

Table 4.1 and Figure 4.14), all the five schemes can scale well. On the other hand, when

the properties are not ideal, some schemes suffer from worse scalabilities than others. For

example, when the speculation accuracy drops and the state convergence rate is low, B-Spec

scales poorly, and may even run slower than the serial execution (see the curves of B-Spec

in subfigures F2, F8, and F14), due to its serial validations [100]. The other scheme that

may not scale well is D-Fusion, as shown in subfigure F8. This is because when the input

is partitioned into smaller chunks, the number of unique state vectors may not decrease

proportionally, thus the overhead becomes relatively higher.

Varying Input Size. Figure 4.16 reports the speedups of the five schemes under different

input sizes: small (1× 108), medium (4× 108), and large (8× 108). Overall, there are clear

trends that the speedups get improved as the input sizes increase for all the parallelization

schemes. The trends reflect the effects of Amdhal’s law. In our context, the sequential

112

components include thread creation (64 threads), thread synchronization (validations in

speculative schemes, and correct path selections in enumerative schemes), and some I/O

operations (printing out the matches). In addition, for H-Spec, an extra benefit could be

the potentially better convergence with longer input chunk (see Figure 4.12). For D-Fusion,

as the input chunk becomes longer, the number of switches between basic and fused modes

may become relatively less (happened to F7).

4.7 Summary

In this work, we addressed the fundamental scalability issues inherited in the two

basic FSM parallelization schemes: the cost of maintaining multiple execution paths in

enumerative parallelization and the sequential chunk-by-chunk validations in speculative

parallelization. For the former, we proposed the technique of path fusion, which can fuse

different execution paths into a single one, either statically or dynamically. For the latter,

we introduced the concept of higher-order speculation which allows a speculated state to

be validated speculatively. For practical uses, we also discussed the scenarios where each

scheme works the best and proposed a set of heuristics to help users select the parallelization

scheme. Finally, we evaluated the proposed techniques with FSMs drawn from real-world

applications and of diverse characteristics. Our results showed that the proposed techniques

can substantially raise the scalabilities of both parallelization schemes.

113

Chapter 5

Challenging Sequential Bitstream

Processing via Principled Bitwise

Speculation

5.1 Introduction

Bitstream processing manipulates binary values with bitwise operators (e.g., logical XOR and

shift <<) over long sequences of bits. It plays critical roles in many important applications

for better performance or higher space efficiency, such as bitmap indexing [68], pattern

matching [15], parsing [75, 41, 76], image compression [16, 136], and voice decoding [87].

For example, in bitstream-based text pattern matching [15], a text stream is first transposed

into a set of bitstreams, then the text patterns are searched with bitwise manipulations.

Thanks to the high efficiency of bitwise operations and bitwise parallelism, the bitwise text

114

c = 0;
/* bitstream traveral */
for i = 0 to N

a = A[i]; b = B[i];
psum = a + b;

if psum == 0xff then
bubble = c & 1;

else
bubble = c & 0;

ta = a >> 7; tb = b >> 7; tp = psum >> 7;
tc = (ta & tb) | ((ta | tb) & (tp ^ 1));
C[i] = psum + c;
c = tc | (bubble & 1);

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

...10111101010011

...01101110011010
+

A

B

...00101011101101 C
=

Figure 5.1: Bitstream Processing Example (LBSAdd [14]).

pattern matching shows significant performance improvements over the conventional “one

character at a time” pattern matching schemes. Similar treatments have also been applied

to semi-structured data (e.g., XML and JSON) to accelerate querying in document-based

data stores [75, 76].

Despite the benefits, a fundamental challenge arises when the processing of the

current bits depends on the processing results of prior bits over the course of bitstream

processing, referred to as bitstream-carried dependences, a special case of loop-carried de-

pendence. As a result to the dependences, the entire bitstream(s) have to be traversed in

serial, seriously limiting the scalability. Unfortunately, such bitstream-carried dependences

can be easily introduced with commonly used bitwise and non-bitwise operators, such as a

left shift operator << that defines the current bit with a bit to the right and a arithmetic

addition + that may produce a carry propagating over the calculations of the following bits.

115

Figure 5.1 shows an example bitstream program called long bitstream addition

(LBSAdd [14]). It adds two arbitrarily long bitstreams and put the result into a new bit-

stream. Note that, rather than adding the two streams bit-by-bit, this program leverages

bitwise parallelism to perform byte-level addition 1, which can significantly improve the

efficiency. However, the inherent dependences regarding the carry remains through out the

entire bitstream processing (more discussions later).

State of The Art. Existing efforts in optimizing the bitstream processing mainly focus on

fine-grained vectorization with SIMD intrinsics (e.g., SSE2 and AVX512) [75, 41, 76, 15]. In

spite of the performance benefits, there are limitations in the existing solutions that hinder

the productivity and efficiency of bitstream processing. First, coding with low-level SIMD

intrinsics is notoriously difficult. The situation is worsen in the presence of bitstream-carried

dependences. Take the long bitstream addition as an example, because the SIMD intrinsics

adds numbers SIMD lane-wise, programmers have to manually resolve the potential carries

across SIMD lanes [14], further complicating the SIMD programming. Second, fine-grained

dependence handling techniques cannot be naturally extended to enable coarse-grained

parallelism, that is, partitioning the bitstream(s) across CPU cores, where the size of a

bitstream partition goes far beyond of the SIMD width, making the dependence handling

a daunting task. For example, existing (linear) long bitstream addition can add up to 4096

bits [14]. In sum, the existing bitstream processing with fine-grained parallelism heavily

relies on programmers and fails to exploit the coarser-grained parallelism in the presence of

dependences, fundamentally restricting their scalability.

1Larger granularities (like int or long) can also be used. Without loss of generality, we use byte for easier

illustration as a running example.

116

Overview of This Work. Complementary to the prior efforts, this work challenges the

sequential bitstream processing with an automatic approach that enables coarse-grained

speculative parallelism for both non-SIMD and SIMD bitstream programs, referred to as

principled bitwise speculation (PBS). The basic idea of PBS is inspired by an analogy that

compares bitstream programs to sequential circuits in hardware (see Figure 5.2), both of

which transform binary sequences (bits 2 versus pulses). The memory in sequential circuits

resembles the loop-carried dependences in bitstream programs, despite that the latter are

implicitly imposed by the program structures. These close correspondences motivate us to

model the dependences in bitstream programs with finite-state machines (FSMs), a basic

way to model sequential circuits. Note that, this modeling is often impossible for general

programs whose computations can exceed the capability of FSMs. To facilitate the modeling

and minimize the sizes of FSMs, PBS leverages a series of static analyses to reason about

the minimum set of dependent bits in the bitstream programs. With the dependent bits,

PBS constructs the FSM by treating the value combinations of dependent bits as states

and examining different input-output pairs to reveal the state transitions. This reverses the

FSM-to-truth table process in the sequential circuit design. For cases where the FSM is

too large to construct, PBS offers partial or virtual FSM constructions. The former consists

of only “hot transitions” that are frequently visited; While the latter bypasses the FSM

generation, relying on the bitstream program to mimic the FSM state transitions on the

fly.

A key benefit from FSM-based bitstream program modeling is that the possibility

2For the lack of supports for bit arrays, programmers often use unsigned integer or char arrays to store

bitstreams.

117

combinational
logic

memory

signalin signalout

next
state

I/O Memory Dependence

bitstream prog. bit arrays variables loop-carried depen.

seq. circuit pulses flip-flops next-state logic

sequential circuit

for i = 0 to N
... = instream[i]
a = b & ...
...
outstream[i] = ...

bitstream program

Figure 5.2: Bitstream Programs v.s. Sequential Circuits.

of adopting existing speculative FSM parallelization [83, 138, 137, 99, 59] to bitstream

processing. By leveraging the state convergence properties of FSMs, PBS can effectively

predict future values of dependent bits, thus bringing speculative parallelism to bitstream

processing. In cases the predication fails, PBS offers a fast recovery method that directly

“rectifies” the wrong outputs based on bitwise logic, rather than reprocessing the inputs,

which minimizes the mis-speculation costs. Besides prediction, we also observe that, in some

cases, the constructed FSM runs more efficiently than the bitstream program, making itself

an optimization to the original program. In this way, even the serial bitstream processing

can get performance improvement.

We prototyped PBS on the latest LLVM infrastructure and evaluated it with a

set of bitstream processing kernels extracted from real-world applications, covering semi-

structured data processing, text pattern matching, and multimedia processing. Our results

118

show that PBS can precisely identify the dependent bits. With speculative bitstream pro-

cessing, PBS brings up to 60X speedup on a 64-core machine. To demonstrate the end-

to-end benefits, we also apply PBS to a state-of-the-art regular expression engine, called

icgrep [15]. Results show that, with PBS, icgrep can generate data-parallel bitstream

kernels to effectively leverage all the CPU cores, yielding over 20X end-to-end speedups on

a 64-core machine.

5.2 Background

This section introduces the basic ideas in bitstream processing, including the dependences

that the computations may carry.

Bitstream Processing. Informally, bitwise computations are computations involving bit-

wise operators. Commonly used bitwise operators include logical operators (e.g., &, |, ^,

~), shift operators (e.g., <<, >>, and >>>), and some specialized operators (e.g., population

count popcnt and count leading or trailing zero CLZ/CTZ). Correspondingly, there are SIMD

versions of these operators provided as low-level intrinsics, from instruction set extensions,

such as SSE2, AVX2, and AVX512. For example, mm256 and si256(s1, s2) from AVX2

performs AND operation between 256-bit vectors.

In many applications, the inputs to bitwise computations are long binary sequences

or bitstreams, such as, an audio record in multimedia processing [16, 136, 87], or a piece

of encrypted file in cryptography [20]. In fact, even textual data streams can be con-

verted into bitstreams to take advantages of SIMD intrinsics and bitwise parallelism. The

idea is illustrated in Figure 5.3. Each byte of the textual data stream is transposed into

119

<

0 0 1 1 1 1 0 0

t

0 1 1 1 0 1 0 0

g

0 1 1 0 0 1 1 1

a

0 1 1 0 0 0 0 1

B0 B1 B2 B3 B4 B5 B6 B7

0 0 1 1 1 1 0 0

0 1 1 1 0 1 0 0

0 1 1 0 0 0 0 1
0 1 1 0 0 1 1 1

Bitstreams

<

t

a

g

Textual Data Stream (ASCII)

byte-level
transpose

Figure 5.3: Text Stream to Bitstreams Conversion [75, 76, 15, 41].

eight individual bits stored in eight separated bitstreams. This textual-stream-to-bitstream

transposition brings bitstream processing to many applications conventionally manipulating

textual data streams, such as intrusion detection over network traffic [15] and data analytics

over semi-structured data streams, like XML and JSON [75, 76]. During the processing, the

input bitstreams are often transformed multiple times before they are eventually consumed.

Figure 5.4 shows the seven phases of bitstream transformations in XML parsing [76], where

each transformation generates a new bitstream (e.g., L0, and E0). Note that the first three

bitstreams (i.e., C0, C1, and C2) are generated from the base bitstreams – B0 to B7 (see

Figure 5.3). In general, we refer to these different bitstream transformations as bitstream

kernels and their corresponding executions as bitstream processing.

Bitstream-Carried Dependences. As mentioned earlier, it is easy to introduce de-

pendences into bitwise computations, with the use of operators carrying multi-bit effects,

such as various shift and arithmetic operators. Considering the XML parsing example in

120

Transformations
C0 = [a-zA-Z]

C1 = [>]

C2 = [<]

L0 = Advance(C2)

E0 = L0 & ¬C0
L1 = ScanThru(L0,C0)

E1 = L1 & ¬C1

< t a g > < v a l > < > e r r > < a]

. 1 1 1 . . . 1 1 1 1 1 1 . . 1 .

