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ABSTRACT OF THE THESIS 

 

Classification of Shoulder Implants in X-ray Images Using Deep Learning 

by 

Saman Porhemmat 

Master of Science in Computer Science 

University of California, Irvine, 2020 

Distinguished Professor Pierre Baldi, Chair 

 

Total Shoulder Arthroplasty (TSA) is a type of surgery in which the damaged ball of the shoulder 

is replaced with a prosthesis. Many years later, this prosthesis may be in need of servicing or 

replacement. In some situations, such as when the patient has changed his country of residence, 

the model and the manufacturer of the prosthesis may be unknown to the patient and primary 

doctor. Correct identification of the implant’s model prior to surgery is required for selecting the 

correct equipment and procedure. We present a novel way to automatically classify shoulder 

implants in X-ray images. We employ deep learning models and compare their performance to 

alternative classifiers, such as random forests and gradient boosting. We find that deep 

convolutional neural networks outperform other classifiers significantly if and only if out-of-

domain data such as ImageNet is used to pre-train the models. In a data set containing X-ray images 

of shoulder implants from 4 manufacturers and 16 different models, deep learning is able to 

identify the correct manufacturer with an accuracy of approximately 80% in 10-fold cross 

validation, while other classifiers achieve an accuracy of 56% or less. We believe that this 

approach will be a useful tool in clinical practice, and it is likely applicable to other kinds of 

prostheses.  
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1. INTRODUCTION 

Total Shoulder Arthroplasty (TSA) [1] is a common invasive procedure for treating damaged 

shoulder joints, where the shoulder ball is replaced with a prosthesis. The procedure is preceded 

and followed by a series of X-ray images to assess placement and fit. 

Common reasons for undergoing TSA surgery are critical shoulder injuries or severe arthritis. 

The procedure mitigates pain and restores motion to the patient’s shoulder. There are several 

different manufacturers producing prostheses, and each of them offers several different models to 

better fit any type of situation and patient. 

The prosthesis might – some or many years after it was implanted – come in need of repair or 

replacement. In some of these cases, the manufacturer and the model of the prosthesis may be 

unknown to the patients and their primary care doctors, for example when the surgery was 

conducted in another country where the patient has currently no access to the records. Another 

possible case of not knowing the exact manufacturer and model could be due ambiguity in medical 

records or medical images. At the present time, the task of identifying a prosthesis model in such 

cases is on the basis of rigorous examinations and visual comparisons of X-ray images taken from 

the implant by medical experts. This can be a monotonous task and requires time and effort for 

every new patient. 

Detecting shoulder implants in X-ray images is not a well-studied problem, despite great 

advances in computer vision in recent years, predominantly made by deep Convolutional Neural 

Networks (CNNs). Our goal is to thoroughly evaluate the use of deep learning for classifying 

shoulder implants by manufacturer and compare it to more traditional classification methods. More 

precisely, we test custom models as well as five well-known deep convolutional neural networks 

with weights that were pre-trained on the large ImageNet data set [2]: VGG-16, VGG-19 [3], 
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ResNet-50, ResNet-152 [4], DenseNet [5], and NASNet [6]. The use of pre-trained CNNs has been 

shown to be very successful in the context of X-ray data [7], [8], as well as for medical imaging 

data in other contexts [9], [10], [11], [12]. However, in some cases pre-training has actually been 

shown to be detrimental to model accuracy in biomedical image analysis [13]. 

The problem of identifying shoulder prostheses via X-ray images has not been studied before. 

Therefore, we evaluate a variety of more “traditional” classifiers besides deep learning models, 

such as Logistic Regression with SAGA (extension of Stochastic Average Gradient) [14], Random 

Forests [15], Gradient Boosting [16], and K-nearest Neighbors [17] to establish a more thorough 

baseline. 

