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ABSTRACT OF THE DISSERTATION

Efficient, Scalable and High-Throughput Runtime Reconfigurable Arrays

for Accelerator as a Service

by

Sumeet Singh Nagi

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2022

Professor Dejan Marković, Chair

Advancements in silicon processing are responsible for the exponential growth in computing

performance and algorithmic development. With the end of Dennard scaling, conventional

computing architectures, like CPU, are unable to keep up with the increasing computa-

tion requirements of modern algorithms. Hardware accelerators are designed for each such

computation-heavy algorithm and incorporated into the system; a modern System-On-Chip

(SoC) for phones can have up to 30 different accelerators. Modern high-compute applica-

tions such as 5G, machine learning, and autonomous driving vehicles require accelerators

to keep up with their rapidly evolving standards and computation needs. However, with

the rising design costs at newer technology nodes, the iterative development of inflexible ac-

celerators becomes prohibitively expensive. Reconfigurable architectures, with their ability

to adapt to rapidly-evolving standards as well as their ability to accommodate several such

high-performance applications in the system, provide an ideal solution. The motivation of

this dissertation is to develop such a Coarse Grain Reconfigurable Architecture called Uni-

versal Digital Signal Processor (UDSP) which could replace accelerator blocks in an SoC,

and develop a hardware management system to enable concurrent multiprogram function-

alities in the reconfigurable architectures. UDSP consists of 196 Compute Elements (CEs)
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and a statistics-based scalable, delayless, high speed routing network. It is developed using

an algorithm-driven framework to allow for faster development of each successive revision of

the design. The tileable and scalable nature of UDSP allowed us to put together 4 UDSP

dies on a 10µm fine-pitch interposer Silicon Interconnect Fabric, as a 2×2 UDSP Multi-Chip

Module (MCM), quadrupling the number of compute resources. The UDSP 2× 2 assembly

has a peak throughput of 3,450 Giga-Operations per second (GOPs) or 1,725 Giga-Multiply

Accumulates per second (GMACs) at 1.1GHz clock frequency while consuming 6W power

including 0.38pJ/bit to transfer data across dies in TSMC 16nm. It achieves a peak efficiency

of 785GMACs/J (0.42V, 315MHz). UDSP lies within 4.2× energy efficiency and 6.4× area

efficiency gap relative to ASICs at nominal operation conditions (0.8V, 1.1GHz).

Multiprogram tenancy on conventional reconfigurable arrays requires high manual effort

from the programmer to foresee and account for runtime program dynamics during compila-

tion. The inability to predict runtime and multiprogram dynamics places the recompilation

time of programs in the critical timing path, leading to long reconfiguration times, poor

active resource utilization, and low acceleration performance. We developed an active hard-

ware resource management system for reconfigurable arrays that automatically accounts for

multi-program dynamics at runtime, eases the workload of the programmer, and improves

the array’s performance. These hardware management techniques enable dynamic runtime

relocation of programs on the Runtime Reconfigurable Array (RTRA) with minimal recon-

figuration latency overhead, which allows the array to offer Accelerator as a Service (ACAS).

The ACAS architecture virtualizes the array by spatially and temporally scheduling multiple

programs on its available resources, thus achieving higher active utilization for the mapped

programs on the array. ACAS allows developers to compile programs for acceleration on re-

configurable array without requiring additional manual steps for runtime resource planning

at compile time. Provided with high program pressure, ACAS exceeds 90% active utilization

of arrays. For signal processing workloads, our simulated 9×12 RTRA uses a 3× smaller area

and delivers 3.2−4.3× more throughput than a 18×18 UDSP and the 18×18 RTRA delivers

8− 14× more throughput as compared to its equivalent-sized 18× 18 UDSP counterpart.
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CHAPTER 1

Introduction

For decades, industry has relied upon exponential transistor scaling for performance improve-

ments. This scaling has enabled the development of high-performance and energy-efficient

applications. However, with the end of Dennard scaling [10] and decreasing returns from

transistor scaling [12], [48], system designers are now incorporating specialized and domain-

specific architectures [18] to allow for increasingly higher-performance algorithms as well

as energy-efficient edge devices. An increasing number of hardware accelerator blocks are

added to the SoCs along with multi-core CPUs/GPUs to balance the performance and en-

ergy efficiency requirements [43]. Although the performance gains from hardware accelerators

are highly desirable, their inflexible, non-programmable nature makes them impractical for

rapidly evolving applications such as 5G and Machine Learning (ML).

Figure 1.1: Advanced plan of 5G evolution by 3GPP [1].

An accelerator designed for 5G network infrastructure cannot follow the same strategy

as 4G networks, as the 4G network architecture and interface was very well-defined. Due to
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the diverse use cases, the complexity of networks, and rapidly-evolving standards as shown

in Figure 1.1 [1], tackling the demands of 5G infrastructure with a hardware accelerator

or a dedicated ASIC would require multiple design iterations [55]. In the field of ML, the

model sizes and complexity of different algorithms nearly doubles every 3-4 months [44],

thus requiring a new iterative hardware design to accommodate the algorithmic changes and

increasing memory requirements.

However, the development costs of a new design in the advanced technology nodes is

increasing exponentially as shown in Figure 1.2. This prohibits the iterative development of

hardware accelerators for low volume requirements. With the rising design costs in smaller

technology nodes, the volume requirements for the break-even cost of hardware accelerators

as compared to reconfigurable/programmable solutions would keep increasing. Hence, there

is a need to develop a cost-effective, energy and area-efficient reconfigurable solution which

can provide the optimal flexibility required to avoid the iterative process of hardware accel-

erator development and which can keep pace with the evolving standards and complexities.

Figure 1.2: Design costs at advanced nodes [20].

Reconfigurable solutions offer several advantages [37] over hardware accelerators:
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• Reduced time-to-market: Time-to-market for the reconfigurable solution is lower

as the hardware can be reused across multiple platforms.

• Higher chip volume: Since a reconfigurable solution can be adapted to support mul-

tiple standards and applications without requiring hardware changes, the chip volumes

of such solutions are higher relative to application-specific accelerators.

• Prototyping: It is easier and faster to fix any issues during the ongoing adoption

and evolution of products and specifications on a reconfigurable solution with a simple

software revision or a kernel update even after the chipset has been deployed into the

systems.

• Multi-mode operation: A reconfigurable solution can be used to accelerate multiple

applications from the broader domain, unlike hardware accelerators which are highly

application-specific and can only accelerate a small subset of applications. An SoC

block might require multiple hardware accelerators to achieve acceleration over the

domain of desired applications.

For a single application system with evolving needs, the designer has to consider the total

cost of ownership for the solution, whether it is an ASIC or a reconfigurable solution like

Field Programmable Gate Arrays (FPGA) or Coarse Grain Reconfigurable Architectures

(CGRA). Figure 1.3 shows the study of total cost of ownership of an ASIC, FPGA, and

CGRA over the course of the product cycle and volume for 5G applications.

To address the challenges of constantly evolving application standards and increasing

computation requirements, we developed a reconfigurable solution called Universal Digital

Signal Processor (UDSP). Our design exploits the spatial correlation between the functional

units (multipliers, adders, logic) and the interconnect network requirements in the domain

of applications to design a 196 core UDSP which is 4.2× as energy efficient and 6.4× as

area efficient as an ASIC, as shown in Figure 1.4. We then demonstrate the scalability and

tileability of our architecture using fine-pitch interposer interconnect Si-IF [21].

3



Figure 1.3: Total cost of ownership curve for ASIC, FPGA and CGRA. Adapted from Xilinx

RFSoC [55].

Figure 1.4: Energy and area efficiency of UDSP relative to other architectures. Adapted

from [50], [57], [30].
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We also develop a methodology for active hardware resource management of reconfig-

urable arrays to enable the use of such highly scalable and high-performance architectures

in other emerging fields such as self-driving cars, cognitive radios, cloud computing acceler-

ators, cloud inferencing, etc. Such domains require a high number of hardware accelerators

and could benefit from the use of reconfigurable arrays for multimode operation as well as

continuously-evolving algorithms. The hardware and throughput requirements of programs

may vary based on their execution stages, environment, and runtime multiprogram dynam-

ics. Overprovisioning the hardware for different runtime program traces, which may or may

not exist simultaneously, leads to poor active utilization of the array. In the self-driving car

example, several Neural Network (NN) models exist, but very few would be actively used

per video feed from different cameras. In the cognitive radios example, the classification al-

gorithms depend on the incoming signal, but only a few of the algorithms would be actively

used for each detected signal. Programmers have to optimize the runtime hardware resource

use by predicting and planning for the runtime program dynamics during compilation. Such

compilation procedures are time-intensive and require high manual effort from the program-

mer. The problem is further exacerbated when multiple programs from multiple developer

teams have to run simultaneously on the array. The developers have to predict multiple

runtime program traces and efficiently map hardware resources among their programs at the

time of compilation. An automated runtime management system eliminates such extensive

manual effort and accelerates the overall compilation process.

We call our active hardware resource management feature ACAS for Accelerator as a

Service. The key innovative feature of ACAS is runtime program relocation, enabled by

symmetries in the array’s interconnect network. The reconfigurable array used for demon-

stration is UDSP, which uses a mesh-based interconnect network that is translation- and

rotation-symmetric. The symmetries allow us to translate, rotate, and mirror an incoming

program on the array with minimal modifications to the program binary while preserving

the internal configuration of the program. This feature allows ACAS to accommodate the

incoming programs on the available resources without a complete recompile. Our hardware-
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based solution completes the program relocation procedure in under 20 clock cycles. The

ACAS architecture virtualizes the accelerator array by spatially and temporally schedul-

ing multiple programs on its available resources, thus achieving higher active utilization for

mapped programs on the array. ACAS allows developers to compile programs for hardware

acceleration on the array without requiring additional manual steps for runtime resource

planning at compile time.

By dynamically programming the array for various program requests, the ACAS feature

along with our Runtime Reconfigurable Array is 8−14× faster in signal processing workloads

for the blind signal classification model when using an array size of 18×18, as compared to a

statically-configured CGRA such as UDSP. For workloads comprised of Basic Linear Algebra

Subroutines (BLAS), fully-connected Neural Network (NN), Convolutional Neural Network

(CNN), Image Processing (IP), Machine Learning (ML), and media encoding/decoding, we

observe an average throughput gain of up to 5.14× over statically-configured arrays of similar

array size, while consuming similar energy and occupying marginally higher (< 5%) area.

1.1 Dissertation Outline

The organization of this dissertation is as follows:

• Chapter 2: Architectural Efficiency Study: Design and Efficiency Insights

In this chapter, we explore the program execution flow in various compute architec-

tures. Based on the analysis, we develop insights about the underlying microarchitec-

tures and Instruction Set Architecture (ISA) and the enabling features, which allow for

a wide variability of throughput, efficiency, and flexibility. We use the exploration and

analysis to devise a multi-domain Architectural Efficiency (AE) metric, which quanti-

fies the performance of various microarchitectures and ISAs. We use the AE metric to

measure the performance of our UDSP architecture and the insights will allow us to

design better future architectures.

• Chapter 3: Hardware Architecture of UDSP
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In this chapter, we elaborate the hardware architecture of UDSP and its various hard-

ware components. We describe the domain exploration of the field of digital signal

processing, and explain the decision-making process and analysis of various existing

architectures to select an appropriate interconnect network for the array and its con-

stituent switchboxes. We elaborate the design of SNR-10 interconnect channel for

fine-pitch interconnect fabric. Finally, we present the results obtained from the single

UDSP and the Multi-Chip Module (MCM) of 2× 2 UDSP on the fine-pitch interposer

Si-IF.

• Chapter 4: Software Compiler for UDSP and RTRA

In this chapter, we describe the design of a compiler for the software-friendly recon-

figurable architecture, UDSP. We go over various software components required to

compile the user input data flow graph to the binary bits required to configure UDSP.

Then we describe the software compiler changes required to accommodate the mul-

tiprogram tenancy and hardware virtualization features, such as multi-size compile,

multi-step compile, and program abstraction as polygons, enabled by Accelerator as a

Service (ACAS) on Runtime Reconfigurable Array (RTRA).

• Chapter 5: RTRA for Accelerator as a Service (ACAS)

In this chapter, we describe the hardware components required to enable runtime

reconfiguration on the array. We present the active runtime hardware management

features on the array which enable array virtualization using ACAS, including the

hardware scheduler, hardware compiler, multi-bank memory and a sparsely-connected

IO network.

• Chapter 6: Conclusion

In this chapter, we conclude the dissertation and describe the significance and contri-

butions of this work and the future use case scenarios of the RTRA-ACAS design, as

well as describe various avenues of exploration and optimization for future researchers.
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CHAPTER 2

Architectural Efficiency Study: Design and Efficiency

Insights

While designing a compute solution for any given application or application domain, the sys-

tem architects and designers have to analyze its computation requirements and decide upon

a system architecture from a wide variety of available architectures such as CPU, GPU,

FPGA, DSP, hardware accelerators etc. They have to perform trade-off study between

efficiency, flexibility, generalizability, domain-specificity and programmability of various ar-

chitectures. Architectures such as CPU and GPU are highly generalizable and can provide

high degree of flexibilty however at the cost of poor efficiency relative to other architectures,

on the other end of flexiblity spectrum we have dedicated accelerators like ASICs, which

are highly area and energy efficient but have a very limited flexibility. In the middle of the

spectrum of flexibility and efficiencies there are reconfigurable architectures such as Digital

Signal Processors (DSP), FPGA and CGRA. Over the years the designers have come up

with many novel reconfigurable architectures with varying degree of compute specialization

and interconnect networks for various different application domains. These architectures

employ several optimization techniques such as frequency-voltage tuning, multicore opera-

tion, deeper compute pipelines, innovative device physics, higher memory bandwidths etc to

achieve higher throughput as well as higher efficiencies. The performance of such architec-

tures is usually measured with metrics such as operations per second, operations per watt,

throughput, latency etc. However, many of the optimization techniques employed to achieve

higher performance and efficiencies can be implemented in other architectures as well and

can be used to improve upon them. As an example, multicore operation and parallelism op-
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timizations are algorithm dependent, and architectures that can optimally implement SIMD

style execution can leverage the algorithmic structures to improve upon their efficiency, ad-

ditionally, the frequency-voltage tuning can be applied to every architecture to select an

optimal system operating point to improve upon their energy efficiency and most architec-

tures would see an improved throughput with increase in memory bandwidth. Moreover,

the energy- and area-dependent metrics such as GOPS/mW and GOPS/mm2 are highly

technology dependent, which implies that an architecture would score higher in those met-

rics with a redesign using a smaller technology node even with no changes in the underlying

microarchitecture.

We develop a multi-domain Architectural Efficiency (AE) metric which can be used to

quantify the throughput and efficiency gains of a microarchitecture independent of the hard-

ware and physical implementation variables. A metric that can be used to optimize and

quantify changes to the the Instruction Set Architecture (ISA) at the conceptual or pre-RTL

stage of the microarchitecture space exploration. AE metric can quantify performance and

efficiency gains of different types of architectures and helps analyze the specialization deci-

sions, compute, interconnect network, and memory hierarchy that drive those gains, as well

as provides a method of analyzing the architecture at the ISA stage prior to RTL/hardware

implementation. The AE metric provides the designer with an insight into the architecture.

Based on the architectural decisions made during ISA design and level of parallelism and

concurrency, the AE metric can also be used to estimate throughput of the final design.

2.1 Architectural Efficiency Metric

Energy efficiency and area efficiency of an architecture depend on several factors but one

of the important ones that can get overlooked is the ISA. We analyzed the execution flows

of a few commonly used program kernels on widely used architecture such as CPU, GPU,

reconfigurable architectures such as UDSP and FPGA; and hardware accelerators such as

Google’s Tensor Processing Unit (TPU) [23], we will go over the analysis in upcoming sec-
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tions. Using the analysis we came up with the Architectural Efficiency (AE) metric as given

in Equation 2.1.

AE =
∑

computations(compute bitwidth)∑
instructions(instruction bitwidth)

(2.1)

AE metric is defined as the ratio of the sum of bits required for computation and sum

of bits required for instructions or in the case of reconfigurable architectures the size of re-

configuration bits required to perform the computation. The metric essentially quantifies

the amount/number of instructions required to get the architecture to perform the desired

computation. We consider any arithmetic or logical operation performed on the data as a

computation. Any other computation performed for the control mechanism, address gener-

ation or loops, that is any computation not performed on the data is not counted. We sum

compute bitwidth over all the computations to accommodate architectures with increasing

or variable wordsizes, and sum the instruction bitwidth to accommodate ISAs with variable

instruction widths, and reconfigurable architectures like CGRA and FPGA where the recon-

figuration bits can be several kilobits in length. Compute bitwidth and instruction bitwidth

also enable users to estimate the requirements for instruction and data bandwidth for the

particular computation and architecture.

The optimal ISA for the algorithm under test would have smaller size of reconfiguration

bits and least number of instructions for most computations, and thus would score a higher

AE metric compared to other architectures. As an extension, an architecture designed for a

specific program or domain of programs would score highly in that particular domain since

its memory hierarchy, interconnect network and compute would be specialized to perform

the tasks of that domain with least number of instructions bits, however it might score low

on other programs not belonging to the original set. It may implement the other program

in a suboptimal way, thus incurring penalty in instruction count for the same computation.

The efficiency of an architecture varies from program to program as well as the size of

computation required for the program. AE metric is presented as a graph where the AE

score is plotted against the size of computation, as we will observe, many architectures that
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are highly efficient for larger programs may not be so for smaller size computations of the

same program. Additionally, provided the width of instruction decoders, Instructions Per

Cycle (IPC), compute latency, concurrency (hardware parallelization), and clock frequency

of the particular architecture, the AE metric can also be used to predict throughput of that

architecture. This throughput estimate allows the designer to get a rough estimate of the

throughput of their architecture at pre-RTL or conceptual stage and theoretically analyze

the concurrency, compute, or network for data reuse specializations and other optimizations

that they can employ to design an optimal architecture.

2.1.1 ISA vs Reconfiguration Bits

While defining the AE metric, we form an analogy between the instructions in instruction-

driven architectures like CPU or GPU with the reconfiguration bits in reconfigurable archi-

tectures like FPGA or DSP; here we provide an intuitive reasoning behind the analogy. Every

algorithm or program can be abstracted as a data flow graph, where the nodes represent

compute, decision, logic elements, memory, and registers, and the edges represent movement

of data or control bits. In an instruction-driven architecture, the instructions are applied

temporally, and each instruction facilitates data or control movement along the edges of the

graph. In a reconfigurable architecture, the configuration bits would perform a similar data

flow graph, but spread out spatially by programming the interconnect network, selecting the

compute elements and data path registers.

Figure 2.1: C code snippet for matrix multiplication.
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Figure 2.1 shows a C Code snippet for the kernel inside matrix multiplication program.

Once compiled the assembly output of the same kernel is shown in Figure 2.2. Each of

the instructions in the assembly code is decoded and executed consecutively in the CPU

hardware. The instructions effectively create a data flow graph in temporal domain as shown

in Figure 2.3. In a typical CPU program, there could be additional graphs for instructions

to update frame pointers, program counters, and memory address generation connected to

the data flow graph, not shown in the Figure 2.3.

Figure 2.2: Assembly code output of the C code kernel from Figure 2.1.

Similarly when we program a reconfigurable hardware such as FPGA using the reconfig-

uration bits for the MAC program, the program modifies the data paths inside the routing
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Figure 2.3: Example temporal data flow graph of the MAC operation executing on CPU.
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network inside the FPGA to perform the MAC operation and the Look Up Table (LUT)

or a similar processing element inside the reconfigurable array is also modified to perform

compute required for the MAC program. An example of such spatial construction of MAC

data flow graph on FPGA is shown in Figure 2.4.

Figure 2.4: Example spatial data flow graph of the MAC operation mapped out on FPGA.

Thus, instructions for CPU and reconfiguration bits for FPGA perform the same func-

tionality in a different temporal or spatial fashion, and various architectures lie along this

temporal or spatial spread. For architectures like FPGA, CGRA, and ASICs, the sum of

instruction bits includes the initial reconfiguration bits, instructions executing on the main

thread for the program, and any supplemental instructions issued to the architecture at

runtime. For instance, if we simulate a CPU on an FPGA, then the instructions for the

program running on the simulated CPU are also counted towards instructions bits, along

with reconfiguration bits required to map the CPU program to FPGA. Additionally, an ap-

plication specific hardware accelerator or a domain-specific hardware accelerator optimized

for a particular algorithm/domain would have its network and compute elements optimized
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for that algorithm and thus require a lesser number of instructions or configuration bits, and

thus score higher on the AE metric.

2.2 Program Flow Analysis and AE Scores of Common Architec-

tures

In this section, we analyze the program flow and calculate the AE metric using some of

the widely used architectures such as CPU, GPU, and FPGA, along with novel architec-

tures such as Tensor Processing Unit. Noting an increase in Machine Learning and Neural

Network workload, we wrote programs for General Matrix Multiplication (GEMM) on the

different architectures and compared the results of the AE metric. Executing the AE metric

on a generalized architecture like a CPU helps understand the specializations and instruc-

tion reduction techniques that form the underlying principles for many other architectures.

