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Professor Bahram Jalali, Chair

Photonic time-stretch, invented at UCLA, has established world’s fastest real-time spectrom-

eters and cameras with applications in biological cell screening, tomography, microfluidics,

velocimetry and vibrometry. Time stretch instruments have led to several scientific break-

throughs including the discoveries of optical rogue waves, relativistic electron bunching in

synchrotrons, and first ever observations of the birth of laser mode-locking and internal

motion of soliton molecules. In time-stretch imaging, the target’s spatial information is

encoded in the spectrum of the ultrafast laser pulses, which is stretched in time and then

detected by a single-pixel detector and digitized by a real-time ADC, and processed by a

CPU or a dedicated FPGA or GPU. Various methods have been proposed to realize time

stretch, including single mode fibers, dispersion compensating fibers, chirped Bragg grating,

and chromo-modal dispersion. However, none of those methods provide chirp with a large

time-bandwidth product, which limits the time/depth range the pulse can measure.

In this study, we demonstrate a discrete time-stretch method that can generate the giant

time-bandwidth product with arbitrary nonlinear chirp for operating wavelength from the

visible to the infrared. We show its application in warped-stretch (foveated) imaging and a

time-of-flight LIDAR with ∼MHz refresh rate.

Most optical sensing and measurement techniques suffer from the limited dynamic range. In

a second and related project, we have proposed the concept of optical dynamic range com-

ii



pression. This powerful technique provides a mean to match the dynamic range of the signal

to that of the detector and data converter, leading to improved signal to noise ratio and

a wider dynamic range. We outline various methods to implement optical dynamic range

compression using nonlinear optics, silicon photonics and saturated amplifications.
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CHAPTER 1

Introduction

Optical systems with fast speed, high sensitivity, and a large dynamic range are desired in

nearly all optical sensing and communication applications. For example, in Light Detection

and Ranging (LiDAR) systems, the accurate mapping of the fast-evolving environment with

a large detection range necessitates detectors with a large bandwidth and a large dynamic

range. However, as limited by the fundamental trade-off between the speed and the dynamic

range (measured in the effective number of bits) of real-time analog-to-digital converters

(ADC) [1,2], high speed comes at the price of low sensitivity and less accuracy (as shown in

Figure 1.1).

Photonic time-stretch, invented at UCLA, is the most successful non-electronic method to

alleviate the ADC speed limitations by slowing down the signal prior to digitization [3–5].

In time-stretch imaging [6], the target’s spatial information is encoded in the spectrum of

the ultrafast laser pulses, which is stretched continuously in time by propagating through

dispersion and then detected by a single-pixel detector. Lateral positions of pixels are identi-

fied through a one-to-one correspondence between the time samples and their corresponding

optical frequencies which are mapped into time. Distrubuted Raman amplification [7] can

be induced in the dispersive fiber to compensate for the large loss during propagation.

Although the conventional time-stretch is a proven and successful microscopy technique, it

is not well suited for LiDAR imaging. In ranging applications based on time of flight, the

arrival time of photons is determined by the axial position of the target and there is no

unique mapping between time, wavelength and lateral position. To remove the resulting am-

biguity, independent knowledge of both time and wavelength is required in order to acquire

three-dimensional information of the target. This requires the use of a high speed spec-
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trometer as a receiver which is highly impractical. Applications of time stretch imaging to

LiDAR is further hindered because the laser power is spread across the field of view resulting

in low optical power per pixel. Optical amplifiers like Raman amplificaiton can help with

the measurement of the weak signals by boosting lower portion of the dynamic range above

noise floor, but it also amplifies the strong signals and requires the receiver to have a larger

dynamic range. In LiDAR systems, the power of the returned signal decays quadratically

with the distance, so a dynamic range compression technique which is able to enhance the

small amplitudes without boosting the large amplitudes is desired to extend the maximum

detection range.

In chapter 2, we propose and demonstrate a new type of LiDAR that employs the discrete

Figure 1.1: The tradeoff between frequency and dynamic range in ADCs. As the sampling

rate of an ADC increases, its dynamic range, measured by the effective number of bits,

reduces. The performance of the ADCs designed for low frequencies is often limited by the

aggregate thermal noise. As for high speed ADCs, the limitations are mainly caused by the

clock jitter and the limited gain bandwidth of transistors. The ADC survey is from Ref. [1]

time-stretch technique which does not suffer from the aforementioned problems in the con-

ventional time stretch methods. Using a spectro-temporally encoded illumination pattern ,

our LiDAR realizes non-mechanical scanning in one dimension with ∼MHz line rate with a

2



high number of pixels per line. Unlike conventional time stretch methods where the chirp

comes from the dispersion in the propagation media, the discrete time stretch method is able

to produce arbitrary chirp profiles with a giant time-bandwidth product, and allow imag-

ing with visions that adapts dynamically to signal sparsity, reducing the massive amount

of data generated at the high imaging speed. We showed two different implementations of

the time-stretch LiDAR, the first with a supercontinuum pulsed source at 1550nm and the

second with a frequency-domain-mode-locked laser at 1060nm.

In chapter 3, we proposed the concept of optical dynamic range compression. This powerful

technique provides an optical solution to alleviate the burden on the dynamic range during

data acquisition. By reshaping the signal’s amplitudes through a logarithmic-like transfor-

mation, the technology provides a mean to match the dynamic range of the signal to that

of the detector and data converter, leading to an improved signal to noise ratio and a wider

dynamic range. We talked about its utilities in non-uniform quantization, reshaping signal’s

statistical distribution, and extending the detection range in LiDAR systems. We outline

various methods to implement optical dynamic range compression using nonlinear optics,

silicon photonics and saturated amplifications.

In chapter 4, we applied the concept of optical signal processing to computing. We show an

approach to implementing logarithmic-type analog co-processors in silicon photonics and use

it to perform the exponentiation operation and the recovery of a signal in the presence of mul-

tiplicative distortion. The function is realized by exploiting nonlinear-absorption-enhanced

Raman amplification saturation in a silicon waveguide.
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CHAPTER 2

Time-stretch foveated LiDAR with spectral-temporal

encoding

2.1 Introduction

Emerging civilian applications such as autonomous driving, cleantech (wind turbines), in-

dustrial automation, and facial recognition have fueled great interest in high resolution 3D

imaging. LiDAR, the optical implementation of RADAR is a remote sensing method for

measuring distance and velocity and is one of leading candidates for these applications. By

scanning the laser beam, LiDAR systems acquire a 3D map of their surrounding environ-

ment.

Traditional methods based on the mechanical scanning [8] and are inherently slow, bulky,

and prone to failure and are not well suited for the emerging applications. LiDAR designs

with no moving parts (inertia-free) are desirable for fast steering and immunity against vi-

brations [9]. Inspired by microwave phased array antennas, one such approach for beam

steering is the use of an optical phase array [10–12]. Practical implementations of this tech-

nique is hindered by difficulties in accurate control of optical phase which is exceedingly

more difficult at the much higher optical frequencies. In all LiDARs, the extremely weak

returned signals necessitate detectors with internal gain and low noise, such as Avalanche

Photodiodes (APDs) or Photomultipliers Tubes (PMTs). This favors single pixel imaging

systems because realization of APDs and PMT arrays are difficult.

Spectral-encoded illumination, typically implemented using a broadband pulsed laser and

diffractive optics, offers non-mechanical scanning [13]. However, a spectrometer is required

at the receiver increasing the cost and complexity as well as limiting the speed. Photonic
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time stretch is a high speed data acquisition method [3, 4] that has been highly success-

ful in continuous single shot measurements of fast changing dynamical events [14–19] and

ultrafast imaging [6, 20–24]. Lateral positions of pixels are identified through a one-to-one

correspondence between the time samples and their corresponding optical frequencies which

are mapped into time. Conventional time stretch imaging enjoys the benefits of spectral

encoding but works with a single-pixel detector which is fast and simple to implement.

However, its application to LiDAR is hindered because of the one-to-one mapping of time-

to-wavelength-to-lateral position. In ranging applications based on time of flight, the arrival

time of photons is determined by the axial position of the target and there is no unique

mapping between time, wavelength and lateral position. To remove the resulting ambiguity,

independent knowledge of both time and wavelength is required in order to acquire three-

dimensional information of the target. This requires the use of a high speed spectrometer

in the Lidar receiver which is highly impractical. Applications of time stretch imaging to

LiDAR is further hindered because the laser power is spread across the field of view result-

ing in low optical power per pixel. Therefore, the conventional time stretch is a proven and

successful microscopy technique but is not well suited for ranging applications.