. . . . 1 1 . . 1 . . . 1 . . .

1 1 1 1 . .

. 1 1 1 1 .

. 1

. . . . 1 1 1

. 1

Figure 5.4: Bitstream Transformations in XML Parsing [76] (to make the bitstreams easier
to read, zeros are marked as dots).

Figure 5.4, two out of the seven transformations involve dependences: Advance(C2) and

ScanThru(L0, C0). The former shifts every bit in C2 one step to the right (note that it is

non-trivial to shift one bit for an entire bitstream). The latter starts from a 1 in L0 and

marks 1 right after a sequence of 1s in C0. Essentially, ScanThru(L0, C0) = (L0 + C0) &

¬C0. Due to the use of shift and addition, both transformations introduce bitstream-carried

dependences. In the source code, these dependences appear as the loop-carried dependences,

a challenging class of dependences that is often beyond the reach of existing parallelizing

compilers [131, 11]. Efforts so far in optimizing bitstream processing focus on the use of

SIMD intrinsics [15, 76]. However, this requires to manually redesign the bitstream process-

ing algorithms to handle the dependences across SIMD lanes (e.g., 256 bits). Moreover, the

benefits would not be sustained when expanding the solution to an entire bitstream, because

of the limited width of SIMD lanes. To improve the scalability as well as the productiv-

ity, this work explores a more automatic approach that enables coarse-grained speculative

parallelism for bitstream programs, namely principled bitwise speculation (PBS). Next, we

give an overview of this new approach.

121

5.3 Overview

The section presents the basic workflow of principled bitwise speculation (PBS), summarized

by Figure 5.5. At high level, PBS consists of three core modules: (i) a bitwise static analysis

module, (ii) a bitstream program modeling module, and (iii) a runtime speculation module.

Given a bitstream program, the static analysis module first performs a series of static

analyses to identify the bits in the program variables that essentially cause the bitstream-

carried dependences, referred to as dependent bits. The dependent bits are then feed into

the bitstream program modeling module, where a finite-state machine (FSM) is generated,

sometimes partially or virtually, to capture the basic behaviors of bitstream programs. After

these preparations, the runtime speculation module spawns a set of threads to process the

input bitstream(s) speculatively. In specific, each speculative thread first leverages an FSM-

based speculation technique, called lookback, to predict the runtime values of the dependent

bits. With those values, the thread is able to speculatively execute the bitstream program.

In cases the prediction fails, the runtime module also features a fast bitstream-customized

approach to accelerate the recovery. In the following, we present these three modules one

by one.

5.4 Static Dependent Bit Analysis

Conventionally, program dependences are defined based on the read and write of variables.

However, for bitstream programs, such variable-level dependence analysis may not capture

the dependences precisely, due to bit-level value manipulations. In this section, we present

122

Static Dependent Bit Analysis
• flow-sensitive
• bit-level precision

bitstream program

Bitstream Prog. Modeling
• FSM construction
• partial / virtual FSM

Runtime Speculation
• FSM-based lookback
• fast recovery

dependent bits

FSM

a = b & 4
c = a >> 1
if ...

1

2

3

4

011...1010101110...1011010011...1000111110...010010

T1 T4
bitstream

T3 T2

spawn speculative threads

Figure 5.5: Workflow of Principled Bitwise Speculation (PBS)

an assembly of static analyses that analyze bitstream programs down to the bit level to pin-

point the exact bits causing the dependences, together referred to as dependent bit analysis.

Before introducing its details, we first define dependent bit both intuitively and formally.

5.4.1 Dependent Bit: Motivation

The idea of dependent bits can be naturally extended from the dependences on variables.

In general, if two instructions si and sj access the same memory location M and one of

them writes to M , then there exists a (data) dependence between si and sj . For programs

without bitwise operations, M usually refers to a variable (e.g., an integer or a char). In

this case, we call M the dependent variable. Consider the following code.

123

L1:
L2:

n = n + x
y = n & 7

There exists a write-after-read dependence from L1 to L1 itself on variable n and a

read-after-write dependence from L1 to L2 also on n. Conventionally, in both cases, variable

n is referred to as the memory M in the dependence definition.

However, for the second dependence, if we break down n into individual bits (e.g.,

8 bits), we may narrow down M to smaller granularity based on the AND operation in L2.

In fact, a closer look at L2 reveals that the five most significant bits of n, denoted as n[3:7],

actually do not contribute to the calculation of t – they are ignored. In another word, only

n[0:2] are involved in this dependence, which we referred to as dependent bits. Similarly, L2

also indicates that the five most significant bits of t (i.e., t[3:7]) are always zeros – they

are constants. Therefore, a later use of t (not shown) does not necessarily depend on L2

regarding t[3:7]. In both of the above scenarios, some instructions, in principle, may not

have to access all the bits of variables 3. Based on this intuition, we define the dependent

bits more formally.

Definition 10 If two instructions si and sj have to access the same bit of variable v (say

v[k]), and at least one of them writes to v[k], then there exists a (data) dependence between

si and sj, where v[k] is the dependent bit.

The concept of dependent bits makes it possible to capture the dependences in

bitstream programs in a more precise way, which is critical to the construction of FSMs, as

we show later.
3This should not be confused with the instruction implementations that read all the bits from a register;

Here, the concept is for static analysis.

124

Next, we put the dependence discussion in the context of bitstream processing.

Consider the following example.

n = n + in[i]
out[i] = n & 7

for i = 0 to NL1:
L2:
L3:

where in[] is the input bitstream traversed by the for loop, byte by byte, and transformed

to the output bitstream out[]. In addition to the dependence from L2 to L3 inside the loop

body, there also exist dependences across iterations, known as loop-carried dependences.

For instance, the L2 in iteration 2 (reads n) depends on the L2 in iteration 1 (writes to

n). These dependences are chained together across iterations, preventing any iteration-level

parallelizations.

However, if we look closer at the use of variable n in L3, only n0:2 have to be

accessed and if we propagate this back to L2, that means, for the n on the right hand side

of L2, the five most significant bits n3:7 are ignored – though used by the addition, the

outputted n3:7 anyway will not be used by the next instruction L3. Thus, the loop-carried

dependences actually only involve 3 bits of n, rather than 8 bits (or 32 bits for an integer),

making them much more amenable to break with speculation techniques. This observation

is one enabler for principled bitwise speculation.

Based on the above discussions, the key is to find out those dependent bits that

cause loop-carried dependences. Next, we introduce an assembly of static analyses that can

effectively identify the dependent bits, namely dependent bit analysis.

125

5.4.2 Dependent Bit Analysis

For clarity, we decompose the dependent bit analysis into three more basic analyses. We first

briefly introduce each of them and how they are integrated, then present their algorithms

in detail. The for loop example in Section 5.4.1, denoted as Lmain, will be used as the

running example.

Entry-Point Liveness Analysis. First, dependent bits should be live at the entry of the

loop body of Lmain, that is, they will be used before they get redefined. Otherwise, if the

bits are redefined first, then they will not depend values from prior iterations. However, it is

very challenging to directly perform bit-level liveness analysis due to the complex bit status

caused by various bitwise operations. Existing liveness analysis [120] can reach bit sections,

but not individual bits. For this reason, we first perform variable-level liveness analysis,

then rely on a separate bit status analysis (discussed next) to prune irrelevant bits. We refer

to the former as entry-point liveness analysis, which is different from the classic liveness

analysis in that it only computes the live variables at the entry of the loop body, rather

than every program point or basic block. As shown in Section 5.4.3, this difference reduces

the iterative data-flow analysis to a single pass. In the running example, this analysis finds

that both n and in[i] are live at the loop body entry.

Bit-Status Analysis. The main complexity in dependent bit analysis comes from the

variation of bit status in variables – some bits may be involved in the calculation semantically

while others may not (ignored). Furthermore, whether they are involved or not depends on

if some bits of the operands are known (constant). Consider y = n & m. If n[0:2] are known

to be zeros, then m[0:2] can be ignored. We address these complexities with an effective bit-

126

status analysis that was previously developed for hardware synthesis [13]. In the running

example, this analysis finds that out[i][3:7] are zeros and n[3:7] are ignored in both L2 and

L3.

Unchanged-Bit Analysis. The last piece of analysis is to find bits that never change

values through all iterations, called unchanged bits. Note that they are different from the

constant bits which are redefined with known values (0 or 1). Unchanged bits are defined

before the loop and remain unchanged through the iterations. In the running example, this

analysis finds that all bits in in[i] are unchanged.

Putting It All Together. Now, we integrate the results of the above three analyses.

Assume the bits in all live variables at the loop body entry are in bit set Blive , the seman-

tically useful bits in the loop body are in bit set Bunknown, and the set of unchanged bits is

Bnochange , then the dependent bits Bdepen can be calculated as follows.

Bdepen = (Blive ∩ Bunknown)− Bunchanged (5.1)

In brief, the dependent bits should be (i) live at the entry of the loop body, (ii)

semantically useful in the loop body, but (iii) possibly changed during the loop iterations.

Together, the three conditions can narrow down the set of dependent bits to a minimum.

Consider the running example:

• Blive = {n[0:7]:L2, in[i][0:7]:L2}, where : is followed by the instruction(s) using

the bits before redefinitions;

• Bunknown = {n[0:2]:L2, in[i][0:2]:L2, out[i][0:2]:L2}, where : indicates the instruc-

tion(s) using the bits;

127

• and Bunchanged = {in[i][0:7]}.

Based on Equation 5.1, we have Bdepen = {n[0:2]:L2}. Next, we explain how each

of the three analyses work in detail.

5.4.3 Algorithms

In general, dependent bit analysis follows iterative data-flow analysis over the control-flow

graph (CFG) of the main loop Lmain body. Thanks to their specific goals, two of its three

sub-analyses only require one iteration to complete.

Algorithm for Entry-Point Liveness Analysis. The goal of entry-point liveness anal-

ysis is to find out which variables are live at the entry point of main loop body. The domain

of the analysis is the power set of all variables appearing in the loop body and the direction

of the analysis is backward. For an instruction i, the transfer function fi is:

LIVEENTRYin = LIVEENTRYout −DEF(i) ∪USE(i) (5.2)

At a joining point of the CFG, the meet operator ∧ is union ∪. When the analysis starts,

LIVEENTRY is initialized to ∅ at the exit of the CFG. After finishing the first instruction

of the CFG, the analysis stops and outputs the latest LIVEENTRY. Figure 5.6 shows an

example analysis on a simplified CFG based on Figure 5.1. The IDs of instruction(s) using

the corresponding live variables are also attached.

Algorithm for Bit-Status Analysis. To analyze bit status of different variables, we

adopt an existing analysis developed for hardware design [13]. In this analysis, the bit

128

{}
{tc:L9,t:L9}

bu = c & 1

ta = a >> 7
tb = b >> 7
tc = ta & tb
t = bu & 1
c = tc | t

p = a + b
p == 0xff

bu = c & 0

{bu:L8,tc:L9}
{ta:L7,tb:L7,bu:L8}
{b:L6,ta:L7,bu:L8}

{c:L4,a:L5,b:L6}

{p:L2,c:{L3,L4},a:L5,b:L6}
{c:{L3,L4},a:{L1,L5},b:{L1,L6}}

L1:
L2:

L3:

L4:

L5:
L6:
L7:
L8:
L9:

{a:L5,b:L6,bu:L8}

{c:L3,a:L5,b:L6}

{c:{L3,L4},a:L5,b:L6}

Figure 5.6: Example Entry-Point Liveness Analysis (backward).

status is defined as one of four cases: unknown, 0, 1, and ignored:

• unknown means the bit value cannot be inferred;

• 0 means the bit value can be inferred and it is zero;

• 1 means the bit value can be inferred and it is one;

• ignored means the bit does not contribute to the output.

