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ABSTRACT
The emergence of SARS-CoV-2 recombinants is of particular concern as they can result in a sudden increase in immune
evasion due to antigenic shift. Recent recombinants XBB and XBB.1.5 have higher transmissibility than previous
recombinants such as “Deltacron.” We hypothesized that immunity to a SARS-CoV-2 recombinant depends on prior
exposure to its parental strains. To test this hypothesis, we examined whether Delta or Omicron (BA.1 or BA.2)
immunity conferred through infection, vaccination, or breakthrough infection could neutralize Deltacron and XBB/
XBB.1.5 recombinants. We found that Delta, BA.1, or BA.2 breakthrough infections provided better immune
protection against Deltacron and its parental strains than did the vaccine booster. None of the sera were effective at
neutralizing the XBB lineage or its parent BA.2.75.2, except for the sera from the BA.2 breakthrough group. These
results support our hypothesis. In turn, our findings underscore the importance of multivalent vaccines that
correspond to the antigenic profile of circulating variants of concern and of variant-specific diagnostics that may
guide public health and individual decisions in response to emerging SARS-CoV-2 recombinants.
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Introduction

SARS-CoV-2 recombinants emerging during the
surges of COVID-19 have raised significant concerns,
primarily due to their potential to accelerate immune
evasion due to antigenic shift. Among these recombi-
nants, the newly identified XBB lineage has garnered
considerable attention. It came into existence through
the recombination of two highly diversified lineages,
BJ.1 and BA.2.75.2, both derivatives of the Omicron
BA.2 lineage. Remarkably, the XBB variants swiftly
spread across populations worldwide, including
those who had been vaccinated and those with hybrid
immunity.

In contrast, a variant known as “Deltacron”,
which originated in early 2022 from the recombina-
tion of Delta and Omicron BA.1 lineages, exhibited
limited spread compared to XBB. We postulate
that this difference in transmission dynamics reflects
the varying levels of pre-existing immunity within
the population. Specifically, individuals had devel-
oped some degree of immunity against the parental
strains of Deltacron, either through vaccination or
prior infection. However, due to antigenic shift in
newly emerging variants, this immunity was sub-
stantially less effective against the parental strains
of XBB.
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To test our hypothesis, we reconstructed naturally
occurring XBB and Deltacron recombinants, and con-
ducted comprehensive assessments of their neutraliz-
ation by serum samples collected from individuals
encompassing a wide range of immune statuses,
including those who had recovered from infection,
individuals who had been vaccinated, and those with
hybrid immunity. This investigation aimed to shed
light on the interplay between recombinant variants
and the existing immune landscape, and to offer
insights for effective vaccine design.

Methods and materials

Human serum samples

Human serum samples were obtained from three
sources:

i The Curative clinical trial provided 52 samples.
This trial aimed to investigate immune evasion
by the SARS-CoV-2 virus, approved under
Advarra’s Pro00054108, part of the University
of California, Los Angeles Protocol Record
PTL-2021-0007, and registered under Clinical-
Trials.gov Identifier NCT05171803.

ii We acquired 25 remnant plasma samples from
hospitalized COVID-19 patients at UCSF
through UCSF Clinical Laboratories. These
samples were stored in a biobank. A retrospective
review of medical records collected relevant
demographic and clinical metadata. This process
followed approved “no subject contact” protocols
by the UCSF Institutional Review Board (proto-
col number 10-01116).

iii An additional 10 plasma samples were procured
through the UMPIRE study (UCSF Employee
and Community Member Immune Response),
identified by protocol number 20-33083. This
study focused on collecting whole blood and
plasma samples, assessing immune responses to
vaccinations (including booster shots) and vac-
cine breakthrough infections. Consent was
obtained from UMPIRE participants at the
UCSF CTSI Clinical Research Service (CRS) Lab-
oratory, where nurses and phlebotomists col-
lected their blood.

Blood samples underwent standard venipuncture,
allowing for the extraction of up to 15 ml of whole
blood. The collected blood was left to coagulate at
room temperature for 30–60 min, followed by cen-
trifugation at 2200–2500 rpm for 15 min at room
temperature. Resulting serum samples were stored
on ice until transportation to the laboratory, where
they were divided into aliquots and stored at −80°C
for future use. It’s important to note that all patients

in the eight study groups tested negative by PCR at
the time of serum collection.

