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Abstract

Vision and Inertial Sensor Based Drive Trains Control

by

Haifei Cheng

Doctor of Philosophy in Engineering-Mechanical Engineering

University of California, Berkeley

Professor Masayoshi Tomizuka, Chair

This dissertation is mainly concerned with the motion control of robot manipulators
by utilizing vision and inertial sensors. It is separated into two parts: the first part
focuses on vision based online trajectory generation for contour following, and the
second part is about inertial and vision sensor based end-effector sensing and control
for robot manipulators.

Vision camera is a useful robotic sensor since it mimics human vision and allows
for non-contact measurements of the environment. Although there is a considerable
amount of research on how to include the vision information in the feedback loop
(visual servo), the first part of this dissertation will mainly focus on online refer-
ence trajectory generation based on vision sensor information. It is well known that
most commercially available vision sensors have a relatively low sampling rate and
unavoidable measurement delay due to exposure time, image transmission time and
processing time etc. A systematic scheme is proposed to overcome these problems in
the first part of this dissertation. The proposed scheme is different from pure visual
servo since the joint loop is closed by encoder signals in the inner feedback loop while
the vision information is used in the outer loop to generate the reference trajectory.
Experimental results of following a variety of contours at selected speeds are presented
to validate the effectiveness of the proposed reference trajectory generation scheme.

In the applications of industrial robot manipulators, it is often desirable to obtain
accurate end-effector position and velocity information. Estimation based on motor-
side encoders alone is often inaccurate due to joint flexibilities and kinematic errors of
robot links. A vision based approach may also be insufficient due to its low sampling
rate and large measurement delay. With the addition of acceleration measurements,
however, a multi-rate kinematic Kalman filter (KKF) with large measurement delay
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can be formulated to estimate the end-effector motion accurately without encoder sig-
nals. The estimates based on the proposed scheme are utilized as feedback signals for
real-time tracking control. The effectiveness of the proposed scheme is demonstrated
by experiments on a single joint setup and a two link manipulator.
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Chapter 1

Introduction

Mechanical systems with drive trains have many modern industrial applications. A
typical drive train in mechanical systems begins with an electrical motor and ends
with a link, which may be connected to another drive train or an end-effector. The ul-
timate goal for control engineers is to design high performance servo systems to control
drive trains in a cost-effective yet efficient manner. To achieve this goal, conventional
control engineers focus on how to design sophisticated control algorithms based on the
limited sensor information. However, as Micro-Electro-Mechanical Systems (MEMS)
technology continues to develop, more and more sensors such as accelerometer, gyro,
camera and sonar, become readily commercially available. Therefore, modern control
engineers more and more often focus on mechatronics approaches [1], which synerget-
ically integrate physical systems with information technology and complex-decision
making in the design, manufacturing and operation of industrial products and pro-
cesses.

This dissertation concerns with two interrelated aspects of the mechatronics ap-
proaches to improve the tracking performance of servo system with drive trains. The
first part of the dissertation presents an online reference trajectory generation scheme
for contour following based on vision sensor information. The second part of the
dissertation addresses the inertial and vision sensor based end-effector sensing and
control for robot manipulators.



2

1.1 Background and Related Works

1.1.1 Vision Guided Contour Following

Since vision sensors are able to provide a vast amount of information regarding a
robot’s operating environment, they are essential for robots which are working in
unconstructed environments. Even for constructed environments, vision sensors are
able to give the flexibility and freedom of creating working environments. Therefore,
a considerable amount of research has been carried out to develop vision based robot
control systems.

The first vision based robot control system can be dated back to early 1970s [2]. It
completed the task of putting a square prism block into a square box with 5 mm
clearance. Since then, the development of vision based control has been fairly slow
because of the specialized and expensive hardware associated with vision sensing.
However, as computer power and CCD/CMOS technology improve, more and more
published research can be found in the vision based control area. A comprehensive
review on vision based robot control can be found in [3].

There is a part of vision based control area called visual servo. This term was intro-
duced by Hill and Park in 1979 [4] to distinguish from their earlier approach where
the system alternated between taking pictures and moving. The task in visual servo
is to control the pose of the robot’s end-effector by using visual information. It is a
fusion of many related areas, such as image processing, real-time computing, robot
kinematics, mechanical dynamics and control theory. Visual servo is different from
using vision in hierarchical task level control because it actively controls a robot to
manipulate its environment rather than just observing the environment [5].

As mentioned in [6], the “low sampling rate” and “noticeable lag” are major obsta-
cles for most of vision sensors. Although there exist high speed vision systems [7],
such systems are usually too large and too expensive for industrial applications. The
drawbacks of vision sensors make it difficult to stabilize a visual servo system. How-
ever, for robot manipulators, it is not necessary to completely rely on vision sensors
in feedback control since they also have encoders for accurate position sensing. As an
alternative approach, the vision sensor can also be utilized to generate the reference
trajectory instead of providing feedback signals for control. The vision sensor is not
in the innermost joint loop, and it is not a direct visual servo system. This scheme
is similar to the dynamic look-and-move systems based on the taxonomy introduced
by [8].

Several authors have developed various schemes for vision based trajectory genera-
tion. Namiki [9] and Rouleau [10] among others primarily focused on catching or
grasping a moving object. Feddema [11] considered generating a smooth trajectory
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between actual image features and desired image features for parts placement. For
contour following, visual servo in task space was investigated in [12, 13]. Although
six degrees of freedom robot path generation method was presented in [14] based on
fusing measurements from vision, force and position sensors, they did not mention
how to handle the low sampling rate and the large measurement delay introduced by
the camera.

The first part of the dissertation concentrates on how to explore image information
to generate reference trajectory for joint level controllers [15, 16]. Chapter 3 proposes
an online real-time reference trajectory generation scheme based on images obtained
from a camera. Since the reference trajectory is generated in task space, the trajec-
tory conversion from task space to joint space by using manipulator Jacobian is also
discussed. Chapter 4 evaluates the performance of the proposed scheme by controlling
the two link manipulator with generated trajectories to follow straight line, circular
arc and rounded square contours.

1.1.2 Multi-Sensor Based End-effector Sensing and Control

Most industrial robot applications require a robot end-effector to either follow a de-
sired trajectory (tracking) or move to a desired point (regulation) with high speed
and accuracy. Precise position and velocity information of the end-effector is essential
for achieving this goal. Current servo system configurations, however, impose several
limitations to achieve this goal. Industrial robots usually have gear mechanisms with
a high reduction ratio to increase joint torques. This configuration consequently intro-
duces joint flexibilities to industrial robots. In most cases, only motor side encoders
are available and the exact load side information cannot be measured. A robot model
can be used to estimate the load side information from the motor side measurements.
The performance of this approach, however, is directly related to the accuracy of the
model. Unmodeled dynamics, such as kinematic error in the robot links and joint
flexibilities, can severely degrade the performance of this approach.

The idea of employing sensors mounted on the end-effector to improve estimation
performance was first proposed over twenty years ago [17]. Although this approach
has not yet been widely adapted by industry, a considerable amount of research has
been carried out in this area [18, 19, 20, 21, 22]. A vision sensor is often considered
as a suitable choice for this purpose [23, 24, 25, 26, 27, 28]. But its low sampling rate
and high latency makes it very difficult to directly incorporate it into a control loop,
which usually runs at a much higher sampling rate. Alternatively, inexpensive sensors
such as accelerometers and gyros can be utilized to improve the load side estimation
performance. These sensor measurements, however, are usually contaminated by
noise. Hence it is not obvious as to how to utilize these sensors.
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Among different end-effector sensing techniques, the kinematic Kalman Filter (KKF)
is one of the most well developed one. The main idea of the KKF is to apply Kalman
filter to a kinematic model and estimate velocity based on position and acceleration
measurements.

The idea of employing kinematic model to estimate position and velocity was first
proposed by Friedland [29] in 1973. Instead of using an accelerometer, he assumed
that the acceleration was a random constant between successive observations. The
random constant was assumed to have zero mean and to be uncorrelated with the
acceleration at other intervals. He showed that the position errors in a sampled data
system can be kept below the inherent sensor errors if the sampling period was below
a certain value which related to position and acceleration noise covariances.

KKF that incorporates accelerometer measurements was first proposed by Shim et
al. [19] for a linear motor system. The accelerometer and the encoder measure-
ments were integrated for the velocity estimation. It was experimentally verified that
KKF produced smoother estimate with less delay than the estimate obtained by a
low pass filtered finite difference approach. They also showed that KKF estimate
produced very smooth control actions, which may prolong the life of linear motors.
This idea was further extended by Lee and Tomizuka [18] to a multi-rate system,
where the sampling rates of the encoder and the accelerometer are different. They
demonstrated that the multi-rate KKF performed better than the single-rate KKF.
As sensor technology improves, fast sampling rate cameras are frequently utilized in
industry for motion detection. Soo et al. formulated a multi-dimensional KKF by
combining camera, accelerometer and gyroscope measurements to recover the inter-
sample values, compensate for the measurement delay of the camera, and provide the
state estimate of the end-effector fast and accurately [20]. The derivation in [20] is
for three-dimensional case, but they only did experiments for two-dimensional case
to validate the effectiveness of their algorithm. The algorithm is not simple and its
real-time implementation is not straightforward.

Although there has been a considerable amount of research about KKF, they mainly
concerned with integrating different kinds of sensor measurements to estimate the
motion of the end-effector. None of them, however, discussed the closed loop stability
of the system which included KKF estimate as feedback signals.

The second part of the dissertation presents a simple yet effective motion estimation
scheme for the end-effector based on inertial and vision sensors. It focuses on how to
identify the covariance ratio of process noise and measurement noise and how to han-
dle the sensors with different sampling rates and large measurement delay [30]. More
specifically, open loop frequency responses are measured for the ratio identification.
A lifting technique is applied to address the multi-rate problem while a state augmen-
tation technique is used to account for the measurement delay. These techniques will
be formulated for one-dimensional case and two-dimensional case separately. More
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importantly, the closed loop stability of the KKF feedback system is analyzed and
the experimental results of the KKF feedback system are discussed.
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1.2 Dissertation Contributions

This dissertation makes several contributions in terms of vision based contour follow-
ing and multi-sensor based end-effector sensing and control for robot manipulators.

• Real-time online trajectory generation for a two link manipulator:
This dissertation proposes an online reference trajectory generation scheme for
a two link manipulator based on the images captured by a camera. The reference
trajectory is utilized for contour following control. The contours to be followed
are approximated either as a straight line or as a circular arc. The reference
trajectories are first generated in task space, and then converted to joint space
by the manipulator Jacobian for independent joint loop control. Experimental
contour tracking results are presented.

• Inertia and vision sensor based end-effector sensing and control: This
dissertation proves that the steady state gain of the kinematic Kalman filter de-
pends only on the covariance ratio of process noise and measurement noise. The
process of identifying the proper covariance ratio from the open loop frequency
responses is also addressed. A multi-rate motion estimation and control scheme
for a single joint setup and a two link manipulator based on the kinematic
Kalman filter is proposed. For the single joint setup, the scheme assumes that
the encoder has a low sampling rate and a large measurement delay to better
mimic the sensing capabilities of vision sensors. For the two link manipulator,
the position measurement is from a real vision sensor. The effectiveness of the
proposed scheme is validated by experiments on the single joint setup and the
two link manipulator respectively.
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1.3 Dissertation Overview

The remainder of the dissertation is organized as follows:

Chapter 2 introduces a single joint setup and a two link manipulator. More specif-
ically, system identification and friction identification are performed for the single
joint setup and system dynamics are given for the two link manipulator.

