
UC Berkeley
UC Berkeley Previously Published Works

Title
Tools for loading MEDLINE into a local relational database

Permalink
https://escholarship.org/uc/item/5d61r1zb

Journal
BMC Bioinformatics, 5(1)

ISSN
1471-2105

Authors
Oliver, Diane E
Bhalotia, Gaurav
Schwartz, Ariel S
et al.

Publication Date
2004

DOI
10.1186/1471-2105-5-146
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5d61r1zb
https://escholarship.org/uc/item/5d61r1zb#author
https://escholarship.org
http://www.cdlib.org/


BioMed CentralBMC Bioinformatics

ss
Open AcceSoftware
Tools for loading MEDLINE into a local relational database
Diane E Oliver1, Gaurav Bhalotia2, Ariel S Schwartz*2, Russ B Altman1 and 
Marti A Hearst3

Address: 1Department of Genetics, Stanford University, Stanford, CA, USA, 2Computer Science Division, University of California, Berkeley, CA, 
USA and 3School of Information Management & Systems, University of California, Berkeley, CA, USA

Email: Diane E Oliver - oliver@SMI.Stanford.EDU; Gaurav Bhalotia - bhalotia@sims.berkeley.edu; Ariel S Schwartz* - sariel@cs.berkeley.edu; 
Russ B Altman - russ.altman@stanford.edu; Marti A Hearst - hearst@sims.berkeley.edu

* Corresponding author    

Abstract
Background: Researchers who use MEDLINE for text mining, information extraction, or natural
language processing may benefit from having a copy of MEDLINE that they can manage locally. The
National Library of Medicine (NLM) distributes MEDLINE in eXtensible Markup Language (XML)-
formatted text files, but it is difficult to query MEDLINE in that format. We have developed
software tools to parse the MEDLINE data files and load their contents into a relational database.
Although the task is conceptually straightforward, the size and scope of MEDLINE make the task
nontrivial. Given the increasing importance of text analysis in biology and medicine, we believe a
local installation of MEDLINE will provide helpful computing infrastructure for researchers.

Results: We developed three software packages that parse and load MEDLINE, and ran each
package to install separate instances of the MEDLINE database. For each installation, we collected
data on loading time and disk-space utilization to provide examples of the process in different
settings. Settings differed in terms of commercial database-management system (IBM DB2 or
Oracle 9i), processor (Intel or Sun), programming language of installation software (Java or Perl),
and methods employed in different versions of the software. The loading times for the three
installations were 76 hours, 196 hours, and 132 hours, and disk-space utilization was 46.3 GB, 37.7
GB, and 31.6 GB, respectively. Loading times varied due to a variety of differences among the
systems. Loading time also depended on whether data were written to intermediate files or not,
and on whether input files were processed in sequence or in parallel. Disk-space utilization
depended on the number of MEDLINE files processed, amount of indexing, and whether abstracts
were stored as character large objects or truncated.

Conclusions: Relational database (RDBMS) technology supports indexing and querying of very
large datasets, and can accommodate a locally stored version of MEDLINE. RDBMS systems
support a wide range of queries and facilitate certain tasks that are not directly supported by the
application programming interface to PubMed. Because there is variation in hardware, software,
and network infrastructures across sites, we cannot predict the exact time required for a user to
load MEDLINE, but our results suggest that performance of the software is reasonable. Our
database schemas and conversion software are publicly available at http://biotext.berkeley.edu.
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Background
MEDLINE is a large biomedical bibliographic database
that is well known to users around the globe. It contains
over 12 million citations from over 4,600 journals.
MEDLINE is a rich source of biomedical text that lends
itself well to research on text mining, information extrac-
tion, and natural language processing in biomedical
domains. The usual way in which users query MEDLINE
is through PubMed, the web-based interface and search
engine provided by the National Library of Medicine
(NLM) [1]. PubMed allows individuals to conduct
searches directly by entering search terms on web pages
and viewing results, and supports software-based queries
across the Internet with programming utilities offered by
the NLM [2]. Because we were interested in developing
custom-made programs that query MEDLINE, the pro-
gramming utilities offered by the NLM were an obvious
choice to consider. However, due to risks of server over-
load, the NLM places limits on the number of queries that
a user can send in a given time interval, and requests that
large-volume queries be done on nights or weekends [3].
By contrast, a local version of MEDLINE gives software
developers greater control over how they use the data, and
facilitates the development of customizable interfaces. In
this report, we describe the design and implementation of
the database schema and database loading tools we have
built to enable others to produce similar systems at their
sites.

