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ABSTRACT OF THE THESIS

Equivalence of Kernel Methods and Linear Models

in High Dimensions

by

Mojtaba Sahraee Ardakan

Master of Science in Statistics

University of California, Los Angeles, 2022

Alyson K. Fletcher, Chair

Empirical observation of high dimensional phenomena, such as the double descent behavior,

has attracted a lot of interest in understanding classical techniques such as kernel methods,

and their implications to explain generalization properties of neural networks that operate

close to kernel regime. Many recent works analyze such models in a certain high-dimensional

regime where the covariates are generated by independent sub-Gaussian random variables

transformed through a covariance matrix and the number of samples and the number of

covariates grow at a fixed ratio (i.e. proportional asymptotics). In this work we show that for

a large class of kernels, including the neural tangent kernel of fully connected networks, kernel

methods can only perform as well as linear models in this regime. More surprisingly, when

the data is generated by a Gaussian process model where the relationship between input and

the response could be very nonlinear, we show that linear models are in fact optimal, i.e.

linear models achieve the minimum risk among all models, linear or nonlinear. These results

suggest that more complex models for the data other than independent features are needed

for high-dimensional analysis.
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Chapter 1

Introduction

Analysis of kernel methods have seen a resurgence after Jacot et al. showed in [33] an

equivalence of wide fully connected neural networks1, trained with gradient descent, with the

so-called neural tangent kernel (NTK). Since then, such equivalence to kernel models has

been established for many different architectures such as convolutional models and tensor

programs which shows this equivalence in a systematic way for almost all the architectures

that are used in practice [2, 3, 64,65].

Informally, we can describe these equivalences by looking at the first order Taylor expansion

of a neural network f(x; θ) where θ corresponds to all the parameters in the network and x

is the input. Assume that the parameters are initialized at random (often independently and

identically distributed with an appropriate distribution) to θ0 and consider the first order

Taylor expansion of f(x; θ) with respect to θ around θ0

f(x; θ) ≈ f(x; θ0) + ⟨∇θf(x; θ0), θ − θ0⟩.

where ⟨·, ·⟩ denotes the standard inner product in ℓ2. It can be shown that in wide neural

networks with certain random initialization of parameters, this linear approximation becomes

1Here wide corresponds to different notions depending on the architecture of the neural network, e.g. the
number of hidden unit in the the fully connected layers, the number of convolutional channels, etc. going to
infinity.
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exact as the width of networks goes to infinity. This linear model in turn (modulo the initial

function f(x; θ0)) is equivalent to a kernel model with feature map x 7→ ∇θf(x; θ0), and

hence the reproducing kernel K(xi, xj) = ⟨∇θf(xi; θ0),∇θf(xj; θ0)⟩. This kernel is called the

neural tangent kernel, and training neural networks with gradient descent is equivalent to

training a kernel model using gradient descent in the feature space of the NTK described

above. Equivalently, the neural network function would be the same (throughout the training)

as a function in the reproducing kernel Hilbert space (RKHS) induced by the NTK kernel

and learned by functional gradient descent. We briefly review the neural tangent kernel for

fully connected networks in the next chapter in Section 2.3.

Contemporaneously, there has been growing interest in high-dimensional asymptotic

analyses of machine learning methods in a regime where the number of input samples n and

number of input features p grow proportionally as

p/n→ β,

for some β > 0 and the data follow some random distribution. This regime, which we

call proportional asymptotics, often enables remarkably precise predictions on the behavior

of complex algorithms (see, e.g. [37], and the references below). Classically, parametric

methods were studied in the large sample limit where the number of samples tends to infinity,

but the number of parameters in the model is fixed. Examples of results of this nature

include consistency of estimators and asymptotic distribution of estimates such as asymptotics

normality of maximum likelihood or more generally M-estimators. Analyzing algorithms and

models in this asymptotic regime becomes a lot easier as many tools such as laws of large