Chapter 3 proposes an online real-time reference trajectory generation scheme based
on images obtained from a camera. Since the reference trajectory is generated in task
space, the conversion from task space to joint space by manipulator Jacobian is also
addressed.

Chapter 4 evaluates the effectiveness of the proposed trajectory generation scheme
by using a two link manipulator to follow different shapes of contours at selected
speeds.

Chapter 5 introduces the kinematic Kalman filter and its design. The open loop
frequency responses with different noise covariance ratios are measured. The relation
of sensor noise covariance ratio to the steady state Kalman filter gain is also discussed.

Chapter 6 presents an end-effector motion estimation scheme based on the mea-
surements of a camera and an accelerometer. Due to the natural drawbacks of the
two sensors, a multi-rate kinematic Kalman filter with a large measurement delay is
formulated. The proposed scheme is validated on both the single joint setup and the
two link manipulator.

Chapter 7 gives the tracking performances of KKF feedback system for both the
single joint setup and the two link manipulator. The tracking performance is evalu-
ated by using encoder feedback as a standard benchmark. The closed loop stability
of KKF feedback system is also discussed.

Chapter 8 summarizes the dissertation and mention some potential areas of future
research.
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Chapter 2

NSK Direct Drive Manipulators

In this chapter, a single joint setup and a two link manipulator are introduced. For
the single joint setup, an open loop frequency response is measured and it is fitted to
a first order model. The friction of the single joint setup is identified by measuring
motor torques at different angular velocities. For the two link manipulator, a dynamic
model is given and its parameters are lumped into three constants.

2.1 Introduction

Over the years, robot manipulators have been widely used for various industrial ap-
plications, such as assembling, packaging, painting, welding, and so forth. They have
been recognized as an integral part of automation since 1960[31]. Industrial robots
usually consist of multiple drive trains. A typical drive train begins with an electri-
cal motor and ends with a link, which may be connected to another drive train or
end-effector. The attached end-effector varies depending on the robot’s applications.
For assembly machines, the end-effector can potentially be grippers or welding guns.
Industrial robot applications usually require the robot end-effector either to follow
a desired trajectory (tracking) or to move to a desired point (regulation) with high
speed and accuracy.

The drive trains in the robot manipulators can be classified into two categories: direct
drive and indirect drive. In direct drive trains, motor shafts are directly connected to
links. The motor in direct drive trains usually has high torque capacity in order to
drive the link directly. On the other hand, in indirect drive trains, motor shafts and
links are connected via gear mechanisms. Due to the joint compliance that results
from the gear mechanism, the indirect drive train has two types of performances:
motor side and load side. To control the end-effector, the load side information is
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essential. However, it is difficult to estimate the load side information accurately from
the motor encoder because of kinematic errors of the links, joint flexibility of gear
mechanisms and so on.

This dissertation will focus on using sensors mounted on the end-effector to estimate
the load side information. The performance of this estimation will be evaluated based
on the actual load side information. Since the actual load side information is difficult
to obtain for indirect drives without the use of specific experimental hardware, this
dissertation will utilize a direct drive mechanism to simplify the task of obtaining
accurate load side information.

2.2 Single Joint Setup

Figure 2.1: Single joint setup

Figure 2.1 shows a single joint direct drive setup. The motor model for this setup is
PS3015, which is provided by NSK Ltd. The motor parameters are given in Table 2.1.
The encoder resolution may vary depending on the maximum rotational speed. There
are inertial and vision sensors installed at the center point of the end-effector.

Table 2.1: Parameters of the motor for single joint setup

Property Value Unit
Motor outer diameter 150 mm
Maximum output torque 15 N.m
Maximum rotational speed 1 rev/s
Encoder resolution 3,125,000 count/rev
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2.2.1 System Identification

System identification is essential for model based control. Among all the system
identification techniques, a sine by sine test is a conceptually simple and effective ap-
proach. This technique has been extensively employed in industry to obtain accurate
plant models.

If the input is torque and the output is angular velocity, the transfer function of the
single joint setup can be written as

P (s) =
b

s + a
(2.1)

where a,b are constants to be identified.

Since Coulomb friction effects are not considered in the linear transfer function (2.1),
to neglect the effect of Coulomb friction in experiment, the motor has to provide a
considerably large torque to overcome Coulomb friction effects. This implies that the
motor cannot be run at low speeds for the system identification.

Because the cut-off frequency of the single joint setup is very low, the setup has to
run in a very low frequency range to ensure that the cut-off frequency appears in the
frequency response if open loop system identification is utilized. It means that the
period of the sinusoidal input for that range is very long, and the motor has to travel
at a high speed, which may be dangerous. To overcome the drawback of the open
loop system identification, a closed loop control system with a proportional gain K
is utilized for the system identification as shown in Figure 2.2.

Figure 2.2: Block diagram of closed loop system identification

In Figure 2.2, θ is the joint angle, ωr is the reference angular velocity and ω is the
measured angular velocity. The transfer function from ωr(s) to ω(s) is

ω(s)

ωr(s)
=

Kb

s + a + Kb
. (2.2)

By increasing K, the bandwidth of the closed loop system is increased.
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Figure 2.3: Frequency response of single joint setup
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Figure 2.4: Frequency response of single joint setup after delay compensation
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Figure 2.5: Least square curve fitting for frequency response

Figure 2.3 shows the closed loop frequency response of the single joint setup. Here
the proportional gain is K = 5000. From Figure 2.3 we can see that the bandwidth
of the closed loop system is about 1 Hz. The closed loop system is still a first order
system, and the phase should be within -90 degree. However, we can see that the
phase drops beyond -90 degree for frequencies higher than 10 Hz. Actually, if the
frequency axis for the plot is in a linear scale instead of a logarithmic scale, it can be
seen that the phase drops linearly as frequency increases. It means that the closed
loop system has a noticeable delay.

Based on the frequency response in high frequency range, the delay time is estimated
to be 3.6 ms by a least square curve fit. Figure 2.4 shows the frequency response of
the single joint setup after delay compensation.

The frequency response showed in Figure 2.4 is fitted to a first order model by the
least square method. Figure 2.5 shows the curve fitting result. The magnitude of the
frequency response matches the first order model perfectly below 100 Hz. Although
the phase of the frequency response does not match the first order model very well,
it is still acceptable.

Two constants in the plant model (2.2) are identified by the curve fitting. Table 2.2
shows the identified parameters of the plant model.
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Table 2.2: Coefficients of the transfer function for single joint setup

Constant Value
a 2.20
b 0.0011

2.2.2 Friction Identification

Friction is presented in all kinds of mechanical systems as long as they have relative
moving parts. It is highly nonlinear and may result in steady state errors, limit
cycles, and poor performances [32, 33]. Figure 2.6 shows the experimental results of
the motor torques for different rotary speeds of the single joint setup. The data were
collected for a low velocity range, i.e. ±2 rad/s, by controlling the motor velocity
with a PID (proportional plus integral plus derivative) controller. For reference speeds
larger than 0.4 rad/s, the sampling interval is 0.1 rad/s. Since the friction will show
certain effects in the low speed range, it is reasonable to reduce the sampling interval
to 0.03 rad/s for reference speeds between −0.4 rad/s and +0.4 rad/s. Motor torques
are obtained by taking average of the motor commands for each reference speed.
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Figure 2.6: Friction for the single joint setup

The curve in Figure 2.6 shows that the setup has static, Coulomb, viscous, and
Stribeck friction effects. It can be well fitted by
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f(θ̇) =





(
fc + (fs − fc)e

−θ̇2/c2
)

sgn(θ̇) + bθ̇ if θ̇ 6= 0

u if θ̇ = 0 and |u| < fs

fssgn(u) otherwise

. (2.3)

Friction parameters fc, fs, b and c can be identified from Figure 2.6. More specifically,
the data where the Stribeck effect does not show up, i.e. |θ̇| > 0.4 rad/s, were utilized
to identify fc and b by a least square curve fit. fs and c can be identified by the data
in the relative low speed range, i.e. |θ̇| < 0.4 rad/s. Estimated friction parameters
are given in Table 2.3.

Table 2.3: Friction parameters for single joint setup

Parameter Value Unit
fc 0.265 N.m
fs 0.30 N.m
b 0.05 N.m.s/rad
c 0.11 rad/s

2.3 Two Link Manipulator

Figure 2.7 shows a two link direct drive manipulator. If the first motor and the first
link of the manipulator are disassembled, it essentially becomes the single joint setup
presented in the previous section. The model of the first motor is PS3090, which is
also provided by NSK Ltd. The only difference between PS3090 motor and PS3015
motor is the maximum output torque. The parameters for PS3090 motor are shown
in Table 2.4.

Table 2.4: Parameters of the first motor for two link manipulator

Property Value Unit
Motor outer diameter 150 mm
Maximum output torque 90 N.m
Maximum rotational speed 1 rev/s
Encoder resolution 3,125,000 count/rev
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Figure 2.7: Two link manipulator

2.3.1 Manipulator Dynamics

The dynamic mode of the two link manipulator can be described by

d

dt
q(t) = w(t) (2.4a)

M(q)
d

dt
w(t) = τ(t)− C(q, w) (2.4b)

where q is a 2 × 1 vector of joint angular positions; w is a 2 × 1 vector of joint
angular velocities; M(q) is a 2× 2 symmetric and positive definite matrix(also called
generalized inertia matrix); τ(t) is a 2×1 vector of joint torques supplied by actuators;
C(q, w) is a 2×1 vector of Coriolis and centrifugal forces. Since the manipulator moves
only in a horizontal plane, there is no gravity term in the model. The friction term
is neglected in the model because it is very small.

M(q) and C(q, w) can be expressed as functions of joint angles, joint angular velocities
and lumped constant parameters [34]:

M(q) =

[
Θ1 + 2Θ3 cos(q2) Θ2 + Θ3 cos(q2)
Θ2 + Θ3 cos(q2) Θ2

]
(2.5a)

C(q, w) =

[ −2w1w2 + w2
2

w2
1

]
Θ3 sin(q2) (2.5b)

where

Θ1 = I1 + I2 + (0.25m1 + m2)l
2
1 + 0.25m2l

2
2 + M2l

2
1 + M3(l

2
1 + l22) (2.6a)

Θ2 = I2 + 0.25m2l
2
2 + M3l

2
2 (2.6b)

Θ3 = 0.5m2l1l2 + M3l1l2. (2.6c)
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The lumped constant parameters Θ1, Θ2 and Θ3 are functions of the two link ma-
nipulator physical parameters as shown in (2.6). Since the moments of inertia of two
motor rotors are very small compared with link inertias, it is reasonable to neglect
them in (2.5). The mass center points for two links are assumed in the middle of each
link for simplicity.

The physical parameters of the two link manipulator are shown in Table 2.5.

Table 2.5: Parameters of the two link manipulator

Notation Description Value Unit
I1 Moments of inertia of the first link 0.123 Kg.m2

I2 Moments of inertia of the second link 0.028 Kg.m2

l1 Length of the first link 0.32 m
l2 Length of the second link 0.215 m
m1 Mass of the first link 6.83 Kg
m2 Mass of the second link 3.29 Kg
M2 Mass of the second motor 5.56 Kg
M3 Mass of the end-effector 1.05 Kg
Kt1 Torque constant of the first motor 22.36 N.m/V
Kt2 Torque constant of the second motor 2.42 N.m/V

2.4 Summary

In this chapter, two setups were introduced. For the single joint setup, system iden-
tification by measuring the closed loop frequency response was performed. Based on
the frequency response, we found that the closed loop system has a noticeable delay.
After delay compensation, a first order plant model was identified for the single joint
setup. For this setup, friction identification was also performed by measuring the
motor torque at different angular velocities. Based on the velocity-torque plot, the
parameters of a friction model were identified. For the two link robot manipulator,
the system dynamics was introduced and its associated parameters were given in a
table. This information is utilized later in the dissertation when performing model
based control.