The entire content of MEDLINE is available as a set of text
files formatted in XML (eXtensible Markup Language) [4].
The NLM distributes these files at no cost to the licensee,
but the files are large and not easily searched without
additional indexing and search tools. For example, in the
2003 release of MEDLINE, there are 396 files (which cover
citations through 2002), and the total uncompressed size
of these files is 40.8 gigabytes (GB). Although it is rela-
tively inexpensive to store 40.8 GB of data, it is not easy to
manipulate data of that magnitude without good software
support. Relational databases are a natural choice for stor-
ing MEDLINE because they are able to handle large
amounts of data, offer built-in approaches to query opti-
mization, and enable the developer to create indexes.
Additionally, the standard query language for relational
databases, SQL (Structured Query Language), enjoys
widespread familiarity and can be integrated with text-
database queries in some commercial systems.

Alternatives to relational databases are XML-based data-
bases, which have recently emerged as another option for
storing information transmitted in XML format.XML data-
bases may exist as standalone databases or as add-ons to
relational systems. The MEDLINE data set would be an
excellent test of the capabilities of these databases because
of its size and complexity. We focused on relational data-

bases because they are currently more ubiquitous and
standardized, and interested users are more likely to be
comfortable with relational database technology.

In the remainder of this report, we describe the software
tools we developed for converting MEDLINE in XML files
to MEDLINE in a relational database, and provide a few
sample queries that demonstrate the flexibility of the
resulting system.

Implementation
Database schema
The NLM provides a DTD (Document Type Definition)
that defines the structure of data in the MEDLINE XML
files [5-7]. From this DTD, we designed a relational data-
base schema. Although developers of MEDLINE at the
NLM maintain their own version of MEDLINE in a rela-
tional database, the schema they use is not directly appli-
cable to our purposes, because their implementation
contains tables and data that are used for maintenance
and that are not relevant to external users. Thus, it was
appropriate for us to design our own schema based on the
specific content of the XML files, as defined by the DTD.
Other groups currently license the same MEDLINE XML
files and may have implemented all of MEDLINE in a rela-
tional database, but if so, their database schemas are not
well publicized and were not available.

There are multiple ways in which one can design a schema
from the same DTD, because DTD elements and attributes
can be mapped to tables and fields in different ways. Cer-
tain design decisions may favor speed at loading time, and
others may favor speed and ease of use at query time.
Loading records associated with 12 million citations into
a database is very time consuming, and the time can be
minimized if lookups to the database are minimized dur-
ing loading. In general, we aimed to minimize lookups
even if that meant repeating information in the database.
As developers often do in the design of data warehouses,
we chose to de-normalize the schema in order to improve
read-only query performance, which is the typical data
access pattern in our workload.

The typical table contains a PubMed identifier (PMID) in
one column, and data related to that PMID in the remain-
ing columns. Figures 1 and 2 show original representation
of content from a portion of the DTD and a corresponding
table that follows the typical table structure.

Our development team included a group of researchers
from the University of California at Berkeley and another
group from Stanford University. We shared similar goals
in that we all wanted to load MEDLINE into a relational
database, but because we were in two different depart-
ments at two different institutions, we had different
Page 2 of 12
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project constraints and timelines. Thus, our groups were
loosely associated in the software development process,
but not closely integrated, and therefore, the original
schema that we shared diverged.

The result was three MEDLINE schemas and three soft-
ware variants: One schema was used with Java code devel-
oped at Berkeley, another schema was used with
Berkeley's code modified to run at Stanford, and the third
schema was used with Perl code developed at Stanford.
Here we describe the underlying design that influenced all
three of the schemas. (The schema used for the Java pro-
gram did not include information from DTD elements
DataBankList and AccessionNumberList. This has been
corrected in the most recent version of the software avail-
able on the Berkeley website.)

The main table in the schema is medline_citation. The
medline_citation table contains the PMID as the primary
key and has additional columns that correspond to single-
valued elements in the DTD, where the values of those ele-

ments depend on the PMID. The medline_abstract table is
similar in that it has a PMID as the primary key and col-
umns of data that depend on the PMID. Since document
abstracts are larger than the other data types, we placed
them in a separate table. However, since abstracts are
stored as CLOBs (Character Large Objects), they are not
stored in the same pages as the rest of the fields in the
medline_abstract table. Therefore, in a more recent imple-
mentation, we removed the medline_abstract table from
the schema, and added the abstract_text field as a CLOB in
the medline_citation table. This change reduces the number
of tables by one, and eliminates the need for a join
between the medline_citation and medline_abstract tables.