numbers and central limit theorem come to our help in this regime. Unfortunately, despite

the relative ease of the analysis in this regime compared to the non-asymptotic regime, these

asymptotic results might not be a good predictor of the behavior of algorithms in practice as

in modern machine learning problems the number of parameters and the number of samples
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are both large and often of the same order. For example, modern natural language processing

models such as GPT-3 [12] and Megatron-Turing NLG [62] have hundreds of billions of

parameters each and are trained on huge datasets such as The Pile [24] and data that is

scraped from the web. Similarly, text to image models such as Imagen [58] and DALL.E 2 [54]

also have billions of trainable parameters. In fact, this move towards the large models with

billions of parameters is a common trend in many machine learning tasks and one of the major

driving forces behind the improved performance of new models over the older and smaller

models [13]. This trend of training ever larger models using very large datasets motivates us

to study machine learning models and algorithms in the proportional asymptotics regime. By

doing the analysis in this regime, one might hope that certain convergent behaviors might be

seen that make the analysis much easier, and yet since the number of samples and parameters

are of the same order, which is often the case in modern deep learning models, the results

that we obtain in this regime are hopefully still predictive of the real world performance of

such models.

Such high-dimensional analyses have also been instrumental in elucidating important

behavior such as the double descent phenomenon formalized by [9]. A surprising empirical

behaviour, the double descent phenomenon has been demonstrated to hold for a large class of

models in high dimensions including kernel models and linear models by [31] and [6]. This has

piqued the curiosity of the machine learning community regarding the asymptotic properties

of Kernel methods and their explanatory power towards understanding the generalizability of

neural networks.

In this work, we study kernel ridge estimators in proportional asymptotics. These

estimators are learned via a regularized empirical risk minimization

f̂ker = argmin
f∈H

1

n

n∑
i=1

L (yi, f(xi)) + λ∥f∥2H,

where H is a reproducing kernel Hilbert space (RKHS) with reproducing kernel K(·, ·), L is
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a loss function, {(xi, yi)}ni=1 are the training samples, ∥ · ∥H denotes the Hilbert norm of the

RKHS, and λ is the regularization parameter. We consider the training of such kernel models

in an asymptotic random regime similar in form to several other high-dimensional analyses:

Proportional, quasi-uniform large scale limit: Consider a sequence of problems indexed

by the number of data covariates p satisfying the following assumptions:

A1 (Quasi-uniform data) Training features are generated as xi = Σ
1/2
x zi ∈ Rp where zi ∈ Rp

has i.i.d. sub-Gaussian entries with Ezi = 0, E|zi|2 = 1. A test sample, xts = Σ
1/2
x zts, is

generated similarly. The responses yi have finite second moment, i.e. E[y2i ] <∞ and

the data (xi, yi) are i.i.d. Further, the covariance matrix Σx is positive definite with

∥Σx∥2 = O(1), and τ := limp→∞ tr(Σx)/p <∞.

A2 (Proportional asymptotics) Number of samples n and number of input features p scale

as limp→∞ p/n = β for some constant 0 < β <∞.

A3 (Kernel) The kernel function is of the form

K(xi, xj) = g

(
∥xi∥22
p

,
⟨xi, xj⟩
p

,
∥xj∥22
p

)
(1.1)

where g is C3 around (τ, τ, τ) and (τ, 0, τ).

Under these assumptions the main result of this work can be summarized as:

Kernel ridge regression offers no gain over linear models.

The class of kernels in (1.1) is quite large and includes many of the commonly used kernels

in practice. These include inner product kernels such as polynomial kernels and kernels that

are a function of the Euclidean norm such as radial basis functions and Laplace kernels.