17

Part I

Vision Guided Contour Following
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Chapter 3

Trajectory Generation Based on
Image Information

In this chapter, a reference trajectory generation scheme based on the image obtained
from a camera is introduced. Since the field of view (FOV) of the camera is very small,
the contour to be followed is approximated as either a straight line or a circular arc.
For each case, reference trajectories are generated in task space. In order to control
a two link manipulator, the reference trajectory is converted from task space to joint
space. A method to achieve this is presented in the last section of this chapter.

3.1 Introduction

Since vision sensors are able to acquire a large amount of information about the
environment where robots operate, a considerable amount of research has been carried
out on vision based control. Visual servo, where vision sensors provide closed loop
position control for a robot end-effector, has been studied. A comprehensive review
on visual servo can be found in [5]. A more recent review which focuses on vision
based control of robot manipulators can be found in [3].

As we all know, low sampling rate and large measurement delay are major obstacles
for most commercially available vision sensors. For robot manipulators, however, it
is not necessary to totally rely on vision sensors in feedback control since they have
accurate position measurements provided by encoders.

In the following two chapters, we propose a scheme that the vision sensor is utilized
to generate the reference trajectory for the position feedback loop to achieve high
accuracy contour following, and the joint loop is closed by encoder signals. The block
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diagram of the scheme is shown in Figure 3.1. The vision sensor measurement is
utilized for reference trajectory generation only. The two link manipulator is con-
trolled by a joint loop controller based on the reference trajectory and the encoder
measurement. Since the vision sensor is not in the innermost joint loop, it is not a
direct visual servo. This scheme is similar to the dynamic look-and-move systems
based on the taxonomy introduced by [8].

Figure 3.1: Block diagram of vision guided tracking

The formulation of the proposed scheme is based on a two link manipulator. The
system configuration is shown in Figure 3.2. The rectangle on the end-effector of
the two link manipulator represents the FOV of the camera. The rounded rectangle
represents a contour. There are two planes in the figure, one is image plane, shown
by x − y, which has a left-handed coordinate system for consistency with the pixel
information obtained from image processing. The other is task plane, shown by X−Y .

X

Y

q1

q2

x

y

0.32 m

0
.2

1
5

 m

Figure 3.2: System configuration for contour following

Let (xo, yo) be the center of the FOV of the camera in the task plane X − Y . The
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robot forward kinematics is given by
[

xo

yo

]
=

[
f1(q1, q2)
f2(q1, q2)

]
(3.1)

where

f1(q1, q2) = l1 cos(q1) + l2 cos(q1 + q2)

f2(q1, q2) = l1 sin(q1) + l2 sin(q1 + q2)

where q1 and q2 are joint angles, and l1 and l2 are lengths of the first link and the
second link respectively.

3.2 Trajectory Generation in Task Space

Time axis

Camera sampling time

ti

Joint sampling time tjtj¡1 tj+1

ti¡1ti¡2

Figure 3.3: Time axis for trajectory generation

As shown in Figure 3.3, the joint sampling time is denoted by tj and the camera
sampling time is denoted by ti. The joint sampling period ∆tJ = tj − tj−1 is usually
much shorter than the camera sampling period ∆tC = ti− ti−1. The sampling period
ratio, ∆tC/∆tJ , is assumed to be N . Furthermore, it is assumed that at time tj,
the image information at the most recent camera sampling time ti is not available
due to the measurement delay. Therefore, the image information at time ti−1 is
utilized to generate the reference trajectory for joint sampling time tj. Once the
image information at time ti is available, it will be utilized for generating reference
trajectories for future joint sampling times.

For high precision motion control, the FOV of a camera has to be very small due
to the limited resolution of the image sensor in the camera. The small FOV of the
camera and the image delay put a limit on contour tracking speed. The robot cannot
move very fast because of the camera delay. Otherwise it may move out of an image
when the image information is available. The desired tracking speed V , short side
length of the FOV of the camera L, camera sampling period T and delay D have to
satisfy the following condition,

V · (T + D) <
L

2
. (3.2)
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Since the FOV of the camera is very small, it is reasonable to assume that there is no
sharp corner. The contour in the FOV of the camera can be approximated as either
a straight line or an circular arc based on its curvature. The reference trajectory
generation in the task plane is discussed for each type of approximation.

3.2.1 Straight Line Trajectory Generation

For the straight line contour, the partial contour to be followed in the FOV of the
camera is shown in Figure 3.4. The dashed rectangle represents the FOV of the
camera. The origin, O, the two axes, x and y, of the image plane are defined in the

figure. The image feature,
−→
OC, is defined as the vector starting from the origin O

and pointing perpendicularly to the contour AB. The magnitude of the image feature−→
OC in task plane is the tracking error.

A

B

O

C

D

¡!v

x

y

Figure 3.4: Schematic of trajectory generation for straight line contour

Note that the coordinates of A(xA, yA), B(xB, yB) can be directly obtained from

image processing. By analytic plane geometry knowledge, the image feature
−→
OCi in

image plane can be expressed as

−→
OCi =

xByA − yBxA

(xB − xA)2 + (yB − yA)2

[ −(yB − yA)
(xB − xA)

]
(3.3)

where subscript i means that the vector is in the image plane.

Once the corresponding image feature in the image plane
−→
OCi is known, the image

feature in the task plane can be obtained by
−→
OC = kR(q)

−→
OCi (3.4)

where k ∈ R is a scaling factor from the image plane to the task plane, R(q) ∈ R2×2

is a rotation and flipping matrix given by

R(q) =

[ − cos(q1 + q2) − sin(q1 + q2)
− sin(q1 + q2) cos(q1 + q2)

]
(3.5)
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where q1 and q2 are joint angles of the first link and the second link respectively.

For straight line tracking, the reference velocity in the task plane is a constant within
one camera sampling period. It can be written as

−→v r = V ·R(q)

−→
AB

|AB| (3.6)

where V ∈ R is the desired tracking speed, |AB| is Euclidean norm of
−→
AB.

The schematic of trajectory generation for straight line contours is shown in Fig-

ure 3.4. The end-effector position is located at the origin O at time ti−1.
−→
OC is the

image feature. D is the desired end-effector position for time tj = ti + l ·∆tJ , where
l = 0, · · · , N − 1. Therefore,

−−→
CD = −→v r(∆tC + l ·∆tJ), l = 0, · · · , N − 1. (3.7)

−−→
OD is the vector which will be utilized to generate reference positions for successive
joint sampling times, and it can be obtained by

−−→
OD =

−→
OC +

−−→
CD. (3.8)

For the straight line contour following, the reference acceleration in task plane is zero,
i.e. −→a r = 0. (3.9)

3.2.2 Circular Arc Trajectory Generation

For the contour in the FOV of a camera that can be approximated as a circular
arc, the circle center point coordinates and the radius are essential information for
trajectory generation. This information can be obtained by curve fitting on a group
of sample points on the circular arc. The curve fitting can be formulated as a least
square problem.

The standard equation for a circle is

(x− xC)2 + (y − yC)2 = r2 (3.10)

where (xC , yC) is the center, r is the radius. It can be represented as

x2 + y2 + ax + by + c = 0 (3.11)

where a = −2xC , b = −2yC and c = x2
C + y2

C − r2.
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For a group of sample points (x1, y1),(x2, y2),· · · ,(xn, yn) the observation model is



x2
1 + y2

1

x2
2 + y2

2
...

x2
n + y2

n




︸ ︷︷ ︸
Y

=




−x1 −y1 −1
−x2 −y2 −1

...
...

...
−xn −yn −1




︸ ︷︷ ︸
M




a
b
c




︸ ︷︷ ︸
θ

+




ε1

ε2
...
εn




︸ ︷︷ ︸
e

(3.12)

which can be written as
Y = M · θ + e. (3.13)

The least square estimation for θ is

θ̂LS = (MT M)−1MT Y. (3.14)

Therefore, the estimated circle center coordinates and radius are

x̂C = −â/2 (3.15a)

ŷC = −b̂/2 (3.15b)

r̂ =
√

x̂2
C + ŷ2

C − ĉ. (3.15c)

C

O

B

A
D

α

¡!v

x

y

Figure 3.5: Schematic of trajectory generation for circular arc contour

The schematic of trajectory generation for the circular arc is shown in Figure 3.5.

The image feature
−→
OC is defined as the vector originating at origin O and ending at

the circle center point. The tracking error is defined as the difference between the
circle radius and magnitude of the image feature in the task plane.

Suppose an image is taken at time ti−1 and we want to generate reference trajectory

for time tj. D is the desired end-effector position for time tj. The angle from
−→
CO to−−→

CD is α, which can be obtained by

α =
V

r
(∆tC + l ·∆tJ), l = 0, · · · , N − 1. (3.16)
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−−→
CD can be written as

−−→
CD = −r

[
cos α − sin α
sin α cos α

] −→
OC

|OC| . (3.17)

−−→
OD is the vector which will be utilized to generate reference positions for following
successive joint sampling times, and it can be obtained by

−−→
OD =

−→
OC +

−−→
CD. (3.18)

The reference velocity and acceleration for time tj in the task plane are given by

−→v r(tj) =
V

r

[
0 −1
1 0

]−−→
CD (3.19a)

−→a r(tj) = −V 2

r2

−−→
CD. (3.19b)

3.3 Trajectory Generation in Joint Space

In the previous section, the reference trajectory was generated in the task plane. For
joint level control, it has to be converted to the joint space for independent joint loop
control. Suppose that Jf (q) is the two link manipulator Jacobian,

Jf (q) =

[ ∂
∂q1

f1(q1, q2)
∂

∂q2
f1(q1, q2)

∂
∂q1

f2(q1, q2)
∂

∂q2
f2(q1, q2)

]
(3.20)

which can also be expressed as

Jf (q) =

[ −l1 sin(q1)− l2 sin(q1 + q2) −l2 sin(q1 + q2)
l1 cos(q1) + l2 cos(q1 + q2) l2 cos(q1 + q2)

]
. (3.21)

The manipulator Jacobian Jf (q) is essential for trajectory conversion. It is easy to
check that Jf (q) is singular if and only if q2 = nπ, n ∈ N, If the contour is within
the reachable area of the robot arm, the reference joint angle and angular velocity for
time tj are given by

qr(tj) = q(ti−1) + J−1
f (q(ti−1)) · −−→OD (3.22a)

q̇r(tj) = J−1
f (q(tj)) · −→v r(tj). (3.22b)

In order to avoid taking derivative of the inverse manipulator Jacobian, which requires
a considerable amount of computation, the reference joint angular acceleration is
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calculated by using qr(tj) and q̇r(tj). By taking derivative of −→v r(tj) = Jf (q(tj))q̇r(tj),
we can get −→a r(tj) = J̇f (q(tj))q̇r(tj) + Jf (q(tj))q̈r(tj). (3.23)

Therefore, the reference joint angular acceleration is given by

q̈r(tj) = J−1
f (q(tj))(

−→a r(tj)− J̇f (q(tj))q̇r(tj)). (3.24)

3.4 Summary

This chapter proposed a reference trajectory generation scheme by utilizing informa-
tion from joint encoders and a vision camera. Since the FOV of the camera was very
small, the contours to be followed were either approximated as a straight line or as
a circular arc. Based on different approximations, the reference trajectory was first
generated in the task space, then it was converted to the joint space by using the
manipulator Jacobian. Due to different sampling rates of the joint loop controller
and the camera, one image was utilized to generate reference trajectories for several
joint sampling times. An important characteristic of the proposed scheme was that it
allowed the vision sensor input at any time. Although the formulation of the scheme
was for two dimensional contour following, it can be easily extended to three dimen-
sional case. In the next chapter, we will present real-time implementations of the
proposed scheme on the two link manipulator.
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Chapter 4

Contour Following Based on
Generated Trajectory

In this chapter, experimental results for following different shape contours based on
the trajectory generated in the previous chapter are discussed. Since experiments are
performed on a two link manipulator, a model based independent joint loop control
scheme for the two link manipulator is presented and the experimental setups are
introduced.