These trials included diverse adult participants with
varying immune backgrounds, including those who
had previously received COVID-19 vaccinations or
had a history of prior COVID-19 infection. In total,
our study cohort comprised 87 individuals, categor-
ized into eight groups: (i) Two vaccine doses (n =
10), (ii) Three vaccine doses (n = 10), (iii) Unvacci-
nated individuals infected with BA.1 (n = 8), (iv)
Unvaccinated individuals infected with BA.2 (n = 9),
(v) Unvaccinated individuals infected with B.1.617.2
(n = 11), (vi) Vaccinated individuals experiencing
BA.1 breakthrough (n = 11), (vii) Vaccinated individ-
uals experiencing BA.2 breakthrough (n = 23), (viii)
Vaccinated individuals experiencing Delta break-
through (n = 5). It’s important to note that individuals
in the breakthrough population had received either
two or three doses of mRNA vaccine.

Infectious clone preparation

Infectious clones for Deltacron (Figure S1), XBB,
XBB1.5 (Figure S2) and BA.2.75.2 variants were pre-
pared using a recently reported viral genome assembly
and rescue strategy [1]. The virus infection exper-
iments were performed in a Biosafety Level 3 labora-
tory. Working stocks of SARS-CoV-2 variants were
made in Vero-ACE2-TMPRSS2 cells and were stored
at −80°C until used.

Virus neutralization assay

The serum samples were heat-inactivated at 56 °C for
30 mins. The sera were diluted 1:35, 1:175, 1:525,
1:1575, 1:4725, 1:14,175 in 50 µL serum-free DMEM.
Each dilution was combined with 50 PFU (50 µL) of
SARS-CoV-2 recombinants or parental strains. The
mixture was mixed gently and incubated at 37°C for
30 mins, before assessment of virus neutralization
through the plaque assay.

Plaque assay

Vero-ACE2-TMPRSS2 cells (gifted from A. Creanga
and B. Graham at NIH) grown to monolayers were
infected with the mixtures of serum dilutions and
virus. After one hour, the cultures were overlaid
with 2.5% Avicel (Dupont, RC-591) and infections
allowed to proceed for 72 h. The cells were then
fixed with 10% formalin for one hour and the plaques
were visualized by crystal violet. The plaques were
counted for each serum dilution and the neutraliz-
ation titre at 50% (NT50) was determined as the
dilution factor leading to the neutralization of 50%
of the virus.

2 R. K. Suryawanshi et al.



Results

Selection of SARS-CoV-2 recombinants and
immune population

Although many SARS-CoV-2 Deltacron and other
recombinants exist [2], we focused on Spike Deltacron
recombinants because Spike is the main target of neu-
tralizing antibodies after infection and is the only tar-
get of mRNA vaccines. We used reverse genetics to
create two recombinant Deltacron variants that had
been previously identified or documented in sequen-
cing databases [3–6]: one where the Delta variant car-
ries the Spike sequence from Omicron-BA.1 (δ/ο-
Spike) and the other where the Omicron-BA.1 variant
harbours the Spike sequence from Delta (ο/δ-Spike)
(Figure S1) [1]. Each recombinant also included
mutations (inside or outside Spike) found in > 90%
of GISAID sequences of circulating Deltacron variants
as of January 2022. Our XBB infectious clone harbours
a combination of BJ.1 and BA.2.75.2 mutations found
in > 90% of GISAID XBB sequences as of October
2022 (Figure S2). The recombination point is within
the Spike receptor binding domain protein, and the
N-terminal 459 amino acids are from BJ.1 and the
C-terminal 814 amino acids from BA.2.75.2. The
XBB.1.5 infectious clone had few different mutations
across the genome and were contained in >90% of
GISAID sequences as of December 2022 (Figure S2).

We evaluated sera from a cohort of 87 individuals
that fell into eight groups: vaccinated people who
received (a) two vaccine doses or (b) three vaccine
doses; unvaccinated individuals infected with (c) BA.1,
(d) BA.2, or (e) Delta; and vaccinated individuals with
(f) BA.1 breakthrough, (g) BA.2 breakthrough, or (h)
Delta breakthrough. Individuals in the breakthrough
population had received either two or three doses of
the mRNA vaccines. The clinical characteristics of the
cohort are provided in Table S1 in the supplementary
appendix. For 27 (40%) of the 67 infected individuals,
the presence of Omicron or Delta had been confirmed
by sequencing the nasopharyngeal/nasal swabs; for the
40 other infected individuals, the infectious strain is
inferred based on the date of sample collection. We
tested all sera for their ability to neutralize Deltacron
XBB, XBB.1.5 recombinants, and their parental strains
(Delta, BA.1 and BA.2.75.2) usingwhole-virus neutraliz-
ation assay. Results are expressed as neutralization titres
at 50% value (NT50), which represents the serum titres
that neutralizes 50% of the virus in our assay (Figure 1)
[7]. In this system, the greater theNT50, the stronger the
neutralizing capacity of the serum.