Furthermore, the NTK of fully connected networks as well as residual networks with fully

connected blocks also have this form. Our result does not disregard kernel methods (or neural

networks) as a whole, but serves as a caution regarding the proportional quasi-uniform large

scale limit model while examining the asymptotic properties of kernels. A result of this nature
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regarding the high-dimensional degeneracy of two layer neural networks has been studied

in [32]. Note that we use the term quasi-uniform to describe a data model that satisfies A1.

This is a non-standard terminology and it should not be interpreted as a data that spans the

whole space uniformly. Rather, we use it to describe data that spans the whole directions in

space transformed via a covariance matrix.

1.1 Summary of the Results

To be precise, we show three surprising results concerning kernel regression in the proportional,

quasi-uniform large scale limit:

1. First, we show kernel models only learn linear relations between the covariates x and the

response y in this regime. Consequently, kernel models (including neural networks in the

kernel regime) have no benefit over linear models in this regime.

2. Our second result considers the training dynamics of the kernel and linear models. We

show that under gradient descent, in the high dimensional setting, dynamics of the kernel

model and a linear model are equivalent throughout training.

3. Finally, we consider the case where the true data is generated from a kernel model with

some unknown parameters. In this case, the relation between x and y can be highly

nonlinear. An example of such a model is that y is generated from x via a neural network

with random, unknown parameters. In this case, we show that in the high-dimensional limit,

the linear networks provide the minimum generalization error. That is, again, nonlinear

kernel methods provide no benefit and training a wide neural network would result in a

linear model.

The main take-away of this work is that under certain data distribution assumptions that

are widely used in theoretical papers, a large class of kernel methods, including fully connected

neural networks (and residual architectures with fully connected blocks) in kernel regime,
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can only learn linear functions. Therefore, in order to theoretically understand the benefits

that they provide over linear models, more complex data distributions should be considered.

Informally, if x ∈ Rp covers this space in every direction (not necessarily isotropically), and

the number of samples grows only linearly in the dimension of this space, many kernels can

only see linear relationships between the covariates and the response. In other words, we

argue that if we seek high-dimensional models for analyzing performance of neural networks,

other distributional assumptions will be needed.

The proofs of our results rely on a generalization of Theorem 2.1 and 2.2 of [21] which

is presented in the Appendix in Theorem 4. This generalization might be of independent

interest for other works.

1.2 Organization of this Work

In Chapter 2 we review some background material that are used throughout this work.

We first briefly introduce reproducing kernel Hilbert spaces and the kernel ridge regression

problem. We state different formulations of this problem in function space, in feature space,

as well as the dual parameterization of this problem. Next, we review the Gaussian regression

problem which we use to show that linear models are Bayes optimal in the proportional,

quasi-uniform large scale limit. Finally, we summarize the neural tangent kernel results for

fully connected network as well as closed form recursive formulae to evaluate the NTK of

suitably normalized fully connected ReLU networks. These results are extensively used in

our experiments.

In Chapter 3 the main theoretical results of this work are presented. All of our results are

obtained in the proportional, quasi-uniform large scale limit. We first briefly review related

literature. Next, we show that in this asymptotic regime, kernel models learn linear models.

Then, we show that when kernel models that are trained by gradient descent in the feature

space, the models are linear throughout the training. Finally, we show that when the data
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has a Gaussian process prior, linear models are in fact Bayes optimal, i.e. no learning method

can beat suitably regularized linear models. We conclude this chapter by providing a sketch

of the proof of the main results. The details of the proofs are deferred to the Appendix in

Chapter 5 for clarity of the text.

Lastly, in Chapter 4 we validate each of our theoretical results with a series of experiments.

We also include and example in which the Assumptions A1-A3 are violated and hence kernel

methods outperform linear models. We conclude this work with conclusions and future

directions.
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Chapter 2

Background on Kernel Methods and

Neural Networks in Kernel Regime

In this chapter, we present a short overview of some of the concepts that are used frequently

in this work. We begin by briefly introducing reproducing kernel Hilbert spaces and kernel

ridge regression. Next, we review Gaussian process regression. Finally, we end this chapter

by reviewing the neural tangent kernel for fully connected networks.