Internally, bit-status analysis consists of two sub-analyses: constant-bit analysis

which checks if a bit has a known value (0 or 1) and ignored-bit analysis which infers if

a bit will be ignored with no impacts on the outputs. The former extends the constant

propagation to the bit level and therefore is a forward analysis, while the latter resembles

the dead code analysis and thus is backward. Both analyses operate on all the bits of all

variables, denoted as Ball. The following lattice diagram shows the partial order among the

four bit statuses.

129

0 1

x(ignored)

u(unknown)

During the analysis, the bit status is moved up from the bottom of the lattice.

That is, the analysis first initializes all bits in Ball to u, then it applies constant-bit analysis

to mark bits with their known values (0 or 1). After that, it applies ignored-bit analysis to

identify “ignored” bits. In both steps, the analysis is iterative to cope with potential inner

loops of the main loop. Next, we briefly explain each of the two sub-analyses. More details

can be found in [13].

First, constant-bit analysis traverses the CFG forwards to propagate bits with

known values. Unlike the conventional constant propagation, the transfer function of con-

stant bit analysis highly depends on the specific operation involved. Take instruction bu =

c & 1 as an example. By taking a logical AND with 1, the analysis infers that bu[1:7] must

be zeros. Similarly, it infers ta[1:7] are zeros too, based on ta = a >> 7. After constant-bit

analysis, all bits in Ball are either 0, 1, or “unknown”, which are the “not ignored” cases.

The ignored-bit analysis starts from these bit statuses, traverses the CFG backwards, and

turns some of them to “ignored” based on the specific operations. For example, the analysis

infers that c[1:7] in bu = c & 1 are ignored, due to the AND operation with 1. Figure 5.7

shows a bit-status analysis on our running example. For limited space, only the variables

with updated bit status(es) are shown.

130

bu = c & 1

ta = a >> 7
tb = b >> 7
tc = ta & tb
t = bu & 1
c = tc | t

p = a + b
p == 0xff

bu = c & 0

FORWARD BACKWARD

c[xxxxxxxu]
c[xxxxxxxu]

bu[0000000u]
c[xxxxxxxu]

bu[0000000u]
bu[0000000u] a[uxxxxxxx]
ta[0000000u] b[uxxxxxxx]
tb[0000000u]
tc[0000000u] bu[xxxxxxxu]

t[0000000u]
c[0000000u]

L1:
L2:

L3:

L4:

L5:
L6:
L7:
L8:
L9:

Figure 5.7: Bit Status Analysis (forward&backward).

Algorithm for Unchanged-Bit Analysis. The algorithm used for unchanged-bit analy-

sis is straightforward. To find out bits never defined in the main loop, the analysis initializes

all bits in Ball as “unchanged”, then it scans every instruction in the CFG and marks bits

that are defined as “changed”. In the end of the scanning, the remaining “unchanged” bits

are outputted. As unchanged-bits are flow-insensitive, the analysis can traverse the CFG

either forwards or backwards, in just one pass. Consider the example in Figure 5.7. The

results of unchanged-bit analysis consist of all bits in a and b.

Merging Results. Based on Equation 5.1, we can compute the dependent bit set Bdepen

for the running example. The calculation process is shown in Figure 5.8. In the end, it only

includes c[0], which is used by instruction L3.

131

Bdepen = (Blive ∩ Bunknown)− Bunchanged

= {c[0:7]:{L3,L4}, a[0:7]:{L1,L5}, b[0:7]:{L1,L6}}

∩ {c[0]:{L3}, a[0:7]:L1, a[7]:L5, b[0:7]:L1, b[7]:L6, · · · }

− {a[0:7], b[0:7]}

= {c[0]:{L3}, a[0:7]:L1, a[7]:L5, b[0:7]:L1, b[7]:L6} − {a[0:7], b[0:7]} = {c[0]:{L3}}

Figure 5.8: Calculation of Dependent Bits for Example in Figures 5.7 and 5.6 (for Bunknown,
only the relavent elements are shown).

5.5 Modeling Bitstream Programs

This section discusses the roles that dependent bits play in bitstream processing, with a

goal to create an abstraction of bitstream programs in general.

Bitstream Program Abstraction. Despite that bitstream programs may carry complex

logic with various instructions, essentially, they all boil down to a transformation of some

bitstream(s). This makes them resemble sequential circuits, though one is software and the

other is hardware. The close correspondence motivates us to model bitstream programs

with finite-state machines (FSMs), a model for sequential circuits. In the following, we

first present a basic method to construct FSMs from bitstream programs, then discuss the

strategies to address extremely large FSMs.

5.5.1 FSM Construction

In a typical sequential circuit design scenario, some forms of FSMs (such as Mealy machines

or Moore machines) are often first constructed to model the behaviors of the designed

132

s1 s2 s3

0/0

1/1

0/0

1/01/0

0/0

CS I NS O
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 0
0 1 1 1 0 0
1 0 0 0 0 0
1 0 1 0 0 1

(a) FSM (b) Truth Table

Figure 5.9: Example FSM (Mealy machine) and Truth Table.

circuits. Then, by encoding the FSM states with binaries, the FSM is converted into a

truth table. From there, the flip-flops will be determined and the circuit diagram will be

generated. Figure 5.9-(a) shows the FSM (Mealy machine) for designing a hardware counter

that counts three consecutive ones. By encoding the three states with 00, 01, and 10, a

truth table can be generated, as Figure 5.9-(b), where CS/NS represent the current/next

state and I/O represent the input/output.

In the context of bitstream program modeling, we reverse the FSM-to-truth table

process. First, we generate a truth table, then encode the value combinations in the truth

table with states to construct the FSM. Next, we elaborate the two phases in detail.

Truth Table Generation. In sequential circuit design, the truth table reflects the boolean

logical relations among the input, the output, and the memory element of a sequential

circuit. In the context of bitstream processing, we use truth table in a similar way, except

that the memory element of a sequential circuit is replaced with the dependent bits in

bitstream programs. Given a bitstream program with identified dependent bits Bdepen, we

first identify the input bits Bin and output bits Bout, that is, the bits consumed from input

133

bitstream(s) and the bits written into the output bitstream(s) in each iteration of the main

loop. Here, we assume the input bitstreams are read-only and the output bitstreams are

written-only. Then, by tracking the uses of loop index in array references, we can easily

identify the input and output bits, such as the input bits A[i] and B[i] and the output

bits C[i] in our running example (see Figure 5.1). For more complicated situations, we

can provide pragmas to programers for helping identify the input/output bitstreams. With

those bits, we can generate the truth table as follows.

(a) List the dependent bits Bdepen as both the CS columns and NS columns of the truth

table. Set the input bits Bin as the I columns and the out bits Bout as the O columns

of the truth table, respectively.

(b) Enumerate all the binary combinations of the bits in the CS and I columns, which, in

fact, determine the total number of rows of the truth table Nrow.

(c) For each row of the truth table, execute the bitstream program (only main loop body)

by assigning the input bits and dependent bits with the corresponding values in this

row. Record the resulted values of dependent bits and output bits, and fill their values

to this row in the NS columns and O columns, respectively.

It is easy to find that the total number of columns in the truth table Ncol = |Bin|

+ 2 × |Bdepen| + |Bout|. Figure 5.10-(a) shows the truth table generated for our running

example (see Figure 5.1) based on the dependent bits found in Section 5.4.3. In this case,

the numbers of input and output bits are both eight and the number of dependent bits is

one. The size of the table is 217 × 26, which is quite large even for offline generation. We

134

s1
0…00/0…00

(b) FSM

C I(A, B) N O(C)
0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1

… … …
1 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

… … …
1 1

(a) Truth Table

s2

1…11/1…10
1…10/1…01

0…01/0…01
0…00/0…01
0…01/0…10

01…1/01…1
1…10/1…10

Figure 5.10: Truth Table and FSM (partially shown) for the Running Example (see Fig-
ure 5.1 and Section 5.4.3).

will discuss how to address it shortly in Section 5.5.2. Next, we describe how to construct

an FSM based on the truth table.

FSM Construction. The key idea in constructing the FSM is treating the value combi-

nations of dependent bits as the states. This means, for a bitstream program with |Bdepen|

bits, the number of states would be 2|Bdepen|. In our running example, as there is only

one dependent bit, the number of states is two: one for bit value 0 and the other for bit

value 1. As to the FSM transitions, they are actually already laid out in the truth table:

for the current state in C column(s), given the input bits in I column(s), the next state is

shown in the N column(s) and the output bits are shown in the O column(s). The num-

ber of transitions equals the number of rows of the truth table. Figure 5.10-(b) shows the

FSM constructed based on the truth table in Figure 5.10-(a). For space limits, only some

representative transitions are shown.

It is not surprising that the FSM and truth table constructed for our running exam-

ple are essentially those for designing a byte-level hardware adder. Essentially, the hardware

adder and the bitstream program are equivalent in terms of functionality. However, note

that the FSM-based modeling of bitstream programs does not require the programmers to

135

be familiar with the hardware design and redevelop the solution from an FSM point of view.

Furthermore, the logic of bitstream programs could be quite complex with the program-

ming flexibility of high-level languages, which can make manual FSM design an extremely

challenging task.

Another challenge in the FSM-based modeling is that the sizes of FSMs could be

very large for real-world bitstream programs (see Section 5.8), because of the large numbers

of dependent bits and/or input bits. We address this issue next.

5.5.2 Partial and Virtual FSMs

For FSMs (and truth tables) that are too large to generate in practice, we introduce partial

and virtual FSMs.

Partial FSMs. The intuition is that, in many applications, the visiting frequencies of FSM

transitions are biased. Hence, it is possible to use a small portion of captured transitions

to cover a large number of actual transitions. As shown later, this is often sufficient to

enable effective speculation for some bitstream programs. To achieve this, we use a pool

of training input bitstreams to collect “hot values” of dependent bits and input bits based

on their appearing frequencies. Base on the “hot values”, a partial truth table is first

constructed, with some rows potentially missing. Then, following the prior mentioned

truth table-to-FSM construction, a partial FSM is created.

Virtual FSMs. Another way to address the oversized FSMs is to completely bypass the

physical FSM construction. Instead, it simulates the FSM transitions with the executions of

bitstream program. In particular, an FSM transition is virtually performed with an execu-

136

tion of the main loop body of the bitstream program, where the current state is the current

values of dependent bits and the next state is the resulted values of the dependent bits

after the execution. In this way, there is no need to generate the truth table. However, the

dependent bits, along with the input bits, remain to be identified with the static analyses,

to capture the FSM states and inputs on demand. More details regarding its uses are in

Section 5.6.

Note that even though the use of virtual FSMs avoids physical FSM generations,

generating physical FSMs may still be beneficial, because it enables the use of various

FSM optimizations. Next, we will show how to use the FSM models to enable speculative

bitstream processing.

5.6 Runtime Speculation

The section presents the idea of FSM-based speculation for bitstream processing, then

introduces a novel technique that can leverage the special properties of bitstream programs

to accelerate the recovery from misspeculation.

5.6.1 FSM-based Speculation

The basic idea of speculative FSM execution stems from an interesting observation [62] that

a future FSM state can be effectively predicted by starting the FSM execution on the suffix

of the input prior to the speculation position, a technique later formalized and referred

to as lookback [138]. Figure 5.11 depicts the lookback-based speculative FSM execution.

The input sequence is first partitioned evenly based on the number of available CPU cores.

137

Then, each input partition is assigned to a thread to process. Except the first thread, all

the other threads run speculatively. To find out the starting state, a speculative thread runs

the FSM from all states on the suffix of the prior input partition (i.e., lookback). After the

lookback, the state with highest number of occurrences among the ending states is selected

as the starting state. Using the FSM in Figure 5.9 as the example, after a seven-symbol

lookback, all three states transition to state s1, implying that it must be the correct starting

state. In general, lookback can significantly improve speculation accuracies for many FSMs.

