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Abstract

This paper introduces a hybrid model that unifies connection-
ist, symbolic, and reinforcement leaming into an integrated
architecture for bottom-up skill leamning in reactive sequential
decision tasks. The model is designed for an agent to learn
continuously from on-going experience in the world, without
the use of preconceived concepts and knowledge. Both proce-
dural skills and high-level knowledge are acquired through an
agent’s experience interacting with the world. Computational
experiments with the model in two domains are reported.

Introduction

Skill learning (or skill acquisition) is an important area of
cognitive science, as skilled performance (and its acquisi-
tion) constitutes the majority of human activities. Such skills
range from simple motor movements and routine coping in
everyday activities all the way to complex intellectual skills
such as writing or proving mathematical theorems. There
is a hierarchy of skills of varying complexities and cognitive
involvement. Most widely studied in cognitive science is cog-
nitive skill acquisition (VanLehn 1995), that is, the abilities
to solve problems in more or less intellectual tasks, such as
(just to mention a few) arithmetic, elementary geometry, LISP
programming, and simulated airtraffic control (e.g., Anderson
1982, 1993, VanlLehn 1995, Ackerman 1988). Most of the
work assumes a top-down approach; that is, they assume that
subjects first acquire a great deal of knowledge in a domain
and then practice changes this explicit knowledge into a more
usable form, which leads to skilled performance. The explicit
knowledge acquired before practice is declarative knowledge
while the knowledge directly used in skilled performance is
procedural knowledge. It is commonly believed that skills are
the result of “proceduralization” of declarative knowledge.

However, there is a substantial literature of work that
demonstrates that the opposite may also be true: subjects
can learn skilled performance without being provided explicit
knowledge prior to practice, such as Berry and Broadbent
(1984), Stanley et al (1989), Willingham et al (1992), and
Reber (1989). Among them, Berry and Broadbent (1984) and
Stanley et al (1989) expressly demonstrate the dissociation
between prior knowledge and skilled performance, in a vari-
ety of tasks. Explicit knowledge is not equivalent to but can
arise out of skills.

Reactive sequential decision tasks (Sun and Peterson 1995)
is asuitable domain for studying such bottom-up skill learning.
They generally involve selecting and performing a sequence
of actions, in order to accomplish an objective, mostly on the
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basis of moment-to-moment perceptual information. In such
tasks, while skills emerge from repeated practice, declarative
knowledge is also formed, on the basis of acquired skilled
performance. So the process is the opposite of the commonly
assumed top-down approach.

A general specification is as follows: there is an agent
that can select, from a finite set of actions, a particular ac-
tion to perform at each time step. The selection decision is
(mainly) based on the current state of the world, presented to
the agent through sensory input. The world changes either
autonomously or as a result of some action by an agent. Thus,
over time, the world is presented to an agent as a sequence of
states. At certain points in a sequence, the agent may receive
payoffs or reinforcements. Thus, the agent may need to per-
form temporal and structural credit assignment, to attribute
the payoffs/reinforcements to various actions at various points
in time (that is, the temporal credit assignment problem), in
accordance to various aspects of a state (that is, the structural
credit assignment problem).

While performing this kind of task, the agent is often un-
der severe time pressure. Often a decision has to be made
in a fraction of a second; therefore it cannot do much “in-
formation processing”, and falls outside of Allen Newell's
“rational band". The decision making and learning in the
agent thus cannot be too time-consuming. As in humans, the
agent may also be severely limited in other resources, such as
memory so that memorizing all the previous episodes is con-
sidered impossible. The perceptual ability of an agent may
also be extremely limited so that only very local information is
available. Learning in such a domain is an experiential, trial-
and-error process; the agent develops knowledge rentatively
on an on-going basis, since it cannot wait until the end of an
episode. Learning is thus concurrent or on-line (Nosofsky et
al 1994).