4.1 Introduction

Contour following has a broad range of industrial applications such as welding, metal
cutting, painting, and inspection and so on. A traditional approach for such appli-
cations is generating reference trajectories for robot joints offline based on contour
information, which is assumed to be known in advance. The obvious disadvantage
of this approach is the assumption. In practical applications, more often than not,
the contour to be followed is known only approximately because it depends on the
positioning and orientation errors of parts, among other factors.

With the help of a vision camera, a robot manipulator can obtain position information
regarding the contour in real time. Therefore, it is not necessary to know the absolute
position of the contour in advance.

In the previous chapter, we proposed a reference trajectory generation scheme for
robot manipulators based on contour information captured by a camera. This chap-
ter presents experimental results of controlling the two link manipulator to follow
contours in real-time by the generated reference trajectory.



27

4.2 Joint Space Control

The block diagram of vision guided tracking is shown in Figure 3.1. Based on the
reference trajectories generated in joint space (Chapter 3), the two link manipulator
is controlled by a joint level controller as shown in Figure 4.1.

Kd

R̂¡1

q̇r

q̈r

qr

R
q

q̇

Kp+Ki
1
s

Figure 4.1: Joint loop controller for two link manipulator

Joint level control is based on a feedforward controller plus a PD controller [35]. A
weak integral controller (i.e. a small I-gain) is added to the controller to minimize the
tracking error caused by Coulomb friction. As shown in Figure 4.1, R is the two link
manipulator dynamics. R̂−1 is the identified model of inverse two link manipulator
dynamics. Kp and Kd are proportional and derivative gains respectively. The ref-
erence acceleration is utilized for feedforward control while the reference joint angle
and angular velocity are utilized for both feedforward and feedback control.

The control law is given by

τ = R̂−1(qr, q̇r, q̈r) + Kp(qr − q)

+ Ki

∫
(qr − q)dt + Kd(q̇r − q̇). (4.1)

4.3 Experimental Setup

To show the effectiveness of the proposed trajectory generation scheme presented in
the previous chapter, experiments were performed on a two link direct drive ma-
nipulator. Figure 4.2 shows the experimental setup. A CMOS camera (Photonfocus
CMOS monochrome camera model MV-D640(c)) of focal length f = 6 cm is mounted
on the end-effector of the two link manipulator. Full 640×480-pixel images can be
acquired at frame rate 100 Hz under external trigger condition, and each pixel is
quantized into 256 gray levels. The model of the lens is Edmund VZM 300. The FOV
of the camera is 8 mm×6 mm when the magnification is 0.75X. The data and images
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Figure 4.2: Experimental setup for contour following

were collected by the National Instruments data acquisition board PCI-7831R and
image acquisition board PCIe-1429, respectively. The real-time system is National
Instruments LabVIEW ETS real-time module 8.2.

The camera sampling period was 10 ms, the joint loop sampling period was 1 ms,
and the image delay was within 10 ms. The bandwidth of first link and second link
were set at 10 Hz and 15 Hz respectively. The contour to be followed was printed
on a piece of white photo paper with a high resolution printer. Experiments of three
kinds of contours at two different tracking speeds were performed to demonstrate the
feasibility of the proposed scheme. For each case, tracking error and tracking speed
profiles were plotted. Tracking error was directly calculated from the image feature,
so its sampling frequency was the same as camera’s, which was 100 Hz, while tracking
speed was calculated by the manipulator Jacobian and its sampling frequency was 1
kHz.

4.4 Experimental Results

4.4.1 Straight Line Tracking

The error and speed profiles for tracking a straight line at the speed of 5 cm/s are
shown in Figure 4.3. The negative sign means that the robot end-effector is on the
other side of the straight line. From the error profile, it can be seen that the tracking
error is bounded within 25 µm, except for the starting error due to a sudden jump of
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Figure 4.3: Straight line contour tracking error and speed profiles at V = 5 cm/s
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Figure 4.4: Straight line contour tracking error and speed profiles at V = 10 cm/s
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Figure 4.5: Circle contour tracking error and speed profiles at V = 5 cm/s
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Figure 4.6: Circle contour tracking error and speed profiles at V = 10 cm/s
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the expected speed from 0 cm/s to 5 cm/s at the beginning. The speed profile shows
that the tracking speed error is within 0.5 cm/s.

If the desired tracking speed is increased to 10 cm/s, the tracking error will increase to
40 µm, as shown in Figure 4.4. However, if we compare the speed profile in Figure 4.3
with that in Figure 4.4, we can see that the steady state speed tracking errors are
almost the same.

4.4.2 Circle Tracking

Figure 4.5 shows the tracking error and speed profile of following a circle contour at
a speed of 5 cm/s. The radius of the circle contour is 20 mm. From the figure we can
see that the tracking error is bounded within 100 µm except at the beginning. We
notice that the tracking error for the circle contour is larger than that for the straight
line. It is mainly attributed to Coulomb friction of the two link manipulator. That
the angular velocities of the two joints both change signs during tracking a circle
results in large errors. This is confirmed by the periodic peaks shown in the tracking
error profile.

For the same circle contour, increasing desired tracking speed results in larger tracking
errors. It can be seen by comparing Figure 4.5 with Figure 4.6. As the same in
straight line tracking case, the steady state speed tracking error does not increase as
the tracking speed increases.

4.4.3 Rounded Rectangle Tracking

When there is a combination of straight lines and circular arcs in a contour, special
attention should be paid in the trajectory generation. Once a new image is available,
a decision has to be made to determine whether a curve in the FOV of the camera can
be approximated as a straight line or a circular arc. After the decision, the routines
for straight line and circular arc trajectory generation can be applied. A simple way
to make such a decision is to sample three points (two end points and one middle
point) on the curve and check whether they are in a straight line.

A rounded rectangle contour is shown in Figure 4.2. The radius of the rounded corner
is 20 mm. The tacking error and the tracking speed profiles are shown in Figure 4.7.
The tacking error reaches its maximum when the robot end-effector passes junctions
of circular arc and straight line.
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Figure 4.7: Rounded rectangle contour tracking error and speed profiles at V = 5
cm/s

4.5 Summary

The proposed real-time online reference trajectory generation scheme based on the
image information for contour following was validated by experiments of following a
variety of contours at difference speeds. The contours that were followed included
straight lines, circles, and rounded rectangles. The experimental results showed that
the two link manipulator can follow different shapes of contours with high accuracy
based on the proposed reference trajectory generation scheme.
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Part II

Multi-Sensor Based End-effector
Sensing and Control
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Chapter 5

Kinematic Kalman Filter Design

In this chapter, a one-dimensional kinematic Kalman filter is studied. A naive kine-
matic Kalman filter design is presented first. Although this filter produces accurate
estimates, the closed loop system using the estimates for feedback control is not sta-
ble. Stability analysis based on the open loop frequency response is then performed.
Finally, a Kalman filter design based on the return difference equality is discussed.

5.1 Introduction

Accurate velocity information is essential for motion control, the significance of which
can be seen in proportional-integral-derivative (PID) control systems, model based
control systems, adaptive control systems, as well as for friction compensation. Hence,
velocity estimation has been a popular research topic for many years. In conventional
approaches, velocity is estimated either by numerically differentiating the encoder
counts or by a model based approach. For the first approach, the estimation accu-
racy depends not only on resolution of the encoder, but also on the motion speed.
Consequently, it has an unavoidable delay, especially for slow motions. Note that in
order to obtain a smooth velocity profile for slow motions, a large amount of encoder
counts have to be averaged. As a result, the time delay ends up being half of the time
span of the averaged encoder counts. On the other hand, the second approach [36, 37]
can provide robust estimation by using a disturbance observer. A disadvantage, how-
ever, is that accurate parameters for inertia and friction are required.

As an alternative approach, the Kalman filter may be utilized in the velocity estima-
tion. The idea was first mentioned by Friedland [29]. It is noted that he did not use
any accelerometer and his purpose was not for velocity estimation. As MEMS tech-
nology made accelerometers more readily available, researchers began to incorporate
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accelerometers for velocity estimation. It was experimentally verified that the pro-
posed scheme produced smoother velocity estimate with less delay than the estimates
obtained by the low pass filtered finite difference approach. Their research, however,
was limited to estimation, and they did not use the estimate as feedback signal for
closed loop control. This chapter will discuss how to design KKF to ensure closed
loop stability of the feedback system with KKF in the loop.

5.2 Kinematic Kalman Filter

5.2.1 Kinematic Model

In a kinematic model, the position measurement is taken as the output while the
acceleration measurement is treated as the fictitious input. Based on the position
and acceleration measurements, a Kalman filter can be formulated to estimate the
velocity. The Kalman filter based on the kinematic model is also known as the
kinematic Kalman filter (KKF) [38]. Since the kinematic model does not depend on
any unknown system parameters, KKF is immune to modeling errors. Consider the
following one-dimensional second order kinematic model:

ẍ(t) = a(t) + na (5.1a)

y(t) = x(t) + ny (5.1b)

where x and a are the position and the acceleration respectively. na and ny are
measurement noises for the position and the acceleration respectively. na and ny are
assume to be zero mean Gaussian noises with covariance Wa and Vp, respectively. If
zero-order hold is applied to discretize (5.1), a(t) is assumed to be constant in between
each sampling period Ts and is denoted by a(k), i.e.

a(t) = a(k) for kTs ≤ t < (k + 1)Ts

The discrete time state space model for (5.1) is given by

x1(k + 1) = x1(k) + Tsx2(k) +
1

2
T 2

s (a(k) + na(k)) (5.2a)

x2(k + 1) = x2(k) + Ts(a(k) + na(k)) (5.2b)

y(k) = x1(k) + ny(k) (5.2c)

where x1 is position, x2 is velocity, and

na(k) =
1

Ts

∫ (k+1)Ts

kTs

na(t)dt

ny(k) =
1

Ts

∫ (k+1)Ts

kTs

ny(t)dt.



36

Note that na(k) and ny(k) are zero mean Gaussian noises with covariance W = 1
Ts

Wa

and V = 1
Ts

Vp, respectively.

The matrix form of (5.2) can be written as

[
x1(k + 1)
x2(k + 1)

]

︸ ︷︷ ︸
x(k+1)

=

[
1 Ts

0 1

]

︸ ︷︷ ︸
A

[
x1(k)
x2(k)

]

︸ ︷︷ ︸
x(k)

+

[
T 2

s

2

Ts

]

︸ ︷︷ ︸
B

(a(k) + na(k)) (5.3a)

y(k) =
[

1 0
]

︸ ︷︷ ︸
C

[
x1(k)
x2(k)

]
+ ny(k). (5.3b)

In (5.3), the input is the accelerometer measurement and the output is the encoder
measurement. There is no model parameter or uncertainty involved in the equation.
Therefore, it is robust in the sense of the model uncertainties and disturbances.