We focus on classifying shoulder implants by manufacturer only, instead of by model, due to 

insufficient amounts of images for each model. Nevertheless, the proposed model should be able 

to classify shoulder implants by both manufacturer and model once more data is collected. 
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2. RELATED WORK 

To the best of our knowledge, no prior work exists on classifying shoulder implants, the closest 

being [18], where the authors propose a detection and segmentation algorithm for shoulder 

implants in X-ray images, based on the Hough Transform [19] for finding circles. However, they 

do not attempt classification. In [20], an approach to segment knee implants in X-ray images using 

template matching is proposed. Their algorithm uses various image processing techniques such as 

image smoothing, noise cancellation, sharpening, and Gaussian filtering, followed by template 

matching, but the authors acknowledge that the method is susceptible to noise and did not assess 

how well their method works quantitatively. Similarly, in [21] the authors identify knee prosthesis 

models in X-ray images using template matching and are reporting accuracies of 70% to 90%. 

However, their approach requires 3D CAD models of the implants to generate the templates and 

they could obtain only a single such implant model to evaluate their method. It would be difficult 

if not impossible to apply their method to our case of 16 different implant models. Other challenges 

for template matching are image artifacts, noise, variations in the way the image is captured, 

changes in image contrast, or variations in angles of image capturing. Deep Learning may prove 

to be more robust and more practical as only ordinary X-ray scans are needed for training and 

evaluation. In [22], a classification system is proposed, which utilizes ensemble learning to detect 

fractures in human bone X-ray images with the main focus being on identifying fractures in long 

bones using K-Nearest Neighbors [17], SVM (Support Vector Machine) [23], and fully connected 

neural networks. However, convolutional neural networks were neither used nor mentioned. A 

more recent study [24] utilizes deep convolutional neural networks to improve fracture detection 

in X-ray images taken from a variety of body parts. 
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3. MATERIALS AND METHODS 

3.1 Deep Learning Models 

      We use seven different convolutional architectures in total, six of which are well-known 

published architectures that are pre-trained on the ImageNet data set [2] and then fine-tuned on the 

shoulder X-ray image data set. For all pre-trained models, we discard their fully connected layers, 

as they are very likely to be specialized to the ImageNet data set and confer little benefit to our 

task, and we insert one smaller fully-connected layer with random initial weights before re-training 

the model on the X-ray data. 

 

3.1.1 Pre-trained CNN 

The pre-trained models that we use are (in order of publication date): 

• The VGG-16 and VGG-19 networks introduced by [3] have 16 and 19 layers respectively. 

They have become well established for transfer learning tasks. 

• Another (former) state-of-the-art CNN model is the deep residual network proposed by He 

et al. [4], of which we use the ResNet-50 and ResNet-152 variants. The main difference to 

non-residual networks such as VGG-16 is the use of (additive) skip connections. 

• The DenseNet architecture [5] is inspired by residual networks. The main difference to 

ResNets is that each group of convolutional layers operates on the concatenated input from 

all previous groups of layers, by means of skip connections from and to all groups of layers. 

• Motivated by Neural Architecture Search (NAS) framework [25], the dimensions of blocks 

of layers in the NASNet model [6] are optimized using reinforcement learning. 
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3.1.2 Non-pre-trained CNN 

We build and train a custom CNN as a reference for not pre-training on external data. The 

model uses six convolutional layers, three max pooling layers, and one fully connected hidden 

layer. The architecture of this model is shown in Figure 3.1. 

• Conv(f,k): convolution layer with f convolutional filters of size k. 

• Pool(k): max pooling layer with pooling size and stride k. 

• FC(x): fully connected layer with x neurons. 

We use rectified linear units in all layers but the output layer, which uses the Softmax function. 

We tested using batch normalization [26] and dropout [27], [28] as a means of regularization, but 

these did not improve the model performance. 

Figure 3.1. Architecture of the custom CNN model. Convolutional layers are denoted as Conv, max pooling 
layers as Pooling, and fully connected layers as FC. 