Some tables in the schema have more than one row corre-
sponding to the same PMID. Columns in these tables map
to multi-valued elements in the DTD. Examples are the
table medline_keyword_list, which stores multiple values of
keyword for a given PMID, and medline_gene_symbol_list,
which stores multiple values of gene_symbol for a given
PMID.

Representation of information related to authors in the DTDFigure 1
Representation of information related to authors in the DTD. Selected portions of the DTD are shown. Database 
schema designers determine how entities and elements are converted to table names or field names in the database schema. 
See Figure 2 for the author table.

<!ENTITY % PMID.Ref "PMID"> 

<!ELEMENT MEDLINECitation (%MEDLINEID.Ref;, %PMID.Ref;, %DateCreated.Ref;, DateCompleted?, 

DateRevised?, Article, MEDLINEJournalInfo, ChemicalList?, CitationSubset*, 

CommentsCorrections?, GeneSymbolList?, MeshHeadingList?, NumberOfReferences?, 

PersonalNameSubjectList?, OtherID*, OtherAbstract*, KeywordList*, SpaceFlightMission*, 

InvestigatorList?, GeneralNote*)> 

<!ELEMENT Article ((Journal | Book), %ArticleTitle.Ref;, Pagination, Abstract?, 

Affiliation?, AuthorList?, Language+, DataBankList?, GrantList?, PublicationTypeList, 

VernacularTitle?, ElectronicPubDate?)> 

<!ELEMENT AuthorList (Author+)> 

<!ELEMENT Author ((%author.name;), Affiliation?)> 

<!-- Personal and Author names --> 

<!ENTITY % personal.name 

"(LastName,(ForeName|(FirstName,MiddleName?))?,Initials?,Suffix?)"> 

<!ENTITY % author.name "(%personal.name; | CollectiveName)"> 

<!ELEMENT FirstName (#PCDATA)> 

<!ELEMENT ForeName (#PCDATA)> 

<!ELEMENT MiddleName (#PCDATA)> 

<!ELEMENT LastName (#PCDATA)> 

<!ELEMENT Initials (#PCDATA)> 

<!ELEMENT Suffix (#PCDATA)> 

<!ELEMENT CollectiveName (#PCDATA)> 
Page 3 of 12
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The element Article in the DTD has a one-to-one relation-
ship between an article and a PubMed identifier. Rather
than giving Article its own table, we put single-valued data
from Article into the table medline_citation.

To keep track of the name of the file from which data are
read for a given citation, we added the field xml_file_name
to the medline_citation table. This field does not corre-
spond to any element in the DTD structure, but allows the
database administrator to go back to the original XML file
if necessary to find the original source of the data.

We could have stored each author only once in a table of
its own, and assigned each author a unique integer pri-
mary key to serve as an author identifier. An author is rep-
resented by a combination of values in fields for last
name, forename, first name, middle name, initials, suffix,
affiliation, and collective name. Another table would have
stored the set of author identifiers associated with each
PMID, and because integer joins are fast, this design
would have facilitated rapid search for all PMIDs associ-
ated with a given author, by joining the author table with
the table of author identifiers and citations. However,
there are several drawbacks to this approach. Generating
integer primary keys during loading requires that either a

lookup be done to see if each author of each citation
already exists or not (35 million lookups), or all authors
and primary keys must be kept in memory. The former
approach is very time consuming during loading; the lat-
ter approach strains memory resources. In addition,
regardless of how primary keys are managed during load-
ing, it is not possible to determine algorithmically if two
different representations of one author are actually the
same author, or if one representation is actually two dif-
ferent authors. We therefore avoided generating unique
primary keys and repeated all eight fields representing the
author for every citation occurrence of that author.

Figure 3 shows relationships among the tables. The table
medline_journal is a parent of thirteen other tables (it con-
tains the primary key pmid, which is used as a foreign key
by the other tables). One of the other tables,
medline_mesh_heading, is a parent of
medline_mesh_heading_qualifier. Multiple qualifiers can be
associated with each MeSH heading for a given citation.

Parsing and loading software
We implemented three versions of software that parses
and loads MEDLINE. The first was Java MedlineParser,
which was developed at Berkeley [see additional file 1].