Here we proposed a LiDAR that employs time-stretch technique but does not suffer from the

aforementioned problems. It realizes inertia-free scanning in one dimension using a single

laser and a single pixel detector and achieves imaging at ∼MHz line rate with a high number

of pixels. It also achieves adaptive foveated vision (AFV) with an dynamically adjustable

field of view (FoV) and resolution. A spectro-temporal-encoded laser source is dispersed

into discrete collimated beams in space, illuminating different angular positions in sequence

with high peak power. Spectral encoding eliminates mechanical scanning in one-dimension

and the need for a spectrometer on the detection side is eliminated by employing temporal

encoding. We demonstrated two different implementations of this LiDAR system, the first

with a supercontinuum pulsed source at 1550nm and the second with a frequency-domain-

mode-locked(FDML) laser with a master oscillator power amplifier(MOPA) at 1060nm.
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2.2 Non-mechanical beam steering with a spectro-temporal en-

coded source

The concept of the Time-stretch Foveated LiDAR is illustrated in Figure 2.1. A spectro-

temporal modulator configures the output of a broadband source into a discrete spectro-

temporal pattern comprising a train of pulses of varying central frequencies and a fixed

temporal interval. The source is diffracted into collimated beams to illuminate different

angular positions with a high peak power. The three-dimensional information of the target

is encoded onto the time domain of the returned spectro-temporal echoes, where the angular

position and the reflectivity is mapped to wavelengths that located in different time windows

(∆Ti), and the depth distance is measured by the delay between the echo pulse and the

illumination pulse (δti) within each time window. Spectro-temporal encoding eliminates

the ambiguity of mapping between time, wavelength and lateral position in spectral LiDAR

imaging and permit single-pixel detection in only the time domain. Our time-stretch foveated

LiDAR also allows imaging with visions that adapts dynamically to the fast-evolving scene.

We achieve foveal vision by creating sources with a non-uniformly sampled spectrum that

generates a warped spatial illumination pattern. This exploits the sparsity of the image by

efficiently assigning more pixels in the information-rich regions of the scene.

The depth and angular detection range of time-stretch LiDAR is determined by the discrete

chirp-time-bandwidth product. The maximum depth (Lmax) is limited by the temporal

interval between spectro-temporally multiplexed pulses (∆T ):

 Lmax =
c

2
∗∆T =

c

2 ∗ frep ∗N
=
c ∗ Tchirp

2 ∗N
(2.1)

where c is the speed of light, frep is the repetition rate of the laser, N is number of wave-

lengths channels, and Tchirp = 1
frep

is defined as the discrete chirp time. Assuming channel

number of 100, the maximum detection range can be tuned freely from 1 meter to 300 meters

by changing the laser’s repetition rate from 1.5 MHz to 5 kHz. The maximum angular range

or the field of view (FoV) is determined by the sweeping bandwidth of the source as well as

the spatial dispersion (D). The detectable range of the proposed LiDAR, as described by

the product of the pixel number (N), maximum depth range and FoV, is proportional to the
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Figure 2.1: Time-stretch LiDAR enables inertia-free imaging in one dimension at MHz line

rate with high resolution, adaptive foveated vision, and adjustable field-of-view (or scale

invariant digital zoom) with a single laser and a single pixel detector. (a), A broadband

source is spectro-temporal modulated into a train of discrete pulses with varying central

wavelengths. The spectro-temporally multiplexed pulses are diffracted in space to discrete

collimated beams so that different wavelengths (λi) illuminate pixels at different angular

positions (θi) at the beginning of each corresponding time window (∆Ti). The returned

spectro-temporal echoes are received by a single-pixel detector with internal gain and digi-

tally processed to recover the depth image. (b), Spectro-temporal encoding eliminates the

ambiguity of mapping between time, wavelength and lateral position in spectral LiDAR

imaging and permit single-pixel detection. Both the target’s angular and depth information

is encoded in the temporal domain of the spectro-temporal echoes. The angular positions and

the reflectivity are mapped to wavelengths that are located in different temporal windows

(∆Ti). The depth information is recorded as the delay δti between the echo and illumina-

tion pulses inside each temporal window. By using a source with non-uniform spectrum,

a foveated image can be generated where more pixels are assigned to the information-rich

area.
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discrete-chirp-time-bandwidth product (TBP).

N ∗ Lmax ∗ FoV =
c ∗D

2
∗ (Tchirp ∗∆λ) (2.2)

A source with a large TBP is necessary for outdoor applications where a large depth and

angular range are needed. For example, a detection range of 10m with 6◦field-of-view and

60 channels require a source with 1us chirp time and 1500GHz bandwidth (assuming dis-

persion of 0.5◦/nm and operation wavelength at 1550nm), which corresponds to a TBP of

6 ∗ 106. Time-stretch LiDAR places rigorous requirements on the laser source to have tens

of nanometer sweeping bandwidth and repetition rate of ∼MHz with a giant TBP of more

than 106, which is not easily feasible with off-shelf optical sources. Conventional tunable CW

lasers that rely on an electro-mechanically tuned external cavity provide a large sweeping

bandwidth of over 100nm, but usually has a repetition rate below 1 kHz [25]. Mode-locked

lasers typically produce ultrafast pulses with a broad bandwidth at repetition rate above

20MHz and this high repetition range limits the LiDAR range to ∼cm. While the repeti-

tion rate can be reduced by pulse picking, large enough chirp durations cannot be achieved

using dispersive fibers which are an integral part of classical time stretch systems [3]. Var-

ious methods have been demonstrated to realize time-stretch, including single mode fibers,

dispersion compensating fibers, chirped Bragg gratings [26], and chromo-modal dispersion

(CMD) [27]. As the large dispersion comes at the price of high propagation loss, the achiev-

able time bandwidth product is low by two orders of magnitude. In below, we demonstrate

two implementations of the time-stretch LiDAR that achieve time bandwidth products of

over 106.

2.3 Time-stretch foveated LiDAR based on true-time delay

The first implementation is based on the true-time delay method to achieve discrete time

stretch. It utilized a gain-switch supercontinuum laser and an arrayed waveguide grating to

create wavelength encoded discrete delays. Unlike previous implementations of time stretch
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Figure 2.2: Implementation 1 with the true-time delay method. It generates spectro-tempo-

ral-encoded illumination for the time-stretch LiDAR with a giant time-bandwidth product

and an adaptive warped chirp profile. The broadband pulses from a gain-switched supercon-

tinuum laser is optically demultiplexed (DeMUX) by an arrayed waveguide grating (AWG)

into a plurality of wavelengths, delayed by single mode fibers with varying lengths, equal-

ized by the variable optical attenuators (VOA), and combined by a multiplexer (MUX) with

symmetric transmission spectra. The generated pulse train is amplified by a fiber based

optical amplifier to high peak power for the next sensing stage. As compared to the con-

ventional time stretch methods utilizing material dispersion and don’t allow long chirp time,

discrete time-stretch method is based on wavelength-dependent true time delay and can

achieve a giant discrete-chirp-time-bandwidth product over 106, which enables LiDAR imag-

ing with a large depth and angular range. An arbitrary spectrum-to-time mapping is realized

by nonuniformly sampling the spectrum and connecting discrete wavelengths to the corre-

sponding true time delays. This adaptive warped chirp profile can provide a non-uniform

illumination pattern in time-stretch LiDAR.
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where the chirp comes from the propagation in a lossy dispersive media, the proposed method

decouples chirp from the dispersion property of the medium, enabling arbitrary nonlinear

chirp profiles and a giant TBP, and can be applied to a large range of operation wave-

lengths. The implementation is based on a recirculating photonic filter (RPF) [28], that

samples the spectrum in a designated profile and assigns each wavelength a true time delay

that is a function of frequency, as shown in Figure 2.2. Spectro-temporal patterns with

a tunable warped chirp profile are realized by switching the discrete wavelengths between

various delays. We demonstrate spectrum-to-time mapping in a linear, sublinear, superlin-

ear, and non-monotonic function with a giant TBP over 3 ∗ 106 (as shown in Figure 2.3).

The method provide a target-specific nonlinear discrete stretch for the Serial time-encoded

amplified imaging system (STEAM) [6], as shown in Figure 2.4. Discrete time stretch that

based on the true-time delay method enables a foveated (warped) imaging in STEAM sys-

tem. As compared to the conventional time stretch where the chirp comes from material

dispersion of the DCF fiber, the discrete time stretch enables a target-specific non-uniform

illumination that reduces the massive amount of data generated in high-speed imaging. It

can also compensate for the nonlinear diffraction caused by the grating to provide a linear

space-to-wavelength-to time mapping, which is not possible in conventional time-stretch sys-

tems and requires post-processing digitally.

LiDAR based on true-time delay method permit inertia-free imaging with an adaptive

foveated vision and optical compression, as shown in Figure 2.5. A gain-switched laser cen-

tered at 1550nm with 1 MHz repetition rate is modulated into spectra-temporal pattern with

a 33 ns temporal interval and 12nm sweeping bandwidth, resulting in a TBP of 1.5 ∗ 106.