 

3.2 Data set 

      The data set consists of 597 de-identified X-ray scans of implanted shoulder prostheses of four 

manufacturers and a total of 16 different models. Some of the images were obtained from the 

shoulder website of the University of Washington [29], and others from individual surgeons and 

manufacturers. All images that appeared to have been taken from the same patient were removed, 
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which was the case for 8 out of an original set of 605 X-ray images. The final 597 samples in the 

data set contain 83 X-rays scans of implants from the manufacturer Cofield, 294 from Depuy, 71 

from Tornier, and 149 are scans of implants made by Zimmer. Figure 3.2 shows representative 

samples from the data set. 

 

 

 

 

 

 

Figure 3.2. Examples of the data set: shoulder implants from three manufacturers. Left to right: Cofield, 
Depuy, Zimmer 

 

      One of several challenges imposed by the data set is the variable and relatively low image 

resolution – the longest dimension of most of the images does not exceed 250 pixels and aspect 

ratios of the images differ. Other challenges are the variable and sometimes very low image 

contrast and class imbalance – a naive model predicting the most frequent manufacturer for all 

images would have an accuracy of 49.2%. The class imbalance problem would be far more severe 

if attempting to classify by model. 

3.3 Pre-processing 

      In order to address the variable resolution of the images, we insert black borders such that all 

images are equally-sized squares – an alternative would be to rescale and interpolate images to a 

fixed size but this would introduce image distortion. We experimented with normalizing and 
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enhancing the contrast of all images via histogram normalization. While it visually improved 

image quality, we found no improvement in model accuracy. We therefore opt for the simple and 

standard approach of normalizing images by subtracting their mean and dividing by their standard 

deviation. 

3.4 Training and evaluation 

      We use data augmentation for training all models, including non-deep learning algorithms. 

Data augmentation is a common technique to improve the generalization of trained models [30], 

[31], essentially by increasing the effective amount of available labeled data. We apply random 

shifting, zooming, rotations, and random flipping of images. We use hyper-parameter optimization 

to find ideal parameters for the aforementioned operations: minimum and maximum number of 

pixels shifted and zoomed, and range of rotation angles. We use either Stochastic Gradient Descent 

(SGD) [32] or Adam [33] to train the CNN models, whichever works best for a given model, along 

with exponential decay of the learning rate during training. 

      We perform hyper parameter optimization for every model using a fixed training/validation 

data split. We optimize the initial learning rate, rate of learning rate reduction, number of units in 

the final hidden layer, batch size for training, optimization algorithm (either Stochastic Gradient 

Descent (SGD) or Adam), and three parameters controlling the data augmentation: maximum 

range of random image rotations, range of image pixel shifts, and maximum amount of image 

stretching/zooming. To produce the results presented in Section 4 we take the best hyper-

parameters found for any given model and train and evaluate it using stratified 10-fold cross 

validation, i.e. for each train/validation split of the data, we use the same ratio of images per 

manufacturer as is present in the entire data set. We similarly optimize the hyperparameters of 

non-deep-learning-based algorithms. 
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      We also experiment with augmenting test images of each split 20 times and average the model 

predictions across these augmentations to hopefully increase model accuracy. The approach of 

augmenting images at test-time is used in some ImageNet models, see e.g. [3], [34]. We re-use the 

data augmentation hyperparameters settings that were optimal for training. 

      Since the problem of classification of shoulder implants has not been studied before, we train 

several non-deep learning models as baseline, using Scikit-learn [35]. We use: (1) a Random Forest 

classifier with the Entropy split criterion using 500 trees in the forest; (2) multinomial Logistic 

Regression with L2 regularization optimized using SAGA; (3) Gradient Boosting with a learning 

rate of 0.15 and 15 estimators; and (4) a K-Nearest Neighbors classifier that uses the Euclidean 

distance metric with the value of K set to 35. 