When a predication fails, a reprocessing with the correct starting state is applied

to the corresponding partition to ensure the correctness. Thanks to the state convergence

properties, the reprocessing may stop earlier when the corrected state trace “merges” with

the wrong state trace (more details in [138]).

To adopt the FSM speculation techniques into bitstream processing, we first con-

struct the FSM for the given bitstream program, then leverage the FSM-based lookback

to find out the most possible state. After that, the selected state is decoded into binary

values, which are then assigned to the dependent bits in the bitstream program to start

speculative execution. The high-level speculation workflow remains similar to that in Fig-

ure 5.11, except that the speculative FSM execution becomes the speculative execution

of bitstream programs. Considering the example of long bitstream addition, FSM-based

lookback essentially provides a systematic exploration of the prior bits “close by” to find

out the possibility of a produced carry. Our evaluation (Section 5.8) shows that a short

FSM-based lookback often yields high speculation accuracies for long bitstream addition

and many other bitstream programs.

138

001010101001...1000010010111001...1010100010

s1
s2
s3

s1

s1

partition 2 partition 1

s1

lookback
non-spec.spec.

Figure 5.11: Lookback-based Speculative FSM Parallelization.

Speculation with Partial/Virtual FSMs. For partial FSMs, the lookback process is

similar to the FSMs with full transition tables, except that the lookback may start with

a subset of states and some FSM execution paths in the lookback may stop earlier due to

the lack of the needed transitions. As a result, the accuracy of the predicted state could

be reduced. In general, partial FSMs work well in cases where the FSM transitions follow

a biased distribution. As to virtual FSMs, the lookback directly executes the bitstream

program to mimic the FSM transitions. In specific, we start the lookback with “virtual

states” – the value combinations of the dependent bits. If there are too many combinations,

a subset is selected either randomly or based on some training inputs. Then, by assigning

each value combination to the corresponding dependent bits, an instance of the bitstream

program is run to perform “virtual transitions”. At the end of the lookback, the value

combination that appears mostly would be selected as the predicted values. Note that even

though virtual FSMs bypass the physical FSM generation, the lookback essentially still

explores the state convergence of FSMs in an implicit way (“virtually”).

139

5.6.2 Fast Recovery from Misspeculation

In the existing FSM speculation, after parallel speculative executions, each predicted start-

ing state is verified against the correct state – the ending state from the processing of prior

input partition. When a verification fails, it needs to reprocess the corresponding input

partition with the correct starting state. Despite some optimization [138] for stopping the

reprocessing earlier, the reprocessing cost, in general, can still significantly compromise the

speculation benefits [100].

010111001...1010100010

101000110...0101011101 correct output bitstream

incorrect output bitstreamA’

A

A[i] = ¬A’[i]

Figure 5.12: Example Fast Recovery from Misspeculation.

The above issue may be alleviated in speculative bitstream processing. Unlike

the general FSM computations, the outputs of bitstream programs are binary sequence(s).

Under certain conditions, the correct and incorrect output bitstreams may be correlated by

some bitwise relations.

For example, the incorrect output bitstream could be the flipped version of the

correct one (see Figure 5.12). If we can prove this as a property of the bitstream program,

then we can directly recover the correct output bitstream from the incorrect one, rather

than reprocessing the input bitstream.

140

In fact, we can prove such properties of bitstream programs offline with the help

of their corresponding FSMs. Assume that the correct and incorrect output bitstreams are

O and O’, respectively, and the hypothesis is that O = P(O’), where P is a bitwise logical

function. From the FSM point of view, the hypothesis can be proved as follows. For every

pair of state transitions T (s1, I1) = (s′1, O1) and T (s2, I2) = (s′2, O2) where s1 6= s2 and

I1 = I2, we should have O1 = P(O2) as well as O2 = P(O1). Note that the proof requires

P to be commutative, as a transition, in general, may happen in both the correct and

misspeculated executions. After proving the P for the bitstream program, we can apply P

to the output bitstream from any misspeculated processing to recover the correct one. We

refer to this technique as property-based fast recovery.

5.7 Implementation

This section briefly describes some implementation details of the proposed principled bitwise

speculation.

Static Analyzer. We prototyped dependent bit analysis on the latest LLVM (version

9.0.0). The analysis is implemented as an LLVM pass, called depenBit. The pass first

identifies the main loop with the help of BitstreamLoop pragmas. Then, it runs an LLVM

loop analysis pass 4 to find out the loop induction variable, followed by an SCC (strongly

connected components) analysis pass 5 to locate the body of main loop. After these prepa-

ration, the pass starts the three sub-analyses mentioned in Section 5.4.3 and merges the

analysis results to produce the dependent bits for the given bitstream program. More de-

4https://llvm.org/doxygen/classllvm_1_1Loop.html

5https://llvm.org/doxygen/classllvm_1_1scc__iterator.html

141

https://llvm.org/doxygen/classllvm_1_1Loop.html
https://llvm.org/doxygen/classllvm_1_1scc__iterator.html

tails regarding the analyzer, including some of its potential limitations, will be discussed in

Section 5.8.

FSM Generator and Speculation Runtime. In our current prototype, both the FSM

generator and speculation runtime are implemented as standalone modules using C++. The

FSM generator takes dependent bits as inputs and outputs an FSM transition table. In

addition, the generator can optionally take a training input to create a partial FSM. By

default, the size of partial FSMs is set to |S| × 1024, where |S| is the number of states. To

support the speculative parallelization, we use the Pthread library for its more customizable

thread settings. By default, the runtime creates the same number of threads as the number

of available CPU cores. The default length for the lookback (in number of bits) is set to

2 × |Bin|. As to the property-based fast recovery, the current prototype focuses on testing

the hypothesis of NOT ¬ relation. More hypothetic relations will be gradually added in the

future versions.

5.8 Evaluation

In this section, we evaluate the principled bitwise speculation, with a focus on the perfor-

mance of speculative parallelization.

5.8.1 Methodology

Benchmarks. To facilitate the evaluation, we collected a set of eight bitstream kernels

from multiple real-world applications, ranging from semi-structured data processing [76, 75]

and text pattern matching [15] to multimedia applications [102, 74] and bioinformatics [133].

142

They are listed in Table 5.1. Three of them are implemented with SIMD intrinsics. For

each kernel, we collected a set of inputs from their applications, including 10 small inputs

(10MB each) and 10 large inputs (300MB each).

To demonstrate the end-to-end benefits, we also evaluate PBS with an open-source

high-performance regular expression engine, called icgrep [15] (see more details in Sec-

tion 5.8.4).

Table 5.1: Bitstream Kernels in Evaluation.

Abbreviation Brief Description SIMD

shd SRS Shift-hamming-distance filter kernel [133] No
802 11a IEEE 802.11a convolutional encoder [102] No
8b10b IBM 8bit/10bit block encoder [102] No

g721 uPK G.721 voice compression kernel [74] No
quoteStr JSON bitmap indexing from Mison [75] No
scanThru Ending index construction from icgrep [15] Yes
matchStar Matching “*” in regex from icgrep [15] Yes
xmlParser XML parsing kernel from Parabix [76] Yes

Evaluation Platform. Our experiments are mainly conducted on a 64-core machine

equipped with an Intel Xeon Phi 7210 processor (1.3GHz). The machine runs Linux 3.10.0

with supports of SSE4.2 and AVX2. As to the compilers, we use LLVM 9.0.0 for analyzing

the source code and GCC 4.8.5 for generating the executables, with “-O3” optimization

flag.

For the bitstream kernel evaluation, we measure the time spent on the main loop

(i.e., bitstream traversal loop), while for the regular expression engine evaluation, we mea-

sure the end-to-end running time with everything included. All timing results reported are

the average from 10 repetitive runs.

143

5.8.2 Static Analysis and Modeling

To prepare for the static analysis, we inlined the functions that are called inside the main

loops to avoid precision loss from the inter-procedural analysis. The second column of

Table 5.2 reports the number of LLVM IR instructions in the main loop of each kernel,

where the static analyses are performed (#Instr denotes number of instructions in main

loop; while #DB/#IB/#OB represent numbers of dependent/input/output bits).

Table 5.2: Static Analysis Results

Kernel #Instr. #DB #IB #OB

shd srs 61 1 32 32
802 11a 72 5 32 2× 32
8b10b cal 140 1 32 32
g721 upd 143 2 3× 32 3× 8
quoteStr 61 1 2× 32 32
scanThru 1218 1 2× 256 256
matchStar 1226 1 2× 256 256
xmlParser 1881 2 3× 256 256

Analysis Results. In Table 5.2, columns 2-4 report the numbers of dependent bits, input

bits and output bits, discovered in the bitstream kernels. For each kernel, we manually

checked the source code to examine the correctness of the analysis results. In the end,

our examination shows that the reported bits are both correct and precise. Among the

eight kernels, five kernels are found with only one dependent bit, despite that the variables

holding them are 64-bit unsigned integers or 256-bit SIMD vectors. For kernels g721 upd

and xmlParser, there are two dependent bits. In both cases, the two bits come from two

different variables. Kernel 802 11a is found with the most number of dependent bits –

five bits, which are all from the same variable shiftRegister[5:3,1:0]. As to the input and

144

output bits, the number ranges from 32 to 3 × 256 (3 means three bitstreams), except

g721 upd which outputs 3 × 8 bits to three output bitstreams. It is not surprising that

the last three kernels use so many input/output bits, as they are implemented with SIMD

intrinsics. The static analysis time of the DepenBit pass, reported by LLVM, ranges from

tens of milliseconds to several seconds.

Despite the success in analyzing the kernels, there exists some limitations with

our current analysis implementation. One of them is the assumption that the main loop

of bitstream kernels is in canonical form, which facilitates the identification of the loop

induction variable and input/output bits. This could be addressed with more advanced

induction variable analysis or the use of pragmas. In addition, as most bitwise operations

work with non-floating point variables, our current analysis does not cover floating point

variables.

FSM-based Modeling. The number of dependent bits reported in Table 5.2 indicates

that the number of FSM states ranges from two to 32 (i.e., 25), which is quite manageable.

However, due to the large number of input bits, it remaining impractical to generate the

FSMs physically. For this reason, we adopt partial and virtual FSMs (see Section 5.5.2).

In particular, we generate a partial FSM for kernel 8b10b cal, which is one of the kernels

with the smallest truth table. More importantly, the value combinations of dependent bits

in 8b10b cal follows a highly biased distribution, making it a good candidate for using a

partial FSM. By running on a training input, we generated the partial FSM for 8b10b cal

with 2 × 1024 transitions. For the other kernels, we adopt the virtual FSMs, which use the

executions of bitstream programs to simulate the FSM transitions.

145

27.4X
10.6X

0
10
20
30
40
50
60

qu
ot
eS
tr

m
at
ch
St
ar

sc
an
Th

ru
xm

lP
ar
se
r

sh
d_
sr
s

80
2_
11
a

8b
10

b_
ca
l

g7
21
_u
pd ge
o

qu
ot
eS
tr

m
at
ch
St
ar

sc
an
Th

ru
xm

lP
ar
se
r

sh
d_
sr
s

80
2_
11
a

8b
10

b_
ca
l

g7
21
_u
pd ge
o

Large Small

Sp
ee
du
p

Figure 5.13: Speedup of Parallelized Kernels (64-core Machine).

5.8.3 Speculative Parallelization

This section evaluates the parallel performance of FSM-based speculation (Section 5.6) on

the bitstream kernels, including their speedups, speculation accuracies, and scalabilities.

Speedup. Figure 5.13 reports the speedups of the parallelized bitstream kernels on the

64-core machine. In general, for the large inputs, the speedups tend to be higher. Because,

with larger inputs, the parallelization costs (e.g., threads creation and etc.) can be better

amortized by the longer executions.