Representation of author information in the database schemaFigure 2
Representation of author information in the database schema. The typical table has a PubMed identifier (pmid) asso-
ciated with other fields.

CREATE TABLE medline_author ( 

        pmid                            INTEGER(20)NOT NULL, 

    last_name                       VARCHAR(500), 

        fore_name                       VARCHAR(50), 

        first_name                      VARCHAR(50), 

        middle_name                     VARCHAR(50), 

        initials                        VARCHAR(10),    

        suffix                          VARCHAR(10), 

        affiliation                     VARCHAR(500), 

        collective_name                 VARCHAR(500), 

        CONSTRAINT pk_med_author 

                PRIMARY KEY (pmid), 

        CONSTRAINT fk_med_author 

                FOREIGN KEY (pmid) REFERENCES 

medline_citation  

); 
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The second was the same Java code, modified to run at
Stanford. The third was Perl ParseMedline, which was
developed at Stanford.

All versions of the software perform two basic tasks: (1)
they parse the XML files to collect data, and (2) they load
the data into the database. Figure 4 shows the steps
involved. Data can be loaded as they are collected, or can
be written out to disk initially, and loaded later. All three

versions offer these two options to the user. Document
parsing is processor intensive, data insertion is disk inten-
sive, and if needed, the two tasks can be executed at differ-
ent times to accommodate other demands on the server.

There are two types of application programming inter-
faces (APIs) for parsing XML files – the tree-based DOM
(Document Object Model) and the event-based SAX
(Simple API to XML) [8]. We chose the latter. A DOM

Dependencies in the database schemaFigure 3
Dependencies in the database schema. Parent tables contain primary keys that child tables reference as foreign keys. The 
main table medline_citation, is a parent of thirteen other tables. The table medline_mesh_heading is a parent of 
medline_mesh_heading_qualifier.
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parser organizes data from the XML file into a tree of
nodes, and requires that the entire document be read in
and stored in memory prior to writing out any data. Thus,
the DOM parser is impractical for large documents whose
data do not fit in memory. The SAX parser, however,
receives data through a stream, and recognizes the begin-
ning or end of a document, element, or attribute in an
event-driven manner. It writes out data as it proceeds
through the parsing process, and there is no need for the
entire document to fit into memory. In XML MEDLINE,
one document is a single XML-formatted MEDLINE file,
and in the 2003 release, the majority of files range in size
from 60 to 142 megabytes (MB). Using the DOM parser
would put great demand on resources. In addition, the
SAX parser is faster because it does not need to create an

entire XML tree structure, map that structure to the pro-
gram's data structures, and then throw out the original
tree. Instead, it creates its own data structures as events are
handled.

The Java version uses the Java SAX parser to parse the XML
files, and JDBC (Java Database Connectivity) to commu-
nicate with the database. The Perl version uses the Perl
SAX parser, and Perl DBI (Database Interface) to
communicate with the database. We provide additional
detail about the Java implementation here.

The SAX parser requires the developer to write code that
specifies the data model for objects in the domain. The
data model is an object model that represents tables in the

MEDLINE database development processFigure 4
MEDLINE database development process. In Step 1, the user loads the schema, creating empty tables in the database. In 
Step 2, the conversion software parses the XML files and either loads the data directly into the database (2a), or writes the 
data out to intermediate text files (2b). If intermediate text files are generated, data from those files are loaded into the data-
base as a separate step in Step 3.
Page 6 of 12
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schema. The SAX parser also requires code that listens for
SAX events and that maps elements – or nodes in the XML
tree – to the object model. We created two main classes
upon which our code is based: GenericXMLParser and
NodeHandler. GenericXMLParser is responsible for gener-
ating events when nodes that correspond to objects in the
object model are encountered in the document, and
NodeHandler provides the event listener. Together, these
two classes form a generic approach to reading in XML
data and writing out those data to tables; they are inde-
pendent of the DTD or table structure.

As the parser processes the document, it decides how to
handle the semantics of data at each node and determines
whether to store parsed data at that node or to delegate the
event to a child handler. For each node that corresponds
to a table, there is a handler class that extends
NodeHandler. A handler defines metadata for the node,
and encodes any non-standard behavior at that node. An
example of metadata is shown in Table 1. Metadata
include column names for the table and an XML element
associated with each column name. An XML element is
represented by a concatenation of the name of the ele-
ment that holds the data value, and elements higher up in
the element stack up to the node that corresponds to the
object, or table. This concatenated name gives a unique
representation of the element that holds the data. Finally,
the data type is given for each column. The column names
and data types match those specified in the database
schema.