This permits a maximum detection range of 5m. A FOV of 6◦in the horizontal direction is

realized by using a diffraction grating with 0.5◦/nm spatial dispersion. The vertical direction

is scanned mechanically. In Figure 2.5 (a-b), a train of 30 spectro-temporal pulses with a

fixed 0.4nm frequency spacing generates image with a uniform sampling in the horizontal

direction at a line rate of 1 MHz. While high-speed imaging is preferable to capture fast

movements and improve image quality via averaging, it inevitably creates a massive amount

of data and can overwhelm the processing backend [26,29,30]. Foveated illumination achieved
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Figure 2.3: Discrete time-stretch method based on true-time delay configures the output of

a gain-switched supercontinuum source centered at 1550nm to spectral-temporal patterns

with arbitrary chirp profiles with a long chirp time of over 1us, a large sweep bandwidth of

30nm, resulting in a giant chirped-time-bandwidth product TBP > 3 ∗ 106. (a) Linear chirp

profile where the broadband spectrum is sampled uniformly. (b)Sublinear chirp profile where

there are there are more wavelengths in the central part of the spectrum. (c)Superlinear

chirp profile where there are there are more wavelengths on the sides of the spectrum.

(d)Non-monotonic chirp profile where the mapping function between time and wavelength

is non-monotonic.

by nonlinear spectrum-time-mapping can address this big data predicament by efficiently al-

locate more pixels to the area of interest. In Figure 2.5 (c-d), the target is illuminated by

a warped spectro-temporal pattern comprising of 17 channels with a sublinear chirp profile

and a chirp time of 0.56 us. As compared to the uniformly chirped source, it has the same

fine frequency spacing in the central part of the spectrum and coarse spacing on the sides.

The warped illumination has a lower average power and produces a central-foveated image

with 43% less data. In the case where peripheral scene contains more information, a source

with a superlinear chirp profile can be generated by densely sampling wavelengths on the

side of the spectrum, shown in Figure 2.5 (e-f).

11



2.4 Time-stretch foveated LiDAR based on FDML laser

For the second implementation of our time-stretch LiDAR, we utilized a FDML MOPA laser

[31,32], centered at 1060nm (see Methods) to produce a wavelength-swept quasi-continuous

wave 10nm wavelength sweep at 0.342 MHz repetition rate. The output is pulse-modulated

by an electro-optical modulator (EOM) at 88 MHz to produce spectro-temporal pulse trains

that comprises 256 pulses with 11ns temporal interval, resulting in a giant TBP of 9 ∗ 106

and a maximum detection range of 1.7m (as shown in Figure 2.6). Because the temporal

encoding is determined by the pulse modulation, one can digitally program the modulator

to sample at a higher speed to achieve a high number of pixels, or at a lower speed to

increase the detection range, without increasing the system complexity. Using this source,

we demonstrate a time-stretch LiDAR in Figure 2.7. The same target used in the case of

discrete time-stretch LiDAR is spectrally scanned in the horizontal direction at 0.342 MHz

with 256 pixels per line.

2.5 Methods

In the true-time delay method, a fiber-based gain-switched supercontinuum laser (YSL Pho-

tonics) generates broadband pulses with 300ps FWHM at 1MHz which are demultiplexed

to discrete spectral channels 50GHz spacing covering wavelength from 1530nm-1560nm by a

photonic-lightwave-circuit based arrayed waveguide grating (NTT Electronics Corporation).

The wavelength-dependent true-time delay are provided by single-mode fibers that with 7m

incremental length difference (customized by Haiyu Optics Corp. Shenzhen, 0.14dB/km

attenuation). The pulse trains are amplified by erbium-doped amplifier (IPG Photonics

EAD-200CL) by 1000 times to provide high instantaneous intensity for remote sensing. The

spectro-temporal source is collimated and dispersed by a grating (Spectrogon) with 1100

line/mm frequency at a diffraction angle of 83◦. Thanks to the matured optical communica-

tion market, wavelength multiplexing with 1000 channels and 10GHz spacing is available [33],
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which permit LiDAR imaging with high angular resolution and high pixel number. Unlike

the conventional time stretch that relies on the dispersion property of DCFs which operates

at 1550nm only, the discrete time stretch is based on true time delay and can be applied

to a broad wavelength. As a proof-of-concept demonstration, we apply the idea to lifetime

imaging where the spectro-temporal pattern center at 620nm provides non-mechanical line

scanning for fluorescent imaging(see Figure 2.8).

The second implementation consists of a FDML-MOPA laser center at 1060nm and high-

speed EO modulation, similar to described earlier [32]. The FDML laser provides a combi-

nation of large spectral span along with microseconds time span and narrow instantaneous

linewidth. This novel type of laser has mainly been used for various imaging modalities at dif-

ferent operation wavelength [34,35]. The wavelength sweep is accomplished by a fiber Fabry-

Perot-Filter (Lambdaquest) driven at 171kHz. The FDML output is two-times buffered to

342 kHz sweep rate. After the buffer stage, a booster semiconductor optical amplifier (SOA,

Innolume SOA-1060-90-Hi-30dB) was installed. The electronic waveforms for the filter and

the 50% modulation of the cavity SOA (same model as in booster stage, driven by a Highland

Technologies T160 driver) were programmed on an arbitrary waveform generator (Tektronix

AWG7052). The electronic pulses were obtained by differentiating the digital marker outputs

of the AWG using a 2.92mm step-to-impulse converter (Entegra Corp.). The obtained opti-

cal pulse length was measured to be 65ps. As amplitude electro-optical modulator (EOM) a

20GHz bandwidth model (Photline NIR-MX-LN-20) was employed in combination with an

electronic pulse amplifier (Multilink MTC5515). The optical pulses were amplified by home-

built ytterbium-doped fiber amplifiers (YDFAs) consisting of three-stages, two core-pumped

and one cladding pumped YDFA at 976nm. Upon exiting the single-mode fiber, the light

was collimated and incident on a grating with 1200 lines/mm resolution and positioned at

a 30◦angle. A beam expander comprises of a 250mm lens and a 50mm lens can be used to

compress the beam size and enlarge the scanning angle by 5 times. The vertical illumination

is achieved with a galvanometric mirror (EOPC Corp.) that scans at 2kHz.
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2.6 Discussion

In this study, we propose the time-stretch foveated LiDAR and demonstrate two different

implementations of it for inertia-free LiDAR imaging in one dimension with ∼MHz line rate,

high resolution, and adaptive visions which uses a spectro-temporal encoded laser source and

a single pixel detector. The concept is demonstrated with two different implementations that

are based on two different methods for spectral-temporal encoding through discrete time-

stretch. The true-time delay method spectrally samples a broadband pulse and assigns each

pulse with a wavelength-dependent true time delay. The FDML method temporally samples

a chirped quasi-continuous wave source. Both configurations produce tens of nanometer

sweeping bandwidth, repetition rate of ∼MHz, a giant TBP of over 106, and tunable non-

uniform spectral sampling for foveated imaging. The two techniques can be employed at a

broad operating wavelength, permitting one to choose between the near-infrared band where

there are matured silicon-based imaging sensors and the mid-infrared wavelengths which are

safer to human eyes. They are both fiber-based and can meet the requirements on footprint

and robustness of consumed-based applications. See the comparison between the proposed

time-stretch methods with the conventional continuous time-stretch methods that are based

on dispersive media in Table 2.1.

As compared to the true-time delay method where the physical connections inside the RPF

Table 2.1: Comparison between time-stretch methods

Methods Chirp Delay TBP Tunability Loss

Discrete
True-time delay ±33ns/nm 1000ns 3 ∗ 106 <5000ns/nm 5-10dB

FDML ±290ns/nm 2900ns 9 ∗ 106 No N/A

Continuous

DCF(23km) -0.8ns/nm 25ns 7 ∗ 104 No 10dB

SMF(28km) 0.2ns/nm 15ns 5 ∗ 104 No 10dB

CMD(20m) [27] ±0.1ns/nm 2ns 7500 <0.2ns/nm 2dB

Chirped FBG(10m) [26] ±2ns/nm 10ns 8750 <1ns/nm 4dB

scales up with the pixel number, the FDML method can be digitally programmed to gen-
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erate a high number of channels without increasing the system complexity. The advantages

also come with drawbacks. 1. wavelength-swept sources with a large bandwidth are usually

costly. 2. It has a fixed chirp profile as restricted by the oscillation of the resonator in the

laser cavity. So when the central-foveated spectral-temporal pattern is generated by densely

sampling the central part of spectrum, the minimum temporal interval also shrinks, reducing

the maximum detection range. On contrast, the true-time delay method is able to produce

arbitrary chirp profiles and provide target-specific warped illumination without sacrificing

the detection range.