2.1 Kernel Regression

In kernel regression, the estimator ŷ(x) is a function that belongs to a reproducing kernel

Hilbert space (RKHS). A kernel K : Rp × Rp → R that is an inner product in a possibly

infinite dimensional space H called the feature space, i.e. K(x, x′) = ⟨ϕ(x), ϕ(x′)⟩H where

ϕ : Rp → H is called the feature map. With this feature map, the functions in the RKHS are

of the form f(x) = ⟨ϕ(x), θ⟩L2 which is a nonlinear function in x but linear in the parameters

θ. In this work, we consider kernels of the form in equation (1.1), which includes inner

product kernels as well as shift-invariant kernels. Many commonly used kernels such as RBF

kernels, polynomial kernels, as well as the neural tangent kernel are of this form.
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In kernel methods, the estimator is often learned via a regularized ERM

f̂ker = argmin
f∈H

1

n

n∑
i=1

L (yi, f(xi)) + λ∥f∥2H, (2.1)

where L is a loss function and ∥f∥H :=
√

⟨f, f⟩H is the RKHS norm. By writing f(x) =

⟨ϕ(x), θ⟩ as a parametric function with parameters θ ∈ H, this optimization over the function

space can be written as an optimization over the parameter space as

f̂ker(x) = ⟨ϕ(x), θ̂⟩

θ̂ = argmin
θ

1

n

n∑
i=1

L (yi, ⟨ϕ(xi), θ⟩) + λ∥θ∥2L2 . (2.2)

Note that this optimization is often very high-dimensional as the dimension of feature space

could be very high or even infinite. By the representer theorem [61], the solution to the

optimization problem in (2.1) has the form

f̂ker(x) =
n∑
i=1

K(x, xi)αi,

which is sometimes referred to as the dual parameterization since this form can also be obtained

from the dual formulation of the optimization problem in (2.2). By the reproducing property

of the kernel, it is easy to show that ∥f̂ker∥2H = αTK(Xtr, Xtr)α where α = [α1, . . . , αn]
T. The

optimization problem in (2.1) can then be written in terms of α as

α̂ = argmin
α

1

n

n∑
i=1

L
(
yi, K(Xtr, xi)α

)
+ λαTK(Xtr, Xtr)α, (2.3)

where K(Xtr, xi) = [K(x1, x), . . . , K(xn, x)]. Throughout this work, for two matrices of data

points X1 ∈ Rn1×p and X2 ∈ Rn2×p we use the notation K(X1, X2) to represent the n1 × n2

matrix with [K(X1, X2)]ij = K(X1,i, X2,j). Observe that this optimization problem only

depends on the kernel evaluated over the data points, and hence the optimization problem in
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(2.1) can be solved without ever working in the feature space H. If we let Xtr to represent

the data matrix with xi as its ith row, and ytr the vector of observations, then for the

special case of square loss the optimization problem in (2.3) has the closed form solution

α̂ = (1/nK(Xtr, Xtr) + λI)−1ytr/n which corresponds to the estimator

f̂krr(x) =
K(x,Xtr)√

n

(
1

n
K(Xtr, Xtr) + λI

)−1
ytr√
n
. (2.4)

Similarly, when L is the square loss, the optimization problem in (2.2) is a quadratic

problem in the parameters θ and has the optimal solution

θ̂ =

(
1

n
ϕ(Xtr)

Tϕ(Xtr) + λI

)−1

ϕ(Xtr)
T y

n
,

where Xtr is the data matrix and ϕ(Xtr) is a matrix in which the ith row is ϕ(xi). Therefore,

this model has the form

f̂krr(x) = ϕ(x)θ̂

=
ϕ(x)ϕ(Xtr)√

n

T( 1

n
ϕ(Xtr)ϕ(Xtr)

T + λI

)−1
ytr√
n
,

where we have used the so-called push-through identity

(λI + UUT)−1U = U(λI + UTU)−1

which is commonly used in kernel methods. Note that (with some abuse of notation) the

identity matrices on the left-hand side and the right-hand side have different dimensions.