 

4. RESULTS 

Table 4.1, Table 4.2, Table 4.3 present results obtained for different classifiers via 10-fold 

cross-validation as described in Section 3.4. Table 4.3 illustrates the performance of the CNN 

models with no pre-training on the ImageNet data set [2]. Figure 4.1 and Figure 4.2 show the 

multi-class generalization of ROC (Receiver Operating Characteristic) plots for the best CNN and 

non-CNN model. Since ROC and AUC are defined only for binary classification problems, we 

follow [36] to compute the ROC/AUC one-versus-rest entities for every class and combine the 

different values into a single AUC value via micro-averaging, as this accounts for class-imbalance. 
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Table 4.1. Performance measures for non-deep learning classifiers. Shown are averages across 10-fold 
cross-validation, and standard deviation of the mean in parentheses. All methods were trained using data 
augmentation. 

Classifier Accuracy [%] Precision Recall F1-Score AUC 

Random Forest 56 (1.) 0.62 (.03) 0.36 (.02) 0.51 (.03) 0.78 (.01) 
Logistic Regression 53 (1.) 0.44 (.05) 0.31 (.01) 0.41 (.03) 0.73 (.01) 
Gradient Boosting 55 (1.) 0.58 (.04) 0.34 (.01) 0.48(.02) 0.75 (.01) 
KNN 52 (1.) 0.49 (.04) 0.31 (.01) 0.43 (.02) 0.73 (.01) 

 

Table 4.2. Performance measures for convolutional neural networks with pre-training on ImageNet. All 
models are trained with data augmentation, but we evaluated them both with and without test-time data 
augmentation. Shown are averages across 10-fold cross-validation and standard deviation of the mean in 
parentheses. 

Classifier Accuracy [%] Precision Recall F1-Score AUC 

  No Test Data Augmentation   
VGG-16 74.0 (2.3) 0.72 (.03) 0.68 (.02) 0.69 (.03) 0.93 (.01) 
VGG-19 76.2 (1.6) 0.75 (.03) 0.69 (.03) 0.70 (.03) 0.93 (.01) 
ResNet-50 75.4 (1.5) 0.75 (.02) 0.70 (.02) 0.71 (.02) 0.93 (.01) 
ResNet-152 75.6 (2.0) 0.73 (.03) 0.69 (.02) 0.70 (.03) 0.92 (.01) 
NASNet 80.4 (.8) 0.80 (.01) 0.75 (.02) 0.76 (.02) 0.94 (.00) 
DenseNet-201 79.6 (.9) 0.79 (.01) 0.74 (.02) 0.74 (.01) 0.94 (.01) 
  With Test Data Augmentation   
VGG-16 75.2 (1.7) 0.74 (.02) 0.67 (.03) 0.68 (.03) 0.93 (.01) 
VGG-19 76.2 (1.9) 0.75 (.03) 0.68 (.02) 0.69 (.03) 0.93 (.01) 
ResNet-50 75.2 (1.8) 0.77 (.02) 0.67 (.03) 0.70 (.02) 0.92 (.01) 
ResNet-152 74.5 (1.4) 0.71 (.03) 0.69 (.03) 0.69 (.03) 0.91 (.00) 
NASNet 78.8 (1.8) 0.78 (.02) 0.73 (.03) 0.73 (.03) 0.93 (.01) 
DenseNet-201 78.9 (2.0) 0.79 (.03) 0.74 (.03) 0.76 (.03) 0.93 (.01) 

 

Table 4.3. Performance measures for convolutional neural networks without pre-training. Shown are 
averages across 10-fold cross-validation and standard deviation of the mean in parentheses. 

Classifier Accuracy [%] Precision Recall F1-Score AUC 

VGG-16 55.6 (1.7) 0.46 (.02) 0.42 (.02) 0.42 (.02) 0.78 (.01) 
VGG-19 57.0 (1.6) 0.50 (.03) 0.43 (.02) 0.43 (.02) 0.78 (.01) 
ResNet-50 53.8 (1.7) 0.39 (.06) 0.34 (.03) 0.31 (.04) 0.74 (.02) 
ResNet-152 53.4 (1.2) 0.38 (.03) 0.36 (.02) 0.34 (.02) 0.77 (.01) 
NASNet 51.8 (1.5) 0.22 (.04) 0.29 (.02) 0.23 (.03) 0.71 (.02) 
DenseNet-201 54.0 (1.3) 0.46 (.02) 0.40 (.02) 0.39 (.02) 0.79 (.01) 
Custom CNN 56.0 (1.4) 0.42 (.02) 0.42 (.02) 0.41 (.02) 0.78 (.01) 
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Figure 4.1. Receiver Operating Characteristic (ROC) curve for the Random Forest. 