Vaccination enhances neutralization of
Deltacron but not of the XBB lineage

We first compared the neutralization titres of the vac-
cinated (group a, two vaccine doses) and boosted

populations (group b, three vaccine doses). The sera
of boosted individuals exhibited 32-fold and 15-fold
higher neutralization of ο/δ-Spike and δ/ο-Spike,
respectively, than did the sera of non-boosted vacci-
nated individuals (Figure 1(A and B)). These findings
suggest that an additional dose of mRNA vaccine pro-
vides substantial protection against Deltacron recom-
binants, similar to its effect against other SARS-CoV-2
variants [8,9]. However, δ/ο-Spike was less susceptible
than ο/δ-Spike to neutralization by sera from vacci-
nated or boosted individuals (by a factor of 3.3 and
4.2, respectively; Figure 1(A and B)), indicating partial
immune evasion by the Omicron Spike protein
[7,10,11]. Similar to their parental strain BA.2.75.2,
XBB and XBB.1.5 completely escaped neutralization
by sera from both the vaccinated (NT50 5.2-6) and
boosted (NT50 16–22) individuals (Figure 1(C–E)).
The findings are consistent with the expectation that
vaccinated sera lose their potency against Spike
sequences of newly emerging variants [12,13].

Sera from Omicron or Delta convalescents
neutralize Deltacron better than XBB
recombinants

Next, we examined unvaccinated individuals recover-
ing from Delta, BA.1 or BA.2 infections (groups c-e).
Those recovering from a Delta infection showed a
59-fold higher NT50 against the ο/δ-Spike than the
δ/ο-Spike recombinant (2845 vs. 48, p = 0.008) (Figure
1(A and B)). These results align with neutralization of
the parental strains, where sera from Delta convales-
cent individuals had a 42-fold higher NT50 against
Delta than BA.1 (NT50 against Delta: 2117, against
BA.1: 50, p = 0.01) (Figure S3(A and B)) [7]. Recipro-
cally, sera from BA.1 convalescent individuals showed
higher titres against the δ/ο-Spike than ο/δ-Spike
recombinant (NT50 314 vs. 162) (Figure 1(A and
B)). The BA.1 convalescents’ sera also neutralized
the parental BA.1 strain 5.2-fold better than the δ/ο-
Spike recombinant (NT50 1636 vs. 314, p = 0.02)
(Figure S3(A and B)) [7], indicating that infection
with BA.1 generates neutralizing antibodies against
non-Spike proteins in addition to the Spike of BA.1.
Interestingly, sera from BA.2 convalescent individuals
showed the least neutralization of both Deltacron
recombinants, even δ/ο-Spike (NT50 < 100), XBB
(NT50 5) and of XBB.1.5 (NT50 21), indicating that
in unvaccinated individuals, BA.2 infection triggers a
less robust humoral response than BA.1 does, which
in turn underscores antigenic disparities between the
Spike proteins of these variants (Figure 1(A–D)).
None of the convalescent sera were able to efficiently
neutralize XBB or XBB.1.5 (NT50 < 20) (Figure 1(C–
E)). The observations are consistent with the model
that exposure to the Spike-providing parental strain
is critical for efficient neutralizing immunity.
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Hybrid immunity conferred by BA.2 infection in
vaccinated individuals induces partial
protection against XBB lineage

Finally, we examined the vaccinated individuals reco-
vering from breakthrough infections with Delta, BA.1
or BA.2 (groups f–h). The sera from Delta break-
through individuals displayed the highest NT50
recorded across all our experiments, an NT50 of
7900 against the ο/δ-Spike variant. This NT50 was
2.7-fold that of Delta convalescents without vaccination
(2845) and 2 fold that of boosted individuals (3877),
illustrating the superiority of hybrid immunity against
Delta Spike relative to vaccination or Delta infection
alone (Figure 1(A)). This NT50 was also 65-fold higher
(p = 0.001) than the NT50 of the same sera against the
δ/ο-Spike recombinant indicating immune evasion by
BA.1 spike (Figure 1(A and B)).