Also note that since K(x, y) = ⟨ϕ(x), ϕ(y)⟩ this is exactly the same model as the one in (2.4),

which shows the equivalence of (2.1) and (2.2).
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2.2 Gaussian Process Regression

A Gaussian process f is a stochastic process in which for every fixed set of points {xi}ni=1,

the joint distribution of (f(x1), . . . , f(xn)) has multivariate Gaussian distribution. As in

multivariate Gaussian distribution, the distribution of a Gaussian process is completely

determined by its first and second order statistics, known as the mean function and covariance

kernel respectively. If we denote the mean function by µ(·) and the covariance kernel by

K(·, ·), then for any finite set of points

(
f(x1), f(x2), . . . , f(xn)

)
∼ N (µ,K),

where µ the vector of mean values µi = µ(xi) and K is the covariance matrix with Kij =

K(xi, xj). Next, assume that a priori we set the mean function to be zero everywhere. Then,

the problem of Gaussian process regression can be stated as follows: we are given training

samples {(xi, yi)}ni=1

yi = f(xi) + ξi, ξi
i.i.d.∼ N (0, σ2),

where f is a zero mean Gaussian process with covariance kernel K. Given a test point xts,

we are interested in the posterior distribution of yts := f(xts) + ξts given the training samples.

Defining Xtr and ytr as in previous section we have

ytr
yts

 |Xtr, xts ∼ N


0
0

 ,
K(Xtr, Xtr) + σ2I K(Xtr, xts)

K(xts, Xtr) K(xts, xts) + σ2


 ,

where K(Xtr, Xtr) is the kernel matrix evaluated at training points. Therefore, we have

yts|ytr, Xtr, xts ∼ N (ŷts, σ
2
ts) where

ŷts =K(xts, Xtr)(K(Xtr, Xtr) + σ2I)−1ytr, (2.5)

σ2
ts =σ

2 +K(xts, xts)−K(xts, Xtr)(K(Xtr, Xtr) + σ2I)−1K(Xtr, xts).
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The minimum mean squared error (MMSE) estimator is defined as the estimator that

minimizes the square risk

f̂MMSE = argmin
f∈F

E[(Yts − f(Xts))
2|Xtr, ytr],

where F is the class of all measureable functions ofX. For a given xts, we have f̂MMSE(xts) = ŷts

where ŷts minimizes the posterior risk

E(xts) := E[(ŷts − yts)
2 |xts, Xtr, ytr]

and the expectation is with respect to the randomness in f as well as {ξi}. The estimator

that minimizes this risk is the mean of the posterior, i.e. ŷts in (2.5) is the Bayes optimal

estimator with respect to mean squared error and its mean squared error is E(xts) = σ2
ts.

Note that while this estimator is linear in the training outputs, it is nonlinear in the input

data.

In this work, the problem of Gaussian process regression arises for systems that are in

the Gaussian kernel regime. More specifically, assume that we have training and test data

{(xi, yi)}ni=1 and (xts, yts) that are generated by a parametric model y = f(x, θ) + ξ where

ξ ∼ N (0, σ2). Furthermore, assume that conditioned on Xtr and xts

[f(xts, θ), f(x1, θ), . . . , f(xn, θ)]
T ,

which is n+ 1-dimensional vector of the function values on the training and test inputs is

jointly Gaussian and zero mean. Also, for x and x′, in the training and test inputs define the

kernel function by

K(x, x′) := Eθ [f(x, θ)f(x′, θ)] .