The idea behind spectral-temporal encoding can be extended to achieve the inertia-free imag-

ing in two dimensions. One solution for scanning in the second dimension is to add a second

grating with a different resolution and orthogonal groove orientation [6]. The other solution

is parallel illumination with delayed copies of the spectral-temporally encoded source. See

the configuration of the inertia-free two-dimensional scanning in Figure 2.8.

Two of the major bottlenecks of today’s LiDAR are the slow and non-robust mechanical

scanning and the limited detection range. While time stretch LiDAR provide a novel ap-

proach inertia-free imaging, it can be combined with the recently proposed optical dynamic

range compression (ODRC) to extends the detection range [36]. In LiDAR systems, power

of the returned signal decays quadratically with the distance. To capture signals reflected

from both close and remote objects, detection system with a high dynamic range is required,

which is unfortunately not easily feasible at high speed. ODRC compresses the dynamic

range of the returned signals by reshaping the signal through a logarithmic transformation

whose decreases as the signal amplitude increases. The major disadvantage of this powerful

idea is that the number of ODRC units scales with the number of detectors. While LiDAR

equipped with high resolution image sensors are not good candidates for ODRC, time-stretch

LiDAR which requires only a single pixel detector is a perfect match.
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Figure 2.4: Discrete time stretch that based on the true-time delay method enables a foveated

(warped) imaging in STEAM system. As compared to the conventional time stretch where

the chirp comes from material dispersion of the DCF fiber, the discrete time stretch enables a

target-specific non-uniform illumination that reduces the massive amount of data generated

in high-speed imaging. It can also compensate for the nonlinear diffraction caused by the

grating to provide a linear space-to-wavelength-to time mapping, which is not possible in

conventional time-stretch systems and requires post-processing digitally. (a) The broadband

pulse from a mode-locked laser centered at 1550nm with a repitition rate of 30MHz is non-

linearly sampled in spectrum and assigned a wavelength-dependent true-time delay that has

a warped (orange) or linear (blue) chirp profile. The generated signal is diffracted in the hor-

izontal direction to provide illumination for the target. The spatial reflectivity information

is encoded onto the returned signal and detected with signle pixel detection (not shown).

(b) Conventional time-stretch imaging is only able to provide a fixed sampling pattern along

the direction of spectrum scan. (c)Discrete time-stretch provides imaging with a warped

sampling pattern. The top part is illuminated with a half amount of sampling beams and 2

times less data is generated as compared to the linear case. (d)The top part of the target is

recovered by digital upsampling of 2 times. Artifiects on the edge is caused by the optical

data compression. (e) Discrete time-stretch imaging with a linear chirp profile achieves the

same imaging quality as the conventional time-stretch imaging with DCF fibers.
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Figure 2.5: LiDAR based on true-time delay permits inertia-free imaging in one dimension

with an adaptive foveated vision and optical compression. The pulse trains generated with

discrete time stretch are diffracted in free space to provide spectro-temporal-encoded line

illumination in the horizontal direction. It achieves ultrafast LiDAR imaging at 1 million

lines per second with a maximum detection range of 5m and a field-of-view of 6◦. By using a

warped illumination, a foveated imaging can be generated to compress the massive amount

of data generated at such high imaging speed as well as bring down the average illumination

power. The target is a Lego toy (H*W*D: 10cm*10cm*20cm) positioned 1m away. The

LiDAR imaging of a Lego toy with (a-b), a uniform vision with 30 pixels per row with

equally spaced samples, (c-d), a foveated vision with 17 pixels per row where more samples

are in the central region, (e-f), a foveated vision with 17 pixels per row where more samples

are in the peripheral region.
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Figure 2.6: Implementation 2 with the FDML laser. It generates the spectro-temporal pulse

trains with a giant TBP and digitally programmable temporal encoding. A wavelength-swept

FDML MOPA source that is based on the frequency-domain mode locking laser generates a

chirped quasi-continuous wave. It is sampled by an electro-optical modulator that is driven

by an arbitrary waveform generator to produce spectro-temporal-encodes pulse trains. The

output is amplified to compensate the loss during the modulation. Because the temporal

encoding is determined by the pulse modulation, one can digitally program the modulator to

sample at a higher speed to achieve a high number of pixels, or at a lower speed to increase

the detection range, without increasing the system complexity.

Figure 2.7: LiDAR based on the FDML laser achieves inertia-free imaging in one dimension

with a high number of pixels and flexible imaging parameters. The temporal-encoded wave-

length sweeping method generates a large number of spectro-temporal pulses at a repetition

rate of 0.342 MHz to provide inertia-free scanning in the horizontal direction for LiDAR

imaging. Two different targets positioned 1m away from the LiDAR is spectrally scanned

in the horizontal direction at 0.342 MHz with 256 pixels per line. The vertical direction is

scanned mechanically.
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Figure 2.8: Unlike the conventional time stretch that relies on the dispersion property of

DCFs which operates in mid-infrared only, the discrete time stretch is based on true time

delay and can be applied to a broad wavelength. (a) As a proof-of-concept demonstration,

we apply the idea to fluorescent lifetime imaging. The gain-switch supercontinuum laser

generates pulse centered at 620nm, which is modulated via the true-time delay method to a

pulse train comprising of 20 spectral-temporal pulses which has 0.1nm bandwidth and 300ps

temporal width. The signal is diffracted to collimated beams at different angles, expanded

by a 4-f system (f1=50mm, f2=250 mm), and focused through a microscope objective,

providing line excitation for the sample (FluoSphereTM Polystyrene Microspheres, 15 µm,

crimson fluorescent). The fluorescent signals centered at 660nm pass a dichroic mirror and are

detected by a PMT. (b)The angular position (horizontal) is recovered through the one-to-one

mapping between time window and space. The vertical direction is scanned mechanically.

The fluorescence information is contained in amplitude of the pulse, and the lifetime image

is retrieved from the exponential tail slope (see subset).
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Figure 2.9: Configuration of inertia-free scanning in two dimensions using spectro-tempo-

ral encoding and spatial-temporal encoding. While spectral encoding together with spa-

tial dispersion realize inertia-free scanning in one dimension, the spatial encoding together

with fiber bundle allows temporally-encoded parallel illumination in the second dimension

(vertical axis). The discrete time-stretch is shown as one way to achieve spectro-temporal

encoding, where every adjacent pulse is delayed by ∆T and the total Nx wavelengths has

a duration of Nx ∗ ∆T . The outputs are then spatially separated by a fiber splitter to Ny

copies (with 1/Ny attenuation) and aligned in a row by a fiber bundle to provide paral-

lel illumination in the vertical direction. Adjacent channels of the splitter are delayed by

Nx ∗ ∆T so that all Ny copies are concatenated in time with a duration of Nx ∗ Ny ∗ ∆T .

As every spatial location is mapped to a temporal window, a single-pixel detector rather

than the sensor array is required for three-dimensional imaging, and no complicated signal

processing is needed for recover the information. The frame rate is 1/(Ny ∗Nx ∗∆T ). The

adaptive foveated vision can be achieved by switching the connection of true time delay to

the different channels of the AWG or the fiber bundle.
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CHAPTER 3

Optical dynamic range compression

3.1 Introduction

A detector with a large dynamic range is desired in nearly all optical sensing and communica-

tion applications, including ranging [37], spectroscopy [38,39], fluorescence imaging [40–43],

optical coherent tomography [44], quantum optics [45], and coherent optical networks [46].

For example, in Light Detection and Ranging (LiDAR) systems, the power of the returned

signal decays quadratically with the distance, so that the maximum detection range is lim-

ited by the dynamic range of the detection.

The trade-off between speed, sensitivity, and dynamic range poses fundamental challenges

to the detection system. Optical amplifiers boost the lower portion of the dynamic range

above the noise floor and help with the measurement of small signal amplitudes. However, it

also requires the receiver to have a larger linear range and higher number of bits for quanti-

zation [7]. Optical detectors with the internal amplification (e.g. avalanche photodiodes) are

used for sensitive measurements of faint light, whereas the detection speed is limited by the

fundamental trade-off between gain and the bandwidth in all electronic systems [47]. While

averaging reduces the effective noise and increases the sensitivity, it inevitably reduces the

speed.

Photonic hardware accelerators are analog optical processors that promise to alleviate bot-

tlenecks associated with the digital acquisition and processing of optical data [30,48,49]. One

example is the amplified photonic time-stretch technology that performs the optical analog

slow-motion processing and overcomes the speed-sensitivity trade-off in time-resolved single-

shot measurements [3]. Here we propose another type of photonic hardware accelerator -
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Figure 3.1: Diagram of the Optical Dynamic Range Compression. The dynamic range of

the input optical signal is compressed in the optical dynamic range compressor, whose gain

changes dynamically as a logarithmic-like function of the instantaneous input power. After

the optical-to-electrical conversion by the photoreceiver and the analog-to-digital-conversion

by the digitizer, the compressed signal is recovered through the digital expander whose

response is the inverse of that of the optical compressor.

the optical dynamic range compressor (ODRC). It is a new optical signal processing method

that tackles the trade-off between sensitivity and dynamic range in high-speed optical signal

detection. This relieves the requirement on the dynamic range of the photoreceiver and the

number of bit of analog-to-digital converters (ADCs). The concept is illustrated in Figure 3.1.