Specialized architectures like CGRA, DSP, and Near-Memory Compute (NMC) have fea-

tures like interconnect networks, memory hierarchies, and multicompute pipelines, which,

compared to the execution style of a CPU, can be conceptualized as instruction reduction

techniques like vector processing, eliminating load/store operations, data path optimizations,

compute specialization, etc.

2.2.1 CPU

Decades of research has led to many different CPU architectures. Although the ISAs for

CPUs are different but the instructions and functions involved are similar. Most of the ISAs

comprise of common instructions such as load/store, compare, jump, branch, and arithmetic,

multiply, add etc., some ISAs may even have some other specialized instructions like AVX-

512, SSE, AVX-2 [13], [46], [11]. The variation in performance of the architectures arises

from the difference in clock and memory speed, memory hierarchy, power budget, and other

factors which are largely independent of the ISA. The instructions in the CPU ISAs each

perform a relatively small operation on a single data element; therefore, to perform a single
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Table 2.1: Number of instructions required to run matrix multiplication program kernel on

a matrix of size 1× 1, i.e. a scalar element, using 2 threads on different CPU architectures.

Architecture (ISA) Main Program Multithreading

Kernel Loop

ARM A53 (ARMv8-a) 58 30 9717

Ryzen 3950x(x86-64)a 59 29 9013

Xeon E5-2640v4(x86-64) 62 24 6922

i7-2670qm (x86-64) 58 27 8444

aVirtualBox Instance using SVM

computation, many supplementary instructions are executed to read/write data, generate

addresses, and branch operations. Moreover, CPUs can only execute very few instructions

per clock cycle depending on the width of instruction decoder, so the extra instructions used

are an overhead in an IPC limited CPU architecture.

The same C code was compiled with GCC with native architecture optimization flags

“-march” and “-mtune” enabled on each architecture, the c code is shown in Figure 2.1.

Analyzing the assembly code for different architectures tested, the code can be divided into

three main categories 1) the main function, 2) program kernel loop, 3) multithreading over-

head. In a given architecture the size of main function and the GEMM program kernel loop

remains constant, and multithreading overhead scales with the number of threads enabled.

The number of instructions required in the nested C loop within the GEMM kernel for

different CPU architectures is provided in Table 2.1.

For different CPU architectures, the assembly code largely consists of opcodes which per-

form similar operations, differing mainly in their order of execution, and certain architecture

specific optimized instructions. For a large matrix of size N × N , the initial overhead and

setup instructions get amortized, while the nested GEMM loop which is executed N3 times

becomes the limiting factor for the program execution. Thus, by observing the assembly
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output, shown in Figure 2.2, we can calculate the number of instructions required for the

nested GEMM loop which has 2 useful computations (1 fp32 multiplication, 1 fp32 addi-

tion). For x86-64(i7), the loop has 27 instructions, so its AE metric should converge to 0.037

for large matrices. Enabling multithreading did not affect AE score for large matrices. In

a multithreaded program, the total computation required for the program is spread over

multiple threads and multiple cores but each thread is running an independent subprogram,

repeating a similar set of instructions, hence, the total number of instructions required to

perform the compute in all of the threads remains largely unchanged. However, enabling

multithreading requires additional setup instructions, which get added to the total number

of instructions. These added instructions are independent of the size of computation, how-

ever, their contribution to the total number of instructions reduces the AE metric score for

small matrix sizes as shown in Figure 2.5, while for larger matrices the added multithreading

instructions get amortized.

Figure 2.5: AE metric for different CPU architectures, running singlethreaded and multi-

threaded GEMM workload with varying matrix sizes.

We can also observe in Figure 2.5, that the CPU ISAs which require the lower number
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of instructions in the nested loop score higher on the AE metric score, as they require lower

number of instructions to perform the same amount of compute. However, this may not

relate to actual throughput gains of the CPU since the scores are so close to each other, the

secondary effects of microarchitecture such as memory bandwidth, branch prediction, physi-

cal implementation and most importantly clock frequency may shuffle around the measured

throughput of the architectures. An argument can be made, that a designer could design the

secondary structures with same performance and operate the designs at same clock frequency

across the CPU architectures, and the AE metric could tell us which architecture would fare

better in that case. This is essentially the RISC vs CISC comparison, although CISC ar-

chitectures are much better for compute the physical implementation of these architectures

can be inefficient, and on other hand RISC ISA may not have a very efficient ISA however

the simpler instructions and decodes allow them to be much more efficient. Overall, as of

now the CISC architecture provide a better single thread performance albeit at the cost of

higher energy and power than RISC architectures, as can be observed in AE metric.

2.2.2 GPU

GPU architectures are optimized to perform matrix operations. For our testing we used

Nvidia GPUs, with CUDA libraries and NSight Compute Profiler. We performed our test-

ing by running the Matrix Multiplication kernel on CUDA cores in Nvidia 1650 Super (Turing

Architecture), Nvidia 3080 (Ampere Architecture) and Nvidia 1050ti (mobile Pascal Archi-

tecture) [35], [36], [34]. The CUDA core architecture in the three generations is largely the

same. The GPU is divided into Streaming Multiprocessor (SM) units each comprising 4 In-

struction Dispatch Units (IDUs), each issuing 32 threads every clock cycle, one each for the

attached 32 CUDA cores as shown in Figure 2.6 . A single instruction in the GPU assembly

code dispatched by IDU is executed as threads on the 32 CUDA cores. Hence, GPU archi-

tecture exploits the parallelism and concurrency of the algorithm, and this transformation

allows GPU to reduce instructions by 32× to score 32 times higher as compared to CPU on

AE metric.
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Figure 2.6: Architecture of a Streaming Multiprocessor (SM) unit inside Nvidia GPU [36],

and an example warp dispatch.
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Figure 2.7: GPU assembly code (left) for the matrix multiply kernel.

The GEMM loop in GPU code for a single CUDA warp is shown in Figure 2.7. It is

similar to the CPU style of execution but the GPU has a fused instruction for floating point

multiply and add, and a few extra instructions for threadID and blockID to allocate threads

to their respective CUDA cores. Matrix multiplication in GPU was segmented into smaller

3 × 32 matrices, and the loop has been unrolled 32 times to speed up program execution.

These transformations, fused instructions, and loop unrolling allow the GPU to gain another

9× reduction in the number of instructions as compared to a CPU for the same program,

thus a ∼ 288× total gain in the AE metric. For Pascal, Ampere, and Turing architectures,

the unrolled loop has 94, 89, and 89 instructions respectively, and each loop performs 64

computations and each instruction/warp is dispatched to 32 CUDA cores, thus, theoretically,

AE metric should converge to 11.5 for large matrices for Ampere and Turing and to 10.9 for

Pascal, as can be observed in Figure 2.8.
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Figure 2.8: AE metric for different GPU architectures for GEMM workload with varying

matrix sizes.

2.2.3 FPGA

FPGA architecture is flexible, which allows the user to exploit the parallelism of the algo-

rithm, increase data reuse (interconnect network), and compute specialization (multicompute

pipeline). We mapped our GEMM kernel as a data flow graph and a memory address gener-

ation block, as shown in Figure 2.4 on Altera MAX10 FPGA and Intel Stratix10 FPGA. The

concurrency of program implementation is limited by hardware factors like memory band-

width or the number of logic blocks. In our implementation, the concurrency was limited by

the width of read/write ports on the onboard RAM, which allowed for 18 input vector MAC

(Multiply Accumulate) on MAX10 and 512 on Stratix10. Once an FPGA is configured, no

further instructions are required to execute the GEMM program; however, the limited size of

RAM on the FPGA boards limits the maximum size of matrices. Hence for larger matrices,

the FPGAs ran out of memory, so we had to subdivide the matrices and perform multiple

multiplications to accommodate the memory limitation. Compared to a CPU, an FPGA

is able to eliminate instructions for partial data movements, multiple computes, loops, and
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memory address generation by using its dedicated interconnect, implementing multicompute

elements or MAC units, implementing unrolled, vectorized MAC units, and implementing

special compute elements for generating addresses for memory accesses. Thus, FPGA elim-

inates the requirement for multiple instructions to perform computation, and requires just

one time instruction or configuration bits. The size of instruction or configuration bits re-

quired for FPGA is 190kb for Stratix10 and 3kb for MAX10 FPGA. The large instruction

size is detrimental to the AE metric score for FPGA in the beginning but the absence of

regular incremental instructions allows its AE metric score to improve with growing matrix

sizes, as in Figure 2.9.

Figure 2.9: AE metric for different FPGA architectures for GEMM workload with varying

matrix sizes.

2.2.4 Hardware Accelerators

Hardware accelerators or ASIC can be categorized into two broad categories, instruction

driven ASICs and statically programmed ASICs [30]. An example for an instruction driven

ASIC would be Google’s TPU [23], which is a domain-specific architecture designed specif-
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ically for matrix-vector multiplication, whereas an example of statically programmed ASIC

would be [60]. In this architecture, the program is statically mapped onto the CGRA and

the data is streamed through it. We performed Matrix Multiplication on our own static

CGRA, UDSP (Universal Digital Signal Processor) and mapped the data flow graph.

Figure 2.10: AE metric for TPU and UDSP architectures for GEMM workload with varying

matrix sizes.

We will go over the internal architecture of UDSP in detail in Chapter 3, however for a

brief description, UDSP is a 196 core, 16-bit fixed point processor and each UDSP core can

be configured to perform a size 2 vector MAC. UDSP can perform 128-input vector MAC and

memory address generation when provided with sufficient I/O bandwidth from the paired

memory. Compared to an FPGA-based implementation, UDSP requires fewer configuration

bits to implement the same input width MAC data flow graphs, hence, it outperforms FPGA

in the AE metric, as in Figure 2.10.

Hardware accelerator TPU has very few instructions in its ISA, and requires 4 TPU in-

structions for Read Host Memory, Read Weights, MatrixMultiply, and Write Host Memory

[23] to perform matrix vector multiplication. To perform a matrix multiplication, we need to
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perform the matrix-vector operation multiple times, once for each column, which reduces the

AE for the architecture. Assuming that instruction bitwidth for TPU is 64 bits (configuration

+ memory address) the AE metric for UDSP and TPU is as shown in Figure 2.10. TPU com-

bines the multiple instructions for word level memory read/write into a single vector/matrix

level instruction. The compute instructions for individual matrix elements are also reduced

to a single instruction for large matrix level computation and the instructions for reusing

the partial computes in matrix multiplication are absent since the interconnect/datapaths

between the compute elements in TPU are dedicated to performing just that operation.

It is optimized to perform matrix-vector multiplications of size [256x256][256x1] and larger

matrices need to be subdivided to perform multiplication.

2.3 Discussion

We observe orders of magnitude difference in AE metric score of CPU, GPU, FPGA, UDSP

and TPU as shown in Figure 2.11. We can observe that for extremely small matrix sizes it is

much more efficient to perform the computation within the CPU core rather than initiating

any of the acceleration devices. We can observe that AE metric score for UDSP and FPGA

grow with similar slope for small matrix sizes since they both can implement the same data

flow graph, however the orders of magnitude difference in the AE score originates from the

different number of instruction bits required to configure the two architectures. Since FPGA

requires much larger size of instruction bits to configure its interconnect network and also

the internal Look Up Tables (LUTs), the instruction cost is much higher than a CGRA like

UDSP, where arithmetic functional unit level granularity and domain-specific interconnect

help cut down a lot on instruction bits.

Instruction driven architectures like CPU, GPU and TPU all converge to a single AE

metric score for large matrices. The convergence value is driven by the number of instructions

in the nested loop within the assembly programs of such architectures. Since CPU performs

a single operation at a time with single instruction, the convergence AE score is much lower

24



as compared to other architectures. A SIMD architecture like GPU can perform upto 32

operations in parallel using a single instruction hence score an order of magnitude higher

than CPU. The TPU can perform much larger computation, that is [256× 256]× [256× 1]

matrix vector computation with just 4 instructions, hence is one of the best architectures

to perform the task. However, TPU can perform just that one single operation, hence the

enhanced AE score comes at the cost of flexibility.

We can also observe that the relation between throughput and energy efficiency numbers

provided for various architectures can be derived from the AE score. We can observe a

strong correlation in those reported metrics and the AE metric score at large matrix sizes.

Hence, we might be able to incur that the traditional metrics of evaluation might not be

considering the overhead and the inefficiencies of the program to fully utilize the hardware.

The traditional metrics are only valid if the hardware resources are maximally utilized, which

would amortize overhead of using the said hardware.

Figure 2.11: AE metric plot of various different architectures for GEMM workload with

varying matrix sizes for comparison.
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2.3.1 Throughput Estimation

For IPC bound architectures like CPU or GPU, We can estimate throughput of the archi-

tecture using its AE metric and its hardware implementation features such as instruction

decoder width, multithreading and maximum operating clock frequency. For static architec-

tures with pipelined compute data paths, like FPGA or UDSP, we can estimate the through-

put by multiplying the AE metric with their clock frequency and concurrency/vectorization.

For compute latency bound architectures like TPU, or dynamic CGRAs, estimating through-

put requires information of compute latency. For instance, i7-2670qm Sandy Bridge archi-

tecture has an instruction decode width of 4 [13], and max clock frequency of 3GHz. RTX

3080 was operating at 0.7-0.9 GHz, has 68 SM modules, and each SM can schedule 4 warps

per clock cycle. Figure 2.12 and Figure 2.13 show the measured throughput and estimated

throughput for CPU and GPU architectures using AE model in 1D-convolution, Fast Fourier

Transform (FFT) and GEMM workloads.

Figure 2.12: Estimated vs measured throughput of various programs on Intel i7 CPU.

The variance in the AE score could be used to infer flexibility of different architectures.
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Figure 2.13: Estimated vs measured throughput of various programs on Nvidia 3080 GPU.

We observe that highly flexible architectures such as CPU tend to have a very low deviation

in AE score across various computation requirements across different programs. Since a CPU

can always decode, dispatch and execute a fixed number of instructions every clock cycles,

depending on the program, it can very well perform a certain number of computations per

instructions. However, architectures such as FPGA or CGRA, may require large number of

configuration bits to configure certain programs, may have some inefficiencies in spatially

mapping the program, which can cause a wider variation in their AE scores. The above is

an observation and would require further testing and experimentation.

2.3.2 Domain Specificity

One of the major takeaways from the AE metric analysis would be the domain specificity.

Spatially reconfigurable architectures such as FPGA and UDSP can be benefit a great deal

from domain and requirement specificity. We can observe in Figure 2.11 that a smaller FPGA
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MAX10 can outperform the larger FPGA Stratix10 for small matrix sizes, the reason being

that for smaller matrix sizes, the extra hardware on the larger FPGA is an overhead and

slows down the programming and reconfiguration and negatively effects the performance.

Similarly, UDSP can benefit from microarchitecture optimizations such as compute special-

ization, domain-specific interconnect and fixed data widths, which would help cut down on

the number of instructions bits required to perform the computation and would also ben-

efit the utilization of the array. We observe these benefits in the results section of UDSP

Chapter 3, and later we can also observe the benefit of reducing the instruction size in the

programming and control bandwidth section of RTRA Chapter 5.
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CHAPTER 3

Hardware Architecture of UDSP

Universal Digital Signal Processor or UDSP belongs to a broad class of architectures called

Coarse Grain Reconfigurable Array (CGRA). A CGRA typically consists of an array of

compute nodes, each executing a word level operation, communicating to each other across

an interconnect network. Most of the CGRA designs can be differentiated and character-

ized based on their size, node functionality, interconnect and control mechanism. The size

of CGRA refers to the number of processing elements or cores in the array, and the node

functionality describes the function that each processing element performs [37]. Node func-

tionality can be as simple as a Look-Up Table (LUT), arithmetic and/or logical operands

or a relatively small general purpose core. If a CGRA has a LUT as its Functional Units

(FUs) then it may very closely represent an FPGA, and a CGRA with a general purpose

core would be resemble a multi-core CPU, in these two scenarios the implementation scheme

of a program running on the CGRA would better distinguish a CGRA from the other two

architectures. The CGRA designer can choose to keep the functional units homogeneous,

having all the FUs identical or heterogeneous, in which some of the FUs could be functionally

different than others, operate on different data types or could be memory storage elements

like SRAM, DRAM or register file. There are variety of implementations for the interconnect

network as well, while some CGRA architectures employ simple nearest neighbour architec-

tures, others may have hierarchical or bus-based interconnects, a few of them implement

a hybrid interconnect network which could be a mix of other networks at different level of

granularity.

Figure 3.1 shows an example CGRA architecture with 16 Processing Elements (PEs) or
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Figure 3.1: An example CGRA architecture.

cores arranged in a 4×4 2D grid. The interconnect network allows each PE to communicate

to its four nearest neighbour PEs in a ‘+’ fashion. Each PE contains a functional unit which

can perform simple arithmetic operations, some muxes to allow inputs from neighbors, a

configuration memory to store the configuration of the PE and a register file to store partially

computed data. This architecture is just a simple example of vast design choices possible in

designing a CGRA.

In this chapter we go over the hardware architecture of a reconfigurable array architecture

that we designed called Universal Digital Signal Processor (UDSP).

3.1 UDSP Architecture

Figure 3.2 provides an overview of UDSP architecture. There are various components to the

design of UDSP and we go over them in detail in the upcoming sections.
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Figure 3.2: UDSP 2× 2 architecture overview.
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3.1.1 Core

Core or Processing Element (PE) forms the compute unit of any CGRA. The core consists

of functional units like arithmetic operations, logical operations, bitwise manipulation etc.

Our goal for UDSP is to design an energy and area efficient flexible architecture for the

Digital Signal Processing domain with sufficient flexibility to accommodate the algorithm

space while maintaining ASIC like performance and efficiency. The cores contribute the

largest to the overall energy and area consumption of these architectures since they are

replicated multiple times throughout the array. In order to design an efficient and optimal

core architecture we need to examine the requirements of the algorithm space of the domain

as well as prior work and architectures in the field.

Figure 3.3: Repeating kernels for IIR filter, FIR filter, lattice filter, complex MAC, Cooley–

Tukey 8-pt FFT.

To understand the requirements of the domain better we study an extensive list of DSP

algorithms such as single cycle MAC, complex arithmetic, FIR/IIR/adaptive filters, blind

equalization, power spectral density, sphere decoding, QR decomposition, SDF FFT/butterfly,
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Convolutional Neural Networks (CNN), matrix multiplication etc. We break down the DSP

algorithms into their constituent arithmetic operations and data movements. With arith-

metic operations in the algorithms represented as nodes and the data movements represented

as edges, we develop data flow graphs of each algorithm and identify the repeating kernels.

Some of the kernels and data flow graphs are shown in Figure 3.3.

The existing and some of the most popular CGRA architectures [37], [31], [45], [16], [38],

[17] use CPU style Functional Units (FU) or Arithmetic Logic Units (ALUs) inside the core

as shown in Figure 3.1. If we try to map the algorithm kernels as shown in Figure 3.3 on

the FU or ALU style cores, we observe high mapping inefficiencies. The arithmetic units

inside the ALU or FU are connected in an either-or fashion, meaning that only one of the

arithmetic units multiplier or adder can be used in a single pass through the functional unit.

This means that when a large program is spatially mapped on to the CGRA at least half

of the arithmetic units remain unutilized because of the architectural design choices and the

FU structure of the core.

Figure 3.4: Core architecture of UDSP.

Instead of going with the traditional ALUs, we design our core with the target program
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Figure 3.5: Some example kernels mapped onto UDSP core.
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kernels and domain in mind. We identify and reuse the common elements in the program

flow graphs and repeating kernels. The program kernels belonging to the DSP domain have

a multiplier-to-adder ratio of nearly 1, which means that for every multiplier used there is

a high probability that an adder would be mapped next. Additionally some of the kernels

with complex arithmetic also require heavy use of multipliers and adders with a high degree

of communication or routing density between them, and the same is also true for filters

like adaptive filters and parallel multi-rate FIR filters. So, the final core design contains 2

multipliers and 2 adders to ensure performance and sufficient mappability across the domain.

However, the interconnect internal to the core between the multipliers and adders was an

iterative process. We design a core iteration and try to map the target application kernels

onto the core and over the course of various iterations the data paths were added and

removed between the arithmetic units, and the final core architecture is shown in Figure 3.4.

Some of the example mappings of program kernels mapped onto the UDSP core are shown

in Figure 3.5 and additional mappings are shown in the results section in Figure 3.34 and

Figure 3.35.

3.1.2 Routing Network

The routing network is used for communication between the PEs in a reconfigurable archi-

tecture. It drives the physical organization and topology of the architecture. The choice

of routing network has implications on the performance, energy consumption, area, scala-

bility, reliability and compilability of the architecture. Overdesigned routing network for a

domain-specific architecture would mean inefficiencies in area and power, and an underde-

signed/underprovisioned network would mean lack of flexibility, increased compilation times,

mapping inefficiencies, complete lack of support for certain algorithms and network topolo-

gies and therefore large throughput penalties.

There are several classifications of on-chip network architectures based on their topology

and interconnect policy [6]:
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• Shared-medium networks: The link is shared amongst multiple nodes, and the nodes

take turns to transmit data one node at a time as shown in Figure 3.6. An example

for such networks is bus-based networks such as AMBA by ARM [4], or coreConnect

by IBM [15].

• Direct networks: As the name suggests in this network topology the nodes which require

communication are directly connected to other nodes and routers via point-to-point

links, as shown in Figure 3.7. Examples of this topology are mesh-based networks and

crossbar networks.