Hybrid Models

In such tasks, with bottom-up learning and without prior
knowledge, how can an agent develop a set of coping skills
that are highly specific (geared towards particular situations)
and thus highly efficient but, at the same time, acquire suf-
ficiently general knowledge that can be readily applied to a
variety of different situations? In the current context, one way
to learn is through trial-and-error: repeated practice gradually
givesrise to a set of procedural skills that deal specifically with
the practiced situations and their minor variations. However,
such skills may not be transferable to truly novel situations,
since they are so embedded in specific contexts and tangled
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together. The agent needs both procedural and declarative
knowledge, or both subconceptual and conceptual knowledge.
It is assumed that a balance of the two is essential to the de-
velopment of complex cognitive agents. Generic declarative
knowledge, which can emerge from procedural skills, has
the following three advantages: (1) It helps to guide the ex-
ploration of novel situations, and reduces the time (i.e., the
number of trials) necessary to develop specific skills in new
situations. In other words, it helps the transfer of learned skill
(as shown through psychological data by Willingham et al
1989). (2) Generic knowledge can help to speed up learning.
If properly used, generic knowledge that is extracted on-line
during learning can help to facilitate the very learning process
itself. (3) Generic knowledge can also help in communicating
learned knowledge and skills to other agents.

A two-level hybrid models seem to provide the needed com-
putational framework for representing both types of knowl-
edge (Sun and Bookman 1994). Based on the ideas proposed
in Sun (1994, 1995), we developed CLARION. See Figure 1.
The bottom level contains specific procedural knowledge (An-
derson 1982). The top level contains generic declarative
knowledge. An overall pseudo-code algorithm is as follows:

1
2

Observe the current state = (in a proper representation).
Compute in the bottom level the Q-values of z associated
with each of all the possible actions: Q(z,a), Q(z, a2),
e QT @0).
. Find out all the possible actions (b, b2, ...., bm) at the top
level, based on the input z and the rules in place.
. Compare the values of a,'s with those of b,'s, and choose
an appropriate action b
. Perform the action b, and observe the next state y and
(possibly) the reinforcement r.
. Update Q-values in accordance with the Q-leaming algo-
rithm
7. Update the rule network in the top level using the RULE-
EXTRACTION-GENERALIZATION-REVISION.
8. Go back to Step 1.

In terms of representation in the bottom level, we prefer a
subsymbolic distributed representation, such as that provided
by a backpropagation network. (Existing evidence indicates
that the difference between the two levels lies primarily in
their representations; see Reber 1989.) This is because of
the implicit nature of procedural skills: there is generally a
lack of conceptual-level thinking in performing procedural
skills; as a consequence, details of such skills are in general
inaccessible (Anderson 1982, Ackerman 1988). A distributed
representation naturally captures this property of procedural
skills (Sun 1994), with representational units that are capable
of accomplishing tasks but are in general uninterpretable and
subsymbolic. (Otherwise, a symbolic representation may be
used, but then we will have to artificially assume that these
representations are not accessible, while some other similar
representations are accessible — the distinction is arbitrary
and not intrinsic to the media of representations; see Anderson
1993 and also Rosenbloom et al. 1993 regarding accessability
of symbolic structures).

In terms of learning, we use reinforcement learning (the
temporal difference method). A Q-value is an evaluation
of the “quality” of an action in a given state: Q(z,a) in-
dicates how desirable action a is in state x (which con-
sists of some sketchy sensory input). To acquire the Q-
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values, we use Q-learning (Watkins 1989). In the algorithm,
(. a) estimates the maximum discounted cumulative rein-
forcement that the agent will receive from the current state
z on: max(}_:Z,7'ri), where 5 is a discount factor that fa-
vors reinforcement received sooner relative to that received
later, and r; is the reinforcement received at step i (which
may be 0). The updating of Q(r,a) is based on minimiz-
ing r + ve(y) — Q(z,a), where 7 is a discount factor and
e(y) = max, @Q(y,a). Thus, the updating is based on the
temporal difference in evaluating the current state and the ac-
tion chosen. Using Q-learning allows sequential behavior to
emerge in an agent. Through successive updates of the Q
function, the agent can learn to take into account future steps
in longer and longer sequences.

To combine Q-learning with connectionist representation,
we use a four-layered network (see Figure 1) in which the
first three layers form a backpropagation network for com-
puting Q-values and the fourth layer (with only one node)
performs stochastic decision making. The output of the third
layer (i.e., the output layer of the backpropagation network)
indicates the Q-value of each action (represented by an in-
dividual node), and the node in the fourth layer determines
probabilistically the action to be performed based on a Boltz-

g . " a@(r,ae)
mann distribution (Watkins 1989): p(a|z) = «——5m=

where « controls the degree of randomness {lemi:eralure) of
the decision-making process. The training of the network
is based on minimizing the temporal difference as specified
before.

