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ABSTRACT OF THE THESIS 

Non-spherical Cavitation in Soft Materials 

 

by 

Shuai Wu 

Master of Science in Engineering Sciences (Mechanical Engineering) 

University of California San Diego, 2018 

Professor Shengqiang Cai, Chair 

Cavitation in soft solid is a phenomenon that cavity in an elastomer can expand rapidly 

when inner pressure reaches a critical value. Most of previous study focus on expansion of 

spherical void within a soft solid. In this thesis, we consider the mechanical response of non-

spherical cavity to inner pressure. First, ellipsoidal cavitation with various geometries from oblate 

one to prolate one is studied. It shows that prolate cavity needs higher asymptotic pressure than 

oblate one and spherical one has intermediate asymptotic pressure. Then needle induced tubular 

cavitation is studied from several aspects. We found needle retraction will decrease the critical 

pressure, and surface tension will increase the critical pressure. Also, localized bulging of tubular 

cavity happens at the defect when surface tension is large enough. We also study the debonding 

between soft solid and rigid needle. It is fast for elastomer and needle to debond when pressure is 

close to the critical pressure, but if volume of cavity is properly controlled, the debonding can 

grow gradually.  
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1. Introduction 

When a rubber cylinder is well confined on both edges, a comparatively small tension 

force will lead to reversible cavity or irreversible crack within the cylinder [1]. This 

phenomenon is called cavitation instability, resulting from a negative hydrostatic pressure in 

the incompressible rubber cylinder. Similar phenomenon was found in elastomeric composites. 

Visible void appeared in the layers of silicone rubber which was bounded between steel spheres 

or steel cylinders [2]. Cavitation can also be found in Newtonian fluid and polymeric-based soft 

materials, which have intermediate mechanical properties between stiff rubber and Newtonian 

fluid [3]. In addition to macroscale cavities, we could also see nanoscale cavitation, because 

nanoscale rubber domain was created between aggregated nanoparticles, which could lead to 

macroscopic cracks [4].  

 For a spherical cavity subjected to internal hydraulic pressure in soft solids, an analytical 

solution was proposed and agreed well with the experiments [1]. As the pressure increases to a 

critical value Pc, given by 5E/6 where E is elasticity modulus, the cavity will grow without limit. 

Later, effect of surface tension was also considered, and critical pressure would increase to 

overcome resistance from surface energy[5]. In real experiments, cavity cannot expand without 

limit and it will transit to crack once energy release rate reached critical value of fracture. This 

transition was studied analytically and numerically[6], [7].  

 However, cavitation phenomenon is not always related to failure of structure or 

undesiring outcome. In natural world, humidity change induces cavitation instability in fern 

sporangium, which helps to eject seeds at high speed [8]. A method called cavitation rheology 

technique (CRT) was also developed to determine local modulus of materials based on previous 

theory[9]–[11]. Single cavity was introduced at the tip of syringe needle and grew rapidly as 
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pressure increased to 5E/6. This snap-through instability was accompanied by a decrease of 

pressure and then material properties was calculated. This snap-through instability of a bubble 

in an elastomer was studied analytically, and both surface tension and stretch limitation of the 

elastomer was taken into consideration in the model [12]. Also, CRT method shows great 

potential in measuring heterogeneous materials and biological tissues in vivo [13]. 

 In CRT test, stress state around needle tip is not stress free and we found retraction of 

needle can reduce stress, but meantime non-spherical cavity would be induced. Previously 

several works about the non-spherical cavitation were made. Expansion of an isolated 

ellipsoidal cavity in linearly viscous solid and rigid-perfectly plastic was studied [14]. A 

spherical cavity subjected to unequal far-field stress would not expand homogenously, instead 

the spherical cavity would expand and deform to ellipsoidal one [15]. Analytical calculation, 

numerical analysis and experiments were taken to study the expansion of a long cylindrical 

cavity through a Neo-Hookean solid, and peristaltic elastic instability showed up in this 

work[16].  

However, according to our knowledge, no report about non-spherical cavitation 

introduced by CRT is available. In this thesis, first we are going to demonstrate for a soft solid, 

shape of initial cavity does influence expansion and corresponding critical pressure by finite 

element (FE) analysis. Then research about needle induced tubular cavitation in CRT is 

conducted. Effect of tubular geometry and surface tension are both taken into consideration 

with the help of ABAQUS. Localized bulging and debonding between needle and elastomer 

are discussed too. These works may give more insight into the CRT test. 
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2. Ellipsoidal cavitation in infinite large elastomer 

2.1 Finite element model 

Numerical analysis about ellipsoidal cavitation within an infinite large elastomer is 

studied. The schematic of our model is shown in Figure 2.1. The problem is simplified to 2D 

case by using axisymmetric model. A and B are initial horizontal and vertical semiaxis length 

of ellipse respectively. Cavity is subjected to interior homogenous pressure P. Circular shape 

is adopted for the soft solid to create better mesh for finite element model. The radius of circle 

R is much larger than the characteristic length of the void, so the elastomer can be viewed as 

infinite large one. 