Individuals with BA.1 or BA.2 breakthrough infec-
tion neutralized both the δ/ο-Spike and the ο/δ-Spike

variants with fairly high NT50s (ranging from 1339 to
5381) relative to the NT50 of unvaccinated BA.1- or
BA.2-infected individuals (ranging from 27 to 314)
(Figure 1(A and B)), suggesting that immune recall
by breakthrough Omicron infections (BA.1 or BA.2)
confers substantially higher and broader protection
against Deltacron recombinants than do Omicron
infections in the unvaccinated population. Interest-
ingly, the sera from the BA.2 breakthrough group
showed the most potent neutralization of XBB
(NT50 71) and XBB.1.5 variants (NT50 93) among
all sera (Figure 1(C and D)), even though this protec-
tion was limited. In particular, it neutralized the XBB
lineage 3–7-fold more efficiently than did sera from
the Delta (p = 0.003) and BA.1 (p < 0.0001) break-
through groups. The results indicate the major anti-
genic shift of the XBB lineage, which stems from
BA.2. In addition to SARS-CoV-2 recombinants. we
also evaluated all study groups for their ability to neu-
tralize BA.2.75.2, one of the parental strains of XBB.

Figure 1. Vaccine-induced and hybrid immunity effectively neutralizes Deltacron variants but not XBB lineage. (A–E).
Scatter dot plots of neutralizing-antibody titres against Omicron-Delta spike (o/δ-spike), Delta-Omicron spike (δ/ο-spike), XBB,
XBB.1.5 and BA.2.75.2 variants by sera from: two-doses mRNA-vaccinated individuals (n = 10); vaccinated and boosted (three
doses of mRNA vaccine) individuals (n = 10); unvaccinated individuals infected with Delta (n = 11), BA.1(n = 8); BA.2 (n = 9); vac-
cinated or boosted individuals with breakthrough infections by Delta (n = 5), BA.1 (n = 11), and (H) BA.2 (n = 23). In all cases, geo-
metric mean values for the 50% neutralization titres (NT50) are provided at the top of the plots. Each dot represents an individual
serum sample. Statistical significance was analyzed by unpaired ordinary one-way ANOVA with Tukey’s multiple comparison test
(*P < 0.05, **p < 0.001,**** p < 0.0001). The details regarding samples (group, age, sex, COVID-19 infection status, severity, vac-
cination dates, and sample collection dates after infection or symptoms are summarized in supplementary data Table 1).
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As expected, BA.2 breakthrough sera was the most
potent, with an NT50 of 170, 6.5- and 8-fold higher
than the NT50 of the Delta and BA.1 breakthrough
sera, respectively (Figure 1(E)).

This highlights the significance of tailored vaccine
strategies based on currently circulating variants and
utilizing diagnostics that are specific to these variants
as a response to the evolving SARS-CoV-2 recombi-
nants, especially since future recombinant strains are
expected to stem from the currently circulating ones.

Discussion

Our study set out to explore whether the differential
spread of SARS-CoV-2 recombinants, particularly
the constrained propagation of Deltacron recombi-
nants compared to the broad distribution of the XBB
lineage, reflected pre-existing immunity to specific
SARS-CoV-2 variants. To investigate this hypothesis,
we generated XBB, XBB.1.5 and Deltacron (ο/δ-
Spike and δ/ο-Spike) strains similar to those occurring
naturally and evaluated their neutralization by sera
from individuals with a diverse range of immune sta-
tuses, encompassing individuals who have recovered
from infection, those who have been vaccinated, and
those who possess hybrid immunity.