Since NodeHandler and GenericXMLParser are generic,
they can be used to write similar parsers for other XML
documents. We have, for example, used these classes to
write a parser for MeSH (Medical Subject Headings) XML
files, which are also distributed by the NLM. The MeSH

files are small compared to MEDLINE. MeSH 2003 comes
in three XML files that total less than 600 MB.

An optional feature is validation. XML files provided by
the NLM are validly formatted, but we provide additional
checks to ensure that all element tags in the XML data file
have been handled by the parser and that all data have
been inserted into the database. A developer who is
extending the software to cover new tables can use this
feature to ensure that metadata definitions are correct in
classes that extend NodeHandler.

Choice of Relational Database Management Systems
In the course of our work, we applied the software tools
we were developing to three different relational database
products. Our Berkeley team initially experimented with
PostgreSQL, since PostgreSQL is an open-source
relational database and is freely available and modifiable.
For the final implementation, however, we chose IBM's
DB2 8.1 over PostgreSQL because we found that it could
load our data more efficiently and because DB2 has a text-
search extender. Our Stanford team used Oracle 9i, which
like DB2, offers word-based indexing of text fields. Word-
based indexing is essential to support keyword search of
MEDLINE titles and abstracts.

Hardware configurations
At Berkeley, we used a Pentium IV Intel Xeon 2.00-GHz
dual-processor system, with 1 GB of random access mem-
ory (RAM). It had an Integrated Drive Electronics (IDE)
hard disk with a rotational speed of 7200 revolutions per
minute (RPM). At Stanford, we used a Sun Fire V880
server configured with four 750-MHz processors, 8 GB of
RAM, and storage-area-network (SAN) storage for the
relational database. We also used a Sun Enterprise 3500
server with eight 400-MHz processors and 4 GB of RAM

Table 1: Metadata for medline_author table.

columnNameDef xmlElementNameDef columnTypeDef

pmid PMID Types.INTEGER
last_name Author.LastName Types.VARCHAR
fore_name Author.ForeName Types.VARCHAR
first_name Author.FirstName Types.VARCHAR
middle_name Author.MiddleName Types.VARCHAR
initials Author.Initials Types.VARCHAR
suffix Author.Suffix Types.VARCHAR
affiliation Author.Affiliation Types.VARCHAR
collective_name Author.CollectiveName Types.VARCHAR

columnNameDef: column names for the table,
xmlElementNameDef: XML element names that correspond to column names,
columnTypeDef: data type of each column
Page 7 of 12
(page number not for citation purposes)



BMC Bioinformatics 2004, 5:146 http://www.biomedcentral.com/1471-2105/5/146
for reading input files and writing intermediate output
files in the Perl version.

Results and discussion
In this section, we describe loading time and disk-space
utilization for the three implementations, followed by
examples of queries, emphasizing differences between our
system and PubMed.

The first implementation used the Java software, run on
an Intel system (Linux), using IBM's DB2 database man-
agement system. The second implementation also used
the Java software, run on a Sun server (SunOS), using Ora-
cle's 9i database-management system. The third imple-
mentation used the Perl program, run on networked Sun
servers, also using Oracle 9i. Table 2 summarizes our
results.

Loading time and disk space utilization
It took 76 hours (3 days and 4 hours) for the Berkeley
group to run Java MedlineParser to load MEDLINE, and
196 hours (8 days and 4 hours) for the Stanford group to
do so in Oracle. There were numerous differences between
the two systems, and it was not possible to test each vari-
able independently. Therefore, we present our data as a
range of possibilities, and recognize that other users will
have systems that are not the same as either of ours. We
believe that differences in processor speed, memory, disk
read-write efficiency, and optimization methods
employed in commercial database-management systems
may have affected loading times. In addition, the code
diverged slightly after the initial transfer of code from Ber-
keley to Stanford, with the main difference being that the
Berkeley version used CLOBs for abstracts, whereas the
Stanford version used text fields truncated to 4000 charac-
ters (size limit imposed on VARCHAR datatype). The
Stanford run was also slower because a log file was
generated, whereas this feature was turned off in the Ber-
keley run.