Then the problem of estimating ŷts can be considered as a Gaussian regression problem. An

important instance of this kernel model is when f(x, θ) a wide neural network with parameters
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θ drawn from random Gaussian distributions and a linear last layer. In this case, one can

show that conditioned on the input, all the preactivation signals in the neural network, i.e.

all the signals right before going through the nonlinearities, as well as the gradients with

respect to the parameters are Gaussian processes as discussed below.

2.3 Neural Tangent Kernel

Consider a neural network function f(x, θ) = α̃(L)(x, θ) defined recursively as

α(0)(x, θ) = x,

α̃(ℓ+1)(x, θ) =
1

√
nℓ
W (ℓ)α(ℓ)(x, θ) + ϑb(ℓ),

α(ℓ)(x, θ) = σ(α̃(ℓ)(x, θ)),

where σ is a elementwise nonlinearity, W (ℓ) ∈ Rnℓ+1×nℓ , and θ is the collection of all weights

W (ℓ) and biases b(ℓ) which are all initialized with i.i.d. draws from the standard normal

distribution. As noted in many works [17, 38, 46, 50], conditioned on the input signals, with a

Lipschitz nonlinearity σ(·), the entries of the preactivations α̃(ℓ) converge in distribution to

an i.i.d. Gaussian processes in the limit of n1, . . . , nL−1, nL → ∞ with covariance Σ(ℓ) defined

recursively as

Σ(1)(x, x′) =
1

n0

xTx′ + ϑ2

Σ(ℓ+1)(x, x′) = E(u,v)∼N (0,Σ(ℓ))σ(u)σ(v) + ϑ2. (2.6)

Therefore, if the ground truth model that generates the data is a random deep network

plus noise, the optimal estimator would be as in (2.5) with the covariance in (2.6) used as

the kernel.

The main result of [33] considers the problem of fitting a neural network to a training
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data using gradient descent. It is shown that in the limit of wide networks (i.e. nℓ → ∞

for all ℓ), training a neural network with gradient descent is equivalent to fitting a kernel

regression with respect to a specific kernel called the neural tangent kernel (NTK).

When f(x, θ) is a neural network with a scalar output, the neural tangent kernel (NTK)

is defined as

K(x, x′; θ) = ⟨∇θf(x; θ),∇θf(x
′; θ)⟩.

In the case of networks with multiple outputs, a multi-dimensional kernel is defined in a

similar way. In the limit of wide fully connected neural networks, [33] show that this kernel

converges in probability to a kernel that is fixed throughout the training

K(x, x′; θ)
p
= K(x, x′; θ0).

Therefore, the main result of [33] can be summarized as follows: training wide neural networks

is equivalent to learning kernel models in the RKHS induced by the neural tangent kernel

above.

Similar to (2.6), neural tangent kernel can be evaluated via a set of recursive equations

the details of which can be found in [33]. Similar results for architectures other than fully

connected networks, such as convolutional models, recurrent networks, as well as general

framework to show that most networks used in practice go to a kernel regime in a cetain

high-dimensional limit have since been proven [2, 3, 64,65].

For a fully connected network with ReLU nonlinearities, the NTK has a closed recursive

form given by [11]. Let f(x; θ) =
√

2
nL−1

⟨wL, a(L−1)⟩ with a(1) = σ(W1x) and

a(ℓ) = σ

(√
2

nℓ−1

Wℓa
(ℓ−1)

)
, ℓ = 2, . . . , L− 1,

where σ(·) is the ReLU function, Wℓ ∈ Rnℓ×nℓ−1 , wL ∈ RL−1 and all the parameters wL

and Wℓ, ℓ = 1, 2, . . . , L− 1, are initialized with i.i.d. entries drawn from N (0, 1). Then the
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Gaussian process covariance (i.e. the covariance of preactivations in the network)as well as

the NTK, K(u, v) := KL(u, v) can be obtained recursively by

Σℓ(u, v) = ∥u∥∥v∥κ1
(
Σℓ−1(u, v)

∥u∥∥v∥

)
(2.7)

Kℓ(u, v)=Σℓ(u, v)+Kℓ−1(u, v)κ0

(
Σℓ−1(u, v)

∥u∥∥v∥

)
(2.8)

for ℓ = 1, . . . , L and K0(u, v) = Σ0(u, v) = uTv where

κ0(t) = 1/π(π − arccos(t))

κ1(t) = 1/π
(
t (π − arccos(t)) +

√
1− t2

)
.