In specific, four bitstream kernels (matchSar , scanThru, xmlParser, and shd srs)

achieve nearly (or slightly higher than) 60X speedups. Note that, for three of them, the

speedups are on top of the vectorizations with SIMD intrinsics. There are two main reasons

for their higher speedups than the other kernels. First, all the four kernels achieve 100%

speculation accuracies (will be discussed more shortly). Second, they do not generate long

146

output streams; instead, their output bits are directly consumed by the following steps.

This makes the bitstream kernels more computation-bound, thus reaching higher speedups

with more CPU cores.

Among them, 8b10b cal achieves the least speedup (2.3X for large inputs). This

is mainly due to its limited speculation accuracy (around 50%). We will discuss more about

this kernel later in this section, including a couple of optimizations. For qouteStr, the

speculation accuracy, in fact, is similar to 8b10b cal. However, as we will show later, this

kernel is qualified for the property-based fast recovery. With this technique, it is able to

reach 32.3X speedup for large inputs, despite the limited speculation accuracy. Finally,

for kernels 802 11a and g721 upd, the speculation accuracies are also 100%. However, due

to the need for generating long output bitstreams, they become more I/O-bound as more

and more CPU cores are added (as shown later in scalability), reaching 16.2X and 19.6X

speedups for large inputs, respectively.

Speculation Accuracy. As mentioned earlier, six out of eight kernels achieve 100% spec-

ulation accuracies in our tested cases, with the default lookback length (i.e., 2 × |Bout|).

This confirms the effectiveness of FSM-based speculation, which systematically explores

the possible changes of bit values (“transitions”) under the “partial context” of input bits

nearby. For the other two kernels (8b10b cal and qouteStr), their speculation accuracies

are only about 50% as the two states of their FSMs rarely converge. Fortunately, these two

kernels are eligible for some optimizations, as explained next.

Optimization with Fast Recovery. First, qouteStr passed the testing of NOT relation

hypothesis (see Section 5.6.2) for fast recovery. This means, if a misspeculation occurs, it is

147

possible to directly flip the incorrect output bitstream to get the correct one, rather than re-

processing the input bitstream. With fast recovery, qouteStr achieves much higher speedup

than the other benchmark 8b10b cal which also suffers from low speculation accuracy (see

Figure 5.13).

Optimizations for 8b10b cal. We found two optimizations for 8b10b cal. First, its

FSM model, in fact, executes faster than the original program, thus can replace the latter.

Second, the FSM has only two states. In this case, we may aggressively execute both

states, an FSM parallelization technique known as enumerative parallelization [83]. With

both optimizations, we observed a 11.3X speedup on the 64-core machine, instead of 2.3X

as reported earlier in Figure 5.13.

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

Sp
ee

du
p

Cores

quoteStr matchStar
scanThru xmlParser
shd_srs 802_11a
8b10b_cal g721_upd

Figure 5.14: Scalability (Large Inputs on 64-core Machine).

Scalability. As demostrated in Figure 5.14, four kernels present near-linear speedups

(matchStar, scanThru, xmlParser, and shd srs), up to 64 cores. qouteStr and 8b10b cal

148

also scale up to 64 cores, but their speedups are more close to their maximums. The

speedups of 802 11a and g721 upd saturate with around 20-30 cores. In general, the

scalability mainly depends on the speculation accuracy, reprocessing costs, and the I/O-

to-computation ratio.

5.8.4 Case Study: Enabling Data-Parallel icgrep

To confirm the benefits of PBS on full-fledged applications, we experimented it with icgrep [15],

a regular expression engine with SIMD parallelism. icgrep compiles a regular expression

into a bitstream program (in LLVM IR) to find matches in a text stream. Here, we use the

same regular expressions as the ones for evaluating icgrep [15] (see Table 5.3). The input

textual streams are collected from a Linux server using tcpdump tool.

First, our dependent bit analysis shows that the number of dependent bits in the

generated bitstream programs ranges from 19 to 36 (the 3rd column of Table 5.3). For more

complex regular expressions, the number of dependent bits tends to increase. Given the

relatively large numbers of dependent bits, we opt for virtual FSM-based speculation. The

last column of Table 5.3 reports their maximum speedups on the 64-core machine, ranges

from 10.4X to 27.6X. The speedups come from the high speculation accuracies. In fact, for

all the six generated bitstream programs, we observed 100% speculation accuracies, thanks

to the convergence properties of their virtual FSMs. The sub-linear speedups are due to

the fact that they also generate the output bitstreams, which are saved in cases the users

want to print out the matched contexts.

149

Table 5.3: Evaluation of PBS on icgrep.

ID Regular Expression #DB Speedup

1 @ 19 10.4X

2 ([0-9][0-9]?)/([0-9][0-9]?)/([0-9][0-9]([0-9][0-9])?) 27 17.5X

3 ([ˆ@]+)@([ˆ@]+) 22 18.1X

4 (([a-zA-Z][a-zA-Z0-9]*)://|mailto:)([ˆ/]+)(/[ˆ]*)?—
([ˆ@]+)@([ˆ@]+)

36 21.9X

5 [](0x)?([a-fA-F0-9][a-fA-F0-9])+[.:,?!] 26 21.7X

6 [A-Z]((([a-zA-Z]*a[a-zA-Z]*[])*[a-zA-Z]*e[a-zA-Z]*[
])*[a-zA-Z]*s[a-zA-Z]*[])*[.?!]

32 27.6X

5.9 Summary

This work treats sequential bitstream programs from a new perspective, by analogizing

them to the sequential circuits. Inspired by their similarities, this work proposes to model

bitstream programs with FSMs. To facilitate the modeling, this work integrates multiple

static analyses to systematically reason about the bits in program variables that cause the

loop-carried dependences, namely, dependent bit analysis. With the identified dependent

bits, an FSM is constructed for the bitstream program, following a modified truth table

approach used in the conventional circuit design. For FSMs that are too large to generate,

this work also introduces partial and virtual FSMs as alternatives. This FSM modeling en-

ables the use FSM speculation techniques for parallelizing bitstream programs. To reduce

the cost of misspeculation, this work further proposes fast recovery that leverages the logical

property of bitstream programs to avoid reprocessing. Finally, evaluation with real-world

bitstream programs and a regular expression engine confirms the effectiveness of the pro-

posed techniques, achieving significant performance improvements on multicore/manycore

machines.

150

Chapter 6

Related Work

6.1 Speculative Parallelization

Due to the dependences in state transistions, existing ways to parallelizing FSM

rely on either enumeration-based parallel prefix-sum and its variations [73, 83], or specula-

tive parallelization [138, 137, 99]. The former can be treated as a special case of speculative

parallelization, where the “speculation” enumerates all the states, hence always covers the

correct one. From this perspective, though the models proposed in this work can be reused

for the former with simple extensions.

Some other FSM parallelization work focus on a few specific FSM applications,

such as browser front-end [62] and JPEG decoder [67]. The basic ideas in these work were

later formalized by Zhao and others [138] by introducing a concept called principled specu-

lation. Other examples include hot state prediction for FSMs in intrusion detection [79] and

speculative parsing [63]. Some studies also design and implement parallel Non-deterministic

Finite Automata (NFA) [140], which naturally exposes parallelism, hence are relatively eas-

151

ier to parallelize, comparing with their DFA counterparts. Some prior work have also

explored bit-parallel fine-grained parallelism for FSMs by converting FSM computations

into a sequence of bit operations [84, 76], and the combination of both fine-grained and

coarse-grained speculative parallelism [99].

The idea of speculative parallelization has been studied for years. These work

include designing new programming language constructs [97] and developing parallelization

frameworks [105, 31, 103, 123, 36]. Some of these studies have explored parallelism in

irregular programs [70, 47, 95], which share some similarities with the parallelization of FSM

computations, given that FSMs essentially run on an irregular data structure (a graph).

Quinones and others [101] use pre-computation for speculative threading, which shares the

idea with speculative FSM parallelization in that both exploit some contrstraints of the

computation to facilitate speculative execution.

6.2 Enumerative Parallelization

There are few prior work on enumerative parallelization, due to the infeasibility

in enumerating all the possible cases in general. Some early works [3, 127] examine the

potential of enumerating different execution paths under control branches. If FSM transi-

tions are hard-coded, rather than being stored in a transition table, the enumerative FSM

parallelization would be similar to branch enumeration. N-way programming model [28]

enumerates different algorithms or implementations of the same tasks and selects the one

that finishes earliest. In more specific application areas, Malki and others [80] leverage

the property of rank convergence to enable coarse-grained parallelization of dynamic pro-

152

gramming computations, which is a form of state enumeration. In a similar way, Raychev

and others [106] use symbolic execution to parallelize user-defined aggregations in big data

frameworks, where a symbolic value is an abstraction of all the enumerative cases. More

close to FSMs, there are a series of works [91, 58, 57] on enumerative parallelization of

pushdown automata, which consist of an FSM and a stack, for processing semi-structured

data like XML and JSON.

6.3 Bit-Level Analysis and Parallelism

Existing research on bit-level analysis is mainly for saving hardware resources,

with applications to multimedia processing and telecommunications [10, 13, 45, 69, 117,

120]. For example, Budiu and others [13] proposed bitvalue analysis that finds unused

and constant bits in C programs to improve their performance on specialized architectures

with non-standard bitwidths. This analysis has been adopted by this work as part of the

dependent bit analysis. Under a similar context, Stephenson and other [117] introduced a

compiler, called Bitwise, to minimize the number of bits used by each operand in both integer

and floating point programs. The compiler has shown promising results in architectural

synthesis. Alternatively, Gupta and others [45] introduced a program representation to

facilitate expanding traditional program analysis to the subword level. Following this work,

Tallam and Gupta [120] designed a bitwidth-aware algorithm for global register allocation,

showing 10Our work is deeply inspired by the above bitwise analysis. However, to the

best of our knowledge, this is the first work that leverages bit-level analysis for program

parallelization.

153

Besides code vectorization, there are also many efforts in exploiting bit-level par-

allelism in specific applications [55, 111], especially for string matching [85, 86, 93] and

semi-structured data indexing [75, 76]. In particular, Carribault and Cohen [18] examined

bit-parallel matching algorithms with register promotion optimizations. In general, these

efforts bring potential applications that can benefit from our coarse-grained parallelization

techniques.

154

Chapter 7

Conclusions

In this dissertation, we tackled the granularity, scalability modeling and optimiza-

tion, and applicability issues in FSM-driven computations by integrating practical par-

allel programming techniques with rigorous program analysis and optimizations. More

specifically, we first looked into the possibility of introducing speculation techniques at

the instruction-level and SIMD-level. By restructuring the FSM transition loop and intro-

ducing multi-level speculation, we broke the barriers of adopting fine-grained speculative

parallelism. The resulted FSM speculation framework achieves up to 4X performance boost

comparing to the state of the art.

Following the granularity investigation work, we further examined the scalability

of speculative FSM parallelization by developing a systematic performance model, which

can effectively predict the best configuration in terms of the number of CPU cores to use

for optimal performance and the effective use of energy (up to 5X speedup as well as up to

77% energy saving).

155

Then we tried to address the fundamental scalability issues inherited in the two

basic FSM parallelization schemes: the cost of maintaining multiple execution paths in

enumerative parallelization and the sequential chunk-by-chunk validations in speculative

parallelization. For the former, we proposed the technique of path fusion, which can fuse

different execution paths into a single one, either statically or dynamically. For the latter,

we introduced the concept of higher-order speculation which allows a speculated state to

be validated speculatively. For practical uses, we also discussed the scenarios where each

scheme works the best and proposed a set of heuristics to help users select the paralleliza-

tion scheme.Our evaluations over FSMs drawn from real-world applications and of diverse

characteristics showed that the proposed techniques can substantially raise the scalabilities

of both parallelization schemes.