 

Figure 2.1: Schematic of ellipsoidal cavitation within an infinite large elastomer 

ABAQUS standard is used to conduct quasi-static simulations of cavitation. Figure 2.2 

shows five FE models with different A/B ratios, from cylinder-like cavity to penny-shape crack. 

Total numbers of element are 9947, 11544, 12848, 10788 and 9695 respectively. CAX4H 
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element is used for the analysis and mesh is greatly refined near the cavity. Neo-Hookean 

hyperelasticity model is used and elastomer is set to be incompressible.  

      

(a)                                              (b)                                             (c) 

     

(d)                                              (e)  

Figure 2.2: Finite element mesh configurations of ellipsoidal cavitation. (a) A/B=2/10. (b) 

A/B=4/10. (c) A/B=10/10. (d) A/B=10/4. (e) A/B=10/2 

2.2 Results and discussion 

We introduced a geometry parameter r=B/A, where B and A are defined same as before. 

When r is much larger than 1, the cavity is close to a cylinder, and as r decreases the geometry 

of cavity will become a sphere (r=1) and then a penny-shape crack (r=0). First based on 

previous work[14], we get analytical solutions of ellipsoidal cavitation in an incompressible 

linear elastic material with Young’s modulus E. With pressure P applied on the surface of cavity, 
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the lengths of horizontal semi axis a and vertical semi axis b at deformed configuration are as 

follows: 
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in which r is geometry parameter,  and  are two values related to geometry parameter r   The 
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The geometry A/B=10/4 is used to do a comparison between Neo-Hookean material and 

linear elastic one, as shown in Figure 2.3. Results of Neo-Hookean material with shear modulus 

 are calculated by FEM When material is incompressible, shear modulus  equals to 3 times 

of elastic modulus E. From the plot we can tell linear elasticity shows a good approximation 

when deformation is relatively small, but for large deformation case it is quite different from 

Neo-Hookean material. Usually cavitation phenomenon is studied in highly nonlinear material 

like rubber or hydrogel at large deformation, and analytical method is limited to some special 

cases. Instead, FEM is a powerful tool to do numerical analysis, and our work next are all 

conducted with the help of FEM software ABAQUS.  
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Figure 2.3: Deformed semi axis lengths a and b vs normalized pressure. Comparison between 

Neo-Hookean material by FEM and linear elastic material by analytical analysis is made. 

The influence of initial cavity geometry to cavity expansion is studied. Figure 2.4 (a) 

shows that for models with various initial A/B ratios, the cavity shape tends to become spherical 

when pressure increases. As illustrated in Figure 2.4 (b), the pressure-volume curves possess 

similar trend. At beginning pressure increase will not lead to fast cavity growth but when 

pressure gets close to critical value, the volume increase can be obvious, and the slenderer the 

initial shape is, the larger the asymptotic pressure is.  
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(a)                                                                          (b) 

Figure 2.4: Influence of initial cavity geometry to ellipsoidal cavitation. (a) a/b ratio vs 

normalized pressure for cavities with different initial shapes. (b) Normalized pressure vs 

volume with respect to different cavities from cylinder to penny-shape one 
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From calculations above we can tell geometry of the cavity play a role in the cavitation 

phenomenon. In real experiment void shape is more important as stress concentration will lead 

to crack propagation. 

3. Needle induced tubular cavitation 

Cavitation rheology technique (CRT) involves sensing the pressure of a cavity within a 

soft material. Main components of CRT are a syringe pump, pressure sensor, microscope and 

personal computer [9]. However, the gel around the needle is compressed and not stress free, 

which may influence the precision of results. We find stress is reduced if needle is retracted, 

but then a tubular cavity is induced. In this chapter, needle induced tubular cavitation is 

discussed with respect to influence of retraction and surface tension, localized bulging of 

tubular cavity and debonding between needle and elastomer. 

3.1 Influence of needle retraction and surface tension 

After retracting needle with a certain distance, a tubular cavity is created. It is intuitive 

to study the influence of cavity geometry, namely the retraction distance, to its expansion. The 

schematic of FE model is shown in Figure 3.1 (a) and OA and AC are radius and length of the 

tubular cavity. Axisymmetric model is used to reduce the complexity of calculation as shown 

in Figure 3.1 (b) and the mesh around cavity is greatly refined as shown in Figure 3.1 (c). Four 

models with AC/AO = 1, 3, 5 and 7 are used to study influence of retraction distance. Total 

numbers of element are 76046, 82280, 96892 and 107064 respectively. CAX4H element with 

Neo-Hookean material property are assigned to the model.  