The analog optical signal is first reshaped by the optical dynamic range compressor through

the logarithmic-like transform. The optical transformation reduces the large dynamic range

of the input to match that of the detecting system. After the optical-to-electrical and the

analog-to-digital conversion, the compressed digital signal is recovered through the digital

expander whose response is the inverse function of that of the optical compressor. Without

requiring an optical receiver with a larger dynamic range or more quantization bits, the

detectable range is extended. The chapter is arranged as follows. First, we explain the

improvements on the detection sensitivity in the presence of different types of noises. Then,

we show the impact of ODRC on signal statistics and LiDAR systems. Finally, we discuss

the realization of ODRC and demonstrate transform profiles changing from smooth com-

pression to sharp compression by exploring the nonlinear propagation in nano-scale silicon

waveguides.
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3.2 Improvement of detection sensitivity

The dynamic range of a detecting system is the difference between the smallest and the

largest signal value (full-scale) it can measure. The smallest measurable signal is determined

by the signal-independent noises in the detection, such as the thermal noise, dark noise

and quantization noise (for quantization, the peak signal is matched to the full-scale of the

ADC). The largest measurable signal is limited by the saturation of the photodiode during

the optical-to-electrical conversion and the clipping by the quantizer during the analog-to-

digital conversion.

3.2.1 Dynamic range limits

We now discuss the dynamic range limits imposed by the photodiode, optical amplifier, and

quantizer in the high-speed optical signal detection. The ratio between the saturation limit

and the input-referred noise floor depicts the dynamic range of a photoreceiver [50]. In

detecting very weak inputs, the inevitable noise that originates from the thermal motion

of electrons in the load resistor dominates the receiver performance (assuming photodiodes

with a low dark current). At high level optical input, the output of a photodiode begins to

deviate from the linear response, as evidenced by a reduction in the output current and by a

diminished bandwidth. This is primarily attributed to the space-charge effect that leads to

the reduction in carrier velocities and a corresponding build-up of carriers [51, 52]. A linear

optical amplifier is able to boost the signal above the thermal noise of the photoreceiver and

improve the sensitivity. Optical amplifiers are used when the receiver is thermal noise limited.

On the other hand, since the maximum level is also increased by the same ratio, the upper

range of the signal will exceed the detector saturation and the dynamic range of the ADC. The

most significant challenge with optical measurements is the trade-off between the dynamic

range (measured in the effective number of bits) and the speed of the ADC [1, 2, 53, 54].

While the thermal noise is the major limit at low speeds, the ambiguity caused by the

limited gain bandwidth of transistors and the clock jitter becomes the dominant limitation

at high frequencies. ODRC can mitigate the burden on the saturation of photodetectors and
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Figure 3.2: ODRC mitigates the burden on the dynamic range of the detection system.

The signal-independent detection noise (brown dashed line), such as the thermal noise, dark

noise, and quantization noise determines the minimum measurable signal. The saturation

of the photodiode and the ADC (green dashed line) determine the maximum input. Linear

amplifier (black dotted line) boosts the signal above the noise level with the unwanted effect

of a smaller maximum input. ODRC (blue solid curve) tackles the trade-off by providing

a logarithmic-type gain that decreases as the instantaneous input optical power increases.

(a) As compared to a linear amplifier with same small signal gain G0, ODRC compresses

the upper range. The maximum input level is increased by a ratio of the compression factor

C = 2. (b) As compared to a linear amplifier with same gain at the maximum input level,

ODRC provides a higher gain for the lower range (the small gain is shown as the purple

thin line). The detection sensitivity is improved by a ratio of the compression factor C=10.

The logarithmic-type compression is obtained using the nonlinear propagation in silicon with

nonlinear losses and saturated Raman amplification. Similar behavior can be achieved with

other types of amplifiers (with fast gain response) (see Figure 3.7).
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the dynamic range of the ADCs. It provides a gain that decreases as the signal amplitude

increases, improving the detection sensitivity without saturating the full-scale, as shown in

Figure 3.2. The output signal Pout after ODRC can be written as:

Pout = g(Pin) · Pin (3.1)

Here is the logarithmic-like gain of the input signal . Here, Pout is a monotonically-increasing

concave function of Pin. The small signal gain G0 is calculated as,

G0 = lim
Pin→0

Pout
Pin

= g(0) (3.2)

And the compression ratio at input is defined as the ratio between the small signal gain and

the gain at input Pin,

C(Pin) =
G0

g(Pin)
(3.3)

The compression ratio depicts the curvature of the sublinear gain profile. The larger it is

the more compression the signal undergoes.

3.2.2 Improvement over ADC quantization noise

Performing ODRC on the optical signal before the photodetection and A/D conversion leads

to the non-uniform quantization where quantization step increases as a function of the input

signal amplitude. This highly desired transformation is shown in Figure 3.3. Compared to

the linear case, the lower portion of the dynamic range is quantized with higher resolution,

at the expense of the accuracy of the upper portion. The latter is acceptable because the

impact of quantization noise is much more severe at low signal levels. The mean square

quantization error or quantization noise power of an ideal ADC is calculated as [55,56]:

σ2
q = E[(x−Q(x))2] =

∫ ∞
−∞

(x−Q(x))2p(x)dx =
2n∑
k=1

∫ bk

bk−1

(x− yk)2p(x)dx (3.4)

where x is the input signal,Q :→ yk,∀x ∈ [bk−1, bk) is the mapping function of quantization,p(x)

is the probability density function of the input x, and n is the nominal number of the bits

of the ADC. When the quantization step ∆k = bk − bk−1 is small enough and the threshold
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Figure 3.3: ODRC enables the non-uniform quantization where the quantization step in-

creases as a function of the input signal amplitude. Compared to the linear case, the lower

part of the dynamic range is associated with the finer quantization resolution, at the ex-

pense of the accuracy of the upper part. The latter is acceptable because the impact of

quantization noise is much more severe at low signal levels. (a) The photocurrent in the case

of ODRC (blue) and linear (red) transformation is quantized with a uniform ADC (black).

Quantization steps are illustrated in dashed vertical lines. The mapping between the ana-

log input signal to the quantized digital output, in the case of (b) ODRC, and (c) linear

transformation. In (b), the quantized signal is recovered through the digital expander whose

response is the inverse of that of the optical compressor.
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value is set as the median of the bin yk = (bk−1 + bk)/2, (3.4) can be approximated as:

σ2
q ≈

2n∑
k=1

∫ ∆k
2

−∆k
2

x2p(x) ≈ 1

12

2n∑
k=1

∆2
k · Pr(Pin) (3.5)

where Pr(pin) =
∫ bk
bk−1

(x−yk)2p(x)dx is the probability of the input falling in a given quanti-

zation bin. In the case of a uniform quantizer, the quantization resolution is a function of the

full-scale VFS and the nominal number of bits, n, and is independent of signal’s instantaneous

amplitudes,

∆linear =
VFS
2n

(3.6)

When the probability of the input falling in each interval is the same, a uniform quantizer

minimizes the quantization noise power. Inserting (3.6) into (3.5) results in the well-known

equation for the quantization error,

σ2
q =

∆2
linear

12
(3.7)

ADC’s dynamic range is defined as the ratio of its full-scale range to the minimum resolvable

change in signal. For a linear quantizer, it is proportional to the bit number n:

DRADC [dB] = 20log(
VFS

∆linear

) = 6.02n (3.8)

Note that (3.8) differs from the formulation of the ADC’s SNR equation by 1.76 dB, since

the latter is in terms of root-mean-square values whereas the former is for peak-to-peak

amplitudes. When detecting inputs with a large dynamic range, one needs to determine the

proper balance between the large amplitudes, which exceed ADC’s full-scale, and the small

amplitudes, which get lost in quantization noise. ODRC tackles this trade-off by boosting the

small amplitude without exceeding the full-scale. The quantization resolution is a function

of the input amplitude:

∆ODRC(Pin) =
∆linear

dPout/dPin
=

VFS/2
n

g′(Pin) ∗ Pin + g(Pin)
(3.9)

The dynamic range enhancement of an ADC is:

DRADC [dB] = 20log(
VFS ∗ C(Pmax)

∆linear

) = 6.02n+ 20log(C(Pmax)) (3.10)
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Figure 3.4: ODRC reshapes the quantization noise. The lower portion of the dynamic

range is quantized with less noise and better SNR, at the expense of decreased SNR at the

higher portion. (a) The quantization resolution as a function of the input amplitude. (b)

Signal-to-quantization-noise ratio of quantizing a single-tone input with an 8-bit linear ADC.