Despite the promising results of speculative FSM parallelism, the benefits were

limited to computations that explicitly use the FSM models. In the last project of dis-

sertation, we looked beyond the FSM computations and interestingly found an important

class of non-FSM computations – bitstream processing – that may also benefit from spec-

ulative FSM parallelization. In fact, we discovered that the inherent data dependences in

bitstream programs can often be accurately modeled as FSMs, inspired by the fact that

both sequential circuits (using FSM models) and bitstream programs consume and output

binary sequences. The discovery led to the development of an assembly of bitwise static

analyses for reasoning about the dependent bits and a truth table to FSM conversion tech-

nique. Together, the proposed technique, namely principled bitwise speculation, provides a

rigorous treatment for parallelizing arbitrary bitstream program. The results of this work

156

directly benefit many bitstream-based applications, such as bitmap construction, multime-

dia processing, and data indexing.

157

Bibliography

[1] Mart́ın Abadi, Andrew Birrell, Tim Harris, and Michael Isard. Semantics of transac-
tional memory and automatic mutual exclusion. In Proceedings of ACM Symposium
on Principles of Programming Languages, 2008.

[2] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. Compilers, Principles, Techniques.
Addison wesley Boston, 1986.

[3] Pritpal S Ahuja, Kevin Skadron, Margaret Martonosi, and Douglas W Clark. Mul-
tipath execution: Opportunities and limits. In Proceedings of the 12th international
conference on Supercomputing, pages 101–108, 1998.

[4] T Algra. Fast and efficient variable-to-fixed-length coding algorithm. Electronics
Letters, 28(15):1399–1401, 1992.

[5] Rajeev Alur and Mihalis Yannakakis. Model checking of hierarchical state machines.
ACM Trans. Program. Lang. Syst., 23(3):273–303, May 2001.

[6] Gene M Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings of the April 18-20, 1967, spring joint computer
conference, pages 483–485. ACM, 1967.

[7] Sotiris Apostolakis, Ziyang Xu, Greg Chan, Simone Campanoni, and David I August.
Perspective: A sensible approach to speculative automatic parallelization. In Pro-
ceedings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 351–367, 2020.

[8] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry
Husbands, Kurt Keutzer, David A Patterson, William Lester Plishker, John Shalf,
Samuel Webb Williams, et al. The landscape of parallel computing research: A
view from berkeley. Technical report, Technical Report UCB/EECS-2006-183, EECS
Department, University of California, Berkeley, 2006.

[9] Matteo Avalle, Fulvio Risso, and Riccardo Sisto. Scalable algorithms for nfa multi-
striding and nfa-based deep packet inspection on gpus. IEEE/ACM Transactions on
Networking, 24(3):1704–1717, 2015.

158

[10] Rajkishore Barik and Vivek Sarkar. Enhanced bitwidth-aware register allocation. In
International Conference on Compiler Construction, pages 263–276. Springer, 2006.

[11] William Blume, Ramon Doallo, Rudolf Eigenmann, John Grout, Jay Hoeflinger, and
Thomas Lawrence. Parallel programming with Polaris. Computer, 29(12):78–82, 1996.

[12] R Bodik. Browsing web 3.0 on 3.0 watts: Why browsers will be parallel and implica-
tions for education, 2008.

[13] Mihai Budiu, Majd Sakr, Kip Walker, and Seth C Goldstein. BitValue inference:
Detecting and exploiting narrow bitwidth computations. In European Conference on
Parallel Processing, pages 969–979. Springer, 2000.

[14] Robert D Cameron, Ehsan Amiri, Kenneth S Herdy, Dan Lin, Thomas C Shermer,
and Fred P Popowich. Parallel scanning with bitstream addition: An xml case study.
In European Conference on Parallel Processing, pages 2–13. Springer, 2011.

[15] Robert D Cameron, Thomas C Shermer, Arrvindh Shriraman, Kenneth S Herdy, Dan
Lin, Benjamin R Hull, and Meng Lin. Bitwise data parallelism in regular expression
matching. In 2014 23rd International Conference on Parallel Architecture and Com-
pilation Techniques (PACT), pages 139–150. IEEE, 2014.

[16] Scott O Campbell, Greg Adams, and Jeffrey M Braaten. Data compression of bit
map images, March 11 1997. US Patent 5,611,024.

[17] Brian D Carlstrom, Austen McDonald, Hassan Chafi, JaeWoong Chung, Chi Cao
Minh, Christos Kozyrakis, and Kunle Olukotun. The atomos transactional program-
ming langauges. In Proceedings of ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, 2006.

[18] Patrick Carribault and Albert Cohen. Applications of storage mapping optimization
to register promotion. In Proceedings of the 18th annual international conference on
Supercomputing, pages 247–256, 2004.

[19] Niccolo’ Cascarano, Pierluigi Rolando, Fulvio Risso, and Riccardo Sisto. infant: Nfa
pattern matching on gpgpu devices. ACM SIGCOMM Computer Communication
Review, 40(5):20–26, 2010.

[20] Yao-Jen Chang, Wende Zhang, and Tsuhan Chen. Biometrics-based cryptographic
key generation. In 2004 IEEE International Conference on Multimedia and Expo
(ICME)(IEEE Cat. No. 04TH8763), volume 3, pages 2203–2206. IEEE, 2004.

[21] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan
Kielstra, Kemal Ebcioglu, Christoph Von Praun, and Vivek Sarkar. X10: an object-
oriented approach to non-uniform cluster computing. In OOPSLA, 2005.

[22] Cristiana Chitic and Daniela Rosu. On validation of XML streams using finite state
machines. In Proceedings of the Seventh International Workshop on the Web and
Databases, WebDB 2004, June 17-18, 2004, Maison de la Chimie, Paris, France,
Colocated with ACM SIGMOD/PODS 2004, pages 85–90, 2004.

159

[23] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco
Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella. Nusmv 2: An
opensource tool for symbolic model checking. In Computer Aided Verification, pages
359–364. Springer, 2002.

[24] Marcelo Cintra and Diego R Llanos. Toward efficient and robust software speculative
parallelization on multiprocessors. ACM SIGPLAN Notices, 38(10):13–24, 2003.

[25] Marcelo Cintra and Diego R Llanos. Design space exploration of a software specula-
tive parallelization scheme. IEEE Transactions on Parallel and Distributed Systems,
16(6):562–576, 2005.

[26] Marcelo Cintra, José F Mart́ınez, and Josep Torrellas. Architectural support for
scalable speculative parallelization in shared-memory multiprocessors. In Proceedings
of the 27th annual international symposium on Computer architecture, pages 13–24,
2000.

[27] Marcelo Cintra and Josep Torrellas. Eliminating squashes through learning cross-
thread violations in speculative parallelization for multiprocessors. In Proceedings
Eighth International Symposium on High Performance Computer Architecture, pages
43–54. IEEE, 2002.

[28] Romain E Cledat, Tushar Kumar, and Santosh Pande. Efficiently speeding up sequen-
tial computation through the n-way programming model. In Proceedings of the 2011
ACM international conference on Object oriented programming systems languages and
applications, pages 537–554, 2011.

[29] Sutapa Datta and Subhasis Mukhopadhyay. A grammar inference approach for pre-
dicting kinase specific phosphorylation sites. PloS one, 10(4):e0122294, 2015.

[30] Yanlei Diao, Peter Fischer, Michael J Franklin, and Raymond To. Yfilter: Efficient
and scalable filtering of XML documents. In Proceedings 18th International Confer-
ence on Data Engineering, pages 341–342. IEEE, 2002.

[31] Chen Ding, Xipeng Shen, Kirk Kelsey, Chris Tice, Ruke Huang, and Chengliang
Zhang. Software behavior-oriented parallelization. In PLDI, 2007.

[32] Paul Dlugosch, Dave Brown, Paul Glendenning, Michael Leventhal, and Harold Noyes.
An efficient and scalable semiconductor architecture for parallel automata processing.
IEEE Transactions on Parallel and Distributed Systems, 25(12):3088–3098, 2014.

[33] Zhao-Hui Du, Chu-Cheow Lim, Xiao-Feng Li, Chen Yang, Qingyu Zhao, and Tin-
Fook Ngai. A cost-driven compilation framework for speculative parallelization of
sequential programs. In ACM SIGPLAN Notices, volume 39, pages 71–81. ACM,
2004.

[34] Laurent Falquet, Marco Pagni, Philipp Bucher, Nicolas Hulo, Christian JA Sigrist,
Kay Hofmann, and Amos Bairoch. The prosite database, its status in 2002. Nucleic
acids research, 30(1):235–238, 2002.

160

[35] Yuanwei Fang, Tung T Hoang, Michela Becchi, and Andrew A Chien. Fast support
for unstructured data processing: the unified automata processor. In Proceedings of
the 48th International Symposium on Microarchitecture, pages 533–545, 2015.

[36] Min Feng, Rajiv Gupta, and Yi Hu. Spicec: Scalable parallelism via implicit copying
and explicit commit. In Proceedings of the ACM SIGPLAN Symposium on Principles
Practice of Parallel Programming, 2011.

[37] Domenico Ficara, Stefano Giordano, Gregorio Procissi, Fabio Vitucci, Gianni An-
tichi, and Andrea Di Pietro. An improved DFA for fast regular expression matching.
Computer Communication Review, 38(5):29–40, 2008.

[38] Franz Franchetti and Markus Puschel. A SIMD vectorizing compiler for digital signal
processing algorithms. In IPDPS, pages 7–pp, 2002.

[39] Matteo Frigo, Charles E Leiserson, and Keith H Randall. The implementation of
the Cilk-5 multithreaded language. In Proceedings of ACM SIGPLAN Conference on
Programming Language Design and Implementation, 1998.

[40] Carlos Garćıa, Roberto Lario, Manuel Prieto, Luis Piñuel, and Francisco Tirado.
Vectorization of multigrid codes using SIMD ISA extensions. In IPDPS, pages 8–pp,
2003.

[41] Chang Ge, Yinan Li, Eric Eilebrecht, Badrish Chandramouli, and Donald Kossmann.
Speculative distributed CSV data parsing for big data analytics. In Proceedings of the
2019 International Conference on Management of Data, pages 883–899. ACM, 2019.

[42] Todd J Green, Gerome Miklau, Makoto Onizuka, and Dan Suciu. Processing xml
streams with deterministic automata. In International Conference on Database The-
ory, pages 173–189. Springer, 2003.

[43] Anshul Gupta and Vipin Kumar. The scalability of fft on parallel computers. IEEE
Transactions on Parallel and Distributed Systems, 4(8):922–932, 1993.

[44] Manish Gupta and Rahul Nim. Techniques for speculative run-time parallelization of
loops. In Proceedings of the 1998 ACM/IEEE conference on Supercomputing, pages
1–12. IEEE Computer Society, 1998.

[45] Rajiv Gupta, Eduard Mehofer, and Youtao Zhang. A representation for bit section
based analysis and optimization. In International Conference on Compiler Construc-
tion, pages 62–77. Springer, 2002.

[46] John L Gustafson. Reevaluating amdahl’s law. Communications of the ACM,
31(5):532–533, 1988.

[47] Maurice Herlihy and Eric Koskinen. Transactional boosting: A methodology for
highly-concurrent transactional objects. In Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’08, 2008.

161

[48] Maurice Herlihy and J Eliot B Moss. Transactional memory: Architectural support
for lock-free data structures. In Proceedings of the International Symposium on High
Performance Computer Architecture (HPCA), 1993.

[49] Ben Hertzberg and Kunle Olukotun. Runtime automatic speculative parallelization.
In International Symposium on Code Generation and Optimization (CGO 2011),
pages 64–73. IEEE, 2011.

[50] W Daniel Hillis and Guy L Steele Jr. Data parallel algorithms. Communications of
the ACM, 29(12):1170–1183, 1986.

[51] Adolfy Hoisie, Olaf Lubeck, and Harvey Wasserman. Performance and scalability
analysis of teraflop-scale parallel architectures using multidimensional wavefront ap-
plications. The International Journal of High Performance Computing Applications,
14(4):330–346, 2000.