Figure 3.2 shows normalized pressure-volume relationship with respect to different 

AC/AO ratios. The trend of curves is close to spherical cavitation. The pressure-volume 

relationship is monotonic, and when pressure reaches critical value the cavity can grow rapidly, 
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but asymptotic pressure of tubular cavitation is higher than spherical cavitation and critical 

pressure further increases with decreasing of tubular cavity length. This agrees with results in 

Chapter 2 that a slim ellipsoidal cavity needs higher pressure to expand compared with spherical 

one. 

    

(a)                                              (b)                                             (c) 

Figure 3.1: Schematic and FE model of needle induced tubular cavitation. (a) Schematic of 

tubular cavity in elastomer induced by needle retraction. (b) Axisymmetric FE model, and 

mesh is greatly refined around cavity. (c) Mesh configuration near tubular cavity 
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Figure 3.2: Pressure vs volume with respect to different retraction distances for tubular 

cavitation. AO and AC are radius and height of tubular cavity. 
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Previous work [17] provides us a user-defined subroutine to include effect of surface 

tension to ABAQUS standard calculation. Neo-Hookean and Gent materials are available for 

the user-define element. Model with AC/AO is set to be 5, to discuss the effect of surface 

tension. The first step of FE analysis is to increase surface tension  from 0 to a given value, 

and during the second analysis step  is kept as a constant while pressure is applied gradually. 

As shown in Figure 3.3, with larger surface tension, higher pressure is required for the cavity 

to expand, which is straightforward that surface tension will increase resistance to cavity growth 

and higher pressure is needed to overcome the effect of surface energy. 
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Figure 3.3: Effect of surface tension   to tubular cavitation. Model with AC/AO=5 is used.  

is shear modulus of Neo-Hookean material and R is the radius of tubular cavity.  

3.2 Localized bulging along long tubular cavity 

In experiment, we find localized bulging phenomenon happens a lot when retraction 

distance is relatively large and usually initial defect is observed first at bulging area. Initial 

defect and surface tension are two possible reasons come to mind.  

To simplify this problem, we treat the long tubular cavity in experiment as infinite long 

and Figure 3.4 (a) illustrate the schematic of our model. By taking advantage of symmetry, 

quarter model, a rectangle part ABCD, is used as FE model as shown in Figure 3.4 (b). Two 
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characteristic nodes, one at the center and one away from center, are picked to study the 

localized bulging phenomenon. As the length and thickness of the elastomer are much larger 

than the radius of tubular cavity, this model can simulate expansion of an infinite long tubular 

cavity within an infinite large elastomer.  

     

(a)                                                                (b) 

Figure 3.4: Schematic and FE model of infinite long tubular cavity in an elastomer. (a) 

Quarter model ABCD is used for FEM. (b) FE model, mesh is greatly refined near cavity. 

Node 1 and 2 are two characteristic nodes at the center and away from center respectively 

Expansion ratio , defined as deformed cavity radius r divided by undeformed cavity 

radius R, is adopted to study the deformation of cavity. First, only the effect of surface tension 

is considered, and no initial defect is introduced at center of the cavity. As shown in Figure 3.5 

(a), expansion ratio is smaller than one after surface tension is applied, which means cavity 

shrink first to low down the area of cavity. Then cavity expands with the increase of inner 

pressure. As surface tension increases, higher pressure is needed to overcome the resistance due 

to surface energy. One interesting phenomenon is that the curve become non-monotonic when 

surface tension  is greater than 2R, where  is shear modulus of material and R is initial radius 
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of tubular cavity. Thus Snap-through instability will happen because lower pressure is required 

for cavity to expand when critical pressure is reached.  

However, this instability is homogenous along the whole cavity but in the experiment, 

we can always see localized bulging and usually defect is observed first before the bulging, so 

we introduce a small defect at the center of FE model, in which Node 1 locates. Expansion 

ratios at of two characteristic nodes are compared in Figure 3.5 (b) with different surface tension. 

From the plot we know when surface tension  is below critical value 2R, expansion ratios at 

the defect and away from the defect are the same, which means there is no localized bulging. 