5.2.2 Kinematic Kalman Filter Equations

In order to estimate velocity, a standard Kalman filter is applied to the discrete time
kinematic model (5.3). It is reasonable to assume that the accelerometer noise and
encoder noise are independent white sense stationary Gaussian noises, i.e.

E[na(k + l)nT
a (k)] = Wδ(l)

E[ny(k + l)nT
y (k)] = V δ(l)

E[na(k + l)nT
y (k)] = 0.

By applying the Kalman filter theory [39], a posteriori state estimator can be written
as

x̂o(k + 1) = Ax̂(k) + Ba(k) (5.4a)

ỹo(k) = y(k)− Cx̂o(k) (5.4b)

F (k) = M(k)CT [CM(k)CT + V ]−1 (5.4c)

x̂(k) = x̂o(k) + F (k)ỹo(k) (5.4d)

where x̂o is the a-priori state estimate, x̂ is the a-posteriori state estimate, ỹo is the
estimation error of measurement y, F is the Kalman filter gain, and M is the a-priori
state estimation error covariance.
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The block diagram of (5.4) is shown in Figure 5.1. The dashed box is the kinematic
model. Two inputs are acceleration measurements ā(k) and position measurements
ȳ(k), two outputs are states of the system. By using the Kalman filter, not only the
velocity can be estimated, but also the position measurements can be refined beyond
the resolution of position sensors[19, 40].

Figure 5.1: Block diagram of kinematic Kalman filter(KKF)

The a-posteriori estimation error covariance matrix Z(k) and a-priori estimation error
covariance matrix M(k) are updated by

Z(k) = M(k)− F (k)CM(k) (5.5a)

M(k) = AZ(k)AT + BWBT . (5.5b)

(5.5) are only utilized for calculating the Kalman filter gains. If the pair [A,C] is
observable (or detectable), M(k) will converge to a constant matrix M after several
iterations. If that is the case, M can be directly obtained as the positive solution of
the following Riccati equation:

AMAT −M = −BWBT + AMCT [CMCT + V ]−1CMAT . (5.6)

Then, F (k) will be a constant gain, denoted as F . The Kalman filter with a constant
gain is called the steady state Kalman filter.

5.3 Kinematic Kalman Filter Design

From (5.4) we know that the implementation of Kalman filter requires the a-priori
information of x̂(0), M(0), the exact knowledge of the process noise covariance W and
the measurement noise covariance V . Since x̂(0) and M(0) only affect first several
estimates, the values of them can be roughly approximated. However, it is crucial
to obtain accurate values for W and V since they affect the Kalman filter gains,
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and the estimation results. These values are usually difficult to identify. Therefore
identification of W and V is often done by trial and error [41].

In Section 5.3.1, the single joint setup is controlled by a PID controller to follow a
reference trajectory for different W and V . The estimation results for different W and
V will be compared and discussed. In Section 5.3.2, an explanation of the conclusion
drawn in the previous section will be given.

5.3.1 Estimation Performance for Different W and V

In this section, the single joint setup will be controlled by a simple PID controller, as
shown in Figure 5.2.

Figure 5.2: Block diagram of encoder feedback system for single joint setup

Feedback signal is from the encoder. The angular position is directly measured with
encoder counts while the angular velocity is obtained by one step backward difference
of the angular positions, i.e.

ω(k) =
q(k)− q(k − 1)

Ts

(5.7)

where ω is the angular velocity, q is the angular position and Ts is the sampling
period.

The PID control law is given by

τ(k) = Kp(qr(k)− q(k))

+ Ki

k∑
i=1

(qr(i)− q(i)) + Kd(ωr(k)− ω(k)) (5.8)

where τ is the torque command, qr and wr are the reference joint angle and angular
velocity respectively. q and ω are measured joint angle and angular velocity respec-
tively. Kp = 360, Ki = 1 and Kd = 10 are the proportional, integral and derivative
gains respectively.
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The single joint setup for the experiment is introduced in Section 2.2. A dual axis
MEMS accelerometer (ADXL202E) manufactured by Analog Devices Inc. is used to
measure the acceleration. The parameters of the accelerometer are shown in Table
5.1.

Table 5.1: Parameters of ADXL202E accelerometer

Specifications Values Units
Range ±2 g
Noise Variance 0.029 (m/s2)2

3dB Bandwidth 6 kHz

The two-dimensional accelerometer is mounted on the center of the end-effector. This
allows the accelerometer to measure acceleration in the tangent direction(y axis) and
radial direction(x axis). However, only the y axis measurements are used to calculate
the angular acceleration by

ā = āy/L (5.9)

where L is the link length of the single joint setup.
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Figure 5.3: Reference trajectory for single joint setup

The single joint setup is controlled to trace a circular arc within a 2 second period.
The reference trajectory for the circular arc in the joint space is shown in Figure 5.3.
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The total angle of the circular arc is 0.7506 rad, which is about 43 degree. The radius
of the circular arc is the same as the link length L. It has a smooth velocity profile
with maximum speed 0.5 rad/s and a continuous acceleration profile with maximum
acceleration 2 rad/s2.

As is well known, the gain matrix of a Kalman filter for single-input, single-output
systems depends on the ratio between the covariance of the process noise and that of
the measurement noise, W/V . The experimental result in Figure 5.4 was obtained for
W/V = 1E8. Note that the experiment is intended to test the open loop estimation
performance of the Kalman filter, and the estimate is not used for feedback control.
Blue lines are measurements from the encoder, red lines are the reference trajectory,
green and cyan lines are Kalman filter estimates. The measured angular velocities
are obtained by (5.7), so it is very noisy. In order to see the estimation more clearly,
Figure 5.4 plots a short segment of the estimation process. Figure 5.4 shows that
the Kalman filter estimate tracks the real measurement very closely. What is more,
the estimated angular velocities are much smoother than the encoder measurements,
which is a benefit of the kinematic Kalman filter. Although there are two Kalman
filter estimates, the green and cyan lines overlap in Figure 5.4.
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Figure 5.4: KKF estimations for the same W/V ratio

Figure 5.5 shows the KKF performance for different W/V ratios. The green line is
the KKF estimate for W/V = 1E6, while the cyan line is the KKF estimate for
W/V = 1E8. From Figure 5.5 we can see that the KKF performance for different
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W/V ratios are different. Apparently, the estimation error for W/V = 1E8 is smaller
than that for W/V = 1E6.
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Figure 5.5: KKF estimations for different W/V ratios

The above two experiments shows the steady state KKF performance is only affected
by the W/V ratio; as is well known it is irrelevant to specific values of W and V . We
can see this point more clearly if the Kalman filter gains are calculated. As long as
the W/V ratio are the same, the steady state Kalman filter gain is always the same.
Different W/V ratios will result in different Kalman filter gains. In the following
section, an explanation will be given.

5.3.2 Relations Between KKF Gain and W/V

In this section, we make use of the return difference equality for Kalman filter to show
that the steady state Kalman filter gain depends only on the ratio of W and V [39].

Figure 5.6 shows block diagram of Kalman filter as a whitening filter. Notations
follow Section 5.2, while Φ(z) = (zI − A)−1 and L = AF . The plant turns white
noise to colored noise, while Kalman filter turns colored noise back to the white noise.

The return difference equality for the Kalman filter is given by
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Figure 5.6: Block diagram of plant and Kalman filter

[1 + Go(z)][1 + Go(z
−1)] = γ

[
1 +

W

V
G(z)G(z−1)

]
(5.10)

where

γ =
V

CMCT + V
.

Assume Q = CMCT + V and arrange (5.10), we can get

[1 + Go(z)]Q[1 + Go(z
−1)] = V + G(z)WG(z−1). (5.11)

The return difference equality for the discrete time regulator is derived in Anderson
and Moore [42]. The return difference equality for the Kalman filter can be derived
in a similar manner. The proof in Appendix A actually verifies the return difference
equality (5.11).

Based on the return difference equality (5.10), root locus of the closed loop Kalman
filter can be drawn. It can be seen that the closed loop poles of the steady state
Kalman filter, which are eigenvalues of A − LC, depend only on W/V . The single
joint setup is an observable single output system. For such systems, the estimator
gain and the closed loop eigenvalues are uniquely related. Therefore, the steady state
Kalman filter gain L depends only on W/V .

5.3.3 Proper W/V Identification

In the previous section we showed that the steady state Kalman filter gain only
depends on W/V . However, the proper value of W/V still has to be identified for
estimation purposes.

One index to evaluate the goodness of a certain W/V is the estimation error. From
Figure 5.5 we can see that the estimation error for W/V = 1E6 is larger than that
for W/V = 1E8. This is because the resolution of encoder is very high while the
measurement of acceleration is very noisy. High W/V value means that we trust the
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encoder measurement more than the acceleration measurement. As W/V value is
increased, however, the KKF position estimate becomes closer to encoder measure-
ment, which means that the estimated velocity profile becomes more jagged. Since
the real velocity profile should be smooth, having the KKF output close to the en-
coder values does not necessarily mean that the estimated values are accurate. The
accurate velocity estimate should be a smooth profile at about the center line of the
encoder measurement profile.

Figure 5.7: Block diagram of open loop frequency response measurement

The other index to evaluate the desirability of a certain W/V is the closed loop
stability of the system when KKF estimates are used for feedback control. The
robustness of the KKF feedback system varies as W/V value changes. In order to
to see this clearly, we obtained open loop frequency responses with different W/V
values. As shown in Figure 5.7, the sine-by-sine torque input was injected to the
single joint setup and the controller output was measured. In the experiment, the
frequency range for the test was 0.5 Hz - 150 Hz. The frequency responses of the
encoder feedback system and the KKF feedback system with different W/V values
are shown in Figure 5.8.

In Figure 5.8, blue line indicates the frequency response for encoder feedback control,
all other color lines indicate the KKF feedback control with different W/V values.
In order to see the robustness of KKF feedback system with different W/V values,
phase margins were calculated as shown in Table 5.2.

From Table 5.2 we can see that the robustness of the KKF feedback system decreases
as W/V value increases. However, low W/V value indicates large estimation errors.
Therefore there is a tradeoff between estimation error and system robustness. We can
also see that by properly choosing the W/V value, the KKF feedback system may be
more robust than the encoder feedback system.
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Figure 5.8: Open loop frequency responses for different W/V ratios

Table 5.2: Phase margins for encoder and KKF feedback control

W/V Gain Crossover Frequency(Hz) Phase Margins(degree)
Encoder 69 16.5
W/V =1E6 32 74.6
W/V =1E7 38 65.7
W/V =1E8 37 49.8
W/V =1E9 44 25.8
W/V =1E10 54 5.5

5.4 Summary

In this chapter, a kinematic model based Kalman filter was introduced. Based on
the return difference equality, it was shown that the steady state Kalman filter gain
depends only on the ratio of the process noise covariance and the measurement noise
covariance. The ratio must be selected by examining the estimation error and the
closed loop stability robustness of the feedback loop, where the feedback controller
utilizes the KKF state estimate.
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Chapter 6

Kinematic Kalman Filter Based
Sensing

In this chapter, kinematic Kalman filters with multiple sampling rates and large
measurement delay are discussed. More specifically, a lifting technique is utilized to
handle the multi-rate issue while the state augmentation technique is utilized to han-
dle the delay issue. These techniques are experimentally verified for one-dimensional
case and two-dimensional case respectively.