(The full-scale of the ADC is matched to the maximum input peak). As compared to the

case of the linear quantization (red dot-dashed curve), where the SNR falls rapidly for small

amplitudes, ODRC (blue solid curve) is able to provide good SNR over a wide range of signal

powers. ODRC that is considered here has a compression factor C=10.

Therefore, the dynamic range is improved by 20log(C(Pmax)), where C(Pmax) is the com-

pression factor that is evaluated at the maximum input Pmax which doesn’t saturate the

full-scale.

The reshaping of quantization noise is shown in Figure 3.4. The lower portion of the dy-

namic range is quantized with smaller noise, resulting in a higher signal-to-noise ratio (SNR).

This is obtained at the expense of a decreased SNR at the higher portion of the dynamic

range. As compared to the case in the linear quantization, where the SNR falls rapidly for

small amplitudes, ODRC is able to provide the good SNR over a wide range of signal levels.

Inserting (3.9) into (3.5), the mean square quantization error is calculated as:

σ2
q ≈

1

12

2n∑
k=1

(
VFS/2

n

g′(Pin) ∗ Pin + g(Pin)
)2Pr(Pin) (3.11)

Given the signal statistics described by its probability distribution function Pr(Pin), there

exists the optimal nonlinear transform g(Pin) that minimizes the expectation of the quan-

tization error. To achieve the same digital SNR, the signal that is optically compressed
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requires fewer bits than otherwise required by a linear converter. This powerful idea enables

the non-uniform quantization and data compression to be performed in the optical domain.

For input signals with a non-stationary probability distribution, the sublinear transform of

the optical compressor can be dynamically adapted to the histogram of the input ampli-

tudes. The idea can be applied to smart sensing, providing flexible solutions to meet the

requirements on the resolution and the accuracy in optical detections and analog-to-digital

conversions.

3.2.3 Extending detection range of LiDAR

LiDAR systems measure the distance and velocity of targets by illuminating the target and

measuring the time-of-flight and Doppler shift of the reflected light. The power of the re-

turned signal decays quadratically with the distance. As a result, the maximum detection

range is limited by the dynamic range of the detection and the analog-to-digital converter,

characterized by the digitizer’s effective number of bits (ENOB). Thus high-resolution (high-

ENOB) ADCs are required in LiDAR system to achieve a large detection range. In the

meantime, the depth accuracy of the system is limited by the sampling speed of the digitizer

that decreases with ENOB.

ODRC extends the detection range of LiDAR systems by assigning more quantization bits

(improving ENOB) for weak signals and lowering the minimum returned power the ADC

can quantize, as shown in Figure 3.5. As compared to the linear case, the SNR for detect-

ing distant targets is increased. The maximum detection range, which scales quadratically

with the measured amplitude, is improved by the square root of the compression factor,
√
C .

3.2.4 Shaping signal statistics

ODRC redistributes statistics of a signal. By amplifying small amplitudes and compressing

large amplitudes, ODRC causes a relative compression in the right side of the distribution
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Figure 3.5: ODRC extends the detection range of LiDAR. Weak signals from distant targets

are quantized with finer steps after reshaping by ODRC. The maximum detection range,

which scales quadratically with the measured amplitude, is improved by the square root of

the compression factor sqrtC.

with a concomitant suppression of outlier events.

While the Gaussian distribution is widely used to model noise in optical systems, the

extreme-value statistics that studies the rare events has drawn much attention in the past

decade [15,57,58]. In stimulated Raman amplification, extreme-value behaviors arise due to

the interplay of pump laser fluctuations with the exponential transfer function of the Raman

process. Studies have shown that the amplified Stokes signal has a heavy-tailed distribu-

tion [15]. The effect of ODRC on the extreme-value statistics is shown in Figure 3.6. ODRC

compresses the heavy tail in the high-value region and mitigates the burden on the receiving

system for detecting high-dynamic-range inputs, facilitating the study of extreme events in

nonlinear optical systems.

Optical dynamic range compression may reduce the nonlinear phase noise (NLPN). NLPN

is caused by the interaction of amplitude fluctuations, such as amplified spontaneous noise

(ASE) and relative intensity noise (RIN), with self-phase modulation (SPM). By suppressing

large-amplitude events in the probability distribution, ODRC can reduce the nonlinear phase

noise.
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Figure 3.6: ODRC reshapes signal statistics including noise characteristics. (a)(b) ODRC

reshapes the statistics of a Gaussian-distributed signal. As compared to a linear amplifier

with the same average gain, it reduces the variance and the skewness of the signal (as shown

by the asymmetric distribution in the subset), resulting in improved SNR. (c)(d) ODRC

reshapes the statistics of a signal that follows the extreme-value distribution, shown in the

logarithmic scale here. As compared to the linear amplifier that preserves the shape of the

distribution, ODRC reduces the requirement for a large dynamic range in optical detection

and A/D conversion stages of a receiver.
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3.3 Physical realization of ODRC

Owing to the logarithmic current-to-voltage transfer characteristic inherent in PN-junctions,

logarithmic compressors are widely implemented in electronics. They are used in radar and

radio applications to compress the high dynamic range of received signals at MHz. Due to

the lack of logarithmic behaviors in optics, implementing such powerful techniques optically

has not been possible.

Recently, an optical method to create the logarithmic function was introduced. The satu-

rated amplification and nonlinear absorption in a silicon photonics waveguide were tailored

to approximate a logarithmic function with an input range of up to 19.5dB. The optical log-

arithm was shown to perform optical exponentiation and signal deconvolution [59–61]. This

opens one possible path to realize the dynamic range compression optically. Fortunately, an

exact logarithmic behavior is not needed for ODRC, making the implementation easier.

Various approaches for the experimental realization of ODRC are illustrated in Figure 3.7.

To compress the high-dynamic-range-optical signals in high-speed detection, ODRC devices

should have a nonlinear gain/loss that decreases/increases as input amplitudes increase, and

is able to respond to the instantaneous power change.

Saturated amplifiers can be used to shape input amplitudes by providing a higher gain for

small inputs, and a lower gain for large inputs as the pump is depleted. This behavior can

be tuned by changing the pump power. A stronger pump leads to a larger compression ratio.

Amplifiers with ion-doped gain medium such as erbium-doped fiber amplifier (EDFA) and

ytterbium-doped fiber amplifier (YDFA) have gain relaxation time at milliseconds owing to

the long metastable lifetime. Such a long relaxation time is preferable for low noise, but

also limits the device’s response time. Semiconductor optical amplifiers (SOA), on the other

hand, have a much shorter upper state lifetime of few nanoseconds. Saturated SOAs can

also be used to compress signals. The lifetime of SOA can be dramatically reduced to pico-

seconds with quantum-dot structures [62].

Raman amplification that is based on stimulated Raman scattering (SRS) is widely used in

optical communications and biomedical applications for its broadband gain and low noise
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performance. The response time of the Raman process is at the order of tens of femtosec-

onds in amorphous solids such as glasses, and a few pico-seconds in crystalline solids such

as silicon [63,64]. For ODRC using Raman-pumped optical fibers of kilometers, the walk-off

between the co-propagating pump and signal beams becomes the major limitation of the de-

vice bandwidth [65]. Raman amplification has a gain coefficient in silicon that is four orders

larger than it is in silica [66] and it was used to realize the first silicon optical amplifier [67]

and the first silicon laser [64]. Unlike the SOA, Raman amplification causes minimum phase

distortions and can be used for ODRC in coherent applications.

Two-photon absorption (TPA) generates loss that increases quadratically with the input in-

tensity and can be used to compress high amplitudes at ultrafast speed. In semiconductors

like silicon, free carriers generated during TPA introduce free carrier absorption (FCA) that

contributes to dynamic range compression. However, the free carriers with a long lifetime

reduce the response speed [68]. Studies have also shown that TPA-induced free-carrier loss

degrades the noise figure of a silicon Raman amplifier by an amount that depends on the

carrier lifetime [69]. Using silicon nanowire can greatly enhance the nonlinear effect as well

as increase the device bandwidth and reduce the noise figure, as the intensity increases and

lifetime reduces in nanoscale waveguides [52]. Carrier sweep-out using a reverse-biased PN-

junction further reduces the free-carrier lifetime to tens pico-seconds [66,70]. III-V materials,

such as GaAs and InP, are also candidates for performing ODRC. They have a two-photon

absorption coefficient much larger than that of silicon, and a short lifetime as a result of the

direct bandgap [71,72].