 

 
Figure 4.2 Receiver Operating Characteristic (ROC) curve for NASNet. 
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Random Forests are the best performing non-deep-learning classifier and reach an accuracy of 

56% (see Table 4.1) when using data augmentation during training, which is slightly better than 

the chance level of 49.2% for guessing the majority class. The custom convolutional neural 

network without pre-training on external data (Table 4.3, bottom) reaches the same accuracy. On 

the other hand, all models that were pre-trained on the ImageNet data set perform significantly 

better, with accuracy values ranging from 74% to 80% (see Table 4.2). This difference is 

statistically significant for all models, even at a very strict p-value of 0.001 of the two-tailed student 

t-test. For this test and p-value and with 18 degrees of freedom the critical value is 3.922. For 

example for the NASNet model we have t=(80.4−51.8)/2=14.3 which fulfills the t>3.922 criterion 

by a wide margin. 

While it is not surprising that pre-trained models would perform better, the difference is 

considerable. All non-pretrained models seem to overfit a lot on this data, which is especially true 

for the ImageNet models when trained starting from scratch (Table 4.3), as all these models have 

many parameters. We suspect that some of the factors that make classification hard are: (1) a large 

intra-class variability, as manufacturer offers multiple models; (2) a low inter-class variability, as 

all implants look roughly alike and no trivial features (such as color or context) exist that would 

help in distinguishing them; (3) the high variability in image size, quality, and device used to 

generate it; and (4) class and sub-class imbalance in the data, i.e. the number of images per 

manufacturer as well as per model differ. 

As can be seen in Table 4.2 all pre-trained models reach relatively comparable levels of 

performance, and they are all significantly better in all metrics compared to models without pre-

training (see Table 4.3). On the other hand, using test-time data augmentation with model 

prediction averaging seems to not have any significant impact on model performance – in some 
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metrics it performs slightly better, in others worse. A possible reason is that the hyperparameters 

were set to values that are too extreme – we re-used the optimal settings from the training phase 

as we didn’t want to further optimize them and risk over-fitting on the small data set. 

Furthermore, we test how well the features learned by pre-trained CNNs on ImageNet transfer 

to the implant classification task when not fine-tuned on the X-ray data. For this, we run the pre-

trained VGG-16 and −19 models on the X-ray data set and collect the activations of their final 

pooling layers, thus omitting the hidden layers that are more ImageNet data specific. We repeat 

this step ten times on differently augmented version of the images as a means of data augmentation. 

Subsequently, we train a multilayer perceptron (MLP) classifier on these features using the same 

10-fold cross validation procedure as done in all other experiments, making sure to keep all 

features belonging to the same image in either only the train or test splits and not mix them. The 

results, shown in Table 4.4, are significantly better than all non-pretrained models in Table 4.1 and 

Table 4.3, showing that the features learned on external data are extremely helpful even though 

those were not medical images. However, it is also clear that when comparing Table 4.2 to Table 

4.4, fine-tuning the entire CNN is better than just fine-tuning the top hidden layers. 

 

Table 4.4. Performance of MLP classifiers trained on features extracted from pre-trained ImageNet CNNs. 
Shown are averages across 10-fold cross-validation, and standard deviation of the mean in parentheses. 
Trained using data augmentation. 

Classifier Accuracy [%] Precision Recall F1-Score AUC 

VGG-16 72.3 (1.) 0.77 (.01) 0.61 (.02) 0.65 (.02) 0.90 (.01) 
VGG-19 72.2 (2.) 0.78 (.02) 0.64 (.03) 0.67 (.03) 0.91 (.01) 
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In a final experiment, we assess the effect of using data augmentation during training (see 

Table 4.5). As anticipated, training with data augmentation has a large positive effect on model 

performance: the best CNN in terms of accuracy (NASNet) is able to reach an accuracy of 80.4% 

when trained with data augmentation, but merely 64.5% when trained without data augmentation. 