• Indirect networks: In this network topology each node is connected to a switch and

switches have point-to-point connections to other switches as shown in Figure 3.8.

• Hybrid networks: This is a mixture of a combination of other network approaches.

FPGA architectures use such a hybrid network between direct and indirect networks

as shown in Figure 3.10.

Figure 3.6: Shared-medium bus network.

Shared-medium bus networks requires an additional layer of protocol for arbitration

strategies and bus moderators to control the use of bus by the connected nodes, additionally

the cores need to be modified to pause the program execution to accommodate for network

congestion and conflict issues on the bus. However our requirements for the architecture are

streaming interconnects where the connections are fixed based on the program and do not
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deviate once a program is spatially mapped on the array. Thus, based on the requirements

we can rule out the use of shared medium networks.

Figure 3.7: Examples of direct network, a 2-dimensional mesh, a 3-ary 2-cube torus, and a

3-dimensional hypercube.

Direct and indirect networks support the streaming data connectivity as required by

our architecture. Direct networks as shown in Figure 3.7 have a distinct advantage as they

overcome the scalability problems of shared medium networks. In this network topology

each node is directly connected to a subset of neighbouring nodes in the network. Each

node contains its functional units, or memory and in addition it contains the network in-

terface block called router or a switch. The router or switch can be programmed to enable

direct connectivity to the neighbours through the wires. Properties of direct networks have

been extensively studied using graph modelling techniques. These networks are described

using properties like node degree, network diameter, bisection bandwidth, path diversity,

symmetricity and regularity.

Indirect networks can provide another scalable alternative to direct networks. The prop-

erties and graph modelling techniques used to describe direct networks can be used for

indirect networks as well. Over the decades many topologies have been proposed for this

network types, one of the simplest topology is a crossbar-based indirect network. Crossbar

allows any connected node to be connected to any other connected node. Since crossbar is

a fully connected network internally it scales with order(N2) with the number of nodes in

the system.
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Figure 3.8: Examples of indirect network, with a fully-connected crossbar.

Several solutions have been proposed to improve the scalability of the crossbar. Benes

network introduces a multi layer crossbar which improves the scalability from order(N2) to

order(Nlog2(N)), as seen in Figure 3.9 [49].

Figure 3.9: Examples of indirect network, with a fully-connected crossbar.

Some of the commonly used FPGA architectures employ indirect network using multiple

crossbars with crossbar-crossbar connections as shown in Figure 3.10. Such an architecture

solves the scalability problem at the larger scale, since the mesh is scalable with array size
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Figure 3.10: Examples of FPGA network, with a mesh interconnect and crossbar-crossbar

connections.

but the crossbar is still not scalable. These crossbar-based multi-stage networks have several

other problems. The crossbars have a fixed bandwidth among them which can result in

blocking and network congestions. The crossbar and switches once used to connect an input-

output node pair cannot be used for any other connection, thus the connection is blocked.

The bigger problem, however is regarding the compiler friendliness. The number and the

selection of crossbars a connection has to pass through to achieve a successful connectivity

requirement is non-deterministic. A crossbar network provides a large number of solutions to

connect an input on any one of the nodes to outputs on any other node. In a reconfigurable

array using such a network architecture, upon placement of the program, the compiler has

to perform a high effort routing, the solution to which is not guaranteed because of blocking,

and the path taken is non-deterministic because of high number of possible solutions. This

means that FPGA compilers using such a interconnect network require multiple high effort

iterations of placement, mapping, routing and timing checks to map the input program to

the array, and the timing requested by the user may still not be guaranteed.

Based on the above analysis of the domain of available network architectures and their
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benefits and shortcomings, we chose to use direct network as our network of choice for UDSP

and now we explore and adjust parameters for the direct network that would be optimal for

our architecture.

We explore the domain of digital signal processing and its requirements by developing

a graph theory driven methodology to understand the requirements of the domain. We

extract the graph characteristics of kernels belonging to the domain by mapping the kernels

to a connected graph as shown in Figure 3.3 and then calculating the average node degree,

and its standard deviation. We generate several random graphs based on the extracted

characteristics. The degree of distribution of node degrees of any randomly generated graph

follows a Poisson distribution. Figure 3.11a shows an example of such randomly generated

graphs, the graph shows the degree distribution of a randomly generated DSP-like graph

with 500 nodes.

Figure 3.11: Network requirement analysis of the DSP domain.

Hundreds of graphs generated this way were mapped to the 2D array of UDSP and the

inter node distances of the connected nodes were calculated and plotted against the total
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number of wires as a fraction as shown in Figure 3.11b. Since this is a brute force mapping

without optimizations there is a large fraction of wires with high inter node distances. At

this stage we apply the method of simulated annealing that we developed in parallel for our

software compiler. In this annealing approach we place the highly connected cores closer

to each other based on a cost function given by the Equation 3.1. The final result after

performing the annealing operation on sub-optimally placed nodes on a 2D array looks like

Figure 3.11c. The plot is an example for just one 500 node DSP-like graph, here we can

observe that most of the wires in the mapping have an inter-node distance 1, and nearly

90% of all the wires lie within the inter-node distance of 3 as shown in Figure 3.12.

Wiring Cost =

Nwires∑
n=1

∣∣n2
xlen + n2

ylen

∣∣2 (3.1)

Figure 3.12: Cumulative Distribution Function (CDF) of the fraction of wires less than a

wire distance, and a 2D Probability Distribution Function (PDF) of the fraction of wires for

a wire distance.

There are several optimization tools in the bag of tricks of the compiler, and the placement

optimization and simulated annealing is just one of many. Although the distance 2 hop

network can accommodate over 93% of inter node connections after just annealing operation,

the compiler can perform reclustering, remapping and retiming of the underlying algorithm

to accommodate any outlier programs. Hence we make a design choice to implement a direct
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network of upto distance 2 hop delay-less deterministic connections, and as a precaution add

a very sparsely connected buffered, registered connections to accommodate any unpredictable

and unroutable connections.

In addition to the reclustering, remapping and retiming tricks, we could also tune the

order parameter of the wiring cost ‘p’, as shown in Equation 3.2. Since wiring cost is a non

linear function, a higher value of ‘p’ would penalize the longer connections or the connected

cores placed further apart much more than the connected cores placed closer together. The

increased value of ‘p’ would result in shorter connections and the connected cores being

placed closer together, however, it would come at the cost of longer convergence times as

the compiler has to exert higher effort to satisfy and minimize the cost function, which is a

reasonable trade off since compilation is a one time operation for multiple executions of the

program.

Wiring Cost =

Nwires∑
n=1

∣∣n2
xlen + n2

ylen

∣∣p (3.2)

3.1.3 Switchbox

Figure 3.13: Target connectivity required from interconnect network.
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Now that we have explored the domain and selected the type of interconnect network

required, we can dig deeper into the switchboxes required to implement that direct network.

We have calculated that the desired level of connectivity required from the interconnect

network is an upto distance 2 mesh network as shown in Figure 3.13. In this section, we look

into designing an optimal switchbox with minimal area and energy overhead to the area,

while providing optimal connectivity.

As an abstract, to make the task of designing switchboxes simpler we divide the prob-

lem of switchbox design into 3 layers. The layer-1 switchboxes provides connectivity of

nearest neighbor nodes upto distance 1 away in a ‘+’ fashion, layer-2 switchboxes provide

connectivity of nearest neighbour nodes upto distance
√
2 away in a ‘×’ fashion and layer

3 switchboxes provide connectivity of nearest neighbour nodes upto distance 2 away in a

‘+’ fashion. The first three layers of switchboxes are delayless and the fourth layer with

registered connectivity is added to accommodate the outlier connectivity cases that cannot

be fulfilled using the first three layers as shown in Figure 3.14.

Figure 3.14: The full stack of connectivity switchbox layers in the vertical stack of UDSP .

A switchbox in Layer 4 spans 4 × 4 vertical stack grid, one of the ports in each VS in
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the grid connects to layer 4 switchbox. Layer 4 switchbox is fully connected internally and

connects to its neighboring layer 4 switchboxes in a ‘+’ fashion. The connections in layer 4

switchbox are all single delay registered to allow the synthesis and layout tools to use smaller

size gates and thus save area and power.

Figure 3.15: A fully-connected switchbox and its connectivity matrix.

Once the topology of routing network and inter switchbox connectivity is decided we can

focus on designing the optimal switchbox designs. Traditional switchbox designs use fully

connected networks inside the switchbox and have an order(N2) hardware, where N is the

number of inputs/outputs and internal network complexity as shown in Figure 3.15. As an

example shown in Figure 3.15, to route a connection from input 3 to output 5, the highlighted

wire is chosen which is also represented by a ‘1’ in the (5, 3) location in the connectivity

matrix. Similarly, hierarchical switchboxes have been devised which can provide the least

redundancy for the hardware complexity of order(Nlog2(N)) as shown in Figure 3.16. As

an example, we show the same connection from input 3 to output 5 but routed via multiple

layers of the hierarchical network.

These two architectures form the extremes of architectural design choices. While the

fully connected network provides the best connectivity it comes at the cost of extra hard-

ware and the hierarchical network provides the least redundancy at very low hardware cost,

it does not provide great connectivity and suffers from blocking issue. As seen in the previous
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Figure 3.16: A hierarchical switchbox and connectivity matrices of its various intermediate

layers and final input-output connectivity matrix.
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connectivity example, once we have routed the path from input 3 to output 5 on the hier-

archical network, the 3rd mux in layer 1 and 5th mux in layer 2 and layer 5 are completely

occupied, and thus any attempt at routing any other connections would fail 100% of the

time. For example, 3 → 5 connection and 2 → 3 connection cannot be made simultaneously

in the hierarchical switchbox shown in Figure 3.16. Additionally these switchbox designs

assume that all inputs would need to be mapped to outputs, however as per our network

design exploration study, we need a limited connectivity bandwidth from these switchboxes.

Although the switchbox in layer 1 has 22 inputs coming into it only 8 of them would be

actively routed at any moment, as the core only has 4 inputs and 4 outputs.

Figure 3.17: A throughput-constricted fully-connected switchbox using 1 middle layer to

restrict throughput.

We design a throughput-constricted multilayer switchbox using fully connected network,

where the middle layer is used to constrict the throughput of a fully connected network

as shown in Figure 3.17. The hardware complexity of a fully connected switchbox can be

calculated using the Equation 3.3. The equation essentially calculates the total numbers

of connections in the switchbox. For the throughput-constricted fully connected switchbox

as described in Figure 3.17 the hardware cost is 2 × N × b, where N is the number of

inputs/outputs and b is the number of muxes/tokens in the middle layer. Hence, in the
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condition that the number of simultaneous active IO connections required from the switchbox

is b ≤ N/2, it is beneficial to go with a multilayer switchbox.

Hardware Cost =
∑

all layers

row∑
i

column∑
j

Ci,j (3.3)

Figure 3.18: 6 different redundant ways to achieve the same IO mapping in a multilayer fully

connected switchbox.

However, we can improve upon the hardware cost of this switchbox even further. Fully

connected networks are ideal for on-the-fly connectivity with requirements for incremental

connections, which means that in the scenario where a few of the connections through the

switchbox are already connected then routing one additional connection through the switch-

box is very easy, since all the middle layer muxes have identical and full coverage to the

outputs. Another way to describe the problem would be that in multilayer fully connected

switchbox there exists multiple paths and routes from the inputs to outputs to accommodate

the same connectivity and routing requirements as shown in Figure 3.18. But, our design is
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a precompiled solution, and the configuration for switchbox is predetermined, and no incre-

mental connections are required. So we have room to introduce sparsity to our multilayer

fully connected switchbox, to reduce some of the redundant connections.

Figure 3.19: Sparse switchboxes with 8 inputs and 3 muxes, and their average bandwidth vs

hardware cost for 1st layer.

We introduce sparsity into our switchbox designs by randomly removing wiring con-

nections from the switchbox and measuring its average bandwidth, which in this case is

equivalent to the number of simultaneously active IO connections. As we can observe in Fig-
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ure 3.19, going from a switchbox with first layer hardware cost 24 to another with hardware

cost 18 has no effect in the average bandwidth, beyond which we observe some detriment

in the average bandwidth as can be seen with example switchbox with hardware cost 15

and average bandwidth 2.952 IOs. The analysis of switchbox designs does not end here, as

we can very well put 4 muxes in the middle layer, and analyze the system for bandwidth

requirement of 3 IOs. As can be observed in Figure 3.20, there exists a switchbox with 4

muxes in the token layer which has a lower hardware cost of 12, it is very poor in serving

bandwidth requirement of 4 IOs but does a great job to provide bandwidth 3 IOs.

Figure 3.20: Sparse switchboxes with 8 inputs and 4 muxes, and their average bandwidth vs

hardware cost of 1st layer, to be used for network bandwidth requirement of 3 IOs.

The switchbox designed for switchbox layer 1 was analyzed extensively using this average

bandwidth metric. Millions of switchboxes were randomly designed with varying connectiv-

ities in layer 1 and layer 2, and plotted in a 3D space with x and y axis representing their
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layer 1 and layer 2 densities, and the z-axis representing the average bandwidth as seen in

Figure 3.21. The saddle of the curve given by the MCBF plot is shown in Figure 3.22.

Figure 3.21: 3D representation of average bandwidth vs the connection density in the two

layers of a multilayer switchbox with 22 inputs, 22 outputs and 8 muxes in intermediate

layer.

3.1.4 Switchbox Design Methodology

To make the job of compiler easier after the hardware design phase, a design choice was

made to keep the layer 2 of the multilayer switchbox fully connected and vary the connection

density and hardware cost only in layer 1. The actual compilation process would be discussed

in depth in the compiler chapter, here we go over the metrics used to design the switchbox.

To maintain the symmetry and reliability of the switchbox connectivity over all the inputs,

the number of inputs mapped to each multiplexer were kept constant at 8, and one of the

inputs was hard wired to a zero, chosen as the default input, to ensure absence of loops

and unnecessary dynamic power loss in the interconnect network at system startup . The

number of inputs were so selected to keep the configuration bits required to program the

switchbox minimum while maximizing the number of configurations, while also minimizing

the hardware cost. The randomly generated connectivity matrices were optimized using the

cost functions given by Equations 3.4, subject to constraints given by the Equations 3.5.
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Minimize (#shared muxes per input) =

#rows∑
i=1

#rows(j ̸=i)∑
j=1

rowi.rowj (3.4a)

Minimize (#shared inputs per muxes) =

#columns∑
i=1

#columns(j ̸=i)∑
j=1

columni.columnj (3.4b)

Number of muxes per input =

#columns∑
j=1

Ai,j (3.5a)

Number of inputs ofeach mux =

#rows∑
i=1

Ai,j (3.5b)

Figure 3.22: Average bandwidth vs hardware cost along the saddle curve of the 3D plot

of various switchbox architectures with 22 inputs, 22 outputs and 8 muxes in intermediate

layer.

The average bandwidth of millions of switchboxes generated this way were analyzed and

plotted as shown in Figure 3.22. A few of the switchboxes and their bandwidth plots are
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shown in the Figure as well, the switchbox that was selected is highlighted in the Figure 3.23

and its connectivity matrix is as shown in the Figure 3.24.

Figure 3.23: Probability that the bandwidth requested by the compiler would be satisfied

by the selected switchbox design.

3.1.5 SNR-10 Channel

The Silicon Interconnect Fabric (Si-IF) is a high density fine-pitch interposer technology

which can be used to provide high speed, high density interconnects between heterogenous

Multi-Chip Modules (MCM). Using innovative solderless thermal compression bonding tech-

nique [5], Si-IF allows fine-pitch die-to-die interconnect with pad size of just 7µm×7µm and

pad pitch of 10µm. Some MCM designs have utilized traditional coarse-pitch based technolo-

gies that are quite mature and have a pad pitch ranging from 140µm to 160µm [52]. There

are quite a few fine-pitch based technologies in development such as 55µm based EMIB [28],
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Figure 3.24: Connectivity matrix of the layer-1 switchbox implemented in UDSP.
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and 40µm based CoWoS [27].

As the physical dimensions of the pad shrink, the overhead of the circuitry to facilitate the

communications through the smaller pads increases. Hence, the major problem with these

fine-pitch interconnect technologies becomes reducing the size of the supporting circuits that

enable the die-to-die communications on MCM with reduced overhead. Figure 3.25 shows a

comparison between the area available per IO in different high bandwidth IO technologies.

The circuit supporting the communication for Si-IF has to fit into an area 74.2× smaller

than traditional IOs to eliminate the overhead and ensure high area efficiency and throughput

gains from using such a fine-pitch interconnect.

Figure 3.25: Area available per IO for Si-IF compared to SerDes [27], and interposer [52].

The SNR-10 channel is implemented in UDSP 14 × 14 as two flavours, a standard pad

layout and uniform pad layout as shown in Figure 3.26. For each pad the internal circuit is

as shown in Figure 3.27. The uniform pad layout has uniform pads each of size 7µm× 7µm,

and it completely relies upon the active redundancy circuit built into the SNR-10 channel

for any data link mishaps and errors, however it is not immune to any mishaps in the control

critical and clocking link errors. The standard pad layout has two distinct pad sizes a normal

7µm× 7µm for data links and larger 14µm× 20µm pads for control links. The larger pads

ensure that at least two copper pillars from Si-IF connect to the control pads and thus
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Figure 3.26: Uniform (horizontal channel on UDSP) and standard (vertical channel on

UDSP) pad layouts of SNR channel for Si-IF interposer.
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provide a physical redundancy to the critical paths.

Figure 3.27: Internal circuit and mechanism per pad for SNR-10 channel.

The SNR-10 channel has a Pseudo Random Number Generator (PRNG) to perform the

power-on self-test, to detect any faulty links and then it uses the redundant pads in the

channel to route around and bypass the faulty Si-IF link. One of the benefits of having

a smaller pad interfacing the real world is that the antenna effect of the pad is reduced,

since the area of the pad is much smaller. This allows us to use smaller ESD diodes to

protect the chip against any ESD event. The smaller diodes have a smaller load capacitance

which helps reduce the energy consumption per bit transfered across the Si-IF channel. To

test for channel performance across different modes of operations, the horizontal channel in

the UDSP was hardwired to operate in asynchronous mode of operation, while the vertical

channel operated as synchronous.
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3.2 UDSP Chip Prototypes

The design of UDSP is modular and very repetitive. The vertical stack includes the compute

core and the first 3 routing layers. The Verilog RTL for UDSP is generated automatically

using a MATLAB script which stitches the Verilog vertical stack modules together and then

connects them to layer 4 and control module. Since the process is automated and the scripts

have been tested extensively, the RTL writing process of UDSP is greatly simplified. The

automated scripts require the number of vertical stacks in x and y dimensions and outputs

the toplevel Verilog for UDSP which can be directly passed through the synthesis and layout

scripts.

The constraint input files for synthesis require several blocking and timing constraints.

Automated Tcl scripts were written which could generate the Standard Delay Format (SDF)

and Synopsys Design Constraint (SDC) file for any given number of input cores and designs.

The automated process is quick and efficient, and took less than a month to go from con-

ception to layout to verification to tapeout for UDSP 14 × 14 and just 2 weeks for Global

Foundry 22nm 2× 2.

The scalable and technology portable UDSP array design has been taped out as 9 × 9,

14 × 14, 15 × 15 arrays in TSMC 16nm FinFET and as a 2 × 2 array in Global Foundries

22nm FDSOI technology as seen in Figure 3.28. UDSP implementation on TSMC 16nm

FinFET is shown in Figure 3.29. The design consists of 14 × 14 vertical stacks with 28

SNR-10 channels operating at 1.1GHz frequency at 0.8V nominal operating voltage. 14

vertical SNR-10 channels are configured to operate in a synchronous mode, while the 14

horizontal channels were configured as asynchronous channels. The 14 × 14 vertical stack

implementation was then assembled on an Si-IF interposer in a single die configuration as

shown in Figure 3.30. The same die was also assembled in a 2× 2 die configuration on Si-IF

interposer using the SNR channels to allow communication between the dies for a seamless

interconnect network spanning 4 dies, thus providing a 28 × 28 vertical stack configuration

as shown in Figure 3.31. The dimensions of UDSP on TSMC 16nm is 2.5mm × 2.5mm, it
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Figure 3.28: Various implementations of UDSP design a) TSMC 16nm UDSP 9 × 9. b)

TSMC 16nm UDSP 15 × 15. c) TSMC 16nm UDSP 14 × 14. d) Global Foundry 22nm

UDSP 2× 2.
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operates at 1.1GHz and consumes 1.5W power.

The UDSP design was also ported to Global Foundry 22nm FDXSOI technology as a 2×2

vertical stack design to test the core count scalability, portability and design compatibility

across technologies, as shown in Figure 3.32. The process of generating a smaller core count

design was automated using MATLAB scripts which stitches the vertical stacks modules,

and connects their switchbox layered interconnects and wraps them with a toplevel wrapper

and generates a synthesizable Verilog. The constraints required for synthesis and physical

implementation were scripted as well, the entire process of generating RTL and porting the

design from TSMC 16nm to Global Foundry 22nm process required 2 weeks. The dimensions

of UDSP on Global Foundry 22nm is 345µm× 295µm, it operates at 500Mhz and consumes

16mW power at 0.8V operating voltage.

3.3 UDSP Results

The testing for UDSP functionality and mapping were performed on the TSMC 16nm UDSP

14×14 vertical stack dies assembled as 2×2 on the Si-IF interposer as shown in Figure 3.31.