The space requirement for the DB2 instance of MEDLINE
at Berkeley was 46.3 GB, of which 10.4 GB are consumed
by the abstract text CLOBs, 18.1 GB by the other tables,
and 17.8 GB by indexes. The space requirement for the
Oracle instance of MEDLINE at Stanford was 37.7 GB. The

difference in size is primarily due to differences in the
number of records that were loaded. The Berkeley group
loaded data from XML files that included all of 2002
(early 2003 release) but also included additional files
through April 2003. The Stanford group loaded data from
2002 XML files only. Berkeley parsed and loaded 500
input files (44.4 GB); Stanford parsed and loaded 396
input files (40.8 GB).

The Stanford group used Perl ParseMedline to load an
additional instance of MEDLINE. Parsing and loading of
this instance of the database took place in a two-stage
process. In the first stage, Perl ParseMedline parsed the
XML files and wrote the data to disk in comma-separated-
value files. To reduce processing time, the 396 XML input
files were divided into 8 sets of about 50 files each, and
sets were processed in parallel. The maximum time
required for processing one set was 31 hours (1 day and 7
hours). The output comma-separated-value files required
25.6 GB of disk space. In the second stage, the Stanford
team loaded data from the comma-separated-value files
into the Oracle database using SQL*Loader, a data load-
ing tool provided by Oracle. This stage took 33 hours (1
day and 9 hours) and used 31.6 GB of space in the Oracle
database. This version used less space than the other two
primarily because it had less indexing and fewer key con-
straints. Relaxation of constraints is reasonable because
the data are well curated by the NLM, and we can count
on data in the XML files released by the NLM to be of high
quality.

The total time required to parse and load the files in this
two-stage process is the sum of the time required to parse
the largest file if all files are processed in parallel (first
stage) and the time required to load the resulting comma-
separated-value files into the database (second stage).
Alternatively, if the input files are parsed in series, the time
for the first stage would be the sum of the input-file
processing times. In our case, we overlapped the runs in a
way that was convenient for us, given space and user
constraints, and therefore mixed the parallel and serial
approach. The overall time for our first stage was 99 hours
(4 days and 3 hours); adding this time to the second stage
gave a total time of 132 hours (5 days and 12 hours).
Given the length of time to process each of our eight

Table 2: Loading time and disk-space utilization.

Site Language Processor Database Input Size Loading Time Disk Space

Berkeley Java Intel DB2 44.4 GB (500 files) 76 hours 46.3 GB
Stanford Java Sun Oracle 40.8 GB (396 files) 196 hours 37.7 GB
Stanford Perl Sun Oracle 40.8 GB (396 files) 132 hours 31.6 GB
Page 8 of 12
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batches, we can estimate a lower limit of 64 hours (2 days
and 16 hours), and an upper limit of 253 hours (10 days
and 13 hours), if we had run the files completely in paral-
lel or in series, respectively.

Sample queries
Certain queries that cannot be done easily through the
PubMed application programming interface (API) can be
done in a single SQL query to our relational database. In
this section, we show the results of a several sample que-
ries, run on a version of MEDLINE that contains citations
through April 2003.

Timing data is presented in terms of "cold" caches and
"warm" cache. The cold cache represents the worst case for
timing, assuming the database server has just been
restarted and the buffer pool is empty. The warm cache
represents the best possible performance: running the
same query a second time. A typical timing number
should fall somewhere between the two; hence these
times represent the range of expected times to run the
sample queries.

A very simple query is one that retrieves all PMIDs in
MEDLINE, where pmid is a column in table
medline_citation (Table 3).

Although typical users of PubMed would not be interested
in such a query, we are managing MEDLINE as a complete
database, and need to have access to all PMIDs. Running
this query on the Berkeley implementation took 12 min-
utes and 26 seconds.

Many articles in MEDLINE are assigned terms from MeSH.
Another capability of this system that distinguishes it
from PubMed is the ability to rank order journals accord-
ing to how many articles those journals have published
that have been assigned a particular MeSH term. In the
query shown below (Table 4), the number of publications
indexed with the MeSH term (or descriptor_name) "Leuke-
mia" is shown for each journal (where medline_ta is the
title abbreviation of a journal).

The result of this query is a table consisting of journals
paired with number of publications (Table 5); note that
the query does not normalize for the fact that some jour-
nals have been publishing for more years than others, and
publish more articles than others. This query ran in 4 min-

utes with a cold cache, and in 20 seconds with a warm
cache.