[52] Kaixi Hou, Hao Wang, and Wu-chun Feng. Aspas: A framework for automatic
simdization of parallel sorting on x86-based many-core processors. In Proceedings
of the 29th ACM International Conference on Supercomputing (ICS), pages 383–392.
ACM, 2015.

[53] Paul G Howard and Jeffrey Scott Vitte. Parallel lossless image compression using
huffman and arithmetic coding. In Data Compression Conference, 1992. DCC’92.,
pages 299–308. IEEE, 1992.

[54] David A Huffman. Notes on information-lossless finite-state automata. Il Nuovo
Cimento (1955-1965), 13:397–405, 1959.

[55] Heikki Hyyrö. Bit-parallel lcs-length computation revisited. In In Proc. 15th Aus-
tralasian Workshop on Combinatorial Algorithms (AWOCA. Citeseer, 2004.

[56] Nobuhiro Ide, Masashi Hirano, Yukio Endo, Shin’ichi Yoshioka, Hiroaki Mu-
rakami, Atsushi Kunimatsu, Toshinori Sato, Takayuki Kamei, Toyoshi Okada, and
Masakazu Suzuoki. 2.44-gflops 300-mhz floating-point vector-processing unit for
high-performance 3d graphics computing. IEEE Journal of Solid-State Circuits,
35(7):1025–1033, 2000.

[57] Lin Jiang, Xiaofan Sun, Umar Farooq, and Zhijia Zhao. Scalable processing of contem-
porary semi-structured data on commodity parallel processors-a compilation-based
approach. In Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, pages 79–92,
2019.

[58] Lin Jiang and Zhijia Zhao. Grammar-aware parallelization for scalable xpath query-
ing. ACM SIGPLAN Notices, 52(8):371–383, 2017.

[59] Peng Jiang and Gagan Agrawal. Combining simd and many/multi-core parallelism for
finite state machines with enumerative speculation. In Proceedings of the 22nd ACM

162

SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages
179–191, 2017.

[60] Alexandra Jimborean, Philippe Clauss, Jean-François Dollinger, Vincent Loechner,
and Juan Manuel Martinez Caamaño. Dynamic and speculative polyhedral paral-
lelization using compiler-generated skeletons. International Journal of Parallel Pro-
gramming, 42(4):529–545, 2014.

[61] Youngjoon Jo, Michael Goldfarb, and Milind Kulkarni. Automatic vectorization of
tree traversals. In PACT, pages 363–374, 2013.

[62] Christopher Grant Jones, Rose Liu, Leo Meyerovich, Krste Asanovic, and Rastislav
Bodik. Parallelizing the web browser. In Proceedings of the First USENIX Workshop
on Hot Topics in Parallelism, 2009.

[63] Blake Kaplan. Speculative parsing path. http://bugzilla.mozilla.org.

[64] Chuanle Ke, Lei Liu, Chao Zhang, Tongxin Bai, Bryan Jacobs, and Chen Ding. Safe
parallel programming using dynamic dependence hints. In ACM SIGPLAN Notices,
volume 46, pages 243–258. ACM, 2011.

[65] Kirk Kelsey, Tongxin Bai, Chen Ding, and Chengliang Zhang. Fast track: A software
system for speculative program optimization. In 2009 International Symposium on
Code Generation and Optimization, pages 157–168. IEEE, 2009.

[66] Changkyu Kim, Jatin Chhugani, Nadathur Satish, Eric Sedlar, Anthony D Nguyen,
Tim Kaldewey, Victor W Lee, Scott A Brandt, and Pradeep Dubey. FAST: fast
architecture sensitive tree search on modern CPUs and GPUs. In ACM SIGMOD
International Conference on Management of data, pages 339–350, 2010.

[67] Shmuel Tomi Klein and Yair Wiseman. Parallel huffman decoding with applications
to jpeg files. The Computer Journal, 46(5):487–497, 2003.

[68] Nick Koudas. Space efficient bitmap indexing. In CIKM, pages 194–201, 2000.

[69] Arvind Krishnaswamy and Rajiv Gupta. Dynamic coalescing for 16-bit instructions.
ACM Transactions on Embedded Computing Systems (TECS), 4(1):3–37, 2005.

[70] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita
Bala, and L. Paul Chew. Optimistic parallelism requires abstractions. In Proceed-
ings of the 28th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’07, 2007.

[71] Sailesh Kumar, Sarang Dharmapurikar, Fang Yu, Patrick Crowley, and Jonathan
Turner. Algorithms to accelerate multiple regular expressions matching for deep
packet inspection. In ACM SIGCOMM Computer Communication Review, volume 36,
pages 339–350. ACM, 2006.

163

[72] Vipin Kumar and Anshul Gupta. Analysis of scalability of parallel algorithms and
architectures: A survey. In Proceedings of the 5th International Conference on Super-
computing, ICS ’91, pages 396–405, New York, NY, USA, 1991. ACM.

[73] Richard E. Ladner and Michael J. Fischer. Parallel prefix computation. J. ACM,
27(4):831–838, October 1980.

[74] Chunho Lee, Miodrag Potkonjak, and William H Mangione-Smith. Mediabench: A
tool for evaluating and synthesizing multimedia and communications systems. In
Proceedings of 30th Annual International Symposium on Microarchitecture, pages 330–
335. IEEE, 1997.

[75] Yinan Li, Nikos R Katsipoulakis, Badrish Chandramouli, Jonathan Goldstein, and
Donald Kossmann. Mison: a fast JSON parser for data analytics. Proceedings of the
VLDB Endowment, 10(10):1118–1129, 2017.

[76] Dan Lin, Nigel Medforth, Kenneth S Herdy, Arrvindh Shriraman, and Rob Cameron.
Parabix: Boosting the efficiency of text processing on commodity processors. In
IEEE International Symposium on High-Performance Comp Architecture, pages 1–
12. IEEE, 2012.

[77] Hongyuan Liu, Sreepathi Pai, and Adwait Jog. Why gpus are slow at executing nfas
and how to make them faster. In Proceedings of the Twenty-Fifth International Con-
ference on Architectural Support for Programming Languages and Operating Systems,
pages 251–265, 2020.

[78] Xing Liu, Mikhail Smelyanskiy, Edmond Chow, and Pradeep Dubey. Efficient sparse
matrix-vector multiplication on x86-based many-core processors. In ACM conference
on International conference on supercomputing, pages 273–282, 2013.

[79] Daniel Luchaup, Randy Smith, Cristian Estan, and Somesh Jha. Multi-byte regular
expression matching with speculation. In RAID, 2009.

[80] Saeed Maleki, Madanlal Musuvathi, and Todd Mytkowicz. Parallelizing dynamic
programming through rank convergence. ACM SIGPLAN Notices, 49(8):219–232,
2014.

[81] Mojtaba Mehrara, Jeff Hao, Po-Chun Hsu, and Scott Mahlke. Parallelizing sequential
applications on commodity hardware using a low-cost software transactional memory.
ACM Sigplan Notices, 44(6):166–176, 2009.

[82] Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and Martin C. Rinard.
Chisel: reliability- and accuracy-aware optimization of approximate computational
kernels. In Proceedings of the 2014 ACM International Conference on Object Ori-
ented Programming Systems Languages & Applications, OoarticloOPSLA 2014, part
of SPLASH 2014, Portland, OR, USA, October 20-24, 2014, pages 309–328, 2014.

164

[83] Todd Mytkowicz, Madanlal Musuvathi, and Wolfram Schulte. Data-parallel finite-
state machines. In Proceedings of the 19th international conference on Architectural
support for programming languages and operating systems, pages 529–542, 2014.

[84] Gonzalo Navarro. Nr-grep: a fast and flexible pattern-matching tool. Software: Prac-
tice and Experience, 31(13):1265–1312, 2001.

[85] Gonzalo Navarro and Mathieu Raffinot. A bit-parallel approach to suffix automata:
Fast extended string matching. In Annual Symposium on Combinatorial Pattern
Matching, pages 14–33. Springer, 1998.

[86] Gonzalo Navarro and Mathieu Raffinot. Flexible pattern matching in strings: practical
on-line search algorithms for texts and biological sequences. Cambridge university
press, 2002.

[87] Mark Nelson and Jean-Loup Gailly. The data compression book. M & t Books New
York, 1996.

[88] Marziyeh Nourian, Xiang Wang, Xiaodong Yu, Wu-chun Feng, and Michela Becchi.
Demystifying automata processing: Gpus, fpgas or micron’s ap? In Proceedings of
the International Conference on Supercomputing, pages 1–11, 2017.

[89] Dorit Nuzman, Ira Rosen, and Ayal Zaks. Auto-vectorization of interleaved data for
SIMD. In PLDI, volume 41, pages 132–143. ACM, 2006.

[90] Dorit Nuzman and Ayal Zaks. Outer-loop vectorization: revisited for short SIMD
architectures. In PACT, pages 2–11, 2008.

[91] Peter Ogden, David Thomas, and Peter Pietzuch. Scalable xml query processing using
parallel pushdown transducers. Proceedings of the VLDB Endowment, 6(14):1738–
1749, 2013.

[92] Yinfei Pan, Ying Zhang, Kenneth Chiu, and Wei Lu. Parallel xml parsing using
meta-dfas. In e-Science and Grid Computing, IEEE International Conference on,
pages 237–244. IEEE, 2007.

[93] Hannu Peltola and Jorma Tarhio. Alternative algorithms for bit-parallel string match-
ing. In International Symposium on String Processing and Information Retrieval,
pages 80–93. Springer, 2003.

[94] Alexandre Petrenko. Fault model-driven test derivation from finite state models:
Annotated bibliography. In Modeling and verification of parallel processes, pages
196–205. Springer, 2001.

[95] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher, M. Amber Has-
saan, Rashid Kaleem, Tsung-Hsien Lee, Andrew Lenharth, Roman Manevich, Mario
Méndez-Lojo, Dimitrios Prountzos, and Xin Sui. The tao of parallelism in algorithms.
In Proceedings of the 32Nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’11, 2011.

165

[96] Manohar K Prabhu and Kunle Olukotun. Using thread-level speculation to simplify
manual parallelization. In Proceedings of the ninth ACM SIGPLAN symposium on
Principles and practice of parallel programming, pages 1–12, 2003.

[97] Prakash Prabhu, Ganesan Ramalingam, and Kapil Vaswani. Safe programmable spec-
ulative parallelism. In Proceedings of ACM SIGPLAN Conference on Programming
Languages Design and Implementation, 2010.

[98] Junqiao Qiu, Lin Jiang, and Zhijia Zhao. Challenging sequential bitstream processing
via principled bitwise speculation. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, pages 607–621, 2020.

[99] Junqiao Qiu, Zhijia Zhao, and Bin Ren. MicroSpec: Speculation-centric fine-grained
parallelization for FSM computations. In Parallel Architecture and Compilation Tech-
niques (PACT), 2016 International Conference on, pages 221–233. IEEE, 2016.

[100] Junqiao Qiu, Zhijia Zhao, Bo Wu, Abhinav Vishnu, and Shuaiwen Leon Song. En-
abling scalability-sensitive speculative parallelization for fsm computations. In Pro-
ceedings of the International Conference on Supercomputing, ICS ’17, New York, NY,
USA, 2017. Association for Computing Machinery.

[101] Carlos Garćıa Quiñones, Carlos Madriles, Jesús Sánchez, Pedro Marcuello, Antonio
González, and Dean M Tullsen. Mitosis compiler: an infrastructure for speculative
threading based on pre-computation slices. In PLDI, 2005.

[102] Rodric M Rabbah, Ian Bratt, Krste Asanovic, and Anant Agarwal. Versatility and
versabench: A new metric and a benchmark suite for flexible architectures. 2004.