3.3.1 Mapping Efficiency

We define the mapping efficiency of our vertical stack architecture as the number of un-

used functional units in the utilized cores. The metric quantifies the routing performance

of interconnect network, as well as quantifies the core architecture inside the vertical stack

over different algorithms and programs. Mapping programs with small kernels like Multiply

Accumulate (MAC), lattice structures, and FIR filters can achieve near 100% mapping effi-

ciencies as shown in Figure 3.34, while radix-2 kernel for Fast Fourier Transform (FFT) has

a lower mapping efficiency of 42%, as shown in Figure 3.35. The constant multiply and pass

through configuration of the vertical stack can be used to execute larger programs like fully

connected neural networks and convolutional neural networks as shown in Figure 3.34.

Mapping efficiency of a program depends on the architecture of the hardware as well as
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Figure 3.29: Physical layout of 14× 14 vertical stack UDSP design in TSMC 16nm.
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Figure 3.30: Die shot of single TSMC 16nm UDSP assembled on Si-IF interposer.

Figure 3.31: Die shot of TSMC 16nm UDSP assembled as 2× 2 on Si-IF interposer.
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Figure 3.32: Die shot of Global Foundry 22nm UDSP assembled on Si-IF interposer.

Figure 3.33: Si-IF interposer for 2× 2 UDSP.
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Figure 3.34: UDSP program mapping for 16 out of 32 parallel 3× 3× 3 kernels required for

first convolutional layer for MobileNet [19]. In the mapping all of the functional units inside

the vertical stack are used for the program thus resulting in a 100% mapping efficiency.

on the capabilities of the compiler. Further work needs to be done to improve the mapping

efficiency of completely automated compilers to manual levels.

3.3.2 Energy and Area Efficiency

Figure 3.36 shows the power and frequency scaling with supply voltage for UDSP. The

maximum frequency of 1.1GHz is reached at 0.8V while consuming 6W of power, and the

peak energy efficiency of 785GMACs/J is achieved at 0.42V while operating at 315MHz. The

maximum frequency at each voltage was tested by checking the stability of vertical stack

across the SNR boundary. VSs were configured to generate sawtooth waveform and pass the

waveform to the neighbouring core across dielet boundary, the VSs subtract their internal

waveform from the received waveform. This new subtracted waveform is then read out and

checked for stability. Under stable operating conditions the waveform should read out a

constant ‘0’. Under conditions of instability, with increasing frequency at each voltage step,
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Figure 3.35: UDSP program mapping for 4pt FFT using radix-2. Insets show various differ-

ent configurations used for radix-2. In the mapping many of the functional units inside the

vertical stack are unused, while in some configurations the vertical stack is only being used

for routing, thus resulting in a 42% overall mapping efficiency.
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Figure 3.36: UDSP frequency and power scaling with supply voltage.

Figure 3.37: Energy efficiency of UDSP and leakage power scaling with supply voltage.
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some of the bits might get flipped or some data-path inside the core might get corrupted

leading to a non zero value at the output. These results were then measured and tabulated

to generate the frequency, power scaling with supply voltage graph.

We mapped some commonly used program kernels and DSP operations for beamforming,

FIR filter, real matrix multiply and FFT to measure algorithm specific performance as shown

in Table 3.1.

Table 3.1: UDSP throughput and energy measurements for various algorithms.

Operating

Condition → 0.8V, 40◦C 0.42V,40◦C

↓ Algorithm Throughput (GS/S) Energytotal(pJ) Cores Utilized Energytotal(pJ)

16-tap FIR 1.1 (Real) 3.54 /Tap 8 1.29 /Tap

16-pt FFT 17.6 (Complex) 11.2 /Radix2 86 4.09 /Radix2

4x4 beam- 4.4 (Complex) 14.2 34 5.15

forming /Complex-MAC /Complex-MAC

8x8 matrix 8.8 (Real) 3.5 /MAC 32 1.27 /MAC

multiply

3.3.3 Application Results on UDSP

We test the application performance of UDSP by mapping MobileNet CNN [19] on to the

array. We selected MobileNet as an application of choice as Neural Network inferencing is

a very current and relevant topic. MobileNet is an object recognition Convolutional Neural

Network for mobile and embedded vision applications. MobileNet is one the very few CNN

algorithms which uses averaging pooling operation. Most of the CNN kernels require the

use of non-linear pooling and activation techniques such as max pooling, mixed pooling

and Lp pooling etc. As UDSP was primarily designed for DSP applications, such non-linear

operations lie beyond the domain of original intended applications for UDSP. However, these

non-linear pooling kernels can still be mapped onto the UDSP array using Taylor series or

Maclaurin series or CORDIC approximations but the mapping efficiency of such algorithms
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tends to be lower and thus the overall throughput of UDSP for such approximations can be

low.

Figure 3.38: Layers and filter sizes of MobileNet CNN.

MobileNet forms an ideal candidate CNN for UDSP. MobileNet requires multiple kernels

and layers of filters as shown in Figure 3.38, the dense and low-latency interconnect network

of UDSP allows us to map multiple filters in the same CNN layer simultaneously onto the

array and maximize the data reuse and computation while minimizing the IO bandwidth re-

quirements as shown in Figure 3.39. Each layer of MobileNet application requires a separate

programming step for UDSP, thus computation stages for multiple filters of the CNN are

staggered with long times of UDSP reconfiguration. Although UDSP has a reconfiguration

bandwidth of 1Gbps, we also simulate the program mapping and results for other higher

reconfiguration bandwidths of the array at 20Gbps and 200Gbps. The results of MobileNet

inferencing on UDSP are shown in Figure 3.40. We plot our results in the Figure for vary-

ing batch sizes and programming bandwidths. In the batch operation, the system collects

multiple images that require CNN inferencing and passes them through the hardware ar-

ray together. Using higher batch size, allows us to amortize the time required to program

UDSP for different layers over multiple images, by essentially programming the kernel once
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and passing multiple images through the hardware. As we can observe in the Figure 3.40,

the throughput performance for UDSP increases with increasing batch sizes with the upper

limit at 2,000 frames per second (fps), which is bound by the time required to perform the

computation for inferencing per image. At point 1 as shown in the Figure 3.40, UDSP while

operating with 1Gbps programming bandwidth can achieve 17fps inference rate for batch

size of 1, this operating point would be ideal for mobile applications such as landmark recog-

nition for navigation. The operating point 2 represents an inferencing throughput of 300fps

with a batch size of 20, this result would be ideal for autonomous-driving vehicles as the

vehicle can have multiple video feeds coming from multiple cameras, which would require

a response time of < 100ms for object detection and reaction. At operating point 3, we

provide a simulated result for UDSP with 20Gbps programming bandwidth. The increase in

programming bandwidth allows UDSP to switch between multiple kernels of the CNN much

faster and provide better throughput result of 1,560fps at batch size of 20. We discuss the

effects of increasing programming bandwidth further and in detail in the RTRA Chapter 5.
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Figure 3.39: Multiple kernels from first layer of MobileNet CNN mapped spatially onto the UDSP array, and an inset showing

the internal configuration of each Processing Element (PE).

69



Figure 3.40: MobileNet throughput expressed in frames per second (fps) for varying pro-

gramming bandwidths. Operating points 1, 2, and 3 represent a throughput of 17fps, 300fps

and 1560fps for batch sizes of 1, 20 and 20 images respectively.

For lower batch sizes the energy consumption per image is dominated by the leakage

energy. The array consumes leakage energy continuously, however during the programming

of the array, the dynamic energy is negligible and leakage is the major contributing factors.

So, as the batch size is increased, the leakage energy during the programming of the array

is amortized over multiple images, hence the total energy consumption per image decreases.

The power consumption of the array follows a different trend, while the energy consumption

per image decreases with higher batch sizes, however the throughput and fps of the array

increases, which increases the power consumption of the array. Leakage power consumption

of UDSP 2× 2 is roughly 100mW which is less than 2% of the maximum dynamic power i.e.

6W of the array. For lower batch sizes, as array spends most of the time in programming, so

the leakage power lowers the average power of the array, however for higher batch sizes as

the activity of the array increases, the dynamic power becomes a larger contributing factor
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Figure 3.41: Energy and power consumption estimates for UDSP for varying programming

bandwidths. Points 1, 2, and 3 represent power consumption of 121mW, 470mW, and 2W

for batch sizes of 1, 20, and 20 images respectively.
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to the power consumption of the array.

Figure 3.42: Bit transfer efficiency and frequency scaling.

3.4 SNR-10 Measurements

We tested the SNR-10 channel designed for TSMC 16nm UDSP assembled as 2 × 2. The

SNR-10 channel has 64IOs and has a physical footprint of 8769µm2 resulting in an area IO

density of 137µm2 per bit. The power measurements for SNR-10 channel were calculated

by sending a toggling stream of 1 → 0 → 1 across the UDSP dielet boundary using the

SNR-10 channel at 1.1GHz clock rate with 0.8V operating voltage. The Si-IF interposer

has 2 routing layers to carry data between UDSP dies across a wire reach of 350µm as

shown in Figure 3.33. The channel requires 0.38pJ/bit at 1.1GHz, 0.8V which drops down

to 0.9pJ/bit at 580MHz, 0.5V. The bit transfer efficiency and frequency scaling of SNR-10

channel is shown in Figure 3.42. Table 3.2 summarizes the metrics for SNR-10 channel and

provides a comparison with some of the state-of-the-art implementations.
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Table 3.2: Metrics for SNR-10 channel and comparison with state-of-the-art high density

multi-chip packaging technologies.

Metric SNR-10 AIB [28] LIPINCON [27] GRS [52]

Technology 16nm 16nm 7nm 16nm

Package 2-Layer 4-Layer 15-Layer MCM

Substrate Si-IF EMIB CoWoS /PCB

Bump Pitch (µm) 10 55 40 150

Wire Reach (µm) 350 3,000 500 80,000

Data Rate (Gbps/pin) 1.1 2 8 25

Voltage (v) 0.8 0.9 0.3 0.95

Energy 0.38 0.83 .056 1.17

Efficiency (pJ/bit)

IO Area 137 203 500 10,175

Density (µm2/bit)

Peak Shoreline 297 256 1,600 292

BW Density (Gbps/mm)

Layer BW Density 149 64 107 25

(Gbps/mm/layer)

Delay (ns) 2.8 4 N/A N/A
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CHAPTER 4

Software Compiler for UDSP and RTRA

In this chapter we go over the design of software compiler for our UDSP and RTRA archi-

tecture. The compilation procedure for UDSP and RTRA are very similar. Compilation for

RTRA differs from that of UDSP in the last few steps where the compiler adds some addi-

tional metadata information pertaining to the physical attributes of the compiled program

to help the performance and capability of hardware scheduler and hardware compiler. We

will go over the compilation procedure for UDSP architecture and then the modifications

made to the compilation pipeline to accommodate RTRA.

4.1 Overview

UDSP hardware and software compiler were co-designed to achieve a trade-off between min-

imizing the hardware cost of UDSP while also simplifying the compilation process for the

same. The simplifaction of compilation procedure or its programmability is a hard metric to

quantify as different architectures can have very different methods of compilation. For ex-

ample, compiling a program for general purpose processor like a CPU would take short time,

since the arithmetic operations in the CPU are atomic, the architecture is highly flexible

and the compilers are typically not constrained by program execution timings and perfor-

mance. On the other hand, compiling a program for spatial architecture like FPGA takes

a long time, as the process requires several iterations of mapping functionality, placement,

routing and checking timing constraints. The non-deterministic nature of routing and varied

timing between the nodes means that the compilation for FPGA may require large number

of iterations; running into minutes worth of compile time for relatively simple programs.
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UDSP belongs to this category of spatial architectures, and also requires an iterative

compilation process. One of the goals while designing the UDSP architecture was to minimize

the number of iterations required for clustering, mapping, routing and timing checks and

hence simplify the compilation procedure. During the design of UDSP routing network,

special considerations were taken to make the routing network deterministic and have a

fixed timing latency between nodes. In addition, multiple programmable delays were added

to the compute core, to achieve a low effort retiming in case of a routing failure. These

special considerations, high routability and low cost retiming reduce the number of iterations

required to achieve a successful program compilation.

Due to the high degree of reconfigurability offered by UDSP, and many architectural

differences as compared to other prevalent architectures we designed our own custom com-

piler/mapper that we call Multicore Mapper. It takes the user defined software algorithms as

data flow graphs and generate hardware programming bits necessary for configuring UDSP

array. Figure 4.1 provides an overview of compiler’s flow.

Figure 4.1: Compiler toolflow overview.
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4.2 Compiler Inputs

We designed our compiler to be generalizable, so that future revisions of UDSP architecture

can also be accommodated. To achieve this goal the hardware characteristics of UDSP, i.e.

the connectivity matrix of the processing elements and the switchboxes are provided as an

input to the compiler. This hardware configuration input can be stored inside the compiler

program for the used hardware version. Thus, inputs given to the compiler can be divided

into program specific inputs and hardware specific inputs.

4.2.1 Program Inputs

The compilation process starts with the data flow graph of the programs as an input.

The data flow graph can be input as a MATLAB model and it should comprise of the

functional units that are supported by the UDSP core architecture like multiplier, shifter,

adder/subtractor, constant banks and delay elements. The delay elements present in the

graph should satisfy the functional requirements of the program and are not required to

meet the retiming effort, the compiler can automatically adjust for those retiming delays.

In the current iteration of compiler, associativity and commutativity of arithmetic opera-

tions are partially supported, so if required, the user would have to manually modify the

input data flow graph of the program to meet their hardware utilization goals. Some of the

example input data flow graphs are shown in Figure 4.2 and Figure 4.3.

Figure 4.2: Dataflow graph for a 2-tap FIR filter.
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Figure 4.3: Data flow graph for a vector dot product operation using Multiply Accumulate

(MAC) operation with an adder tree.

4.2.2 UDSP Hardware Abstraction Inputs

UDSP compiler maps the retimed and modified program data flow graph onto the functional

units and routing of the UDSP architecture. To maintain the generality of the compiler

over various revisions of the UDSP architecture, we provide the compiler with hardware

parameters which it uses to generate mappings. The hardware parameters are divided into

two abstract layers, i.e. the core and routing layer, routing layer is then further abstracted

into its composing three switchbox layers. The description of the core is represented as a

matrix which helps the compiler to understand various data paths and connections between

the functional units inside the core and the routing layer description helps the compiler to

route the data between the inputs/outputs of the compute core and the inputs/outputs of

the vertical stack.

The core configuration represents the connectivity amongst its different sources and sinks

as well the length of variable delay between the pair. For easier description the core con-

figuration is further broken down into two configuration matrices, one connectivity matrix

to describe connectivity for various elements within the core, and another delay matrix to
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tabulate the number of programmable delays within each of the connections as described in

connectivity matrix.

Table 4.1 shows the connectivity matrix of the core configuration. The entries in connec-

tivity matrix describe the connections between the source, or signal generating nodes and

the signal sink nodes. The entry in the ith row and the jth column represents the port of the

sink node to which the source node is connected, if a particular sink node is not connected

to the source node, then that is represented with a ‘0’ in the connectivity matrix. As an

example, the source Input 0 connects to MultShift0 at the port 2 of MultShift0 and the

output of MultShift0, which is now the source connects to Adder0 at the port 1 of Adder0.

The design philosophy behind coming up with this connectivity matrix is described in detail

in the hardware description of UDSP in Chapter 3.

Table 4.2 shows the delay matrix of various elements within the core. The entries in

the delay matrix represent a list of programmable delay entries that can be selected by the

compiler between the source and the sink. As an example the compiler can select either

a single delay or two clock cycle delay while traversing between In0 → MultShift0. The

programmable delays help ease the routing and placement pressure on the compiler in later

steps of compilation and also eases the retiming effort, since small number of delays can

be added or removed from the mapped program without requiring high effort and iterative

re-placement and reclustering operations. Some entries have a longer length of variable

delays, e.g. In3 → Out3 has 1-8 programmable delays, compiler can use these data paths

to configure the vertical stack as a hop path to connect two distant connected cores which

could not be routed otherwise.
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Table 4.1: Connectivity matrix for core configuration.

Sink → MultShift0 MultShift1 Adder0 Adder1 Const0 Const1 Out0 Out1 Out2 Out3

↓ Source

In0 [2] [2] [1] 0 0 0 [1] 0 0 0

In1 [1] [2] 0 [2] [1] 0 0 [1] 0 0

In2 [2] [1] [2] 0 0 [1] 0 0 [1] 0

In3 [2] [2] 0 [1] 0 0 0 0 0 [1]

MultShift0 0 0 [1] [2] 0 0 [1] [1] 0 0

MultShift1 0 0 [2] [1] 0 0 0 0 [1] [1]

Adder0 [1] [1] [1] [2] 0 0 0 [1] [1] 0

Adder1 [1] [1] [2] [1] 0 0 0 [1] [1] 0

Const0 [2] 0 [2] [1] 0 0 0 0 0 0

Const1 0 [2] [1] [2] 0 0 0 0 0 0

Zero [1] [1] 0 0 0 0 0 0 0 0
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Table 4.2: Delay matrix for core configuration.

Sink → MultShift0 MultShift1 Adder0 Adder1 Const0 Const1 Out0 Out1 Out2 Out3

↓ Source

In0 [1 2] [1 2] [1 2] - - - [2-9] - - -

In1 [1 2] [1 2] - [1 2] [1] - - [2 3] - -

In2 [1 2] [1 2] [1 2] - - [1] - - [2 3] -

In3 [1 2] [1 2] - [1 2] - - - - - [2-9]

MultShift0 - - [1] [1] - - [1 2] [1 2] - -

MultShift1 - - [1] [1] - - - - [1 2] [1 2]

Adder0 [1 2] [1 2] [1] [1 2] - - - [1 2] [1 2] -

Adder1 [1 2] [1 2] [1 2] [1] - - - [1 2] [1 2] -

Const0 [0] - [0] [0] - - - - - -

Const1 - [0] [0] [0] - - - - - -

Zero [0] [0] - - - - - - - -
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Figure 4.4: Connectivity inside UDSP core, delay elements are not represented in this figure.

The highlighted path represents one of the longest delay paths.

The delays and connections are very carefully chosen so that for any configuration of the

compute core, 1GHz operation is always guaranteed. One of the longest non-registered path

in the delay matrix would be the path initiating at the Const0 → MultShift0 → Adder1,

as shown in Figure 4.4. As can be observed in the delay matrix, Table 4.2, the path is

registered at its starting point which is the output of Const0 or the input of MultShift0 and

at its destination point which is the input of Adder1 or output of MultShift0. All the various

combinations of paths from various sinks and sources were very carefully tested to satisfy

the 1GHz timing, and ensure successful operation of all the configurations at that timing

constraint.
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4.3 Interpretation

The compiler processes the input program data flow graphs into an intermediate representa-

tion which the compiler uses to generate the final binary program output. The intermediate

representation is a transformation of the input flow graph into multiple scheduled levels,

where each level represents the rank of the node. The ranks are assigned in a way so that

each node with its outputs connected to the inputs of the current node has a rank lower

than the current node, an example for rank assignment and levelling is shown in Figure 4.5.

Figure 4.5: Levelled intermediate representation DFG of FIR filter from Figure 4.2.

The process of level generation and intermediate representation has to account for all

different types of input programs. So, we broadly classify the input program data flow graphs

into two main categories for the purposes of understanding the intermediate representation

of our compiler. First, a feed-forward only data flow graph, in such a graph the connections

between nodes do not form a loop/cycle, for example, FIR filter as shown in Figure 4.2,

and vector dot product operation using MAC with an adder tree as shown in Figure 4.3.
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Figure 4.6: DFG for a 2-tap IIR filter.

Figure 4.7: DFG for a multiply accumulator operation on vector inputs.

The second category of graphs have a feed-back path in the graph, in such programs the

connections between its various nodes form at least one loop or a cycle, an example of

this category would be IIR filter, as shown in Figure 4.6 and temporal vector dot product

operation using multiplication and an accumulator, as shown in Figure 4.7.

The levels can be thought of as the flow of computation and dependency of each compu-

tation on its previous steps. The process of levelization for programs belonging to the first

category of feedforward only data flow graphs is quite trivial, however the second category

of graphs needs special handling. If a loop is detected in an input data flow graph, i.e. if

a node is repeated inside the data flow graph, the graph needs to be broken down at an

appropriate datapath to make sure the nodes are properly assigned ranks, and the nodes

with loops are assigned a preferential status to be mapped separately. Once the nodes are

ranked, the tool then starts the retiming process.
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4.3.1 Retiming

Retiming process adds delays to the data flow graphs at appropriate locations to make

the modified DFG mappable to the UDSP core architecture. The core connectivity can be

observed in the Table 4.1 and Figure 4.4, there exist delay elements at the input and output

of multiplier/shifter and adder/subtractor, additionally there exists no data path between

the processing elements with higher than 3 delay elements. Based on these constraints the

compiler retimes the input DFG, it adds delays through the input of output of the DFG and

pushes them to appropriate locations as well as retimes the data paths with higher than 3

delay elements. As an example the DFG of FIR filter from Figure 4.5 after retiming looks

like Figure 4.8. The special nodes belonging to the looped DFG of second category are left

untouched in this operation are passed along as is to the next compiler operation. Once the

delay constraints are met the tool starts the clustering operation.