6.1 Introduction

Mounting sensors on the end-effector to improve estimation performance was first
proposed by Sweet and Good in 1985 [17]. Although this approach has not yet been
widely adapted in industry, a considerable amount of research has been carried out
in this area. A vision sensor is often considered as a suitable choice for this purpose.
Its low sampling rate and high latency, however, makes it very difficult to directly
incorporate it into a control loop, which usually runs at a much higher sampling
rate. Although high speed vision systems exist, they are too expensive for industrial
applications. Alternatively, inexpensive sensors such as accelerometers and gyros can
be utilized to improve the load side estimation performance. However, these sensors
measurements are usually contaminated by noise. Hence a noise filter is essential for
utilizing these sensors.

The Kinematic Kalman Filter (KKF) is one of the well developed end-effector sensing
techniques. The main idea of KKF is applying the Kalman filter to a kinematic model
with practical acceleration measurements. It was first applied to a one-dimensional
linear motor, and the position sensor is an encoder [19]. This idea was further ex-
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tended by Jeon et al. to a three-dimensional case with a vision sensor as the position
measurement [20]. The algorithm in [20], however, is complicated for real-time im-
plementation.

In this chapter, we will formulate a KKF with the position signal from a vision sensor.
Since the vision sensor has a low sampling rate and large measurement delay, we will
propose a simple yet effective scheme to address multi-rate and measurement delay
issues. More specifically, for multi-rate issue, the lifting technique is applied, and for
measurement delay issue, the state augmentation technique is utilized. Two tech-
niques will be addressed for one-dimensional and two-dimensional cases respectively.

6.2 One-dimensional Estimation

Consider the one-dimensional discrete time kinematic model introduced in Section 5.2.

[
x1(k + 1)
x2(k + 1)

]

︸ ︷︷ ︸
x(k+1)

=

[
1 Ts

0 1

]

︸ ︷︷ ︸
A

[
x1(k)
x2(k)

]

︸ ︷︷ ︸
x(k)

+

[
T 2

s

2

Ts

]

︸ ︷︷ ︸
B

(a(k) + na(k)) (6.1a)

y(k) =
[

1 0
]

︸ ︷︷ ︸
C

[
x1(k)
x2(k)

]
+ ny(k) (6.1b)

where x1 and x2 are the position and the velocity respectively, a is the acceleration,
and Ts is the sampling period. na and ny are noises for acceleration and position
measurements, respectively. They are assumed to be zero mean Gaussian noises with
covariance W and V respectively.

6.2.1 Lifting Technique

Different sensors and actuators may have different sampling rates. When these devices
are combined together, a multi-rate state estimation may provide better results than a
single-rate state estimation[18]. Consider the case where a slow vision sensor is used
for position measurement while a fast accelerometer for acceleration measurement
in a kinematic model. Suppose that the sampling period of the vision sensor is N
times longer than that of the accelerometer. We define the time index for the vision
sensor sampling time as m. m is related to the time index for the accelerometer k by
k = mN . To express the overall system at the low sampling rate, we apply the lifting
technique to (6.1), we can get
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x ((m + 1)N) = ANx(mN)

+
[

AN−1B · · · AB B
]
(Ua(mN) + Na(mN)) (6.2a)

y(mN) = Cx(mN) + ny(mN) (6.2b)

where

Ua(mN) =




a(mN)
a(mN + 1)

...
a(mN + N − 1)


 , Na(mN) =




na(mN)
na(mN + 1)

...
na(mN + N − 1)


 . (6.3)

The covariance of measurement noise ny is V while the covariance of process noise Na

is W ·IN×N . (6.2) shows that the lifting technique is the same as writing a serial set of
state space equations into a compact form. This form is computationally efficient and
is also convenient for applying the Kalman filter. See [43] for the detailed discussion
of the lifting technique.

For a multi-rate system, it is always true that the system can be run in single rate
by downsampling the fast device. By doing this, however, some information provided
by the fast device is lost. The lifting technique is designed for taking full advantage
of the fast device.

Figure 6.1 shows that the KKF utilizing the lifted model produce better results than
that utilizing the downsampled model. The experiment was performed for Ts = 0.4
ms, N = 20, W/V = 1E8, and the setup is the same as in Section 5.3.1. Green lines
show the KKF estimates from (6.2). For intersample estimation for i’s at mN 6 i <
(m+1)N , simple open loop integration of accelerometer measurements is applied, i.e.

x̂(mN + i + 1) = Ax̂(mN + i) + Bā(mN + i). (6.4)

Cyan lines show the KKF estimates for model (6.1) where Ts = N × 0.4 ms = 8 ms.

As shown in the lower subplot of Figure 6.1, velocity estimate from the lifted model
(green line) has less error than that from the downsampled model (cyan line). However
it is hard to tell the position estimation error from the upper subplot of Figure 6.1.
In order to see the position estimation error more clearly, a small time range of
Figure 6.1 is shown in Figure 6.2. From Figure 6.2 we can see that there is a constant
position estimation error for the KKF estimate with the downsampled model. The
KKF position estimation with the lifted model does not have such error. Therefore,
the lifting technique can significantly improve the KKF estimation performance.
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Figure 6.1: KKF estimates for lifted and downsampled model
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Figure 6.2: KKF estimates for lifted and downsampled model (zoom in)
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6.2.2 State Augmentation Technique

There are a variety of techniques to treat measurement delay in control systems.
These methods include Dahlin’s Algorithm [44] and Smith Predictor Algorithm [45].
Most of these methods, however, highly depend on the plant model. Modeling error
for the plant can cause the performance of these algorithms to deteriorate. A simple
yet effective method which does not depend on modeling errors is the state augmen-
tation technique. The main idea of this technique is to add additional states to the
original system such that the states of the previous step are preserved for the next
step. This method is effective as long as the delay time is smaller than one sampling
period.

Let us take the system (6.1) as an example. If the measurement has one step delay,
to apply state augmentation technique, an additional state x3(k +1) has to be added
to the original system to preserve the state of the previous step x1(k). The output is
the new state x3(k + 1). The modified system is




x1(k + 1)
x2(k + 1)
x3(k + 1)


 =




1 Ts 0
0 1 0
1 0 0







x1(k)
x2(k)
x3(k)


 +




T 2
s

2

Ts

0


 (a(k) + na(k)) (6.5a)

y(k) =
[

0 0 1
]



x1(k)
x2(k)
x3(k)


 + ny(k). (6.5b)

Figure 6.3 shows that KKF estimates over the augmented model (6.5) is superior
to the estimates over the delayed model (6.6). The experiment was performed for
Ts = 0.4 ms, W/V = 1E8 and the setup is the same as in Section (5.3.1). In order to
see the difference clearly, only estimated tracking errors are plotted. Blue lines show
the KKF estimated tracking error using model (6.5) where delay is handled by the
state augmentation technique. Green lines show the KKF estimated tracking error
using model (6.1) which does not have any measurement delay. Cyan lines show the
KKF estimated tracking error using model (6.6) which has one step measurement
delay.

[
x1(k + 1)
x2(k + 1)

]
=

[
1 Ts

0 1

] [
x1(k)
x2(k)

]
+

[
T 2

s

2

Ts

]
(a(k) + na(k)) (6.6a)

y(k) =
[

1 0
] [

x1(k − 1)
x2(k − 1)

]
+ ny(k). (6.6b)
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As shown in Figure 6.3, KKF estimation performance with the augmented model
is almost the same as that with the model which does not have any measurement
delay. However, KKF estimation performance with model (6.6) is worse than that
with the augmented model, especially for position estimation. This justifies the state
augmentation technique.
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Figure 6.3: KKF estimated tracking error for augmented model

For the system that has an N-step delay, the lifting technique has to be applied first
before applying state augmentation technique. Taking system (6.2) as an example,
the augmented system is given by

[
x((m + 1)N)
z((m + 1)N)

]
=

[
AN 02×1[
1 0

]
0

] [
x(mN)
z(mN)

]

+

[
AN−1B · · · AB B

01×N

]
(Ua(mN) + Na(mN))(6.7a)

y(mN) =
[

01×2 1
] [

x(mN)
z(mN)

]
+ ny(mN) (6.7b)

where z(m+1)N is the added state to preserve x1(mN) which is the state of N steps
before, and Ua(mN), Na(mN) are given by (6.3).
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6.2.3 One-dimensional Multi-rate KKF with Large Measure-
ment Delay

If N is dropped for convenience, (6.7) can be written as

xe(m + 1) = Ae(m) + Be(Ua(m) + Na(m)) (6.8a)

ye(m) = Ce(m) + Ny(m) (6.8b)

where

Ae =

[
AN 02×1[
1 0

]
0

]
,

Be =

[
AN−1B · · · AB B

01×N

]
,

Ce =
[

01×2 1
]
.

Na(m) and Ny(m) = ny(mN) are accelerometer and vision sensor noises. It is rea-
sonable to assume that they are independent white noise with covariance We(m) and
Ve(m), respectively. As a result, Na(m) and Ny(m) satisfy

E{Na(m + l)NT
a (m)} = We(m)δ(l)

E{Ny(m + l)Ny(m)} = Ve(m)δ(l)

E{Na(m + l)Ny(m)} = 0.

By applying the Kalman filter theory, a-posteriori state estimator can be written as

x̂o
e(m + 1) = Aex̂e(m) + BeUa(m) (6.9a)

ỹo
e(m) = ye(m)− Cex̂

o
e(m) (6.9b)

F (m) = Me(m)CT
e [CeMe(m)CT

e + Ve(m)]−1 (6.9c)

x̂e(m) = x̂o
e(m) + F (m)ỹo

e(m). (6.9d)

A-posteriori estimation error covariance matrix Ze(m) and a-priori estimation error
covariance matrix Me(m) are updated by

Ze(m) = Me(m)− F (m)CeMe(m) (6.10a)

Me(m) = AeZe(m)AT
e + BeWe(m)BT

e . (6.10b)
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(6.8 - 6.10) run every N steps to correct the current estimate by the delayed position
measurement obtained N steps before. For the intersample estimation, a simple open
loop integration of accelerometer measurements is employed. In order to evaluate the
performance of the proposed sensor fusion algorithm, it is necessary to implement it
to a practical system.

6.2.4 Experimental Results

The experimental setup utilized to evaluate the estimation scheme is described in Sec-
tion 2.2. The accelerometer is described in Section 5.3.1. The National Instruments
PCI-7831R data acquisition board was used to collect accelerometer and encoder mea-
surements and also to send control commands to the single joint setup. The real-time
system is National Instruments LabVIEW ETS real-time module 8.5.1.

Since a vision sensor functions like a position sensor with a low sampling rate and large
time delay, it is reasonable to mimic the vision sensor measurements with modified
encoder measurements. This is the approach taken in this experiment. In order
to resemble the vision sensor measurements, the encoder measurements have to be
delayed and its sampling rate has to be reduced. For the experiments, the sampling
rates of the controller and the accelerometer are set to 2.5 kHz, while that of the
encoder measurement is set to 125 Hz. The reference trajectory and the control law
are the same as in Section 5.3.1.

Figure 6.4 shows the estimation performance. The red line is the reference trajectory,
the blue line is the encoder measurement, and the green line is the KKF estimates.
Figure 6.5 shows the tracking error profile, the blue line is the real tracking error
from the encoder, while the green line is the estimated tracking error from KKF.
It shows that the estimated tracking error is very close to the real tracking error.
Experimental results showed the effectiveness of the proposed multi-rate KKF with
large measurement delay scheme for the one-dimensional case.