A similar drop in performance is observable in all metrics recorded. 

Table 4.5. Performance measures for convolutional neural networks without using any data 
augmentation. Shown are averages across 10-fold cross-validation and standard deviation of the mean in 
parentheses. 

Classifier Accuracy [%] Precision Recall F1-Score AUC 

VGG-16 58.7 (2.5) 0.54 (.03) 0.45 (.03) 0.45 (.04) 0.81 (.02) 
VGG-19 63.6 (1.6) 0.61 (.02) 0.53 (.03) 0.54 (.03) 0.84 (.01) 
ResNet-50 59.6 (2.2) 0.56 (.02) 0.49 (.02) 0.49 (.02) 0.83 (.01) 
ResNet-152 59.5 (1.2) 0.54 (.03) 0.47 (.02) 0.48 (.02) 0.83 (.01) 
NASNet 64.5 (3.4) 0.62 (.05) 0.52 (.04) 0.54 (.04) 0.85 (.02) 
DenseNet-201 65.9 (2.4) 0.65 (.03) 0.55 (.03) 0.57 (.03) 0.86 (.02) 
Custom CNN 50.8 (2.4) 0.39 (.04) 0.32 (.01) 0.30 (.02) 0.73 (.01) 
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5. DISCUSSION 

Certain elements deserve additional consideration, that become relevant when extending or 

deploying the presented work. 

• Class imbalance: If we assumed that the current data set’s implant manufacturer ratio was 

representative of the true prevalence of implants in a typical patient, then training on the 

entire data set and using the resulting model “as-is” would be optimal, as the model’s bias 

would match the actual prevalence. But if the true prevalence was different, one would 

have to either dynamically over- or under-sample certain manufacturer models during 

training, or re-balance the model output confidence. It should be noted that dealing with 

imbalanced data is still an open problem [37], so there is no solution that is guaranteed to 

be optimal. 

• It is also worthwhile to consider the case that a test image could come from a manufacturer 

not contained in the training set. One way to address this is to assess the model output 

confidence scores for the different classes and check if their distribution fulfills certain 

criteria. Alternative methods have been proposed in recent work such as [38], which 

promises to do better than simply using the existing model outputs. 

• A natural way to extend this work could be to classify shoulder implants by both 

manufacturer and model, and to include additional manufacturers. In either case this 

requires gathering more data to train models with acceptable accuracy. 
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6. CONCLUSIONS 

We evaluate the use of deep learning for classifying shoulder implants in X-ray images by 

manufacturer and compare it with a baseline of other classifiers. Out of seven deep learning 

architectures tested, we find that all well-known ImageNet models perform well, with NASNet 

[25] taking the lead with an accuracy of 80.4%. We find that pre-training the CNNs on a different 

large computer vision data set such as ImageNet [2] is crucial to obtain good results, and that fine-

tuning the entire CNN model on the task-specific X-ray data set is better than only fine-tuning the 

top hidden layers. We compare the performance of the neural networks with other classifiers, 

including Gradient Boosting, Random Forests, Logistic Regression, and K-nearest Neighbors. 

Ultimately, we find that pre-trained and then fine-tuned CNNs outperform all other classifiers and 

all non-pre-trained CNNs by a significant margin, with accuracies of pre-trained CNNs reaching 

a range of 74% to 80% compared to accuracies of merely 51% to 56% for all classifiers without 

pre-training (including CNNs and non-deep learning algorithms). We also examined the 

effectiveness of data augmentation, and found it to be crucial, as training even pre-trained CNNs 

without data augmentation on the X-ray data set leads to accuracies of only 59% to 66%, 

constituting a significant drop by approximately 14 percentage points across all models. 
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