4.3.2 Clustering

In the clustering operation, the compiler groups together the arithmetic operations so that

the grouped operations can be mapped together into a single UDSP core. The clustering

algorithm uses a greedy algorithm, such that it tries to map as many operations into a single

cluster, and starts a new cluster when it fails, the operation which gets added into a cluster

is randomized in case multiple operations are available to be added into a cluster. Clustering

starts at the input nodes, and adds operations into the initial nodes, initiating a new cluster

as needed based on the algorithm. The initial and final steps of clustering operation on the

retimed DFG of FIR filter are as shown in Figure 4.9.

4.4 Placement

The clustering operation generates clusters of programs which can be mapped into a single

UDSP core. In this placement operation, we place those clusters onto the array of UDSP

cores such that routing distance between the cores is minimized and satisfies to the routing
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Figure 4.8: Retimed DFG of the levelled FIR filter.
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Figure 4.9: a) The initialization of clustering operation. b) The final resulting output of

clustering operation for retimed DFG of FIR filter.
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constraints as dictated by the interconnect network.

The problem of minimizing the routing distance that we are trying to solve is very similar

to that of an FPGA compiler but FPGA architectures have flexibility in timing constraints.

An FPGA compiler optimizes for the minimum routing distance, and can output the resulting

setup time for the longest path as its operating frequency/clock period. We subject our

architecture to a 1GHz clock frequency or 1ns delay timing constraint, and upto 1 hop

distance 2 routing as supported by the three layers of switchboxes. From our initial study

of algorithms belonging to the Digital Signal Processing (DSP) domain, the likelihood of

having a route of distance greater than 2 is quite low but its still possible. Such routes

are handled by iterative placements, retiming and revised clustering operations. In retiming

approach, the programmable delay paths inside the core can be used to delay the datapaths,

to accommodate an additional hop in the violating critical path.

The method chosen to reduce the wiring routing distance between the core is analogous to

simulated annealing. The clusters are randomly placed initially over the UDSP cores and the

algorithm tries to minimize the cost function as described by the Equation 4.1. We added the

degree p of the wiring cost function to vary the penalty for longer connections, a connection

of length 2 would be penalized highly with p = 4, as compared to p = 1. The variablity

of p was added to discourage the placement of cores with large connection lengths which

are unsupported by the hardware. The simulated annealing algorithm works by randomly

selecting the two cores and swaps their placement if it reduces the wiring cost function. A

probability function was added to the annealing algorithm to randomly accept some core

swap operations which might increase the cost function, this effectively helps the placement

operation get out of local minimas in the optimizing operation. The addition of probability

acceptance would allow the simulated annealing operation to reach global minimas given

enough time, but the compiler can be designed to quit out of the placement operation if

the values seem to converge, and not improve upon successive iterations. An example of
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simulated annealing operation is shown in Figure 4.10.

Wiring Cost =

Nwires∑
n=1

∣∣n2
xlen + n2

ylen

∣∣p (4.1)

Figure 4.10: Various steps in the placement operation, starting from the cluster DFG to

initial placement and then final simulated annealed placement.

4.5 Routing

Routing process configures the switchboxes inside the vertical stack for the appropriate net-

work configuration. The procedure of routing is greatly simplified in our UDSP architecture

since the network guarantees 1GHz operation and 1ns delay network, so the iterative pro-

cess of optimizing routing and timing delay of the network is eliminated. The output of the

placement operation takes care of routing distances, and the paths which exceed the distance

2 communications are handled either using retiming or revised clustering. So, the task of

routing is greatly simplified as the violating paths and critical paths have largely been taken

care of by this stage. Any remaining violating paths are handled using a registered layer 4

network, which allows for long distance communications and thus retiming the critical data

paths might be required at the end.

As mentioned in the hardware description of UDSP in Chapter 3, the switchbox routing
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layers almost guarantee the routability of any algorithm as shown in Figure 4.11.

Figure 4.11: Switchbox layer 1 in each of the vertical stacks can support a 128Gbps routing

connection request with a probability of 96.49%, while the switchboxes in layers 2 and 3

can support 100% of 64Gbps routing connection requests. The bandwidth requirements of

128Gbps and 64Gbps are driven by domain-specific hardware requirements.

The routing tool extracts the input/output requirements from a single cluster mapped to

a core. The extracted IO data is then translated as input-output pairs which the router can

map easily. The tool performs a depth first search on each input-output pair iteratively, until

a successful routing is achieved. If the routing fails then the compiler repeats the placement

procedure and/or revised clustering operation. We go over the switchbox configuration in

detail in the next section.

4.6 Switchbox Compilation

The routing step from the previous section, generates the routing requirements of the pro-

gram, and provides the input-output mappings required from every switchbox. The gener-

ated mapping for one switchbox is a list of input-output pairs that the switchbox needs to
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connect. For example, if the routing requires the switchbox layer 1 at array location (4,5)

the input 1 needs to connect to output 3, input 2 to output 4 and input 3 to output 7,

the IO mapping list for the switchbox would be [(1,3),(2,4),(3,7)]. The switchbox compiler

uses the mapping list and selects a configuration for the switchbox that can achieve that

connectivity. We devised to approaches for the switchbox compiler to achieve that, 1) A

randomized Depth First Search (DFS) method or 2) Breadth First Search (BFS) method.

While the randomized-DFS method is faster at reaching the outcome for large switchboxes,

there is a possibility it may not find a solution for the desired switchbox configuration even

though the switchbox hardware permits it. On the other hand, BFS approach is slower in

finding the desired solution, however the BFS approach is guaranteed to find a solution if

the switchbox hardware permits the configuration.

4.6.1 Random Depth-First Search

The randomized DFS search process for switchbox compilation can be broken down in to

following steps:

1. Randomize the order of IO mappings in the IO mapping list.

2. Randomly assign a token mux from the middle layer to the first IO in the mapping list

based on the switchbox connectivity matrix Figure 3.24.

3. Randomly assign a token mux from the middle layer to the next IO in the mapping

list based on the switchbox connectivity matrix but without the already selected token

mux in the previous step.

4. Repeat the step 3 for the next listing in the IO mapping list until finished and thus

the compiler achieves a successful IO mapping.

5. If the IO mapping list is not finished, however the selected IO in the list cannot be

mapped onto the switchbox, then the compilation process is started again from step 1.
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Figure 4.12: Random-DFS approach to switchbox compilations.
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The randomized DFS search, repeats the steps 1-5 a fixed number of iteration, we chose

100 for our compiler. If the compiler is not able to achieve a successful mapping within the

fixed number of iterations then we declare the selected routing cannot be mapped with the

switchbox, and requires rerouting, retiming, reclustering or any other optimization technique

available to the compiler. An example random-DFS flow for a 8-3-8 input-token-output

switchbox configuration is shown in Figure 4.12.

4.6.2 Breadth-First Search

The BFS is compute and memory intensive approach to switchbox compiler operation how-

ever is guaranteed to return a solution if it exists. The BFS approach is not a randomized

approach so it considers and tries all possible switchbox token layer combinations to achieve

the required IO mapping. The procedure for BFS is very simple:

1. Start multiple directed graphs where the initial nodes are all possible token layer muxes

which can map the first input in the IO mapping list based on the switchbox connec-

tivity matrix Figure 3.24.

2. Propagate each of the directed graphs, in each of the graphs assign multiple nodes

which can map the next input in the IO mapping list without the tokens already

selected in the respective directed graphs. If for any of the directed graphs, the next

input cannot be mapped to any of the muxes in the token layer, then graph is taken

out of consideration and the process is continued for the remaining IO listings with the

remaining directed graphs.

Since the directed graph technique exhaustively checks each possible combination of token

muxes and switchbox configurations, it can guarantee a solution if it exists. An example

BFS compilation flow for a 8-3-8 input-token-output switchbox configuration is shown in

Figure 4.13. The dotted line and bold solid line show two possible solution for the requested

IO mapping. The input 1 is allocated token 1 in directed graph-1 and token 2 in directed

graph-2. From here, the input 3 can now be allocated either token 2 or 3 in directed graph-1,
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Figure 4.13: BFS approach to switchbox compilations.

93



thus splitting the graph into directed graph-1,1 and graph-1,2, or the in the directed graph-2,

input 3 can be assigned token 3, thus graph-2 stays graph-2. Next, the last IO listing, input

6 can be mapped using token 3 in the directed graph-1,1, however no such possible token

mapping exists for input 6 in the graph-1,2, thus it is removed from consideration, while the

input 6 can be mapped using token 1 in the directed graph-2. Hence, there are two possible

solutions for the IO mapping requirement, that is directed graph-1,1 (1 → 1 → 5, 3 → 2 →

1, 6 → 3 → 5) or directed graph-2 (1 → 2 → 5, 3 → 3 → 1, 6 → 1 → 5).

Both the solutions are equally fast when the sparsity of connections is increased. If we

have more tokens in the middle layer than the probability of routing conflict when using either

of the two techniques random-DFS or BFS is decreased, thus leading to similar complexity

and time to solutions. We use this approach to design an optimal switchbox solver for

RTRA’s IO network, which is discussed in the later RTRA Chapter 5.

Upon successful compilation process, the UDSP compiler generates configuration bits for

UDSP. These configuration bits are structured into frames, each of those frames is applicable

to one vertical stack location. The frame is subdivided into the location information of

the respective vertical stack, the switchbox1 configuration bits, switchbox2 configuration

bits, switchbox3 configuration bits and the processing element configuration as shown in

Figure 4.14.

4.7 RTRA

In this section we look into the compiler design for Runtime Reconfigurable Array (RTRA)

and its virtualized program execution flow. The architecture of RTRA supports spatially co-

mapped algorithms which can be temporally multiplexed using runtime reconfigurability and

scheduling. The spatial mapping inside a single program are handled by the UDSP compiler,

it translates the input DFG into the configuration bits that can be directly sent to the UDSP

array. We modify the UDSP compiler for RTRA to enable the features that allow for runtime

relocation of program resources onto available resources on the RTRA array. The runtime
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Figure 4.14: The structure of configuration bits of a UDSP program, and its internal vertical

stack frames.
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program relocation is facilitated by two new features, which are multi-size compilation and

multi-step compilation.

4.7.1 Multi-Size Compilation

Software compiler usually generate a single stream of configuration bits or a single compiler

program which can be executed on the system. The size of the program is decided by the

programmer, and the compiler translates the requirements input by the user/programmer

into a program binary. In multi-size compile paradigm, we seek to optimize the physical

footprint of program on the array relative to the amount of computations required by the

program, while also ensuring maximum utilization of the array in the presence of multiple

program requests and high programming pressure.

In the spatially multiplexed RTRA, multiple programs could be occupying and actively

executing on the array, so generating a single size compiled binary at the software compiler

stage might mean that the requested program size may not be available on the array at

runtime. We solve this problem by generating multiple compiled binaries of the program

of multiple physical footprint sizes on the array. Therefore, at the time of mapping an

incoming program the different program sizes would be available to the scheduler and it

can then arbitrate between them to select the most suitable size possible for the available

resources on the array. In this approach we basically trade-off the memory storage required

to store the multiple sized binaries of the program with the waiting time for execution and

thus the time required to finish executing the program. The generation of multiple sizes of

the program binary by the compiler falls under two main categories: 1) when the DFG of

the input program is large relative to the array size, 2) when the DFG of the input program

is small relative to the array size. In the first scenario when the DFG of the input program

is large relative to the array size, the compiler breaks down the larger DFG into smaller set

of programs as shown in Figure 4.15 and Figure 4.17. The cut set of the original larger DFG

can be decided based on smallest bisection bandwidth between the smaller graphs or based

on control decision points. The Figure 4.15 shows an example where the cutset is decided
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based on bisection bandwidth, the Figure 4.16 represents an example program of blind signal

classification [56] where the broader algorithm flow graph is cut based on decision and control

decision points as well as bisection bandwidth. For the second scenario, where the DFG of

input program is small relative to the size of the array, that is the program could fit into a

very small number of array resources, the compiler uses various concurrency-based techniques

to increase its array use and generate multiple sizes of the program. The compiler performs

loop unrolling, scalar expansion, subgraph matching techniques to expand and restructure

the data flow graph, these techniques follow the description in Dyser [17].

Figure 4.15: Example of large DFG program being broken into sub-programs with a graph

cut based on minimum bisection bandwidth.

In the first program DFG size scenario, the graph cut effectively increases the execu-

tion time of the program by executing the program on the array in two distinct subgraphs,

whereas in the second program DFG scenario, the compiler effectively decreases the execution

time of the program by allocating more resources than requested by the user/programmer,

by executing the program effectively in parallel. Both of these methods help in optimal uti-

lization of resources of the array while balancing the execution time of the program, however

the compiler has to calculate limit to the multi-size compile. Some of the “embarassingly”

parallel algorithms belonging to the second program category can achieve an execution time

speed up till all of its computations are performed in parallel, so we need to study the optimal

sizing of the program by understanding the benefits in reduction of execution time versus

the number of resources allocated to that program.
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Figure 4.16: Example of large DFG program for blind signal classification [56] broken into

subgraphs with graph cuts based on decision points or control flow points and minimum

bisection bandwidth.

Figure 4.17: A large vector input MAC tree can be broken into smaller MAC programs with

temporal stitching programs to finish computation from smaller DFG MACs.
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4.7.2 Optimally Sized Programs

One of the factors that can usually get ignored in the compilation and design process of a

reconfigurable array is its programming time. The architecture of UDSP allows us to only

configure the cores that are needed for the program, which is different than some of the

commonly available reconfigurable architectures like FPGA where the entire array has to be

configured for every program, even for small programs. Since in traditional hardware arrays

the entire array is configured for every new program the programming time is a constant,

and thus the programmers has to maximize the resource use of the array to minimize the

execution time. In our study we find that, the above architectural model is sub-optimal,

and since UDSP allows for programming only the required processing elements for a given

program, instead of maximizing the resource usage for each program we should optimize the

size of program, so that we can balance the programming time of the processing elements

required for the program and the execution time of the program.

There are two main factors affecting the total time for a single program, when the num-

ber of processing elements allocated for a program is increased, i.e the size of program is

increased, the programming time required to configure all of those processing elements also

increases, and at the same time, as more resources are allocated to the execution of the pro-

gram, the execution time required by the program decreases. Figure 4.19, shows an example

of sizing of the program with its execution, programming and total time. In the example

we have a [100× 100]× [100× 1] matrix-vector multiplication, where we implement a MAC

with an adder tree with varying vector input sizes. As we vary the size of input vector

for the MAC tree, different amount of computation cycles are needed to finish the required

computation by the program. In the Figure 4.19, we can observe that as we implement a

wider vector input MAC tree, the number of resources or processing elements required also

increases, so the programming time increases while the execution time is decreasing.

The multi-size compile paradigm allows the compiler to traverse the graph as shown in

the Figure 4.19 and generate multiple programs of various sizes. We go over the detailed

description and performance numbers of each program classification and sizes in the results
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Figure 4.18: Multi-size compiler traversing multiple program classification types of the MAC

program.
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section of RTRA Chapter 5. Here we provide a brief overview of various types of classifica-

tions of a program based on their program time and execution time duration:

1. SPSE: Small Program Short Execution.

2. SPLE: Small Program Long Execution.

3. LPSE: Large Program Short Execution.

4. LPLE: Large Program Long Execution.

The compiler traverses the different program types based on the parallelization, folding,

unfolding and partitioning of the program as seen in Figure 4.18.

The optimal size and optimal resources allocated for this single program would be the

point where the total time, given by Equation 4.2, for the program is minimum, which

occurs at the number of PEs which satisifes the Equation 4.5, when the derivative of total

time with respect to number of PEs is zero. Thus, if the [100×100]× [100×1] matrix-vector

multiplication is implemented as a 25 input vector MAC tree, it would require the least

amount of total time to execute that program. The programming time and thus the total

time of operation depends on the programming bandwidth of the array as well, a higher

programming bandwidth means that array can be programmed in shorter duration and vice

versa, in the Figure 4.19 the programming bandwidth for the array is 20Gbps.

Total time = Programming T ime + Execution T ime (4.2)

δ (Total time)

δPE
=

δ (Programming time)

δPE
+

δ (Execution time)

δPE
(4.3)

δ (Programming time)

δPE
= −δ (Execution time)

δPE
(4.4)

The study for least total time for single program is only applicable for single program,

and does extend very well for a multiprogram scenario. The programming bandwidth of
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Figure 4.19: Multi-size compile for a [100 × 100] × [100 × 1] matrix-vector multiplication,

representing here the programming time, execution time and total time to perform the

operation with varying sizes of vector inputs on the multiply accumulate unit. Programming

bandwidth of the reconfigurable array used to generate the graph is 20Gbps.
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the array is fixed at 20Gbps, and only a single program can be programmed at any given

instant of time while utilizing the full programming bandwidth. So, if the compiler were

to optimize each program for its minimal total time, the computation flow would follow

the Figure 4.20a. For simplicity to represent the problem we assume that we are executing

4 equally sized programs and each program is similar to the size of the array. Its easy to

observe that the active utilization of the array in this scenario is quite low. The minimal total

time point happens at programming time = execution time, which means that the array is

programming program 2 while program 1 is executing, and thus array utilization can never

go higher than that of a single program. With some heuristic driven optimization as well

as the knowledge of program statistics, the better operating point for such a multiprogram

operation would occur if each program was sized to occupy only the 1/4th of the array, since

we are trying to execute 4 programs on the array, as shown in Figure 4.20b.

The above condition assumes that the statistics of program execution at runtime is known

in advance and additionally it all of the programs are assumed to have identical resources

utilization as well as identical execution times, theses assumptions might not be true in a

realistic scenario. So, we come up with a generalized heuristic, which the compiler can follow

at the compile time, much before the actual execution of the program and optimally size

the programs for multiprogram execution scenario without any prior knowledge of runtime

program statistics. The heuristic developed is given by the Equation 4.5. The heuristic was

designed while keeping in mind that an incremental increase in the number of PEs for a

single program gives a decreasing rate of return in total time, while if the same number of

PEs are dedicated for a different newer incoming program, the benefits in total time are

far greater. As an example, assume that their are 2 programs, program 1 has an execution

time of 1,000 clock cycles for a single PE, and program 2 has an execution time of 1,000

clock cycles for a single PE as well. At this stage let’s say we allocate 4 PE for program

1 thus bringing down its execution time to 250 clock cycles, however if we were to allocate

one another PE to the program 1, its execution time would decrease from 250 → 200. If

instead of programming an additional PE for program 1, we had spent that programming
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Figure 4.20: Total time for the [100× 100]× [100× 1] matrix-vector multiplication program

under various different multi-size compilation policies. a) The compilation policy where

each program is compiled to run at minimum total time. b) The compilation policy where

the program runtime statistics are known in advance and the compiler accounts for the

statistics during the compilation sizing. c) The compilation policy where compiler follows

the heuristics driven multi-sizing optimized for unknown runtime multiprogram statistics.
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time to program an additional PE for program 2, its execution time would have decreased

from 1, 000 → 500, thus giving a greater rate of return.

δ (Programming time)

δ (PE)
= −δ (Total time)

δ (PE)
(4.5)

The optimal size heuristic effectively allocates the number of PEs to each program where

the rate of decrease in total time per additional PE is lesser than the rate of increase in

programming time per additional PE, given by the Equation 4.5. The program execution

flow of the same vector matrix multiplication program with optimal sizing as driven by

heuristics without prior knowledge of runtime program statistics is shown in Figure 4.20c.

4.7.3 Multi-Step Compilation

In RTRA architecture, we rely upon multi-step compilation to achieve a true multiprogram

array use virtualization. The multi-step compilation feature is enabled by the ease of compile

for UDSP architecture coupled with its translation, mirror and rotational symmetries. A

program compiled for UDSP resources at a particular location can be relocated to any

other location with minimal changes to the program configuration bits. This operation is

achieved by the hardware compiler on-chip besides the array, however to assist and speed

up the hardware runtime dynamic compile operation some modification are required in the

software compilation process. We effectively break down the work of compilation into two

parts, software compiler and hardware compiler. Most of the iterative and time consuming

steps required for program compilation such as resource clustering, placement, and inter-

PE routing are taken care of before runtime inside the software compiler as we discusses in

previous sections. However, instead of generating a hard mapped fixed program binary, the

software compiler generates a soft-mapped program binary with some additional metadata

to assist the runtime hardware compiler to easily relocate and hard map the program to the

available resources on the array as shown in Figure 4.21.

The metadata included in each soft-mapped program binary consists of:

105



Figure 4.21: a) Example DFG user input. b) Randomized initial placement of the DFG. c)

The polygon, origin and other metadata information added to the soft-mapped program.

• A bounding polygon and origin; the bounding polygon defines the physical array re-

source boundaries that are required by the program. The vertices of the polygon are

defined with respect to an origin node.

• Input/output locations; a list of locations of all the input and output ports to the soft-

mapped program is added to the program metadata such that the hardware compiler

can route the program IO ports to the physical IO ports of the array. This information

is added to account for program relocation, which would also relocate the location of

IO relative to the physical array. The origin node of the polygon is defined to be the

vertex which is adjacent to the edge with high number of IO ports, this makes the

process of placing the program as well as routing the IO ports easier and faster.