SQL includes the "LIKE" operator which allows for partial
matches. By modifying the query above to change the fifth
line to read "WHERE msh.descriptor_name LIKE 'Leuke-
mia%'," we change the query to match all MeSH terms
that begin with "Leukemia". The query would thus include
terms such as "Leukemia, Subleukemic" and "Leukemia,
Feline." This results in dramatically more results, although
the rank ordering is not all that different (Table 6). This
query ran in 4 minutes with a cold cache, and in 46 sec-
onds with a warm cache.

MeSH terms are organized into a hierarchy, and each
MeSH term has associated with it one or more descriptor

Table 3

SELECT pmid
FROM medline_citation

Table 4

SELECT mc.medline_ta, count(mc.pmid) as num_of_publications
FROM medline_citation mc

JOIN medline_mesh_heading msh ON
mc.pmid = msh.pmid

WHERE msh.descriptor_name = 'Leukemia'
GROUP BY mc.medline_ta
ORDER BY count(mc.pmid) desc
FETCH first 10 rows only;

Table 5

Blood 940
Cancer 619
Rinsho Ketsueki 610
Cancer Res 588
Br J Haematol 524
Bone Marrow Transplant 520
Lancet 515
Leuk Res 476
Leukemia 463
The N Engl J Med 342

Table 6

Blood 6721
Cancer Res 4653
Leukemia 4640
Br J Haematol 3918
Leuk Res 3061
Cancer 2772
Rinsho Ketsueki 2628
Cancer Genet Cytogenet 2192
Bone Marrow Transplant 2123
Lancet 1931
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tree numbers that indicate its place in the hierarchy. The
Berkeley group developed additional code to parse MeSH
XML data files (which can be downloaded from the NLM
website [9]), and added MeSH tree data to the MEDLINE
database. Using the additional functionality provided by
the MeSH hierarchy, we can modify the query above to
rank order journals according to how often they have arti-
cles that have been assigned the MeSH term under a cer-
tain tree number, thus eliminating the sensitivity to
different spellings of related concepts that was shown in
the queries above. In MeSH, a child tree number shares its
leftmost digits with its parent tree number, and differs in
its three rightmost digits Therefore, the SQL "LIKE" oper-
ator can be used to find a MeSH term and its descendants,
as shown in the query below (Table 7). The MeSH tree
number for "Leukemia" is "C04.557.337".

The results of this query are shown in Table 8.

This query ran in 4 minutes with a cold cache, and in 41
seconds with a warm cache.

The DB2 version of the system implementation makes use
of the text index that is incorporated into the RDBMS sys-

tem, using the operator "CONTAINS" which is not part of
standard SQL. The following query asks how many papers
in the last three years of MEDLINE have been published
by authors with affiliations at Berkeley or Stanford (Table
9).

This yields the results in Table 10.

This query ran in 2.5 minutes with a cold cache, and in 7
seconds with a warm cache.

When we ran a similar query to determine the number of
articles published by Berkeley, Stanford, MIT, Yale, and
Harvard, the increase in time to run the query was mini-
mal. This modified query ran in 3 minutes and 35 seconds
with cold cache, and in 15 seconds with warm cache.

Thus, SQL makes it easy to quantify and rank order
results, and does not require a post-processing step as
would be necessary with queries to the PubMed API.
Similarly, results retrieved from previous queries can be
stored directly in the same database, and reused in later
queries by simply joining MEDLINE tables with user-cre-
ated tables. Again, the power of SQL may alleviate the
need for a post-processing step. Instead of writing custom
code to integrate results from the current query to
PubMed with results from previous queries, the user could
use SQL joins to integrate current and previous results.

Although our system offers capabilities that the PubMed
API does not, we point out that PubMed offers function-
ality that is not available in our system. For example, the
"Related Articles" feature found in PubMed is not availa-
ble, and links to full text are not available. Also, PubMed
provides a user interface that is more intuitive than SQL

Table 7

SELECT mc.medline_ta, count(mc.pmid) as num_of_publications
FROM medline_citation mc

JOIN medline_mesh_heading msh ON
mc.pmid = msh.pmid
JOIN mesh_descriptor md ON
md.descriptor_name = msh.descriptor_name
JOIN mesh_desc_tree_number mdtn ON
md.descriptor_ui = mdtn.descriptor_ui

WHERE mdtn.tree_number LIKE 'C04.557.337%'
GROUP BY mc.medline_ta
ORDER BY count(mc.pmid) desc
FETCH first 10 rows only;