Declarative knowledge is handled differently. For declar-
ative knowledge, we prefer a symbolic or localist represen-
tation, in which each unit has a clear conceptual meaning or
interpretation. This allows declarative knowledge to be highly
accessible and inferences to be performed explicitly at a con-
ceptual level (Smolensky 1988, Sun 1994). Because declar-
ative knowledge needed in reactive sequential decision tasks
is relatively simple, we will focus on propositional rules. We
use a localist connectionist model (see Figure 1) for represent-
ing these rules to facilitate correspondence with the bottom
level and to encourage uniformity and integration. Basically,
we connect the nodes representing conditions of a rule to the
node representing the conclusion. However, we need to wire
up rules involving conjunctive conditions. For details, see
Sun (1992).

Because of the dynamic nature of reactive sequential deci-
sion tasks, we need to be able to dynamically acquire a rule
representation and to modify it in subsequent encounters if
necessary. We thus need a simple and efficient way. We
can make use of the bottom level which is trained with re-
inforcement learning to perform specific procedural skills by
extracting information from the network (Towell and Shav-
lik 1993) and thereby forming and modifying explicit rules.
The basic idea for rule learning is as follows: if some action
decided by the bottom level is successful the agent extracts a
rule that corresponds to the action selected by the bottom level
and adds the rule to the top level. Then, in subsequent inter-
actions with the world, the agent tries to verify the extracted
rule, by considering the outcome of applying the rule: if the
outcome is not successful, then the rule should be made more
specific and exclusive of the current case; if the outcome is
successful, the agent may try to generalize the rule to make it
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Figure 1: The CLARION Architecture

more universal (Mitchell 1982).

Specifically, three different criteria can be used for extract-
ing rule from the bottom level: (1) direct reinforcement re-
ceived at a step, (2) temporal difference (as used in updating
Q-values), and (3) maximum Q-values in a state. The first
criterion is an indication of whether or not an action taken
in a given state is directly beneficial, but it fails to take into
account sequences of actions. The second criterion indicates
if further improvement in a Q-value is possible. The third cri-
terion concerns whether the Q-value of a state and an action is
close enough to the maximum Q-value in that state, indicating
whether that action is close to being optimal in that state. (See
Sun and Peterson 1995 for an analysis of these criteria.) We
adopt a three-phase approach here, with three criteria being
successively applied in different phases. At each step, after
an action is selected and performed in a state, a new state is
entered and reinforcement is received. Then, one of the three
measures above that is applicable to the current phase is com-
pared to a threshold to determine if a rule should be extracted.
If 50, a rule is formed that relates the state to the action, and
the rule is then wired up in the top-level rule network.

After a rule is extracted, generalization and revision opera-
tions are used to tune the rule:

e Expansion: the value range of a condition is expanded by one
interval, when a rule is successfully applied according to the
criterion in the current phase.

e Shrinking: when a rule leads to unsuccessful results as judged by
the criterion in the current phase, we reduce the value ranges of
some or all conditions (cf. Michalski et al 1986).

e Deletion: remove a rule from the rule network when a counter
example to the original case from which the rule was extracted is
encountered, according to the current-phase criterion

® Merge: when the conditions of two rules are close enough, the
two rules may be combined so that a more general rule can be
produced.

The necessity of having a two-level architecture can be
summed up as follows: (1) Without the bottom level, the
agent will not be able to represent procedural skills suffi-
ciently. Such skills may involve graded, uncertain, and in-
consistent knowledge and autonomous stochastic exploration
(with numeric calculation and probabilistic firing). (2) With-
out learning in the bottom level, the agent will not be able to
learn from experience, and therefore will not be able to dy-
namically acquire either procedural skill in the bottom level,
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Figure 2: The initial maze
The starting position is marked by ‘S’ in which the agent faces
upward to the upper wall. The goal is marked by ‘G’

or rules in the top level (as in the current model). The bot-
tom level also captures the gradual learning of skills, different
from one-shot rule learning. (3) Without the top level, the
agent will not be able to represent generic, easily accessible,
and crisp knowledge and explicitly access and communicate
that knowledge to other agents. When novel situations are
encountered and/or when precision, crispness, consistency,
and certainty are needed, declarative knowledge is preferred.
Explicit access and explanation is also important in facilitat-
ing cooperation among agents. (4) Without rule learning, the
agent will not be able to acquire dynamically and quickly crisp
conceptual knowledge for the top level, and therefore has to
resort to mostly pre-wired and/or externally given knowledge
in the top level.