While the reverse-biased waveguide enables carrier removal and ODRC at high operation

bandwidth, a forward-biased waveguide can be used to harvest the energy during the com-

pression at the cost of device speed [73]. Here, using the two-photon photovoltaic (TPPV)

effect, electric power is recycled from the photons that were lost through the compression

of the high amplitudes. Energy harvesting has been achieved in silicon wavelength convert-

ers [74], modulators [75], and Raman amplifiers [76]. Such low-energy consumption devices

reduce power dissipation as well as chip heating, which are of paramount importance for

chip-scale integration in silicon photonics.
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We demonstrate ODRC with energy harvesting by simulation the nonlinear propagation in

a forward-biased nano-scale silicon waveguide, taking saturated Raman amplification, TPA,

and FCA into account. Logarithmic-transform profiles with soft and sharp compression

are achieved by varying the input Raman pump intensity and the bias voltage, as shown

in Figure 3.8. A tunable ODRC allows one to select the optimal compression profile that

matches with signal statistics, adaptively balance between the detection of small and large

amplitudes, maximizing the detection SNR. ODRC devices based on nonlinear absorption

has an operation wavelength limited by material bandgap. For wavelengths above 2.2um,

nonlinear absorption will not be an option for compression due to the absence of TPA, and

only saturated amplification can be utilized [77].

Nonlinear refraction mechanisms form another approach for the experimental realization

of ODRC. In nonlinear materials, the large peaks produce changes in the refractive index

that lead to an intensity-dependent loss in the transmission [78, 79]. For example, a posi-

tive/negative lens generated by the strong inputs causes the beam to self-focus/self-defocus

and to be blocked by an aperture placed at the output [80]. This non-absorptive phenomenon

can realize compression with a large compression factor. It can be cascaded with the sat-

urated amplification and nonlinear absorption to construct versatile ODRC devices. The

proposed methods for the experimental realization of ODRC are compared in Table 3.1.

Table 3.1: Potential implementations of ODRC
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Figure 3.7: Various approaches for the experimental realization of ODRC.

3.4 Conclusion

We describe a new concept in optical signal processing that can improve the sensitivity and

dynamic range, and outline several methods for its experimental realization. The nonlinear

optical transformations utilized here increase the signal bandwidth, which is potentially an

undesired effect. Therefore, they should be utilized only when the system is dynamic-range-

limited and not bandwidth-limited. Time stretch techniques have been very successful in

overcoming the bandwidth limitation in optical data acquisition and have led to spectacular

successes in the discovery of new optical phenomena and creation of new class of biomedical

instruments with extreme throughput15. Combining time stretch with optical data com-

pression presents an intriguing area for research.
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Figure 3.8: ODRC with energy harvesting is realized in a forward-biased nano-scale silicon

waveguide with saturated Raman amplification. A tunable compression profile is achieved

by varying Raman pump intensity and forward bias. When forward bias increases from

0V to 0.7V and Raman pump is 0mW (line’s color varies from light green to dark green),

more free carriers generated from TPA can accumulate in the waveguide, resulting in a more

compressed output. When Raman pump increases from 15mW to 75mW and forward bias

is 0.7V (line’s color varies from yellow to red), gain depletes at weaker input. A sharp com-

pression profile is realized using large Raman pump and high forward bias. The compression

factor at 140mW input is 26 with 75mW Raman pump and 0.7V forward bias. (Waveguide

dimension: 220nm*450nm*1cm)

36



CHAPTER 4

Analog optical computing primitives in silicon

photonics

4.1 Introduction

With the proliferation of big data and the rapid increase in power dissipation of electronics,

there is renewed interest in the use of optics for computing. In contrast to the optical com-

puting efforts of the past, an all-optical computer may not be the most prudent goal [30,81].

Instead, a hybrid approach where optical systems are selectively applied to alleviate bot-

tlenecks and assist electronic processors is a more fruitful pursuit. The idea of optical

co-processors is proposed as hardware accelerators to take part of the processing burden

off of the electronic processors [3, 26, 29], as shown in Figure 4.1(a). Composed of carefully

designed photonics components, the optical co-processor performs a certain analog compu-

tational operation in real time on the input optical signal before it is acquired and digitized.

Among the analog-computing primitives, the logarithmic function is of importance and is

one of the most challenging operations to perform in optics. The logarithmic primitive has

broad applications, including the log-likelihood estimation for machine learning, recovery of

signal with multiplicative distortion, and the exponentiation operation (raising a variable to

given power). As illustrated in Figure 4.1(b), an optical implementation of the exponentia-

tion operation can be achieved by three sequential components: the logarithmic primitive,

the scaling primitive, and the natural exponentiation primitive. Apart from the logarithmic

primitive, the two remaining primitives can be emulated using commercially available optical

systems. For example, scaling can be achieved with variable optical attenuators or four-wave

mixing, while a Raman amplifier operating in the low depletion regime provides the natural
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exponentiation function with respect to the input intensity.

The lack of logarithmic dependence in conventional optical interactions renders the realiza-

tion of a logarithm computation block formidable. Logarithmic filtering was demonstrated in

literature using nonlinear photographic films [82] and hologram masks [83], but the cumber-

some free space setup and the complicated processing have limited its range of applicability.

In this paper, we show an approach to approximate the optical input-output relationship

Figure 4.1: (a) Optical co-processors that perform computational operations on optical input

signal can be placed before the optical-to-electrical conversion to take part of the processing

burden off of the electronic processors [4]. (b) As one of the building blocks of the optical

co-processors, the exponentiation operation is composed of the Logarithmic Primitive (Log),

the Scaling Primitive (Scale) and the Natural Exponentiation Primitive (Exp).

as a logarithmic function in a silicon waveguide via numerical studies. Silicon naturally

exhibits two-photon absorption (TPA) at telecommunication wavelengths. This nonlinear

absorption, which limits the signal’s output intensity and is normally deleterious [66,67,84],

becomes a fortuitous natural candidate to approximate the logarithm. In the presence of a

suitably wavelength-shifted pump source, stimulated Raman scattering amplifies the signal,

and it has such a strong effect that it caused this indirect band-gap material to lase for the

first time [64]. When the signal grows strong enough to deplete the pump source, the gain

saturates, leading to a second method to achieve logarithm-like behavior. Non-degenerate

TPA is also introduced to the system to shape the output curve. Using several effects simul-

taneously allows one to engineer their relative strengths, improving the dynamic range and

lowering the required signal intensity.
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4.2 Synthesis of optical logarithm in silicon photonics

For a quasi-continuous signal with wavelength below silicon band edge, two-photon absorp-

tion (TPA) and the induced free-carrier absorption (FCA) are the main sources of nonlinear

loss in silicon waveguides. The evolution of optical intensity along the waveguide is described

as [85]:
dIs
dz

= −αIs − βTPAI2
s − σ∆NIs (4.1)

where α is the linear loss coefficient, βTPA = 5 ∗ 10−12m/W is the TPA coefficient, which is

proportional to the imaginary part of third-order susceptibility, and σ = 1.45 ∗ 10−21m2 is

the cross section of free carrier absorption, at 1550 nm [85]. At steady state, the free carrier

density ∆N is represented by

∆N =
τβTPA
2hν0

I2
s (4.2)

where τ is the free carrier lifetime, and hν0 is the photon energy. The optical limiting

phenomenon is observed at high input intensity as a result of the dominant nonlinear loss [86].

Between the linear region and the saturation region, there exists a sublinear curve that

resembles a logarithmic function, as illustrated in Figure 4.2. The logarithmic region is

defined as the largest input intensity range whose output can be fit to a logarithmic function.

As a measurement for the fitting accuracy, two deviation calculation methods are employed.

To evaluate the average accuracy of the computing primitive, the normalized root-mean-

square error (NRMSE) should be no larger than 1% and is defined as

NRMSE =

√
< (Iout − Ifit)2 >

(Imax − Imin)
(4.3)

To ensure the accuracy of each single input value, the maximum error should be no larger

than 3.5% and is defined as

MaxError = max(
|Iout − Ifit|

Iout
) (4.4)

An example of waveguide with length Z = 2 cm, lifetime τ = 1 ns, and propagation loss
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Figure 4.2: Numerical demonstration of the logarithmic computing primitive in a silicon

waveguide. The signal undergoes degenerate two-photon absorption (TPA) and free-carrier

absorption (FCA). The output is fit to a logarithmic function over a 7 dB input range with

a normalized-mean-square error of 1.0% and the maximum error of 3.2%.

α=3 dB/cm is shown in Figure 4.2. The signal undergoes degenerate TPA and FCA and is

fit to a logarithmic function Ifit over the input intensity range 50MW/cm2 to 250MW/cm2,

resulting in 7 dB dynamic range. It is noted that it requires very high input power to reach

the logarithmic region. This results from the large ratio between the linear loss coefficient

and the nonlinear loss coefficient: the nonlinear term only comes into effect when input

intensity is above a certain region. A low propagation loss coefficient and a large free-carrier

lifetime would reduce this ratio and shift the logarithmic region to lower input intensity.