[103] Arun Raman, Hanjun Kim, Thomas R Mason, Thomas B Jablin, and David I Au-
gust. Speculative parallelization using software multi-threaded transactions. In ACM
SIGARCH computer architecture news, volume 38, pages 65–76. ACM, 2010.

[104] Rajeev K Ranjan, Adnan Aziz, Robert K Brayton, Bernard Plessier, and Carl Pixley.
Efficient bdd algorithms for fsm synthesis and verification. IWLS95, Lake Tahoe, CA,
253:254, 1995.

[105] Lawrence Rauchwerger and David A Padua. The LRPD test: Speculative run-time
parallelization of loops with privatization and reduction parallelization. IEEE Trans-
actions on Parallel and Distributed Systems, 10(2):160–180, 1999.

[106] Veselin Raychev, Madanlal Musuvathi, and Todd Mytkowicz. Parallelizing user-
defined aggregations using symbolic execution. In Proceedings of the 25th Symposium
on Operating Systems Principles, pages 153–167, 2015.

[107] Bin Ren, Gagan Agrawal, James R Larus, Todd Mytkowicz, Tomi Poutanen, and
Wolfram Schulte. SIMD parallelization of applications that traverse irregular data
structures. In CGO, pages 1–10, 2013.

166

[108] Martin Roesch et al. Snort: Lightweight intrusion detection for networks. In LISA,
volume 99, pages 229–238, 1999.

[109] Indranil Roy and Srinivas Aluru. Finding motifs in biological sequences using the
micron automata processor. In Parallel and Distributed Processing Symposium, 2014
IEEE 28th International, pages 415–424. IEEE, 2014.

[110] Elaheh Sadredini, Reza Rahimi, Marzieh Lenjani, Mircea Stan, and Kevin Skadron.
Flexamata: A universal and efficient adaption of applications to spatial automata
processing accelerators. In Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating Systems, pages
219–234, 2020.

[111] Pablo San Segundo, Diego Rodŕıguez-Losada, and Agust́ın Jiménez. An exact bit-
parallel algorithm for the maximum clique problem. Computers & Operations Re-
search, 38(2):571–581, 2011.

[112] Sekhar R Sarukkai, Pankaj Mehra, and Robert J Block. Automated scalability anal-
ysis of message-passing parallel programs. IEEE Parallel & Distributed Technology:
Systems & Applications, 3(4):21–32, 1995.

[113] Priti Shankar, Amitava Dasgupta, Kaustubh Deshmukh, and B Sundar Rajan. On
viewing block codes as finite automata. Theoretical Computer Science, 290(3):1775–
1797, 2003.

[114] Randy Smith, Cristian Estan, Somesh Jha, and Shijin Kong. Deflating the big bang:
fast and scalable deep packet inspection with extended finite automata. In ACM SIG-
COMM Computer Communication Review, volume 38, pages 207–218. ACM, 2008.

[115] J Gregory Steffan, Christopher Colohan, Antonia Zhai, and Todd C Mowry. The
STAMPede approach to thread-level speculation. ACM Transactions on Computer
Systems, 23(3):253–300, 2005.

[116] J Gregory Steffan and Todd C Mowry. The potential for using thread-level data
speculation to facilitate automatic parallelization. In Proceedings 1998 Fourth Inter-
national Symposium on High-Performance Computer Architecture, pages 2–13. IEEE,
1998.

[117] Mark Stephenson, Jonathan Babb, and Saman Amarasinghe. Bidwidth analysis with
application to silicon compilation. In ACM SIGPLAN Notices, volume 35, pages
108–120. ACM, 2000.

[118] Arun Subramaniyan and Reetuparna Das. Parallel automata processor. In
2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture
(ISCA), pages 600–612. IEEE, 2017.

[119] Arun Subramaniyan, Jingcheng Wang, Ezhil RM Balasubramanian, David Blaauw,
Dennis Sylvester, and Reetuparna Das. Cache automaton. In Proceedings of the 50th

167

Annual IEEE/ACM International Symposium on Microarchitecture, pages 259–272,
2017.

[120] Sriraman Tallam and Rajiv Gupta. Bitwidth aware global register allocation. In ACM
SIGPLAN Notices, volume 38, pages 85–96. ACM, 2003.

[121] Chen Tian, Min Feng, and Rajiv Gupta. Speculative parallelization using state sep-
aration and multiple value prediction. In ACM Sigplan Notices, volume 45, pages
63–72. ACM, 2010.

[122] Chen Tian, Min Feng, and Rajiv Gupta. Supporting speculative parallelization in
the presence of dynamic data structures. In ACM Sigplan Notices, volume 45, pages
62–73. ACM, 2010.

[123] Chen Tian, Min Feng, Vijay Nagarajan, and Rajiv Gupta. Copy or discard execu-
tion model for speculative parallelization on multicores. In 2008 41st IEEE/ACM
International Symposium on Microarchitecture, pages 330–341. IEEE, 2008.

[124] Konrad Trifunovic, Dorit Nuzman, Albert Cohen, Ayal Zaks, and Ira Rosen.
Polyhedral-model guided loop-nest auto-vectorization. In PACT, pages 327–337, 2009.

[125] Robert van Engelen. Constructing finite state automata for high-performance XML
web services. In Proceedings of the International Conference on Internet Computing,
IC ’04, Volume 2 & Proceedings of the International Symposium on Web Services &
Applications, ISWS ’04, Las Vegas, Nevada, USA, June 21-24, 2004, pages 975–981,
2004.

[126] Giorgos Vasiliadis, Spiros Antonatos, Michalis Polychronakis, Evangelos P Markatos,
and Sotiris Ioannidis. Gnort: High performance network intrusion detection using
graphics processors. In International workshop on recent advances in intrusion detec-
tion, pages 116–134. Springer, 2008.

[127] Steven Wallace, Brad Calder, and Dean M Tullsen. Threaded multiple path execution.
In Proceedings. 25th Annual International Symposium on Computer Architecture (Cat.
No. 98CB36235), pages 238–249. IEEE, 1998.

[128] Ke Wang, Kevin Angstadt, Chunkun Bo, Nathan Brunelle, Elaheh Sadredini, Tommy
Tracy, Jack Wadden, Mircea Stan, and Kevin Skadron. An overview of micron’s
automata processor. In Proceedings of the Eleventh IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis, pages 1–3, 2016.

[129] Ke Wang, Yanjun Qi, Jeffrey J Fox, Mircea R Stan, and Kevin Skadron. Association
rule mining with the micron automata processor. In Parallel and Distributed Process-
ing Symposium (IPDPS), 2015 IEEE International, pages 689–699. IEEE, 2015.

[130] Zhen-Gang Wang, Johann Elbaz, Françoise Remacle, Raphaël David Levine, and
Itamar Willner. All-DNA finite-state automata with finite memory. Proc. Natl. Acad.
Sci. U.S.A., 107(51):21996–22001, Dec 2010.

168

[131] Robert P Wilson, Robert S French, Christopher S Wilson, Saman P Amarasinghe,
Jennifer M Anderson, Steve WK Tjiang, Shih-Wei Liao, Chau-Wen Tseng, Mary W
Hall, Monica S Lam, et al. SUIF: An infrastructure for research on parallelizing and
optimizing compilers. ACM Sigplan Notices, 29(12):31–37, 1994.

[132] Yang Xia, Peng Jiang, and Gagan Agrawal. Scaling out speculative execution of
finite-state machines with parallel merge. In Proceedings of the 25th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 160–172, 2020.

[133] Hongyi Xin, John Greth, John Emmons, Gennady Pekhimenko, Carl Kingsford, Can
Alkan, and Onur Mutlu. Shifted Hamming distance: a fast and accurate SIMD-
friendly filter to accelerate alignment verification in read mapping. Bioinformatics,
31(10):1553–1560, 2015.

[134] Fang Yu, Zhifeng Chen, Yanlei Diao, TV Lakshman, and Randy H Katz. Fast and
memory-efficient regular expression matching for deep packet inspection. In Proceed-
ings of the 2006 ACM/IEEE symposium on Architecture for networking and commu-
nications systems, pages 93–102. ACM, 2006.

[135] Xiaodong Yu and Michela Becchi. Gpu acceleration of regular expression matching
for large datasets: exploring the implementation space. In Proceedings of the ACM
International Conference on Computing Frontiers, pages 1–10, 2013.

[136] Ahmad Zandi, David G Stork, and James Allen. Compression of palettized images
and binarization for bitwise coding of m-ary alphabets therefor, November 28 1995.
US Patent 5,471,207.

[137] Zhijia Zhao and Xipeng Shen. On-the-fly principled speculation for FSM paral-
lelization. In Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’15, Istanbul,
Turkey, March 14-18, 2015, pages 619–630, 2015.

[138] Zhijia Zhao, Bo Wu, and Xipeng Shen. Challenging the ”embarrassingly sequential”:
Parallelizing finite state machine-based computations through principled speculation.
In ASPLOS ’14: Proceedings of 19th International Conference on Architecture Support
for Programming Languages and Operating Systems. ACM Press, 2014.

[139] Craig Zilles and Gurindar Sohi. Master/slave speculative parallelization. In 35th
Annual IEEE/ACM International Symposium on Microarchitecture, 2002.(MICRO-
35). Proceedings., pages 85–96. IEEE, 2002.

[140] Yuan Zu, Ming Yang, Zhonghu Xu, Lin Wang, Xin Tian, Kunyang Peng, and Qun-
feng Dong. Gpu-based nfa implementation for memory efficient high speed regular
expression matching. In PPoPP ’12: Proceedings of the ACM SIGPLAN symposium
on Principles and practice of parallel programming, pages 129–140, 2009.

169

	List of Figures
	List of Tables
	Introduction
	Dissertation Overview
	Contributions
	Fine-Grained FSM Parallelization
	Scalability-Sensitive Speculative Parallelization
	Scalable FSM Parallelization
	Non-FSM Applications Parallelization

	Fine-Grained Speculative Parallelization for FSM Computations
	Introduction
	Background and Problem
	FSM and Its Dependences
	Coarse-Grained Speculative Parallelization

	Fine-Grained Parallelism
	Three Dimensions
	Efficiency Analysis

	MicroSpec
	Overview
	Techniques
	Optimization
	Implementation

	Evaluation
	Methodology
	Benchmarks
	Results

	Summary

	Scalability-Sensitive Speculative Parallelization for FSM Computations
	Introduction
	Motivation
	Overview
	Architecture-Independent Scalability Analysis
	FSM Characterization
	Scalability Analysis

	Towards Architecture-Aware Scalability Analysis
	Architecture Effects
	Integration of Architecture Factors

	Implementation
	Evaluation
	Methodology
	Model Accuracy
	Performance Improvement
	Energy Saving

	Summary

	Scalable FSM Parallelization via Path Fusion and Higher-Order Speculation
	Introduction
	Background
	Path Fusion
	Motivation
	Static Path Fusion
	Dynamic Path Fusion

	Higher-Order Speculation
	Speculation Order
	Benefits of Higher-Order Speculation
	Iterative Speculation

	Parallelization Scheme Selection
	Evaluation
	Methodology
	Performance
	Scalability

	Summary

	Challenging Sequential Bitstream Processing via Principled Bitwise Speculation
	Introduction
	Background
	Overview
	Static Dependent Bit Analysis
	Dependent Bit: Motivation
	Dependent Bit Analysis
	Algorithms

	Modeling Bitstream Programs
	FSM Construction
	Partial and Virtual FSMs

	Runtime Speculation
	FSM-based Speculation
	Fast Recovery from Misspeculation

	Implementation
	Evaluation
	Methodology
	Static Analysis and Modeling
	Speculative Parallelization
	Case Study: Enabling Data-Parallel icgrep

	Summary

	Related Work
	Speculative Parallelization
	Enumerative Parallelization
	Bit-Level Analysis and Parallelism

	Conclusions
	Bibliography