• Timing information; the program execution time and tentative program start time

is added to the polygon of each multi-sized program. Depending on the extent of

parallelism during multi-size compile, each of the compiled binaries of varying sizes

would have a different execution length. This timing information helps the on-chip

hardware scheduler keep a track of the programs in the waiting list which need to

be mapped as well as vacating programs from the array which have finished their

respective execution.

106



CHAPTER 5

RTRA for Accelerator as a Service (ACAS)

Computation heavy programs require large number of resources, thus necessitate the de-

velopment of large arrays with high number of processing elements. However, within the

domain of applications the compute requirement of different programs may vary. Programs

requiring large number of resources could potentially achieve higher active utilization of the

array while the smaller programs requiring fewer resources would not be able to actively

utilize all of the resources available on a large array, and thus lead to lower active utilization.

This inability of actively using the resource leads to inefficiency in program execution and a

lower aggregate throughput of the array. We develop a runtime active management system

for the array, using a hardware scheduler and an onboard hardware compiler, which allows

multiple programs to be simultaneously mapped onto the array, enabling multiprogram ten-

ancy. This technique virtualizes the array resources over multiple programs and allows for a

higher active hardware utilization using multiple programs as compared to a single program.

In this chapter, we go deeper into the hardware resources and blocks which enable such

virtualization.

5.1 Introduction

While adding a reconfigurable array to the system, designers may decide upon the size and

number of processing elements on the array based on several different factors, a few of them

could be:

• Size of the largest program which could be required to be accelerated by the recon-
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figurable array. Figure 5.1 shows an example program for MobileNet Convolutional

Neural Network (CNN) [19] where multiple filters in convolutional layer are acting on

the same input matrix.

• The size of the array could also be decided based on the throughput requirements

of program/programs. To match the throughput requirement the program can be

unfolded and parallelized which increases the number of resources required on the

array.

• Some set of programs or program kernel which require simultaneous execution, an

example could be implementing RF digital front end on the reconfigurable array, which

could consist of digital up converter, digital down converter, digital predistortion filters,

and other parallel multirate FIR filters, as shown in Figure 5.2.

While the size of the array could be decided based on the algorithms and programs

which stretch the limits of throughput of the array, its possible that the array is not always

executing such large programs. A reconfigurable array attached to the system can also

be used to accelerate other simple algorithms like image encoding/decoding, vector matrix

multiplications, loop acceleration, K-means clustering which require fewer resources on the

array as shown in Figure 5.3. Since in a typical reconfigurable array, only a single program

or a precompiled set of programs can occupy the array at any given time, this leads to an

inefficient use of the array and poor array utilization.

This premise motivates the development of actively managed Runtime Reconfigurable

Array (RTRA). An array-based accelerator where the configuration, location and program-

ming bits of any incoming program can be dynamically composed within the array hardware,

thus enable Accelerator As a Service (ACAS) paradigm. We develop a hardware scheduler,

hardware compiler and supporting hardware resources and software paradigm which help

actively manage hardware array resources among multiple incoming programs. The man-

agement system calculates the available vacant resources on the array, and feasible resources

to map incoming programs and then allocates and maps those programs to the resources,
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Figure 5.1: An example mapping showing 27 mapped kernels from the first layer of

3× 3× 3× 32 convolution kernels of MobileNet CNN [19].
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Figure 5.2: An example mapping of line-rate 8×16 beamforming MIMO along with a 20-tap

3× parallel FIR filter.
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Figure 5.3: An example mapping of some small physical footprint programs. Although the

programs are shown simultaneously mapped on the array, the active array utilization is still

low, this would have been even lower is the programs were mapped to the array independently

and one at a time.
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discussed in detail in the next section.

5.2 Runtime Reconfigurable Array

The overview of the architecture is shown in Figure 5.4 and Figure 5.5. The architecture

can be connected to the host system and assembled on an SoC or it can be connected to

multiple clients and hosts over a network. In this section we go over the overall working of the

Accelerator as a Service (ACAS) on RTRA briefly and then we will cover the architectural

components that enable the active management of resources on the array. The working

process of RTRA is as follows:

• The host/client sends the polygon information and program metadata over to the array.

• Scheduler receives the information and compares the execution start time of the pro-

gram with the current time, and decides whether to map the program onto the array.

• When the incoming program needs to be mapped onto the array, the scheduler uses the

polygon-based overlap detection technique at each of the anchor points and calculates

appropriate location to map the incoming program.

• Once the vacant resources have been calculated for the incoming program, the scheduler

sends the program translation functions to the hardware compiler.

• The hardware compiler modifies the program binary of the incoming program to trans-

late it to the allocated resources on the array.

• Then the hardware compiler configures the IO network and memory controller to pro-

vide the appropriate streams of data to the appropriate program ports along the phys-

ical ports of the IO network.

• Once the program has been successfully mapped, the hardware compiler idles and the

scheduler starts on its bookkeeping mechanism.
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• In the bookkeeping mechanism the scheduler keeps track of valid and executing pro-

grams on the array and generates valid anchor points so that the new incoming pro-

grams can be mapped in least amount of time. It also vacates the programs which have

finished execution and invalidates any of the anchor points which were contributed by

any of the retired programs.

Figure 5.4: Architectural overview for RTRA connected to a host system on SoC. Multiple

programs on the host can interact with the RTRA virtualized accelerator.

5.2.1 Software Compiler

In this section we provide a brief overview of the software compiler required to understand

the functioning of other hardware components and would be discussed in detail in the Com-

piler Chapter 4. The software compiler generates reconfiguration bits of a soft-mapped

program for the reconfigurable array using the data flow graph of the input program. The
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Figure 5.5: Architectural overview for RTRA connected to the network and multiple clients

and programs interacting with it over the network.

soft-mapped program consists of a configuration of processing elements and the required in-

terconnect between them bound by a polygon shape and some additional metadata as shown

in Figure 5.6.

Figure 5.6: An example of a soft-mapped program with the additional metadata as output

by the software compiler.

The scheduler is able to map and translate the polygon on various locations on the

array by exploiting various symmetries of the array. The bounding polygon surrounding

the soft-mapped program allows the scheduler to easily check for program overlaps with the

existing programs on the array, and quickly translate and relocate the polygon and thus
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program to available resources on the array, while preserving the internal connections and

configurations of the processing elements inside the polygon. The polygon-based translation

and relocation helps avoid computationally complex software recompilation. Along with the

polygon metadata, software compiler also includes information for the program’s execution

time, as well as its execution length, location of polygons origin and the location of IO ports

on the polygon with respect to the origin.

5.2.2 Scheduler

The scheduler performs the task of spatial and temporal array resource allocation for incom-

ing programs. It keeps track of programs actively executing on the array and their respective

locations and uses that information to map any incoming programs to the available resources

on the array without overlapping the hardware resources of the array required by the incom-

ing program with the existing programs. If the scheduler is unable to spatial co-map the

incoming program to the array along with other existing programs then it adds the incom-

ing program into a temporal list of program which can be mapped onto the array when the

active programs on the array retire or finish execution. To perform this task of spatial and

temporal multiplexing and scheduling, the scheduler uses the metadata information provided

by the software compiler. The metadata information consists of the bounding polygon, ori-

gin, location of input/outputs ports of the program, program’s requested start time, and

program’s execution time period, as mentioned in the previous section. The bookkeeping

mechanism and placement mechanism work together to ensure proper and quick functioning

of the scheduler, in the next section we look deeper into those mechanisms.

5.2.2.1 Bookkeeping Mechanism

The bookkeeping mechanism keeps track of polygons mapped on to the array. When a

polygon gets mapped onto the array it is added into a list of programs, called bookkeeping

list. This bookkeeping list keeps track of currently executing programs on the array as well

as the programs which were requested but unable to be mapped currently to the array. The
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main function of bookkeeping mechanism is to generate a list of anchor points based on

the the currently active and executing programs, this list of anchor points is used by the

placement mechanism to figure out the relocation of new incoming programs or the temporal

list of programs. The dimensions of the array are saved as program 1 in the bookkeeping

list with the infinite execution time length, and the highest program priority, this allows

the mechanisms to treat the physical dimensions of the array as an inverted polygon with

the 4 corners of the array as anchor points, which get automatically generated when the

array is started and/or reset, or when the array finished executing all of the programs in its

to-do list. In case of any hard faults on the array due to manufacturing defect or any other

mechanical/thermal reasons, we can modify the program 1 which is the array dimensions

or add another program 2 with indefinite execution time, thus instructing the hardware

scheduler to place and map the other incoming programs around the hard fault.

Figure 5.7: An example of a program with its bounding polygon. The bounding polygon is

defined by its vertices and their respective orientations.

The polygon metadata of the program consists of the vertices of the polygon and their

orientations as shown in Figure 5.7, among other things. While generating and updating

the list of anchor points the scheduler goes through each valid and active polygon in the

bookkeeping list. It goes through each polygon one by one, and performs these steps:

• Check if the polygon is active. To perform this check the bookkeeping mechanism
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compares the actual start time of the program on the array with the current time of the

array. Since each program executes for a fixed length of specified time, the mechanism

can thus calculate the active, retired as well as programs waiting for execution in the

bookkeeping list. If no program has changed its status since the last check, that means

the anchor points list generated in the last cycle is up to date and does not require

any updates. In this scenario, the bookkeeping mechanism skips the remaining steps

in the list, and repeats this step until any change is detected in any program’s status.

• Once the mechanism verifies the activity of the program. It uses the orientation in-

formation of each of its vertices to create a list of tentative anchor points, as shown

in Figure 5.8. It then checks for overlaps of the tentative anchor points with other

existing valid polygons on the array. If the anchor point does not intersect/overlap

with any of the existing polygons on the array it is added to the list of anchor points.

• Upon updating the list of anchor points, the mechanism then checks for any programs

which finished execution and retired since the last check. If so, the mechanism goes

through the programs which are awaiting execution in the bookkeeping list, and tries

to map them to the newly freed resources using the placement mechanism.

Figure 5.8: A tentative list of anchor points generated from a placed program polygon in

the bookkeeping list.
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The bookkeeping mechanism runs continuously in the background of the scheduler, while

its idling. The scheduler is idling during the time between program requests, statistically

between any two program requests there would be a few hundred cycles where scheduler is

not performing any placement operation, and it performs bookkeeping mechanism during

those times. This background process of bookkeeping provides scheduler with an updated

list of anchor points and the pre-processed information, which speeds up placement of any

incoming program when they do.

5.2.2.2 Placement Mechanism

Scheduler uses the placement mechanism to exploit the symmetries of the reconfigurable

array and place polygons of the incoming programs onto the available resources on the ar-

ray. If the array is translation symmetric, that would allow the scheduler to translate any

incoming program to different resources on the array while maintaining the functionality of

the program, similarly rotational symmetry allows program to be rotated and mirror sym-

metry along any axis would allow any incoming program to be flipped about that axis while

maintaining functionality and without requiring lengthy software recompilation procedure.

In our design the array is translation, rotation as well as mirror symmetric which allows us

to translate, rotate and flip any incoming program to map onto the available resources on

the array without affecting the functionality of the program.

The placement mechanism places the polygon of the incoming program on each anchor

point in the anchor point list while aligning the orientation of the vertex of the incoming

polygon with the orientation of the anchor point. It is a two step procedure, where the

mechanism first translates the selected vertex of the incoming polygon, typically origin of

the polygon, to the location of the anchor point and then rotates the polygon around that

vertex to match the new orientation of rotated incoming polygon to that of the anchor point

as shown in Figure 5.9. In the Figure 5.9b, rotation Program 2b would be tried for placement

at the selected anchor point, since the orientation parameter of the anchor point i.e [0,0,1,0]

would match that of the vertex of the rotated polygon i.e. [0,0,1,0]. The mechanism then
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Figure 5.9: Figure demonstrate the use of orientation information of the anchor point and

vertex of the polygon. a) The orientation parameters of the selected anchor point. b) The

possible rotations of the polygon about its origin or chosen vertex when translated to the

selected anchor point. c) The changes in orientation parameters of a vertex with the rotation

of the polygon.
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repeats this procedure for each of the remaining anchor points in the list, until successful. If

the mechanism is not successful in placing the polygon in the first iteration, it tries to flip

the polygon along its x-axis and repeats the placement procedure, and if still unsuccessful it

can repeat the procedure with a different vertex of the incoming polygon.

Figure 5.10: A tentative list of anchor points generated from a placed program polygon in

the bookkeeping list.

The check for program overlap at each anchor point is greatly simplified due to the

bounding polygons. Instead of checking overlap of processing element used by the existing

programs on the array and incoming programs, the mechanism simply checks for intersection

of the polygon edges of the programs. The mechanism to check for program edge intersection
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is independent of the size of polygon/program and only depends on the number of edges of the

polygon. In our implemented design we chose a bounding polygon with four edges, which

meant that we had to check for intersection of 16 different pairs of edges while checking

overlap of any two programs, as shown in Figure 5.10. This is a greedy procedure, since the

mechanism stops at the very first successfully placement, various other mechanisms can be

developed to ensure that the occupied regions, or placed programs span the least amount

of area on the array, and leave large contiguous resources vacant for incoming programs in

future.

Once the placement mechanism is able to successfully place the incoming polygon onto

available resources on the array, it relays the information regarding the program translation,

rotation and flip to the hardware compiler, which uses the information to modify and hard

place the incoming program to the selected location.

5.2.3 Hardware Compiler

The hardware compiler uses the transform information provided by the placement mechanism

of scheduler and uses it to transform and map the incoming program to the vacant location as

calculated. The task of hardware compiler is greatly simplified because of deterministic and

constant routing delays of the interconnect network. Since the interconnect network requires

1ns to perform any 1 hop connection, so rotating and translating and program mapping

across the array preserves the timing constraints internal to the program polygon.

The location bits of the programming frame are very clearly demarcated in the program-

ming frame as shown in Figure 5.11. The hardware compiler has to modify the location

indices in the soft-mapped program configuration bits to the location indices corresponding

to the new location and send the programming bits to the reconfigurable array to achieve

desired program rotations and translations following Equations 5.1 - 5.6 as shown in Fig-

ure 5.12.
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Figure 5.11: The structure of configuration bits of the program, divided into multiple pro-

gramming frame applicable to its respective vertical stack.

Figure 5.12: The structure of configuration bits of the program, divided into multiple pro-

gramming frame applicable to its respective vertical stack.

122



Translate program by a in x direction and b in y : x, y− > a+ x, b+ y (5.1)

Rotate program clockwise by 90◦ : x, y− > y,m− x (5.2)

Rotate program clockwise by 180◦ : x, y− > m− x, n− y (5.3)

Rotate program clockwise by 270◦ : x, y− > n− y, x (5.4)

Mirror program along y axis : x, y− > m− x, y (5.5)

Mirror program along x axis : x, y− > x, n− y (5.6)

where m and n are dimensions of the program on the array.

5.2.4 Memory Subsystem

The memory subsystem consisting of a large RAM block to store data and a cache was de-

signed to provide streaming data to the array, and accommodate the array virtualization and

program relocation strategies. The memory structure for the array is composed of multiple

parallel memory banks, memory controller and RAM. The host(s) or client(s) requesting a

program stores the data required by the program in the memory. The memory controller

performs a scatter-gather based memory transfers. It requests large contiguous words of

data from the RAM and stores those words into a respective parallel memory bank address.

In our case, each input to the reconfigurable array is a 16-bit word. The output from each

individual memory bank in the parallel banks is controlled by an independent sequence gen-

erator which is programmed by the compiler. A large parallel data word is constructed from

those parallel banks and sent to the ports of IO network towards the reconfigurable array

shown in Figure 5.13. Any output from the reconfigurable array is also read out in a similar

fashion. The number of parallel memory banks is decided by the network throughput re-

quired by the IO network to and from the array. The number of entries or elements in each

of those parallel memory banks indirectly depends on the network IO throughput. Since

memory controller can only read or write contiguous memory from RAM, the word has to

be sufficiently large to accommodate the random nature of RAM, and hide RAM latency
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and keep the parallel memory banks filled to provide the streaming data to/from the array

in orderly fashion. Each of the parallel banks have identical connectivity to the IO network

and array.

During the virtualization process, the hardware compiler uses the memory structure to

provide data streams to the virtualized programs. When the hardware compiler is done

placing programs and configuring the IO network, it sends the connectivity of the virtual IO

ports of the placed program to the physical IO ports of the array to the memory controller.

Memory controller uses this connectivity information to move the appropriate word from

RAM to its appropriate parallel bank. Since any word from RAM can be placed and accessed

through any of the memory banks, this simplifies the design of the IO network.

Figure 5.13: Memory structure for RTRA.
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5.2.5 IO Network

The ACAS architecture allows for program allocation over the area of the array at runtime,

which requires that the program Inputs and Outputs (IOs) need to be connected with the

physical IOs of the array using an IO network. The internal connectivity of the program,

which is mesh-based, still remains intact as the program is relocated, however the IO ports of

the program need to be accommodated during relocation as shown in Figure 5.12. Although

a symmetric mesh-based interconnect network is ideal for domain-specific inter-PE connec-

tivity required by programs, it is not ideal for an IO network which connects program IOs on

PEs to physical IOs on the boundary of the array. As shown in Figure 5.14 and Figure 5.15,

a mesh network when used as an IO network provides limited and non-deterministic routing.

Each switchbox node in the mesh network is directly connected to a processing element. So

if the node is used by the network for some routing, then its connected PE can be blocked

from utilizing its network resources. Mesh networks also create a large number of possible

routes, and solving for the least-delay route while accounting for blockages at runtime re-

quires a high time complexity. The latency to map any physical IO to a program IO to

any array location is also not uniform, as can be seen in Figure 5.15, in the example mesh

of 5 × 5 array size, the array location [1, 1] is directly connected to physical IO and hence

can be reached within one clock cycles, however the array location [3, 3] can only be reached

after three hops in the temporal layers going from various different neighbouring mesh node

switchboxes. The other solution for IO network could be a high-radix, n×n crossbar, where

n is the number of processing elements on the array. This is a hardware costly solution and

thus not feasible for larger arrays.

The IO network designed as shown in Figure 5.16 can be summarized as optimally sparse

multi-layer network. The optimal sparsity ensures that there is minimal overlap between

the input nodes and output nodes in each layer while providing sufficient connectivity from

each PE to the physical IO, meaning no two output nodes in a layer share more than one

common input node. The number of nodes in each spatial layer is proportional to the number

of processing elements (equal in this example) and each node in the spatial layer has a fixed
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Figure 5.14: 2D spatial representation of the mesh-based IO network for RTRA.

node degree. The sparsity ensures that a disjoint path exists for each PE to the physical IO

at a minimum hardware cost.

When compiling the routing and configuration for this network at runtime, each program

IO in a PE is back-propagated towards the physical IO. This operation outputs possible

routing paths as a tree for each program IO, with the root of the tree being the Program IO

on the PE, the intermediate nodes being the spatial layer nodes, and leaf nodes being the

physical IOs. The disjoint paths between those trees provide a valid configuration for the

IO network to connect each of the PEs to a physical IO. We apply a depth-first search to

look for those solutions within a fixed number of iterations. If the hardware scheduler fails

to find a feasible solution, the IO routing is treated as failed and the program placement

is tried again at a different location. The network is statistical, it does not guarantee a

solution like a fully-connected network but the probability of finding a solution is engineered

to be high by adjusting the number of nodes in intermediate layers and their degree of

connectivity for a given array size. For incoming programs with high compute-to-IO ratio,

the program and the array would be compute limited, which eases the routing pressure on
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Figure 5.15: 1D spatial and temporal representation of the mesh-based IO network for

RTRA.
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Figure 5.16: Sparse-switchbox based IO network for RTRA.
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the network. Poorly optimized programs can have low compute-to-IO ratio which makes the

array network limited [25], [51], since the peripheral IO of an array scales linearly with the

dimensions of the array while compute scales as its square. The onus is on the compiler to

maintain high compute-to-IO ratio for each compiled program for larger arrays to ensure

optimal and balanced resource utilization.

5.3 Prior Architectures

Researchers have explored various different software, hardware and domain-specific tech-

niques and policies for array hardware resource management, and improve throughput. There

are methods for runtime resource management during the compilation stage, where the user

can plan ahead for runtime program dynamics and accommodate them into the program at

the time of compilation. Dynamic Partial Reconfiguration (DPR) for FPGA falls under the

aforementioned category. DPR can potentially address the problem of dynamic resource allo-

cation [53], by allowing the hardware array to be partitioned and used by different programs

or different sections of the same program. Using DPR the user can identify various different

small programs which can be compiled together to execute simultaneously or, the user could

partition larger program into smaller sections which can get mapped onto the selected array

resources, thus reducing the hardware requirements and allowing a larger program to be

mapped onto a smaller array. The process of designing and floorplanning programs using

DPR is very cumbersome and labor intensive [54], it relies upon the expertise of the user to

plan ahead to manage runtime resources at the compile time. The tools for automated floor-

planning and DPR have been developed, but the solutions only cover a few steps of the whole

process and are limited by the intricacies of the underlying micro-architecture [42], [7], [24].

In HPC cloud environment, software frameworks to virtualize and manage the FPGA re-

sources have been proposed [58], [59]. However, they do not support partial reconfiguration

and are not ideal for workloads involving fine-gain runtime dynamics.