We found that the boosted individuals neutralized
one of the Deltacron recombinants (ο/δ-Spike) and
its parental strain Delta much more efficiently than
non-boosted vaccinated individuals did. However,
the other Deltacron recombinant (δ/ο-Spike) and
BA.1 showed partial immune evasion, while the XBB
and XBB1.5 recombinants, along with their parental
strain BA.2.75.2, showed complete immune escape in
vaccine-boosted individuals. These results align with
the anticipated decrease in the effectiveness of vacci-
nation and boosting as newly emerging variants
diverge from the original Spike sequence [12,13].
Infection by Delta, BA.1 or BA.2 in unvaccinated indi-
viduals led to varying neutralization patterns against
Deltacron recombinants, highlighting antigenic dis-
parities between these variants. While these sera neu-
tralized the parental Delta and BA.1 strains, the sera
from individuals recovering from BA.2 infection had
the weakest neutralization activity, suggesting that
BA.2 infection induces a weaker humoral response
than other strains in unvaccinated individuals. This
may indicate significant differences in the antigenic
repertoire of the Spike proteins from BA.1 vs. BA.2
variants. Both BA.1 and BA.2 Omicron variants
emerged in South Africa around the same time. How-
ever, BA.2 distinguishes itself from BA.1 by containing
21 common mutations and 10 unique ones in its Spike
protein [14]. Consistent with our findings, previous
studies have demonstrated that despite sharing
numerous mutations in the Spike protein, Omicron
BA.1 and Omicron BA.2 exhibit differences significant

enough to impede effective cross-neutralization
[15,16]. These observations are consistent with the
model that exposure to the Spike-providing parental
strain is critical for efficient neutralizing immunity.

Sera from vaccinated individuals recovering from
Delta breakthrough infections displayed strong neu-
tralization of the ο/δ-Spike variant, showing the super-
iority of hybrid immunity over immunity conferred by
vaccination or Delta infection alone. Nevertheless, due
to antigenic disparities in the BA.1 spike, the neutral-
ization capacity of sera from Delta breakthrough cases
was significantly lower against the δ/ο-Spike recombi-
nant. People with BA.1 or BA.2 breakthrough infec-
tions exhibited a robust neutralization against both
δ/ο-Spike and ο/δ-Spike variants that surpassed that
seen in convalescent individuals, consistent again
with the superiority of hybrid immunity over infection
alone. None of the hybrid immune sample showed
much efficacy against XBB lineage or its parental
strain BA.2.75.2. The best neutralization of the XBB
lineage was seen in the BA.2 breakthrough group,
although it remained limited (NT50 71-93). Notably,
the mean NT50 values of all groups except the BA.2
breakthrough group are similar. This similarity
could be attributed to the major antigenic shift of
the XBB lineage, which derives from BA.2 and is
characterized by 22 unique mutations including 20
amino acid substitutions and 2 deletions compared
to the BA.1 variant. The findings suggest that BA.2
is too distant from other strains for cross-neutraliz-
ation, in the context of hybrid immunization and/or
immune recall. These findings support the model of
a major antigenic shift in emerging variants, stemming
from BA.2 (Figure 1(C–E)), and imply that the BA.2
Spike protein could be an effective immunogen to
induce neutralization of XBB lineage by vaccination.

Our study has several limitations. First, the disease
severity index of the Delta and BA.1 convalescents in
our study was relatively higher than that of the BA.2
convalescent or breakthrough groups, who had
suffered relatively mild disease. This difference in dis-
ease severity is inherent to the pathogenicities of the
variants. Second, the median age of our cohort ranges
from 31 to 65 years; thus the results might not be gen-
eralizable to people outside this age range. Third, we
have a slight overrepresentation of female participants,
who often suffer less severe disease than their male
counterparts do [17,18].

In spite of these limitations, our findings suggest
that vaccination, particularly when boosted, and the
hybrid immunity resulting from Delta, BA.1, or
BA.2 breakthrough infections, provide effective pro-
tection against Deltacron recombinants. This aligns
with our hypothesis that the proliferation of Deltacron
variants was constrained by pre-existing immunity at
that time. In contrast, only hybrid immunity from a
BA.2 breakthrough infection could neutralize the
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XBB lineage and its precursor strain, BA.2.75.2, albeit
to a modest extent (NT50 values of 71 against XBB, 93
against XBB.1.5, and 170 against BA.2.75.2). This
modest neutralization, combined with an increased
binding affinity of the Spike protein for human
ACE2 [19], might facilitate the wide spread of new
XBB recombinants within the community. In line
with our hypothesis, recent reports have shown that
the Spike protein specific to XBB.1.5 elicits broadly
neutralizing immune responses against newly emer-
ging XBB variants, including XBB.1.16, XBB.1.9.1,
and EG.5 [20,21]. Our data emphasize the benefits of
vaccines tailored to encompass the antigenic profiles
of prevailing variants of concern and underscore the
significance of variant-specific diagnostics. Such
diagnostics have the potential to inform decisions in
both public health and individual settings when
confronted with the emergence of new SARS-CoV-2
recombinants.
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