We try two different methods of combining outcomes from
the two levels. One is the percentage method, and the other
is the stochastic method. In the percentage method, in (ran-
domly chosen) p percent of the steps, we use the outcome
from the rule level, if there is at least one rule indicating an
action in the current state; otherwise, we use the outcome of
the bottom level (which is always available). In the stochastic
method, we combine the corresponding values for each action
from the two levels by a weighted sum; that is, if the top level
indicates that action a has an activation value v and the bottom
level indicates that a has a value ¢ (the Q-value for a), then
the weighted sum 1s w; * v + w; * g. Based on these weighted
sums, stochastic decision making (with Boltzmann distribu-
tion) is then performed to select an action. The parameters,
wy, Wy, and p, are to be varied.

Experiments
Experiments with Mazes

We carried out some computational experiments in reactive se-
quential decision domains to show the advantage of the model
in learning and transfer as hypothesized earlier. In a simple
maze as in Figure 2, the agent has rudimentary sensory inputs
regarding its immediate left, front and right side, indicating
whether there is a wall, an opening, or the goal; the agent can
move forward, turn to the left, or turn to the right. It has no
information regarding its location except the simple sensory
input described above. Each episode starts with an agent at
a fixed starting location and ends when the agent reaches the
goal (Figure 2). The reward for an agent reaching the goal is
1, and the punishment for hitting a wall is -0.1.

We first choose (optimize) the structures and parameters
of backpropagation and Q-learning through trial-and-error; 8
hidden units are used, the learning rate is 0.1, the momentum
parameter is 0.7, network weights are randomly initialized
between -0.01 and 0.01; the Q-value discount rate is 0.9, the



Moves Rules
Q-leaming | 15348.48 n/a
Perc.60 499452 1.78
Perc.80 5840.14  7.28
Perc.60.gen | 516436  8.50
Perc.80.gen | 504084  9.12
Stoc.15. 460288  6.62
Stoc.20 471270  6.30
Stoc.15.gen | 6539.04  6.82
Swoc.20.gen | 557424  8.14

Figure 3: A Comparison of Learning Speeds
Moves indicate the total numbers of moves during training (averaged
over 50 trials). Rules indicate the average numbers of rules at the
end of training.

randomness parameter for stochastic decision making is set at
0.1. (Note that although these parameters make some differ-
ences, performance is not overly sensitive to small variations
of their settings.) The lengths of phase 1, 2 and 3 are 3, 20,
and 37 episodes, respectively.

Figure 3 shows the differences in learning speed, where
learning speed is measured by the total number of moves in
the first 60 episodes. Perc.x refers to the versions using the
percentage combination with rules being applied p = 2% of
the times. Stoc.y refers to the versions using the stochastic
combination with rules being weighted at y%. The sym-
bol gen indicates that generalization/revision operations (i.c.,
expansion, shrinking, etc.) on the extracted rules are per-
formed; otherwise, none of these operations is performed.
We recorded the results averaged over 50 trials with different
random seeds. It is clear from the figure that, when rules
are used frequently (e.g., with Perc.80 or Stoc.20), CLARION
learns faster than pure Q-learning by large margins. A t test
showed the differences were significant with over 99% confi-
dence (p < 0.01). The data also indicates that generalization
per se did not lead to faster learning.

In Figure 4, we show the average number (averaged over 50
trials) of steps needed to reach the target in one episode, after
60 episodes of training, for different models. The numbers
are shown in the Moves column. The different versions of
CLARION again outperform pure Q-learning by large margins.
T tests showed over 99% confidence (p < 0.01). Also re-
ported are the average numbers of steps in one episode, after
the training, using only the top level (marked as R-moves) or
using only the bottom level (marked as Q-moves). There is a
synergy between the two levels: Comparing the three values
horizontally on each line, the whole CLARION system always
performs better than the top level alone or the bottom level
alone.