There are implementations such as PRR-PRR [9] which limit the number of possible
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resource relocations and eliminate the task of floorplanning by the user. PRR-PRR hard-

ware partitions a large FPGA into four identical FPGAs, and every compiled program is

designed to reside in one of the smaller FPGAs. At runtime the incoming program can be

assigned to any of the available smaller FPGAs. Therefore, the FPGA can be virtualized

to support more than one program at any given time on a single device. However the time

required to reconfigure an FPGA for virtualizing operations makes them impractical for real

applications [39].

Domain-specific accelerators like TPUv4i [22], TSP [2] and Planaria [14] enable mul-

tiprogram tenancy and scheduling. However, these architectures are designed for AI/ML

applications and rely on domain-specific architecture and description for resource manage-

ment, which limits their scope for general purpose use.

For general purpose dataflow, architectures such as TRIPS [41], WaveScalar [47] and

RAW [3]. These architectures allow for dynamic reconfiguration of array resources based

on program phase, in a systolic fashion. The flexibility in these architectures comes at the

cost of efficiency. WaveScalar [47] and RAW [3] architectures schedule their instructions

dynamically and perform tag matching and operand queue scheduling. Other architectures

like Tartan [32] uses a more efficient statically scheduled array, but prohibits reconfiguration

during program execution. Some architectures such as VEAL [8] enable a software/driver

level virtualization to enable program binary compatibility across different architecture im-

plementations. However the software level support limits the accelerator resource sharing to

just one program at a time, and multiple programs cannot simultaneously co-execute on the

hardware.

Polymorphic Pipeline Array (PPA) [37], is a reconfigurable architecture that is similar to

our approach of solving hardware virtualization. It allows a program to be accommodated

and relocated to the resources available at runtime. The program accommodation is achieved

by modifying the program binary, folding or unfolding it at runtime in a “virtualized modulo

scheduling” fashion. This techniques relies on fixed-latency memory access at every position

on the array, which is an unfair assumption for larger array sizes, thus making scaling for PPA
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for larger arrays impractical. Additionally the presence of dynamic instruction scheduling at

finer, processing element level means that the modulo scheduling requires increasingly higher

time to perform program modification for larger program sizes, and might be impractical for

larger programs.

5.4 Evaluation Methodology

The Runtime Reconfigurable Architecture (RTRA) has several features that help it improve

throughput and performance relative to other architectures. Features such as runtime hard-

ware compiler and hardware scheduler for program relocation, multiprogram tenancy, high

programming bandwidth and dynamic program execution. In order to highlight each of the

features independently and also highlight their contributions to the overall throughput gains

of RTRA we designed a few example architectures each with different subset of RTRA’s

features, and then compare their throughput and workings. We compare the following ar-

chitectures to evaluate RTRA :

• Statically configured array: We design and simulate a 18 × 18 array, it is a typical

reconfigurable array architecture, where the array is statically configured to perform

accelerator operations. This architecture fully relies on the knowledge of runtime pro-

gram execution statics at the compile time. As shown in Figure 5.17, if at compile

time the user has information pertaining to simultaneously executing programs, then

they can co-compile and place all the subprograms together on the array to generate a

single program binary for their execution. Since all of the programs share the resources

of the array, each program is mapped sub-optimally as a compromise to map them all

onto array’s resources.

• Dynamically configured array: We design and simulate a 18× 18 dynamic array archi-

tecture that leverages the high programming bandwidth and dynamic program execu-

tion to achieve a higher throughput and active utilization as compared to the statically

configured array. The high programming bandwidth and dynamic program execution
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Figure 5.17: Statically configured array programmed to execute programs 1-5 simultaneously.

allows the dynamic array to allocate maximum resources to a single program and map

the largest feasible program size to allow for lowest program execution times and thus

higher throughput. The array is programmed to perform a single program in succes-

sion, thus the programs execute one a time over time, and new program is loaded onto

the array once the previous program has finished execution as shown in Figure 5.18.

• Hard-partitioned array: This architecture model is created following the PRR-PRR [9]

implementation. We design and simulate a 18× 18 array that is hard partitioned as 4

subarrays of size 9 × 9 each, and the programs are compiled to execute on one of the

subarrays. The controller/mapper manages the resources on the array and maps any

incoming program request to one of the available subarrays as shown in Figure 5.19.

This architecture employs the high programming bandwidth, multiprogram tenancy,

dynamic program execution but the scope of hardware scheduler is limited.

Additionally, we devise a new metric to explore the utilization of processing elements,
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Figure 5.18: Dynamically configured array which reprograms for programs 1-5 over time.

Each program is mapped onto the array once the previous program has finished execution.
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Figure 5.19: A hard-partitioned array which programs the programs 1-5 in its subarrays in

the program sequence.
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Table 5.1: Example characteristics for subprograms or kernels for a large program.

Kernel/subprogram Size on array (#PEs) Execution time(ns)

Prog 1 2× 2 1,000

Prog 2 4× 4 10,000

Prog 3 2× 2 20,000

Prog 4 2× 3 20,000

Prog 5 2× 3 5,000

called active utilization. The metric can be represented as graph of active array utilization

over time or as an average active array utilization over the duration of program. Typically

the reconfigurable array compilers report an array resource utilization number, which is the

physical footprint of the program over the resources of the array. However the program may

not use all of those physically allocated resources fully throughout the duration of program

execution. Thus, we devise active utilization as a metric to keep track of array resources

being actively utilized and not just physically mapped to and/or allocated. As an example

to demonstrate the usage of active utilization, we create a large dummy program which

comprises of various small kernels and subprograms. Each program kernel has a different

physical footprint, and number of Processing Elements (PEs) requirement and requires a

different execution time to perform its task, as shown in Table 5.1. If such a program were

compiled to be executed on a statically configured array, most of the kernels would lie idle

while a few of them are working on their process. In this example scenario although the

utilization/occupation of the array is 100%, however its active utilization of resources is

quite low, as shown in Figure 5.20. Most of the array even though it is programmed and

occupied is not performing any useful calculation. We can minimize such inactivity and

resource idling by using a dynamically configured array and only placing the blocks that

actively require processing.

Another way to represent and think about the speed up benefits of using RTRA is

as shown in Figure 5.21. The program pipeline can only one of the paths based on the
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Figure 5.20: a) An example of program requests for multiple programs over time for a static

CGRA and its array resource activity. b) The same program requests are mapped onto an

RTRA, by using multi-size compile and active resource allcocation and program relocation,

RTRA is able to efficiently map the programs on the array leading to higher utilization and

lower runtime. c) Example workload representing a scenario where only two program blocks

are being requested by the host, a static CGRA has a large inefficiency as the array resources

mapped out for other programs cannot be re-purposed for the requested programs. d) The

RTRA can handle the same requests from (c) with much higher resource utilization and

lower runtime.
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decision tree. While the minimum size of a statically configured CGRA is dicatated by the

size of the whole program. However, for a static compiled CGRA all of the paths, blocks

and kernels need to be statically mapped to accomodate any one of the outcomes of the

decisions. Whereas the minimum sized RTRA only needs to handle one of the blocks at a

time. Additionally to design an RTRA with equivalent performance to static CGRA, RTRA

needs to accommodate only one of the program flow pipelines at a time.

Figure 5.21: An example program flow with multiple kernels or subprograms with various

decision points and the size requirements for different implementations of reconfigurable

arrays.

5.4.1 Workload Selection

The performance benefits of an actively managed runtime reconfigurable array would be high-

lighted when executing a workload comprising of multiple independent programs as shown

in Figure 5.20 or when executing a large program with multiple decision pipelines and sub-

programs/kernels as shown in Figure 5.21. In the aforementioned scenario, each independent

programs requests the array for a program accelerator and the hardware scheduler arbitrates

and services each of those program accelerator requests. Provided with a sufficient program
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request pressure, the reconfigurable array would be continuously busy programming and ex-

ecuting. The total time required to fully service a program is a sum of programming and

execution time of the program. As we discussed in the compiler Chapter 4, the programming

time required for a program depends on the programming bandwidth of the array, which

should be constant for any given hardware and the size of array resources required by the

program, and the execution time depends on the type of program and inversely proportional

to the size of array resources required by the program.

A program workload meant to be run on reconfigurable array can be categorized into 4

broad categories based on their size and execution times as shown in Figure 5.22.

Figure 5.22: Classification of programs into 4 broad categories based on their program size

and execution times.

• Large program size, long execution time (LPLE) : This category of programs are large

in size and thus require large number of array resources. The size of these programs

is comparable to the size of reconfigurable array, and thus the programming time is

bound by the upper limit i.e. the time required to program the entire reconfigurable

array. While there is no upper bound on the execution times and thus the execution

time can be much larger than the programming time of the programs belonging to

this category. Since the size of these programs is large, and comparable to the size of

array, these programs might prevent other programs from being mapped onto hardware

resources and thus hinder multiprogram tenancy.
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Figure 5.23: Multiprogram tenancy for compiled programs belonging to different categories.
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• Small program size, long execution time (SPLE): This category of programs require

a few array resources and are thus quick to program but require long execution time.

Some unparallelized program algorithms may fall into this category such as Cipher

Block Chaining (CBC) based AES encryption [29], or it could also be a sub-optimal

implementation of some program. Since the programs are small in size, they require

short programming times, and leave aside large vacant array resources this category

of programs is ideal for RTRA, as programming time is relatively shorter compared to

execution times, so the active utilization of array resources under high programming

pressure is also quite high. This topic is discussed in detail in multi-size compile section

of Chapter 4.

• Large program size, short execution time (LPSE): This category of programs consists

of a few outliers where the program size is large but the execution time of the program

is quite low. The programs belonging to this category could one of the few programs

which cannot be modified, loop rolled or serialized to execute on smaller array re-

sources. One of the examples could be a 16-pt FFT based on Cooley-Tukey radices,

the implementation would require a high number of resources on our array architec-

ture but would only require a few clock cycles to execute. However, a single-path delay

feedback FFT could reduce the number of resources required for such an FFT by huge

margins, and thus our perception of this category being an outlier. Since the size of

these programs is large, and comparable to the size of array, these programs might

prevent other programs from being mapped onto hardware resources and thus hinder

multiprogram tenancy. However since the execution times are small, the program va-

cates the hardware resources quickly, thus the wait times for other programs is also

shorter.

• Small program size, short execution time (SPSE): This last category of programs are

simply small programs which require short execution times. An example could be ma-

trix multiplication operation for smaller matrices. These programs require comparable

times to program the reconfigurable array and program execution. Since the scheduler
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can program the array for an incoming program while existing programs are executing,

having programming size comparable to execution times means that scheduler is un-

able to map more than just a few active programs on the array. The existing programs

would finish their execution while scheduler is programming the incoming program.

These programs would benefit a great deal from increased programming bandwidth.

The major point to realise in the program categories is that in all of the above categories

the program sizes are relative to the array, which means that a program which is large for a

smaller array might become a smaller program for a larger array since these two conditions

are completely independent of each other. A corollary to the aforementioned statement

is that for a reticle limited extremely large array sizes, any sub-optimized program would

fall under the small program, short execution times category which would definitely limit

the maximum active utilization of the array, and thus the programming bandwidth for

large array sizes should also be proportionally increased to maintain optimal high resource

utilization. Figure 5.23 shows the active array resource utilization for programs belonging

to different categories, in real world scenario, a workload would consist of programs from

multiple categories requesting accelerator access. The figure demonstrates how the program

characteristics facilitate or impede active array utilization.

In the scenario where RTRA is connected over the network as shown in Figure 5.5, which

can have a lower programming bandwidth as compared to on SoC interconnect network.

The programs should be designed and compiled to exclusively fall under the SPLE category,

so as to overcome the bottlenecks faced by lower programming bandwidth and ensure high

active utilization. As we shall observe in the results section, regardless of the program sizes

and program categories, RTRA would perform equivalent to the existing array architectures

in extremely sub-optimal program conditions, if not better.

We evaluate the performance of RTRA against the other architectures by designing a

workload comprising of :

• BLAS (Basic Linear Algebra Subroutines): We estimate the performance of our ar-
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chitecture for BLAS programs by running a workload of assortment of small matrix

multiplications and vector dot products. This program set belongs to SPSE category.

• Multi-Layer Perceptron (MLP): We test our architecture for MLP neural networks by

estimating its throughput for larger matrix multiplications. This program set belongs

to LPLE category.

• Image Processing (IP): We tested our architecture for image processing workloads

comprising of applying 2D filters and 2D convolution operations for CNN. This program

set belongs to LPLE category.

• Machine Learning (ML): For ML workload we tested the performance of our architec-

ture against an assortment of K-means clustering programs with a varying number of

data points and centroids. This program set belongs to SPLE category.

• Media encode/decode: For media decode/encode applications we implemented Discrete

Cosine Transform (DCT) and its inverse and tested the performance of our architecture.

This program set belongs to LPLE category.

We also map a blind signal classification application [56] on the RTRA, as shown in Fig-

ure 4.16 and compare it relative to statically mapped array implementation. The application

consists of various programs and kernels which have been compiled and optimized to belong

to SPLE and SPSE program categories. Each of the blocks in the blind signal classification

DFG requires different execution times and has a different physical footprint and minimum

processing elements size requirements, the requirements are tabulated in Table 5.2. The

program is able to detect and classify up to 32 concurrent non-overlapping signals up to

125MHz bandwidth in 500MHz signal bandwidth. The number of signals present in the

spectrum bandwidth snapshot cannot be predicted in advance at compile time and is a

runtime variable. the total number of possible combinations and configurations required to

accommodate the pre-planned configurations would render the pre-planned solution imprac-

tical to implement. Further the user might have to limit the hardware performance or the

number of detectable signals, to design a practical pre-planned solution.
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Since preplanning was not feasible, we compared the performance of our RTRA archi-

tecture against a statically configured UDSP. The statically configured UDSP has been pre-

programmed with all the necessary components and program kernels in advance as shown

in Figure 5.24. The host or main thread parses the data from ADCs through the necessary

required blocks based on the programs data flow graph. On the other hand the example

program execution flow for two single-carrier signals on RTRA is shown in Figure 5.25. In

RTRA style of execution the host or main thread places only the required subprogram or

kernels on the array with maximum parallelization and array utilization. As observed in

Figure 5.25, for two signals detected in the spectrum after the band segmentation block,

the two independent blocks of single-carrier classifying kernels are placed and executed on

the RTRA, and the scheduler manages the array allocation based on the host programming

request and results of the previous blocks. The size of the array 18× 18 is derived from the

minimum size of array required for the UDSP to accommodate all of the blocks of the blind

signal classification pipeline. In addition to the 18 × 18 RTRA for ACAS, we also tested

our program execution flow on a smallest possible RTRA array of size 9 × 12 which could

accommodate the blind signal classification pipeline.
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Figure 5.24: Blind signal classification pipeline statically configured onto 18 × 18 UDSP

array.
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Figure 5.25: Blind signal classification program execution flow for 18× 18 RTRA array. The

example program flow here shows 2 single-carrier signals being detected in the spectrum

snapshot and the subsequent programmings and program blocks on the RTRA.
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Table 5.2: Size on reconfigurable array, computation time (@1GHz) for various functions in

a blind signal classifier for 0dB SNR.

Function Minimum Execution Multi-Size

Program Size (PE) Time (ns) Enabled

BSG CIC filter 6× 6 1.2× 105 Yes

BSG 64pt FFT 7× 12 94 Yes

BSG 512pt FFT 7× 12 228 Yes

Single carrier/ 3× 5 100 Yes

multi carrier

OFDM 2× 2 1.6× 106 Yes

(symbol rate)

OFDM (cyclic- 2× 2 7.2× 105 Yes

prefix length)

OFDM cyclic 2× 3 3× 104 Yes

auto-correlation

Single carrier 2× 2 1.3× 108 Yes

(center frequency)

Single carrier 2× 2 4.3× 107 Yes

(signal bandwidth)

Single carrier 2× 2 5.8× 104 Yes

(symbol rate) (upto 6x)

Single carrier 3× 6 20 Yes

(signal extraction)

Modulation level + 2× 2 1.8× 105 Yes

classifier (BPSK)

Modulation level + 9× 9 1,000 No

classifier

(QAM/PAM/ASK)
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5.5 Results and Discussion

Figure 5.26: The relative throughput of static CGRA, dynamic CGRA, hard-partitioned

CGRA and RTRA normalized to static CGRA.

The ACAS model helps increase the throughput of an architecture by increasing the ac-

tive utilization of the array. The workloads mentioned in previous workload choice section

were simulated and tested on the static CGRA, dynamic CGRA, hard-partitioned CGRA

and RTRA architectures. The results of the assortment of workloads is as shown in Fig-

ure 5.26. As can be observed overall on average the RTRA architecture performs over 5

times better than the baseline statically programmed CGRA architecture and the various

features of RTRA combined helps it perform the best overall. The performance benefits of

the RTRA vary widely as compared to the other architectures. The cause behind the varying

performance is dependent on the sizes of the original programs and the total active usage of

the resources. As can be observed in the Figure 5.27, the RTRA architecture performance is

much better compared to the dynamic CGRA for program workloads with low active utiliza-

tion. Workloads such as BLAS, and multi-layer perceptron have a very low active utilization

for dynamic CGRA, while the RTRA with its dynamic program composition and relocation
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Figure 5.27: Analyzing the average active resource utilization of static CGRA, dynamic

CGRA, hard-partitioned CGRA and RTRA for different workloads.

is able to achieve a much higher active utilization and thus higher performance. Where as for

workloads such as video encode/decode, the program has a much higher actively utilization,

additionally the program kernel is quite large, which limits the maximum parallelization that

can be achieved using the array, and leaves a substantial 20% array resources un-utilized. In

these array limited scenarios, with maximum array utilization, RTRA is still able to match

the performance of dynamic CGRA. The hard-partitioned CGRA performs quite well for

small BLAS applications, the partitions allow it to accomodate multiple program kernels

simultaneously, but its upper bound by the number of hard-partitions while RTRA does not

have any such limitation, thus performs better. For larger workloads the hard-partitions in-

terfere with the amount of parallelization that can be achieved and can lead to under-utilized

array, and thus poor throughput for hard-partitioned CGRA.

RTRA was able to exploit the multi-size compile and multi-step compilation to achieve

higher throughput and higher active utilization for blind signal classification workloads. As

shown in Figure 5.28, RTRA ACAS system is able to complete the signal detection pipeline

for a variety of detected signal scenarios much faster than the statically configured UDSP.
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As shown in Figure 5.29, the RTRA of size 18×18 as well as 9×12 outperform the statically

configured 18×18 UDSP array. The high parallelization and active utilization of the array as

shown in Figure 5.30 of the ACAS model on RTRA as compared to UDSP helps it achieve a

much higher throughput. Intuitively we can also observe that the larger resource blocks from

Table 5.2, achieve a higher active utilization on UDSP and the blocks with high resource

utilization and short execution (LPSE) category are not parallelized in RTRA architecture

as they limit the active utilization and hurt the overall performance.

Figure 5.28: Signal classification time required by the statically configured UDSP architec-

ture, in comparison to the 9 × 12 RTRA and 18 × 18 RTRA for various combinations of

input signals detected in the incoming spectrum snapshot.

Figure 5.31 shows the number of clock cycles (@1GHz) required by runtime hardware

scheduler and hardware compiler to find appropriate vacant resources on the array to map

the incoming program for bookkeeping memory for 10 active programs and 32 anchor points.

The polygon-based edge intersection method to detect program overlap along with the anchor

point bookkeeping approach to keep track of vacant resources on the array, helps scheduler

achieve a low time-to-map latency. The special programming frame and symmetric mesh-

based interconnect help speed up the process of mapping incoming programs to available
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Figure 5.29: Speed up of blind signal classifier workloads on a 9 × 12 and 18 × 18 RTRA,

normalized with respect to 18× 18 UDSP.

resources.

5.6 Array Size Scaling

In this section we explore the effect of array size and programming bandwidth on the per-

formance benefit of dynamic actively managed architecture RTRA vs statically configured

UDSP. As we observed in the results section, the major performance benefit of RTRA comes

from the opportunistic parallelism that it can exploit by only placing the active section/kernel

of the program on to the array resources, whereas UDSP has to content with the array re-

source statically divided amongst various program kernels, even the ones which are inactive

due to the selected pipeline, or inactive because of unavailability of data to process. Thus,

intuitively increasing the size of array should improve the performance of RTRA but the

larger array should improve UDSP as well. The extent of benefits of two architecture might

be different and that is what we seek to explore in this section.

Increasing the size of array improves the execution time required for the program, however
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Figure 5.30: Active utilization for UDSP and RTRA at different stages of execution for one

single-carrier BPSK signal classification pipeline.
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Figure 5.31: Time required (@1GHz clock) to find appropriate vacant resources on the array

and map the incoming program varies based on hardware utilization with the number of

actively executing programs on the array.

for RTRA the programming time required increases with the size of program as well, so there

is a point of diminishing return and negative return beyond which increasing the resource

allocation for the program negatively impacts RTRA performance as seen in Figure 4.19,

however UDSP does not suffer with such negative performance issues. Additionally, we

observe that different algorithm kernels within the same program could have different optimal

parallelization points. A program section with large execution times, could optimally utilize

the larger array resources, however a kernel with shorter execution time would have it optimal

parallel operating point at much smaller array resources, thus would inefficiently occupy the

array resources.