6.3 Two-dimensional Estimation

Consider the two link direct drive manipulator mentioned in Section 2.3. The schematic
is shown in Figure 6.6. X − Y is task space coordinate system, and x− y is the end-
effector coordinate system associated with the accelerometer and the camera. The
rectangle on the end-effector represents the camera. Let (pX , pY ) be the center of the
camera in the task plane. The accelerometer is mounted on the center of the camera.
q1 and q2 are joint angles of the first and the second link respectively.
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Figure 6.4: KKF estimates of angle and angular velocity
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Figure 6.5: Estimated tracking error for angle and angular velocity
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Figure 6.6: Schematic of two link manipulator (overview)

The accelerometer measurements are in end-effector coordinate system. Thus, it is
necessary to convert them to the task space coordinate system for estimation purpose.
Suppose the measurements of acceleration in x and y axis are ax and ay respectively.
Then, the acceleration in task space aX and aY can be obtained by

[
aX

aY

]
=

[ − cos(α) sin(α)
− sin(α) − cos(α)

]

︸ ︷︷ ︸
R(α)

[
ax

ay

]
(6.11)

where α = q1 + q2.

The end-effector position, which is the same as the center of the camera, is obtained
by the following forward kinematics:

[
pX

pY

]
=

[
l1 cos(q1) + l2 cos(α)
l1 sin(q1) + l2 sin(α)

]
(6.12)

where l1 and l2 are the lengths of the first link and the second link respectively.

Two-dimensional discrete time kinematic model is
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pX(k + 1)
pY (k + 1)
vX(k + 1)
vY (k + 1)




︸ ︷︷ ︸
x(k+1)

=




1 0 Ts 0
0 1 0 Ts

0 0 1 0
0 0 0 1




︸ ︷︷ ︸
A




pX(k)
pY (k)
vX(k)
vY (k)




︸ ︷︷ ︸
x(k)

+




T 2
s

2
0

0 T 2
s

2

Ts 0
0 Ts




︸ ︷︷ ︸
B

(a(k) + na(k)) (6.13a)

y(k) =
[

I2×2 02×2

]
︸ ︷︷ ︸

C

x(k) + np(k) (6.13b)

where

a(k) =

[
aX(k)
aY (k)

]
, na(k) =

[
naX(k)
naY (k)

]
, np(k) =

[
npX(k)
npY (k)

]
.

Ts is the sampling period, and vX , vY are the end-effector velocity in X axis and
Y axis respectively. na is the acceleration measurement noise vector and np is the
camera measurement noise vector. na and np are white sense stationary Gaussian
noises with covariance matrix W · I2×2 and V · I2×2 respectively, where W and V are
scalars.

6.3.1 Two-dimensional Multi-rate KKF with Large Measure-
ment Delay

Suppose that the sampling rate of the accelerometer is N times faster than that of
the vision sensor and that the measurement delay of the vision sensor is N times the
sampling period of the accelerometer. By applying lifting and state augmentation
techniques to the model (6.13), we obtain

[
x((m + 1)N)
z((m + 1)N)

]
=

[
AN 04×2[

I2×2 02×2

]
02×2

] [
x(mN)
z(mN)

]
(6.14a)

+

[
AN−1B · · · AB B

02×2N

]
(Ua(mN) + Na(mN))

y(mN) =
[

02×4 I2×2

] [
x(mN)
z(mN)

]
+ np(mN) (6.14b)



56

Figure 6.7: Sensors mounted on the end-effector of the two link manipulator

where

Ua(mN) =




a(mN)
a(mN + 1)

...
a(mN + N − 1)


 , Na(mN) =




na(mN)
na(mN + 1)

...
na(mN + N − 1)


 . (6.15)

Since Na(mN),np(mN) are independent white sense stationary Gaussian noises, a
Kalman filter can be applied to estimate the states in a similar fashion to Section 6.2.3.
For state estimation between two successive camera measurements, a sample open
loop integration of accelerometer measurements is utilized, i.e.

x̂(mN + i + 1) = Ax̂(mN + i) + BŪa(mN + i) for mN 6 i < (m + 1)N. (6.16)

The open loop integration will have a drifting error and will be corrected by the
camera measurement every N steps.

6.3.2 Experimental Results

The two link manipulator shown in Figure 2.7 is utilized to evaluate the two-dimensional
estimation performance. The end-effector is shown in Figure 6.7. 1 is the accelerome-

ter, 2 is the cable for the accelerometer, 3 is the camera link cable, 4 is the camera,

5 is the holder for camera and lens, 6 is the lens, and 7 is the illumination device.

The camera is a CMOS monochrome camera manufactured by Photonfocus, Model
MV-D640(c). The lens is manufactured by Edmund, Model VZM300. The parame-
ters for the camera and lens are shown in Table 6.1. The data and image acquisition
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boards, PCI-7831R and PCIe-1429 respectively, were provided by National Instru-
ments. The real-time system is National Instruments LabVIEW ETS real-time mod-
ule 8.5.

Table 6.1: Parameters of camera and lens

Specifications Values Units
Frame Rate 50 Hz
Delay Time 20 ms
Field of View 6 × 8 mm2

Resolution 640× 480 pixel
Focal Length 6 cm

The reference trajectory in joint space is generated based on a 10 cm marker. As
shown in Figure 6.8, the marker is composed by 21 even distributed different size
black spots. The two link manipulator is controlled by an independent joint loop
PID controller using encoder feedback to follow the marker in 2 s. At the same time,
the camera is used to produce position measurements for the KKF by observing the
marker.

Figure 6.8: Marker to identify the position of the end-effector

The control system for the two link manipulator is shown in Figure 6.9. For the
independent joint loop PID controller, the control law for each joint is the same as
in Section 5.3.1. The sampling period for joint controller and accelerometer is 1 ms,
while the sampling period for camera is 20 ms.

Figure 6.10 shows the position estimate by fusing accelerometer and camera measure-
ments. They are compared with the encoder measurements. The position from the
encoder is calculated by (6.12). In order to see the difference between encoder mea-
surement and KKF estimation, only a small time range is plotted. Blue lines show the
encoder measurement while green lines show the KKF estimates. The upper figure
shows the movement in X axis while the lower figure shows the movement in Y axis.

Figure 6.9: Block diagram of encoder feedback system for two link manipulator
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Figure 6.10: KKF estimates of position
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Figure 6.11: KKF estimates of velocity
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We can clearly see the vision correction every 20 ms in the the lower figure, but for
the upper figure, it can barely be seen. It is because the movement in Y axis is much
larger than that in X axis. Figure 6.10 shows that the position estimation error is
less than 1 mm. This means that the end-effector position can be estimated by the
KKF pretty accurately.

Figure 6.11 shows the velocity estimate by fusing accelerometer and camera measure-
ments. They are also compared with the encoder measurements. The velocity from
the encoder is obtained by a one step backward difference of the encoder measure-
ments, and it is very noisy. However, the KKF gives a much smoother velocity profile
for both X and Y axes.

6.4 Summary

In this chapter, end-effector motion estimation based on vision and acceleration sen-
sors was discussed. Since the vision sensor had a low sampling rate and a large
measurement delay, a lifting technique was utilized to handle multi-rate issue while
a state augmentation technique was utilized to handle the large measurement delay
issue. The benefits of the two techniques were demonstrated by experiments. The
proposed end-effector sensing scheme was experimentally verified for one-dimensional
and two-dimensional cases respectively.
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Chapter 7

Kinematic Kalman Filter Based
Control

In this chapter, the KKF estimates obtained in the previous chapter are utilized as
feedback signals to control the single joint setup and the two link manipulator. Closed
loop stability is the main concern for each setup. The tracking performance for the
two setups using KKF feedback is discussed and the results are compared with those
of encoder feedback systems.

7.1 Introduction

The Kinematic Kalman filter(KKF) as an end-effector sensing technology has been
studied for a long time. At the beginning, the accelerometer and the encoder mea-
surements were integrated for velocity estimation. As sensor technology continues to
improve, cameras with a fast sampling rate are becoming more frequently utilized in
industry for motion detection. Although there is a considerable amount of research
done about KKF, they are mainly concerned with integrating different sensor mea-
surements to estimate the motion of the end-effector. None of them discussed the
closed loop stability of the whole system when utilizing the KKF estimates as feed-
back signals. In this chapter, we focus on using KKF estimates as feedback signals
for the single joint setup and the two link manipulator.
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7.2 Control of Single Joint Setup

Even though Chapter 6 shows that the KKF estimates are very close to the encoder
values, it does not guarantee that the closed loop performance with encoder feedback
and that with KKF feedback are the same. Once the estimates are utilized as feedback
signals, the system may become unstable. In Chapter 5, we saw that the return
difference equality indicates that the steady state Kalman filter gain L depends only
on the ratio of process noise and measurement noise covariances W/V . Open loop
frequency responses with KKF feedback for different W/V were measured. It is shown
that by properly choosing the ratio, the KKF feedback control system may be robustly
stabilized.

Figure 7.1: Block diagram of KKF feedback system for single joint setup

Figure 7.1 shows the block diagram of KKF feedback control system. In the exper-
iments, the reference trajectory, the controller and the setup are all the same as in
Section 6.2.4. The only difference is that the feedback signals are KKF estimates.

Figure 7.2 shows the tracking performance of KKF feedback control system for Ts =
0.4 ms and N = 20. The red line is the reference trajectory, the blue line is the
encoder feedback result, and the green line is the KKF feedback result. In order to
see the difference between encoder feedback and KKF feedback, the tracking errors
are plotted in Figure 7.3. The blue line is the tracking error for encoder feedback and
the green line is the tracking error for KKF feedback. From the two figures, we can
see that the tracking performance of the KKF feedback control system is almost the
same as that of the encoder feedback control system.

In order to see the performance of KKF feedback control system for different sampling
rates, another experiment was performed for Ts = 1 ms and N = 20. The only
difference compared with the previous experiment is the sampling period. Figure 7.4
shows the tracking performance, and Figure 7.5 shows the tracking errors. Legends
are exactly the same as the previous figures. The two figures show the experimental
results between 1.2 ms and 1.3 ms. Comparing with the previous experiment, reducing
sampling rate does not have much effect on the tracking performance. This conclusion
is very important if the position sensor is the camera, which has a 20 ms sampling
period and a 20 ms measurement delay.
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Figure 7.2: Tracking performance for single joint setup at Ts = 0.4 ms
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Figure 7.3: Position and velocity tracking error for single joint setup at Ts = 0.4 ms
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The two experiments show that the tracking error for KKF feedback system is almost
the same as that for encoder feedback system. This implies that the proposed estima-
tion scheme may perform as good as installing a load side encoder on the end-effector.

7.3 Control of Two Link Manipulator

From Section 6.3 we know that the KKF estimation for the two link manipulator is
performed in task space. Therefore it is convenient to control the two link manipulator
by using task space control [31]. The forward kinematics of the two link manipulator
is given by (6.12), denoted it as f(q), i.e.

f(q) ,
[

l1 cos(q1) + l2 cos(α)
l1 sin(q1) + l2 sin(α)

]
(7.1)

where α = q1 + q2, l1 and l2 are the lengths of the first link and the second link
respectively.

The manipulator Jacobian, which maps velocities from joint space to task space, is
given by

J(q) , ∂f(q)

∂q
=

[ −l1 sin q1 − l2 sin(α) −l2 sin(α)
l1 cos q1 + l2 cos(α) l2 cos(α)

]
. (7.2)

For the two link manipulator, singularities of the Jacobian occur when q2 = nπ, n ∈ N.
Those points should be avoided in trajectory design.