We applied our trained models (after the training of 60
episodes) to a new and larger maze as shown in Figure 5 to
access transfer. Transfer occurs because of the similarity of
the two mazes. In Figure 6, as indicated by the Moves col-
umn, the different versions of CLARION transfer much better
than Q-learning alone in terms of number of steps to reach
the goal in one episode. Furthermore, by comparing the cor-
responding Moves, Q-moves, and R-moves on each line, we
see that often learned rules alone perform better in transfer
than the Q-learning network at the bottom level, as well as
than the whole CLARION model. The superiority of R-moves
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Moves Q-Moves R-Moves

Q-leaming | 149.00 149.00 n/a

Perc.60 29.76 72.46 9498

Perc.80 10.78 36.22 13.48
Perc.60.gen | 42.06 118.24 189.18

Maze 1| o cg0gen | 2202 5514 10658
Stoc.15 28.42 102.70 44.74

Stoc.20 20.60 81.80 30.54
Stoc.15.gen | 5390 87.18 108.20
Stoc.20.gen 36.26 67.18 64.66

Figure 4: Trained Performance

Figure 5: The second maze

in comparison with Q-moves demonstrates that it is rule in-
duction that facilitates transfer to new and more complicated
environments.

We also applied the trained model to an even larger maze
as in Figure 7. The result is similar and the same points can
be made in this case.

Experiments with Navigation

To further demonstrate CLARION, we tested it on a more com-
plex task: the simulated navigation task. The agent has to
navigate an underwater vessel to go through a minefield to
reach a target location. The agent receives information only
from a number of instruments. The sonar gauge shows how
close the mines are in 7 equal areas that range from 45 degrees
to the left of the agent to 45 degrees to the right. The fuel
gauge shows the agent how much time is left before fuel runs
out. The bearing gauge shows the direction of the target from
the present direction of the agent. The range gauge shows how
far the target is from the current location. Using such limited
information, the agent decides on (1) how to turn and (2) how
fast to move. The agent, within an allotted time period, can
either (a) reach the target (which is a success), (b) hit a mine
(a failure), or (c) run out of fuel (a failure again).

Moves Q-Moves R-Moves

Q-leaming 1681.48 1681.48 n/a

Perc.60 770.72 1782.16 559.96

Perc.80 492.14 1289.78 233.56

Maze 2 Perc.60.gen | 766.38 204940  1030.66
Perc.80.gen 415.52 1581.62 722.48

Stoc.15 850.70 1481.34 405.94

Stoc.20 498.40 1586.88 392.08
Stoc.15.gen 703.80 1690.32 98194
Stoc.20.gen | 760.70  2028.24 956.50

Figure 6: Transfer to Maze 2
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Figure 7: The third maze

Successful Episodes
Q-leaming 38.1
Stoc.10 278.9
Stoc.20 301.5
Stoc.10.gen 301.3
Stoc.20.gen 254.2

Figure 8: Learning
The number of successful episodes during training is included for
each case.

In this experiment, each time the minefield is generated
anew in a random layout, but it always contains the same
number of mines, which in this case is 10. The time alloted
to the agent for each episode 1s 200 steps. Figure 8 shows
learning differences, where learning is measured by the total
number of successful episodes out of a total SO0 training
episodes. CLARION again outperforms Q-learning alone.

Discussions

Most of the existing cognitively-motivated models for skill
learning that contain both declarative and procedural knowl-
edge explore mainly top-down learning, such as Ander-
son (1982, 1993), Gelfand et al (1989), and Schneider and
Oliver (1991). CLARION explores bottom-up learning, to
demonstrate how conceptual/symbolic knowledge can emerge
through interacting with the world in the same way as sub-
conceptual procedural knowledge does, and the performance
advantage of such emergence.

In addition, while some other hybrid connectionist models
try to implement all types of knowledge, symbolic and non-
symbolic, in one kind of network or another (Miikkulainen
and Dyer 1991, Barnden 1988, Sun 1992), CLARION takes a
different tack and attempts to develop a principled dichotomy
of the conceptual vs. the subconceptual in hybrid architec-
tures. CLARION attempts to explore their synergy so that it
learns faster and transfers better.

Some existing hybrid models do not, or cannot, perform
learning (Sun 1992), while others perform learning in a batch
fashion (e.g., Miikkulainen and Dyer 1991) and are thus cog-
nitively implausible in this aspect. In contrast to these hybrid
models, CLARION is capable of incremental, on-line (concur-

688

rent) learning, and integrative lcarning, that is, developing
connectionist and symbolic representation along side of each
other.
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