Unfortunately, a large free-carrier lifetime is not practical because it also reduces device’s

speed, while ultra-low linear absorption is limited by the fabrication technology. A practical

computing primitive thus would require larger logarithmic range, lower power, and more

flexibility.

Stimulated Raman Scattering offers optical gain in silicon without requiring phase match-

ing [87]. The saturation of Raman amplification provides the opportunity to reach the

logarithmic region with low input signal power. It also increases the dynamic range without

significantly increasing setup complexity.
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The Raman amplification in silicon along with nonlinear absorption can be modeled as [67]:
dIs
dz

= (−α + gRIR)Is − βTPA(Is + 2IR)Is − σ∆NIs

dIR
dz

= (−α− λs
λR
gRIR)Is − βTPA(IR + 2Is)IR − σ∆NIR

∆N = τcβTPA

2hν0
(I2
s + I2

R + 2IsIR)

(4.5)

where gR = 76cm/GW is Raman gain coefficient [8],and IR is the Raman pump intensity.

Without loss of generality, the wavelength dependence of the linear loss coefficient α, TPA

coefficient βTPA, and FCA coefficient σ are ignored.

At low input signal intensity, Raman pump source amplifies the output signal. The gain

becomes less significant when the input signal grows, as the pump source is depleted by

nonlinear absorption and amplification. Gain saturation modifies the input-output curve

and expands the logarithmic region. Although it has a similar system setup, the logarithmic

computing primitive functions fundamentally differently from a silicon Raman amplifier [67,

84]. In the later case, the signal intensity is significantly smaller than the pump. Under the

assumption of negligible pump depletion, the output signal increases linearly with the input.

In the logarithmic computing primitive case, both pump depletion and nonlinear absorption

modify the output signal to be a sublinear function of the input. And unlike the case in [84]

where picosecond pulse signals are considered, the proposed signal focused on quasi-steady

signal, where self-phase modulation and cross-phase modulation have minimum effect.

As shown in Figure 4.3, a 10.5 dB logarithmic region for signal input from 0.035MW/cm2

to 0.4MW/cm2 is achieved when the input Raman pump is 91MW/cm2. The introduction

of the amplification significantly reduces the power requirement on the signal power, and

also increases the logarithmic range.

A numerical sweep of the input pump intensity shows that at 48.5MW/cm2, the input

logarithmic range is further expanded to 17.5 dB, from 0.4MW/cm2 to 22.4MW/cm2, as

shown in Figure 4.4. The Raman pump expands device flexibility, allowing one to trade

between Raman pump intensity, signal intensity and logarithmic range. We also note that

scaling the signal intensity before or after the logarithmic step allows one to increase or

decrease the range of valid signal intensities (though we acknowledge that the dynamic

range remains at best unchanged).
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Figure 4.3: Similar to Figure 4.2, a simulation of the logarithmic computing primitive wherein

Raman amplification along with concomitant non-degenerate TPA is added to increase the

dynamic range and vastly reduce required signal intensity. The input Raman pump intensity

is 91MW/cm2. The output is fit to a logarithmic function over a 10.5 dB input range with

a normalized-mean-square error of 0.99% and the maximum error of 3.2%.

Figure 4.4: Simulation of the logarithmic computing primitive under the same conditions as

in Figure 4.3 (the signal undergoes saturated Raman amplification and non-degenerate TPA)

except that the input Raman pump intensity is lowered to 48.5MW/cm2. Reduced Raman

pump requirements and an increased logarithm dynamic range of 17.5 dB is gained at the

expense of higher required signal intensity. The normalized-mean-square error is 0.81% and

the maximum error is 3.4%.
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Figure 4.5: Synthesis of the logarithmic computing primitive with the nonlinear-absorp-

tion-enhanced Raman amplification. The input Raman pump is 56.1MW/cm2 and the

input non-degenerate TPA pump source is 50.1MW/cm2. The output is fit to a logarithmic

function over a 19.5 dB input range with a 0.99% normalized-mean-square error of 0.99%

and a 3.1% maximum error.

Although the use of a Raman pump can immensely reduce the required signal intensity (cf.

Figure 4.3 and 4.4), the output deviates from a logarithm at higher signal intensities. To

shape the curve at high input intensity, a new pump source IP is injected into the waveguide

to enhance the nonlinear absorption process through non-degenerate TPA with the signal

wave. The evolution of signal wave Is, Raman pump wave IR, and non-degenerate TPA

pump wave IP can be modeled as:

dIs
dz

= (−α + gRIR)Is − βTPA(Is + 2IR + 2IP )Is − σ∆NIs

dIR
dz

= (−α− λs
λR
gRIR)Is − βTPA(IR + 2Is + 2IP )IR − σ∆NIR

dIP
dz

= −αIP − βTPA(IP + 2Is + 2IR)IP − σ∆NIP

∆N = τcβTPA

2hν0
(I2
s + I2

R + I2
P + 2IsIR + 2IsIP + 2IRIP )

(4.6)

The non-degenerate TPA with the third beam IP suppresses the output signal as the input

increases, extending the logarithmic range at the high-input side. For input Raman pump

IR at 56.1MW/cm2 and the input non-degenerate TPA pump source IP at 50.1MW/cm2,

the logarithmic input range is enlarged to 19.5 dB, from 0.32MW/cm2 to 28.2MW/cm2, as

shown in Figure 4.5. Note that the optimized initial pump intensity varies with wavelength
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due to the nonlinear coefficient’s dependence.

4.3 Application to optical computing

Figure 4.6: The silicon photonic logarithm device can perform signal de-convolution. It can

be used to recover a signal of interest when it has been mixed (multiplied) by unwanted signal

of different frequencies. The Figure shows the composite signal (dashed red) consisting of a

single tone input mixed with two unwanted higher frequency tones. Linear filtering (dashed

dot black) is unable to recover the input. Logarithm followed by linear filter (and natural

exponentiation) is able to recover the input (solid blue). In both cases the linear filter is a

10th order Butterworth.

One important application of the silicon photonic logarithmic device is for recovery of a

signal of interest in the presence of multiplicative distortion [61]. This technique exploits the

fact that the logarithm of the product of two inputs is the sum of the logarithms of those

inputs. This allows ones to filter multiplicative noise by logarithmic filtering and conventional

linear time-invariant filtering. Figure 4.6 illustrates this application. As explained in the

caption, the logarithm device followed by a linear filter can de-convolve and recover the

signal from a mixed composite.

Compared to the synthesis of the logarithmic computing primitive, the scaling and the

natural exponentiation computing primitive are implemented in a more straightforward way.
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One way to perform the scaling function is to use a variable optical attenuator. A p-i-n

diode structure fabricated on Si waveguide attenuates the input optical beams as a function

of the current injection density [88,89].

Another way to implement the scaling primitive is to use the third-order parametric process.

The output wave at a new frequency wave ω4 is generated from the mixing of the input

waves at ω1,ω2, and ω3 as [90]:

dE4

dz
=
−α
2
E4 + i

2n2ω4

c
E1E2E

∗
3e
−i∆kz (4.7)

→ dI4

dz
= −αI4 +

2n2ω4

c2ε0n

√
I1I2I3I4sinφ (4.8)

where ε0 is the electric field amplitude, ∆k is the phase mismatch , sinφ = 1 for perfect phase

match, n is the refractive index and n2 is the nonlinear-index coefficient, which is proportional

to the real part of third-order susceptibility. Under the low depletion assumption and perfect

phase matching, (4.8) calculates the output intensity of I4 at distance l and the result scales

with the input signal I1(0), I2(0), I3(0):

I4(l) =
4n2

2ω
2
4

c4ε20n
2

(1− exp(−αl
2

))2

α2
I1(0)I2(0)I3(0) (4.9)

The natural exponentiation primitive can be realized with the Raman amplification process.

When the signal is significantly smaller than the pump source and the nonlinear absorption

is negligible, the output signal is solved as [20]:

Is(l) = Is(0) exp(−αl) exp(gRLeffIR(0)) (4.10)

where l is the length of the amplifier and Leff = (1− exp(−αl))/α is the effective length.

Exploiting the nonlinear optical properties native to silicon, we show an approach to create

a logarithmic analog co-processor in silicon photonics. By engineering the relative strength

of Raman amplification and nonlinear absorption, the sublinear relationship between signal

input and output is tuned to emulate a logarithmic function. The logarithmic computing

primitive, together with a scaling primitive and a natural exponentiation primitive, can be

used sequentially to realize the extremely nontrivial analog optical exponentiation operation.

45



REFERENCES

[1] B. Murmann. ADC Performance Survey 1997-2018.

[2] R H Walden. Analog-to-digital converter survey and analysis. IEEE Journal on Selected
Areas in Communications, 17(4):539–550, 1999.
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