When pressure-expansion ratio relationship is non-monotonic, namely R is higher than 2, 

localized bulging shows up as Figure 3.6 (a). The cavity will increase homogenously first and 

then elastomer at defect (Node1) will bulge out while the radius away from defect (Node2) will 

decrease a little bit, but expansion will become homogenous again as pressure further increases, 

as illustrated in Figure 3.6 (b). And with higher surface tension, the cavity bulges out more. 
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(a)                                                                (b) 

Figure 3.5: Comparison of long tubular cavitation between model without defect and model 

with initial defect. (a) Pressure-expansion ratio relationship of model with no defect. (b) r1/R1 

vs r2/R2 of model with defect, subscript 1 and 2 correspond to expansion ratios at node 1 and 

node 2. r and R are radii at deformed configuration and undeformed configuration. 
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(a)                                                                (b) 

Figure 3.6: Max principal strain contours of long tubular cavitation. (a) Localized bulging at 

the defect. (b) Recovery to homogenous expansion along the tubular cavity 

3.3 Debonding between needle and elastomer 

For a finite long, tubular cavitation as shown in Figure 3.7 (a), singular font shows up 

when inner pressure increases because debonding between needle and elastomer is suppressed 

for previous model. However, in real experiment, the interface can not sustain infinite large 

shear traction between needle and elastomer, so next debonding problem is studied for the 

needle induced tubular cavitation. The schematic of FE model is illustrated in Figure 3.7 (b). 

Same as previous model OA is the radius of tubular cavity, AC is the length of tubular cavity 

and a debonding, BC, between needle and elastomer is included.  

Energy release rate is used to decide whether a crack tip will grow or not. It is defined 

as energy dissipation per new formed fracture surface during crack propagation. For the FE 

method, energy release rate at crack tip is calculated by J integral in ABAQUS. Path 

independence of J integrals is checked to validate convergence of J integral. Also, to evaluate 

the reliability of J integral, we also use two FE models with close crack length to calculate 

energy release rate at crack tip, which is based on the definition of energy release rate. The 

results by two method are compared as shown in Figure 3.9, indicating the reliability of J 

integral exported from ABAQUS. 
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(a)                                                            (b) 

Figure 3.7: (a) Max principal strain contours of model without debonding at P/=1.5 and 2.4. 

(b) Schematic of tubular cavitation model with debonding. OA is the radius of tubular cavity, 

AC is the length of tubular cavity and BC is debonding length between elastomer and needle. 
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Figure 3.8: Reliability validation of energy release rate by J integral 

First, we calculate energy release rate-pressure relationship for model without 

debonding with respect to different retraction distance AC/AO where AC and AO are retraction 

distance and initial cavity radius. As illustrated in Figure 3.9 (a). The energy release rate 

increases rapidly as pressure reaches asymptotic value and detachment starts because critical 

energy release rate for the crack to propagate is reached. It becomes easier to debond with 
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increasing debonding distance, but the energy release rate vs pressure curves converge as 

retraction distance further increases.  

Then we set the retraction distance as a constant, namely AC/CO=5, and variate 

debonding length BC/AO from 0.5 to 5. The energy release rate-pressure relationship is shown 

in Figure 3.9 (b). Still, energy release rate increases rapidly when pressure gets close to 

asymptotic value. For a given pressure, energy release rate slightly decreases as debonding 

becomes longer and this is further illustrated in Figure 3.10 (a). This means when pressure 

reaches a critical value there would be a fast debonding process. For the volume control 

cavitation, the energy release rate decreases obviously as crack propagates for a given cavity 

volume, which means debonding will not continue until cavity volume further increases. This 

volume control method is hard to realize in experiment because we usually see rapid volume 

growth at the end of experiment as pressure then is really close to asymptotic pressure. 
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(a)                                                                (b) 

Figure 3.9: Energy release rate vs normalized pressure for model with and without initial 

debonding. (a) Model without debonding, different retraction distances are considered. (b) 

Model with debonding, different crack lengths are considered 
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(a)                                                                (b) 

Figure 3.10: Energy release rate vs normalized crack length at a given pressure or volume. (a) 

Pressure is controlled as a constant. (b) Volume is controlled as a constant.  
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4. Conclusion 

In this thesis, we consider the mechanical response of non-spherical cavity to inner 

pressure. We find that geometry mainly influences the asymptotic pressure at which void 

expands rapidly. For ellipsoidal cavitation with various geometries, from oblate one to prolate 

one, it shows that prolate cavity needs higher asymptotic pressure than oblate one and spherical 

one has intermediate asymptotic pressure.  

As for needle induced retraction, longer tubular cavity has comparatively lower critical 

pressure, and surface tension will increase the critical pressure. Also, localized bulging of 

tubular cavity happens at the defect when surface tension is large enough. We notice the mode 

of bulging by finite element method is different from experiment, one possible explain is that 

crack propagation also happens around defect during experiment. Debonding between soft solid 

and rigid needle is studies. We find it is fast for elastomer and needle to debond when pressure 

is close to the critical pressure, but if volume of cavity is properly controller, the debonding can 

grow gradually. However, volume control method is hard to realize in real experiment because 

we usually see rapid volume growth at the end of experiment as pressure then is really close to 

asymptotic pressure. 
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