The block diagram of the KKF feedback system for the two link manipulator is shown
in Figure 7.6. Since the reference trajectory and the KKF are both in task space, the
tracking error signals are also in task space. It is necessary to convert the error signals
from task space to joint space by using Jacobian inverse and Jacobian derivative (7.3)
for joint level control. Notice that the Jacobian inverse and Jacobian derivative need
the information of joint angle and angular velocity, which are approximated by the
reference trajectory, i.e.

δq = J−1(qr)δp (7.3a)

δω = J−1(qr)(δv − J̇(qr, ωr)δq) (7.3b)

In experiments, the reference trajectory is the task space version of the trajectory
mentioned in Section 6.3. The sampling rate of the joint controller and the ac-
celerometer is 1 kHz, while the sampling rate of the camera is 50 Hz. If the position
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Figure 7.4: Tracking performance for single joint setup at Ts = 1 ms
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Figure 7.5: Position and velocity tracking error for single joint setup at Ts = 1 ms
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Figure 7.6: Block diagram of KKF feedback system for two link manipulator

and velocity feedback signals are both from KKF estimates, the experimental sys-
tem becomes unstable. However, if the position feedback signal is from KKF and
the velocity signal is from encoder, the system remains stable. It turns out that the
velocity signals have a significant effect on the closed loop stability. Experimental
results shown in this chapter are the stable cases.

Figure 7.7 compares the position tracking performance of the KKF feedback system
with that of the encoder feedback system. Blue lines are the position measurements
when the loop is closed with the encoder signal while the green lines are the position
measurements when the loop is closed with the KKF estimate. The position is cal-
culated from the encoder measurements by the forward kinematics. Red lines are the
reference position signals. For clarity purposes, only a small time range is showed.

Figure 7.8 compares the velocity tracking performance of the KKF feedback system
with that of the encoder feedback system. Blue lines are the velocity measurements
when the loop is closed with the encoder signal while the green lines are the velocity
measurements when the loop is closed with the KKF estimate. They are calculated
from the one step backward difference of the position signal in Figure 7.7. Red lines
are the reference velocity signals.

From these two figures, we can see that although the encoder feedback system per-
forms slightly better than the KKF feedback system, the encoder feedback system
requires a high resolution load side encoder, which may not be available for indus-
trial applications. However, the KKF feedback system requires only several low cost
sensors mounted on the end-effector.

7.4 Summary

In this chapter, experiments using KKF estimates as feedback signals for the single
joint setup and the two link manipulator were performed. The tracking performance
of the KKF feedback system was compared with that of the encoder feedback system
for both the single joint setup and the two link manipulator. It was shown that the
KKF feedback system performs as good as the encoder feedback system.
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Figure 7.7: Position comparisons between encoder and KKF feedback systems
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Figure 7.8: Velocity comparisons between encoder and KKF feedback systems
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Chapter 8

Conclusions and Future Research

8.1 Conclusions

Drive trains are essential for a variety of positioning systems used in factory automa-
tion. The signal for feedback control is often obtained from the motor only, which sets
the performance limitation in terms of positioning and tracking accuracy of the end-
effector. To overcome such limitations, this dissertation suggested two approaches
that utilize additional sensors.

At the beginning of this dissertation, a single joint setup and a two link robot ma-
nipulator were introduced. More specifically, the system identification and friction
identification were performed for the single joint setup, while the dynamic model and
of its associated parameters were given for the two link manipulator.

In the first part of the dissertation, an online reference trajectory generation scheme
based on vision information was presented. Based on the contours captured by a
camera, a reference trajectory for a two link manipulator was generated to follow the
contour at selected speeds. Since the field of view of the camera is very small, the
contour was approximated either as a straight line or as a circular arc. The reference
trajectory was first generated in task space, then it was converted to joint space for
joint level control. The experimental results of the two link manipulator following
different contours at selected speeds demonstrated the effectiveness of the proposed
reference trajectory generation scheme.

The second part of the dissertation addressed inertial and vision sensor based end-
effector sensing and control for the single joint setup and the two link manipulator.
Since this part is based on the kinematic Kalman filter(KKF), the KKF design was
discussed at the beginning. It was emphasized that the steady state KKF gain de-
pended only on the ratio of the process noise and measurement noise covariances,
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and this point was confirmed by the symmetric root locus method. It was noted that
the ratio must be selected by examining the estimation accuracy as well as the closed
loop robustness of KKF feedback control. A multi-rate KKF with large measurement
delay was proposed for both the single joint setup and the two link manipulator.
The estimation results were utilized as feedback signals to control the two setups.
Experimental results showed the effectiveness of the proposed end-effector motion
estimation scheme.

8.2 Future Research

For future work, since all the parameters for the two link manipulator may be lumped
into three independent constants, adaptive system identification based on [34, 46]
can be performed. This scheme can be incorporated for real-time adjustment of the
feedback control gains. In addition, adaptive control of the two link manipulator can
also be investigated [47]. The robust state estimation by KKF may be an advantage
in the design of these adaptive systems.

For the work regarding vision based contour following, we did not consider the case
where the contour contains sharp corners. If the contour has sharp corners and we
still want to keep a constant speed, as the end-effector passes the corner, the vision
sensor should be able to detect the corner and generate the initial trajectory to lead
into the corner and an additional trajectory to reorient the end effector such that the
end-effector can exit the corner without any sudden jerks or accelerations. In other
words, the additional trajectory should be designed to smoothly connect the two sides
of the corner. If the end-effector is performing any functionality on the contour, it
should be turned off on the extra trajectory. The contour following work can also be
extended to the three-dimensional case. In that case, more vision sensors are required
and methods of interpreting the captured images to obtain accurate end-effector posi-
tion and orientation information may become substantially more complicated. Other
sensors, such as additional accelerometers, gyros, may be incorporated as well.

For the work of inertial and vision sensor based end-effector sensing and control,
the motivation is end-effector motion estimation for indirect drive trains. However,
limited to the experimental setup, we only verified the proposed scheme on direct
drive trains. One possible future direction is the implementation of the scheme to
indirect drive trains to show its effectiveness. In addition, it is essential to extend
the proposed scheme to the three dimensional case. In that case, gyros and more
cameras are required. How to combine these sensor measurements to obtain end-
effector motion information promptly and accurately will be a challenging problem.
The validity and effectiveness of the proposed sensor fusion scheme should eventually
be demonstrated for articulated six axes industrial robots.
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[32] H. Olsson, K. J. Åström, C. C. de Wit, M. Gafvert, and P. Lischinsky, “Friction
models and friction compensation,” European Journal of Control, vol. 4, no. 3,
1998.

[33] B. Armstrong-Hélouvry, Control of Machines with Friction. The Kluwer inter-
national series in engineering and computer science. Robotics, Norwell, Mas-
sachusetts: Kluwer Academic Publishers, 1991.

[34] N. Sadegh and R. Horowitz, “Stability and robustness analysis of a class of adap-
tive controllers for robotic manipulators,” The International Journal of Robotics
Research, vol. 9, June 1990.



72

[35] C. H. An, C. G. Atkeson, and J. M. Hollerbach, Model-Based Control of A Robot
Manipulator. The MIT press, 1988.

[36] H.-W. Kim and S.-K. Sul, “A new motor speed estimator using kalman filter in
low-speed range,” IEEE Transactions on Industrial Electronics, vol. 43, August
1996.

[37] S.-H. Song and S.-K. Sul, “An instantaneous speed observer for low speed control
of ac machine,” in Proceedings of Applied Power Electronics Conference and
Exposition, vol. 2, February 1998.

[38] D. Lee and M. Tomizuka, “State / parameter / disturbance estimation with an
accelerometer in precision motion control of a linear motor,” in Proceedings of
ASME IMECE, 2001.

[39] R. Horowitz and M. Tomizuka, “Class notes of Advanced Control System II.”

[40] S. Jeon and M. Tomizuka, “Benefits of acceleration measurement in velocity
estimation and motion control,” Control Engineering Practice, vol. 15, pp. 325–
332, 2007.

[41] M. Nakamura, “Relationship between steady state kalman filter gain and noise
variances,” International Journal of Systems Science, vol. 13, May 1982.

[42] B. D. O. Anderson and J. B. Moore, Optimal Control: Linear Quadratic Methods.
Information and System Sciences Series, Englewood Cliffs, New Jersey: Prentice-
Hall, 1989.

[43] M. Tomizuka, “Multi-rate control for motion control applications,” in 8th IEEE
International Workshop on Advanced Motion Control, pp. 21–29, 2004.

[44] E. B. Dahlin, “Designing and tuning digital controllers,” Instruments and Con-
trol Systems, vol. 41, pp. 77–83, 1968.

[45] K. Warwick and D. Rees, Industrial digital control systems. London, United
Kindom: Peter Peregrinus Ltd, 1988.

[46] N. Sadegh and R. Horowitz, “Stability analysis of an adaptive controller for
robotic manipulators,” in Proceedings of International Conference on Robotics
and Automation, March 1987.

[47] J.-J. E. Slotine and W. Li, “On the adaptive control of robot manipulators,” The
International Journal of Robotics Research, vol. 6, no. 3, 1987.



73

Appendix A

Proof of (5.11)

[1 + Go(z)]Q[1 + Go(z
−1)] = V + G(z)WG(z−1). (A.1)

Proof. Since

L = AF

= AMCT (CMCT + V )−1

= AMCT Q−1,

the left side of (A.1)

L.H.S = [1 + CΦ(z)L]Q[1 + LT Φ(z−1)T CT ]

= Q + CΦ(z)LQ + QLT Φ(z−1)T CT + CΦ(z)LQLT Φ(z−1)T CT

= Q + QLT Φ(z−1)T CT + CΦ(z)LQ

+ CΦ(z)(AMCT Q−1CMAT )Φ(z−1)T CT

= V + CMCT + CMT AT Φ(z−1)T CT + CΦ(z)AMCT

+ CΦ(z)(AMCT Q−1CMAT )Φ(z−1)T CT .

From the Riccati equation (5.6) we know

BWBT = M − AMAT + AMCT Q−1CMAT

and

M − AMAT = M − Az−1M + AMz−1 − AMAT

= (zI − A)z−1M + AM(z−1I − AT )

= Φ(z)−1z−1M + AM(Φ(z−1)−1)T .
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Thus, the right side of (A.1)

R.H.S. = V + CΦ(z)BWBT Φ(z−1)T CT

= V + CΦ(z)(M − AMAT + AMCT Q−1CMAT )Φ(z−1)T CT

= V + CΦ(z)(Φ(z)−1z−1M + AM(Φ(z−1)−1)T )Φ(z−1)T CT

+ CΦ(z)(AMCT Q−1CMAT )Φ(z−1)T CT

= V + Cz−1MΦ(z−1)T CT + CΦ(z)AMCT

+ CΦ(z)(AMCT Q−1CMAT )Φ(z−1)T CT .

Compare L.H.S with R.H.S, we only need to show

CMCT + CMT AT Φ(z−1)T CT = Cz−1MΦ(z−1)T CT .

Since M is symmetric, M = MT ,

Cz−1MΦ(z−1)T CT − CMT AT Φ(z−1)T CT

= C(MT z−1Φ(z−1)T −MT AT Φ(z−1)T )CT

= C(MT (Iz−1 − AT )Φ(z−1)T )CT

= CMT CT

= CMCT .

Therefore, (A.1) holds.