Table 8

Blood 7361
Leukemia 5168
Cancer Res 4595
Br J Haematol 4249
Leuk Res 3274
Cancer 2856
Rinsho Ketsueki 2789
Cancer Genet Cytogenet 2362
Leuk Lymph 2226
Bone Marrow Transplant 2183

Table 9

SELECT 'Berkeley' as institution, count(pmid) as num_of_publications
FROM medline_citation
WHERE CONTAINS(article_affiliation,'"Berkeley"') = 1
AND date_created > current date – 3 years
UNION
SELECT 'Stanford' as institution, count(pmid) as num_of_publications
FROM medline_citation
WHERE CONTAINS(article_affiliation,'"Stanford"') = 1
AND date_created > current date – 3 years;

Table 10

Berkeley 2623
Stanford 4226
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for an end user who is not a database expert, and will be
preferred by users who simply want to look up an article.

The value of our system is that it offers greater flexibility
for innovative software developers who want to experi-
ment with novel techniques for searching biomedical text,
and for system developers who want to build systems of
which MEDLINE is a component. If such developers want
to offer their systems to end users (e.g., biologists, clini-
cians, or the lay public), they will need to create more
intuitive user interfaces. With direct access to the
underlying database, developers can create interfaces that
are specifically designed to serve the needs of their partic-
ular users.

Conclusions
In this work, we developed highly customizable Java pars-
ing code and a relational database schema that others may
be interested in using or modifying. We developed soft-
ware that uses the Java programming language and the
SAX parser to parse XML-formatted MEDLINE files and
load the data into a relational database. We loaded one
copy into DB2 and another into Oracle, using our Java
tool.

We also created a similar tool in Perl. The Perl code is less
flexible and not as readily extensible as the object-ori-
ented code of our Java software, but the functionality
offered by the resulting database implementations is very
similar.

Differences in loading time among the three installations
of MEDLINE were due to a multiple factors, including
differences in processors, disk storage devices, memory,
operating systems, database-management systems, meth-
ods implemented in the software, and choices made by
the user. Factors that affected disk-space utilization
included the fact that one group loaded more data than
the other, abstracts were stored as CLOBs at one site and
as truncated text at the other, and indexes differed. Other
groups will have system setups that differ from ours, and
may make their own modifications to the code that affect
their loading times. By presenting data on three examples,
we have demonstrated a range of performance results as a
guide to what other users might expect at their sites.

Future work includes adding functionality to update the
system to new versions of MEDLINE, and to accommo-
date MEDLINE update files. The Stanford group has
begun to use MEDLINE to extract drug-gene relationships
from the literature, and the Berkeley group used the sys-
tem, augmented with data from MeSH and LocusLink, to
compete in the TREC 2003 genomics track competition
[10]. As we continue to use these systems for research pur-
poses, we are likely to identify alternative approaches that

offer enhancements and improvements over the current
design. We encourage others who work in similar areas to
contribute to the open-source effort.

An updated version of our Java code accepts MEDLINE
XML input files released in early 2004 that conform to the
latest DTD (November 2003). The open-source code for
this most current version of MedlineParser is available at
http://biotext.berkeley.edu.

Availability and requirements
Project name: Java MedlineParser

Project web page: http://biotext.berkeley.edu/software

Operating system: Platform independent

Programming language: Java

Other requirements: Java 1.4.1 or higher, JAXP, relational
database, and JDBC driver appropriate for the particular
target database

License: None

Any restrictions on use by non-academics: None

Project name: Perl ParseMEDLINE

Project web page: http://biotext.berkeley.edu/software

Operating system: Platform independent

Programming language: Perl

Other requirements: Perl 5.8 or higher to handle
MEDLINE Unicode data (if writing directly to database),
or earlier version of Perl (if writing to comma-separated-
value files first), Perl modules DBI and
XML::Parser::PerlSAX, relational database, and Perl data-
base driver appropriate for the particular database (e.g.,
DBD::Oracle)

License: None

Any restrictions on use by non-academics: None

Authors' contributions
DO, GB, and AS, developed the MEDLINE database sche-
mas. GB and AS designed and implemented the Java
MedlineParser. GB and AS ran MedlineParser to install
MEDLINE in DB2 at Berkeley. DO ran MedlineParser to
install MEDLINE in Oracle 9i at Stanford. DO developed
Perl ParseMedline and ran it to install the second version
of MEDLINE at Stanford. DO and GB were primary
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