As an example exercise we calculated the optimal maximum parallel points of various

kernels in the blind signal classification kernel and calculated the time required to compute

each of the kernels independently for various different programming bandwidths, as shown in

Table 5.3 for 1Gbps programming bandwidth, Table 5.4 for 20Gbps programming bandwidth

and Table 5.5 for 200Gbps programming bandwidth. As we can notice that for single-carrier
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Table 5.3: Maximum optimal parallelization for various functions in a blind signal classifier

for 0dB SNR at 1Gbps programming bandwidth.

Function Minimum Execution Max Parallel Max Parallel

Program Size Time (ns) (Size) Total Time (ns)

BSG CIC filter 6× 6 1.2× 105 3(9× 12) 8.1× 104

BSG 64pt FFT 7× 12 94 1(7× 12) 3.2× 104

BSG 512pt FFT 7× 12 228 1(7× 12) 3.2× 104

Single carrier/ 3× 5 100 1(3× 5) 5,860

multi carrier

OFDM 2× 2 1.6× 106 32(8× 16) 9.9× 104

(symbol rate)

OFDM (cyclic- 2× 2 7.2× 105 22(10× 10) 6.6× 104

prefix length)

OFDM cyclic 2× 3 3× 104 4(4× 6) 1.67× 104

auto-correlation

Single carrier 2× 2 1.3× 108 291(34× 34) 8.93× 105

(center frequency)

Single carrier 2× 2 4.3× 107 166(26× 26) 5.1× 105

(signal bandwidth)

Single carrier 2× 2 5.8× 104 5(4× 6) 1.92× 104

(symbol rate) (upto 6x)

Single carrier 3× 6 20 1(3× 6) 6,932

(signal extraction)

Modulation level + 2× 2 1.8× 105 11(6× 8) 3.3× 104

classifier (BPSK)

Modulation level + 9× 9 1,000 1(9× 9) 3.2× 104

classifier

(QAM/PAM/ASK)
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Table 5.4: Maximum optimal parallelization for various functions in a blind signal classifier

for 0dB SNR at 20Gbps programming bandwidth.

Function Minimum Execution Max Parallel Max Parallel

Program Size Time (ns) (Size) Total Time (ns)

BSG CIC filter 6× 6 1.2× 105 12(24× 18) 1.8× 104

BSG 64pt FFT 7× 12 94 1(7× 12) 1,774

BSG 512pt FFT 7× 12 228 1(7× 12) 1,908

Single carrier/ 3× 5 100 1(3× 5) 388

multi carrier

OFDM 2× 2 1.6× 106 144(24× 24) 2.2× 104

(symbol rate)

OFDM (cyclic- 2× 2 7.2× 105 98(14× 28) 1.48× 104

prefix length)

OFDM cyclic 2× 3 3× 104 16(8× 12) 3,700

auto-correlation

Single carrier 2× 2 1.3× 108 1296(72× 72) 2× 105

(center frequency)

Single carrier 2× 2 4.3× 107 756(54× 56) 1.1× 105

(signal bandwidth)

Single carrier 2× 2 5.8× 104 6(4× 6) 1× 104

(symbol rate) (upto 6x)

Single carrier 3× 6 20 1(3× 6) 365

(signal extraction)

Modulation level + 2× 2 1.8× 105 48(8× 24) 7,436

classifier (BPSK)

Modulation level + 9× 9 1,000 1(9× 9) 2,555

classifier

(QAM/PAM/ASK)
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Table 5.5: Maximum optimal parallelizatoin for various functions in a blind signal classifier

for 0dB SNR at 200Gbps programming bandwidth.

Function Minimum Execution Max Parallel Max Parallel

Program Size Time (ns) (Size) Total Time (ns)

BSG CIC filter 6× 6 1.2× 105 42(36× 72) 5,670

BSG 64pt FFT 7× 12 94 1(7× 12) 262

BSG 512pt FFT 7× 12 228 1(7× 12) 396

Single carrier/ 3× 5 100 2(6× 5) 110

multi carrier

OFDM 2× 2 1.6× 106 442(42× 42) 7,100

(symbol rate)

OFDM (cyclic- 2× 2 7.2× 105 300(30× 40) 4,800

prefix length)

OFDM cyclic 2× 3 3× 104 50(15× 20) 1,200

auto-correlation

Single carrier 2× 2 1.3× 108 4010 6.4× 104

(center frequency) (127× 127)

Single carrier 2× 2 4.3× 107 2290(96× 96) 3.7× 104

(signal bandwidth)

Single carrier 2× 2 5.8× 104 6(4× 6) 1× 104

(symbol rate) (upto 6x)

Single carrier 3× 6 20 1(3× 6) 56

(signal extraction)

Modulation level + 2× 2 1.8× 105 150(20× 30) 2,400

classifier (BPSK)

Modulation level + 9× 9 1,000 3(9× 27) 820

classifier

(QAM/PAM/ASK)
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Figure 5.32: Single-carrier blind signal classification computation time for RTRA (various

bandwidths) and UDSP for varying array sizes.
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classification pipeline, the Single-Carrier (Center Frequency) kernel is the most computation

intensive section of the whole classification pipeline, it occupies the most array resources as

well as requires the most total time. So, for increasing array sizes the SC(FC) kernel would

be able to occupy all of the array resources and ensure maximum active utilization, however

kernels such as Single-Carrier (Symbol Rate) with small array utilization of just 4× 6 would

undermine the active utilization of array. These effects cause the RTRA vs UDSP throughput

gains to diminish for large array sizes, however these effects can be counteracted by increase in

programming bandwidth. Figure 5.32, shows the effect of array size scaling on RTRA various

bandwidths and UDSP. We can observe that for the same throughput at the best performance

points of RTRA we require larger array size for UDSP as compared to RTRA. However when

the array size is increased beyond the optimal operating point of RTRA for a given program,

then the programming time for RTRA is detriment to its performance and leads to sub-

optimal operation, hence RTRA programs should never be executed and compiled beyond

the optimal operating points. However, if needed the prorgamming bandwidth of the array

should be scaled in tandem with the scaling array sizes, as we can observe RTRA with

programming bandwidth 200Gbps stays competitive with UDSP up to the reticle limit of

800mm2 which happens at array size 159× 159.

In the next subsection we take a look at a simple method to increase the programming

bandwidth of the RTRA.

5.6.1 Programming Bandwidth

We observed that increasing programming bandwidth has a great effect on the throughput

benefits of RTRA for larger array sizes. Increasing the array size, should increase the number

of IO pins coming in to and out of the dielet, so the total aggregate bandwidth can be scaled

very easily with scaling array sizes. However, the problem should arise at distributing the

increased programming bandwidth effectively and with minimal wiring cost to the processing

elements on the array.

Increasing the programming bandwidth of the array requires some special accommoda-
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Figure 5.33: A low area- and energy-overhead coloring-based high-bandwidth programming

interface.

158



tions to the control mechanism. In a typical programming scenario with a control module for

programming, a p-bit bus at high clock speed, let’s assume ‘X’ GHz runs from the controller

to each of the Processing Elements. Since its a point to point connection, for n number of

PEs, there would be n connections each ‘p’ bits wide originating from the control module

to each of the PEs. However since there is just one controller/decoder/control module, it

can only program one PE at a time thus giving a maximum of ‘p ×X’ Gbps programming

bandwidth.

We use a graph coloring [26] technique to color the PEs such that no two adjacent PEs

have the same color. This method divides the array and the PEs into distinct segments of ‘n’

colors, and by implementing ‘n’ distinct programming controllers for each of the colors, we

can increase the programming bandwidth while maintaining same number of wire cost for

programming but increased controller complexity as shown in Figure 5.33. In this scenario a

PE belonging to each of the ‘n’ colors can be programmed in parallel, and thus the architec-

ture could potentially achieve ‘n×p×X’ Gbps programming bandwidth. The graph coloring

technique allows the color controllers to work in parallel. If we draw any random polygon

on the array on top of the PEs, there would be almost same number of PEs of each color,

this ensures that independent of the size and shape of the polygon maximum programming

bandwidth can be achieved in parallel with all programming controllers active.

Increasing the programming bandwidth helps reduce the time a scheduler has to spend

in programming the array resources for the program, which helps reduce the total time

for program. However the increased programming bandwidth can be used to readjust the

optimal operating point or parallelization of multi-size compile as shown in Figure 5.34.

Additionally we show a plot for the condition that the designer can optimize the architecture

further and reduce the instruction bits required to configure the processing elements and the

reconfigurable array in half, which is an extension of our initial discussion about architecture

efficiency metric from Chapter 2, and we can observe the speed up benefits, as well as better

resource utilization.
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Figure 5.34: Scaling of programming time and total time to compute for the 100×100 matrix

multiplication program with changing programming bandwidth and adjusting instruction

size.

5.7 Discussion

The actively managed RTRA allows the array to achieve its peak performance and through-

put by ensuring high active utilization of the array. The scheduler, hardware compiler

consume 60mW power at 1GHz and occupy 0.15mm2 area, based on post synthesis numbers

from TSMC16nm FFC technology. These RTRA array overhead of scheduler and compiler

contribute to less than 3% area and 6% power to the baseline hardware implemented 14×14

UDSP die. Additionally, the size of scheduler and hardware compiler is independent of the

size of hardware array, so it doesn’t scale up with increase in array size. Thus, the impact of

RTRA on the peak power and area of the reconfigurable array is minimal, however the in-

creased active utilization helps achieve a higher throughput in the same peak power bracket

of the chip. Needless to say, this also means that if an array is used without the active

hardware management system its actual power consumption is much lower than it is peak

power, since it is underutilized.
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The speed up benefits of using RTRA over other architectures can be better understood by

observing the Figure 5.20 and Figure 5.21. The synthetic program workloads such as BLAS,

multi-layer perceptron (neural networks), image processing, video encode/decode etc. belong

to the first category of independently executing programs as shown in Figure 5.20. Each

kernel or subprogram for the synthetic workload requests an array access to the hardware

scheduler and when granted executes its routines independently with the largest feasible

array resources allocated to it by the scheduler. The blind signal classification program falls

in the other category of programs as shown in Figure 5.21. There are multiple decision points

in the blind signal classification workload while one of the paths is required for any one signal.

As we observed even the ACAS 9× 12 array with 3 times fewer resources than the reference

18× 18 statically configured UDSP array is able to perform 3.2×−4× times better. Due to

the dynamic programming, active program composition and efficient allocation of resources

the ACAS 9×12 model outperforms a larger static configured CGRA. The benefits of RTRA

architecture and ACAS model can be used to either reduce the hardware requirements of

the reconfigurable array, e.g. 9 × 12 RTRA vs 18 × 18 UDSP, or increase the performance

or throughput of the reconfigurable array at the same area and resource cost e.g. 18 × 18

RTRA vs 18 × 18 UDSP. The 18 × 18 RTRA is able to perform at least 8× and upto 14×

better as compared to the equivalent size 18× 18 statically configured UDSP.
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CHAPTER 6

Conclusion

This dissertation work aimed to develop an area- and energy-efficient and scalable Runtime

Reconfigurable Array solution, which could provide hardware accelerator-like performance

and efficiency for domain-specific applications. We began with an analysis of the exist-

ing program execution flow techniques of various spatial and temporal architectures such

as CPU, GPU, FPGA, and hardware accelerators. Based on the findings, we developed a

multi-domain Architectural Efficiency (AE) metric that quantifies the influence of micro-

architecture, instruction set, and reconfiguration bits on the throughput, area, and energy

efficiency of the final architecture. We ran the AE metric on different aforementioned archi-

tectures and gained insights into the importance of domain-specificity, optimal interconnect

network, compute specialization, and compute pipeline depth in the design of an optimal

low area and energy overhead, yet flexible and high-throughput architecture.

We then developed a coarse-grain reconfigurable array, which we call Universal Digital

Signal Processor (UDSP), using the software-hardware co-design features, statistics-based

optimization techniques, and sparse switchbox interconnect network to achieve a scalable,

high-throughput, area- and energy-efficient design. We explored the computation and con-

nectivity requirements of algorithms belonging to the Digital Signal Processing (DSP) do-

main, and developed connected-graph models for the domain. We used the derived DSP

graph models and our hardware-software co-design technique to develop an interconnect

network of optimal connectivity, which meets the requirements of high-throughput appli-

cations, while also ensuring high compilability of the reconfigurable architecture. We then

developed a method of designing multi-layer sparse switchboxes for the interconnect network
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by optimally pruning the connections inside the switchboxes, while retaining a near-perfect

average bandwidth and connectivity, and while minimizing the hardware cost. The approach

helps us design a switchbox that can achieve 96.5% average bandwidth of an equivalent fully-

connected switchbox with 31.8% lower hardware cost. The multi-layer sparse switchbox and

the optimal connectivity interconnect network are linearly scalable with the number of pro-

cessing elements on the array and contribute roughly 55% to the area and 15% to the energy

consumption of the array. The UDSP architecture achieves energy and area efficiencies

within 4.2× and 6.4× to that of a hardware accelerator (ASIC) with equivalent throughput.

We developed a Runtime Reconfigurable Array (RTRA), which is a spatial and tempo-

ral fast multiplexing architecture that improves the capabilities of a reconfigurable array

by increasing its active utilization. We developed a method of increasing active utiliza-

tion of the RTRA by allowing multiple programs awaiting execution to be simultaneously

spatially mapped onto the available array resources, effectively virtualizing the array. The

fast program relocation and hardware compilation enabled by various components of active

hardware management system in RTRA allow hardware resource virtualization over multiple

programs. The virtualization mechanism, which we call Accelerator as a Service (ACAS),

allows the system to offer hardware acceleration features to multiple programs, threads, or

hosts simultaneously, where each such hardware acceleration request from the program is

handled independently by the active hardware management system. RTRA significantly

enhances the performance and throughput of a reconfigurable array by increasing its active

utilization while adding minimal overhead to area and energy consumption of the array. We

observed throughput gains varying between 8 − 14× while using RTRA as compared to a

statically-configured UDSP array of the same size for signal processing workload of blind

signal classification, and 1.4 − 8× improvement in throughput for miscellaneous workloads

comprising of linear algebra, machine learning, neural networks and media encoding.
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6.1 Research Contributions

6.1.1 Multi-Domain Architectural Efficiency Metric

• The architectural efficiency metric can be used to compare and analyze multiple archi-

tectures using instruction-based analysis. Designers can gauge the performance bene-

fits and efficiency of a new architecture or design at the pre-RTL stage and compare it

against other existing architectures. The insights provided can be used to optimize the

instruction set or reconfiguration bits of the design. The metric provides a methodol-

ogy to analyze multiple architectures solely on the basis of their micro-architecture, e.g.

RISC vs CISC, independent of hardware or physical optimizations. With additional

insights about the clock frequency and parallelism, the metric can be used to provide

a tighter estimate of throughput of the architecture for a given program.

6.1.2 Universal Digital Signal Processor (UDSP)

• The method of analyzing and developing interconnect networks allows the designer to

apply a graph-based approach to analyzing the connectivity requirements of a domain

of algorithms and apply simple, typical compiler optimization techniques on the graphs

to understand and develop the interconnect network of optimal bandwidth, network

diameter, and connectivity. This approach cuts down the overhead of interconnect

network of a reconfigurable hardware by helping the designer better understand the

requirements of domain and reduce the over-provisioning of the network.

• The method to develop optimally connected sparse switchboxes helps cut down the re-

dundant connectivity of a fully-connected switchbox by using a multi-layer approach.

The connectivity between the layers and hardware cost of the switchbox can be op-

timized by randomly removing connections between elements of different layers while

keeping track of loss in average bandwidth of the switchbox. Any unacceptable random

connection removal that causes massive drop in average bandwidth of the switchbox
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is back-tracked, and the process is repeated multiple times until the lowest hardware

cost is achieved for the required average bandwidth.

• The optimizations enable UDSP to achieve a peak energy efficiency of 785GMAC/s/W

at 420mV and 315MHz clock frequency and 284GMAC/s/W energy efficiency and

34.5GMAC/mm2 area efficiency at nominal operating voltage of 800mV and 1.1GHz

clock frequency. The UDSP is within 4.2× and 6.4× energy and area efficiency of an

ASIC at nominal operating conditions.

6.1.3 Streaming Near Range 10µm (SNR-10) Channel

• SNR-10 is a light-weight communication channel with a simple redundancy and re-

pair scheme over unidirectional IOs, which enables a tight, low-overhead integration

of multiple IO pins required for fine-pitch 10µm Silicon Interconnect Fabric (Si-IF)

interposer.

• The first 10µm pitch protocol on the Si-IF fine-pitch interposer has the lowest area per

IO of 137µm2 on TSMC 16nm and Global Foundry 22nm technologies.

• The SNR-10 channel is a fully synthesizable, 0.38pJ/bit, 3 clock cycle latency, 297Gbps/mm

implementation in TSMC 16nm. Using the SNR-10 channel, a 2× 2 UDSP MCM can

achieve a cross-sectional inter-chiplet bandwidth of 493Gbps using only two layers on

the Si-IF interposer.

6.1.4 Runtime Reconfigurable Array for Accelerator as a Service

• The multi-step compile paradigm breaks up the program compilation for reconfigurable

arrays into two steps of software and hardware compilation. The software compiler

performs the time intensive steps of program compilation and provides a soft-mapped

pre-compiled binary to the hardware compiler, which finishes the compilation procedure

by hard mapping the binary to an appropriate vacant resource on the array.
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• The multi-size compile allows the software compiler to generate program binaries of

multiple sizes. The hardware scheduler and active hardware management system of

the reconfigurable array can then proactively choose the appropriately-sized program

binary that can be mapped onto the available resources on the array. The multi-size

compile solution is a trade-off between the amount of storage required to store the

multiple program binaries and the runtime resource allocation and execution of the

program.

• The polygon abstraction approach for reconfigurable arrays allows for a low complexity

check of overlap between the incoming program to the array and the existing programs

on the array. The polygon abstraction also enables a tunable fine-grain and coarse-

grain representation of the program. A fine-grain higher order polygon may have higher

active utilization of processing elements within the polygon but the complex, irregular

shape would require more calculations to be mapped on to the array and vice versa.

We chose polygons of degree 4 to demonstrate the polygon abstraction technique.

• The anchor points-based approach speeds up the mapping process of the incoming

program to the array. The anchor point-based mapping approach allows the active

hardware management system to calculate feasible locations on the array that have a

high likelihood of successful mapping of any incoming program. The active hardware

management system can perform this task of anchor point generation in the background

during idle time between two successive incoming programs, thus reducing the time-

to-map of further incoming programs.

• The polygon abstraction, multi-step compile, multi-size compile, anchor points allows

us to devise methods for array virtualization. Array virtualization allows for any

number of programs to be simultaneously spatially or consecutively temporally mapped

on to the array. The array is effectively virtualized over multiple programs of multiple

sizes as permitted by the size of array.
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6.2 Future Directions

This research offers multiple directions for future exploration. First, there is potential room

for improvements in spatial mappings of programs onto the array. The scheduler that we

developed for the array has a greedy scheduling mechanism, as it places the incoming program

onto the first available feasible anchor point. This greedy scheduling may cause higher

fragmentation of the array, thus there is potentially room to develop advanced scheduling

mechanisms which can reduce fragmentation. Second, the active hardware management

system devised in this work requires that no program mapped onto the array be directly in

communication with another program spatially mapped onto the array. This requirement

ensures that a malicious program cannot spy on other programs, which forces the array to

always bring the IO data of the programs from the memory. However, if two consecutive

kernels of the same program are mapped spatially simultaneously onto the array, the array

should be able to provide direct communication between the two without requiring memory

read/writes of IOs, thus saving memory bandwidths as well as data moving time and energy.

Additionally, some of the most frequently used program binaries can be stored in a local

program memory on the active hardware management system, which could help increase

the programming bandwidth of the array by providing for a simple instruction compression

technique.

The current software compiler requires the user input of the program in the form of

a data flow graph. Further work is required to implement translation of some commonly

used programming languages such as C/C++ to such data flow graphs, which could greatly

improve the use of such reconfigurable hardware. Further, a library of configurations of

some commonly-used program kernels such as FFT, MAC, etc. can be generated to speed

up the compilation process. The user could call the library function in their program and

the compiler can easily recognize the function and replace it with an optimal binary.

I envision that RTRA can be integrated into the SoC for servers, self-driving vehicles

and mobile phones, where it can help accelerate general-purpose compute and domain spe-
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cific programs. A ‘CPU + RTRA’ server SoC can achieve a higher throughput at greater

efficiencies as compared to other such hybrid architectures. This hybrid system can accel-

erate many commonly used algorithms as we demonstrated, and the reconfigurable array

can be modified and made heterogeneous to accommodate a wider domain of applications

to accelerate. An RTRA based solution can be used in self-driving vehicles to perform

object recognition and perform guidance control operations. UDSP array is efficient and

provides high throughput for inferencing operations, addition of active management system

and high-bandwidth programming would allow the array (RTRA) to adapt to fast changing

environment and emergency situations that might emerge during self-driving operations of

a car or an aerial vehicle. For hardware-accelerator dominant systems such as mobile phone

SoCs, RTRA provides a unique solution as a replacement for the hardware accelerators. The

increasing count of hardware accelerators can be replaced with a single large RTRA array,

and the algorithms/applications that require the acceleration can be spatially co-mapped

onto the RTRA. This approach would allow the designers to reduce the number of hardware

accelerator blocks on the SoC and also reduce the amount of inactive silicon on the SoC,

while also ensuring a longer system relevance due to the flexible, programmable nature of

reconfigurable arrays instead of hard-wired and inflexible hardware accelerators.
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