In most of our experiments in the next chapters, we validate our results by considering

neural networks that operate in (or close to) the NTK regime. There, we use these recursive

formulae to evaluate the kernel for deep ReLU networks as well as its derivatives.
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Chapter 3

Equivalence of Kernel Methods and

Linear Models in High Dimensions

In this chapter we review some prior work and present the main results of this work. All

of these results hold in a certain high-dimensional regime which we call the proportional,

quasi-uniform large scale limit. Please refer to Chapter 1 for the details of this regime. First,

we show that in this high-dimensional regime, kernel models are equivalent to linear model,

i.e. the output of the kernel model is equal in probability to output of a linear model learned

from the data with specific regularization parameters. Second, we show that if gradient

descent is used to train the kernel model in feature space as well as the equivalent linear model

formulation, both of these models are the same throughout training. In other words, their

training dynamics also matches. Finally, for the case where the data has a Gaussian process

prior, we show that the linear models are in fact optimal. We validate all of these results

in our experiments. We also show empirically that if the assumptions of the proportional,

quasi-uniform large scale limit are violated, these results would no longer hold.
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3.1 Prior work

High-dimensional analyses in the proportional asymptotics regime similar to assumptions A1

to A3 have been widely-used in statistical physics and random matrix-based analyses of

inference algorithms [66]. The high-dimensional framework has yielded powerful results in a

wide range of applications such as estimation error in linear inverse problems [7,20,31,37,55],

convolutional inverse problems [59], dynamics of deep linear networks [60], matrix factorization

[34], binary classification [36,63], inverse problems with deep priors [23,52,53], generalization

error in linear and generalized linear models [22, 26, 27, 44], random features [18], and for

choosing the optimal objective function for regression [1,8] to name a few. Our result that,

under a similar set of assumptions, kernel regression degenerates to linear models is thus

somewhat surprising.

That being said, the result is not entirely new. Several authors have suggested that

high-dimensional data modeled with i.i.d. covariates are inadequate [30,48]. The results in

this work can thus be seen as attempting to describe the limitations precisely. Several other

works have also shown linearity of certain non-linear models in high dimensions under either

more restrictive data distribution assumptions, for very specific models, or more restrictive

kernel classes [14, 28,47].

In this regard, the work is closest to [32]. The work [32] proves that for a two-layer fully-

connected neural network, the training dynamics are equivalent to a linear model in inputs.

They provide asymptotic rates for convergence in the early stages of training (t < O(p log p)).

Our result, however, considers a much larger class of kernels and is not limited to the NTK.

In addition, we consider the dynamics throughout the training including the limit.

The generalization of kernel ridgeless regression is also discussed in this setting in [40].

The connections to double descent with explicit regularization has been analyzed in [43]. The

authors in [19], characterize the limiting predictive risk for ridge regression and regularized

discriminant analysis. [16] provides the error rates for KRR in the noisy case, and the

generalization error in learning with random features with kernel approximation has been
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discussed in [42]. A comparison between neural networks and kernel methods for Gaussian

mixture classification is also is provided in [56].

The kernel approximation of the over-parameterized neural networks does not limit their

performance in practical applications. In fact, these networks have surprisingly shown to

generalize well [10, 51,67]. Of course, in the non-asymptotic regime, these models also have

very large capacity [5]. While this high capacity leads to learning complex functions, it is not

always the case for the trained networks, and large models might still advocate for learning

simpler functions. Works such as [32,35] show that this simplicity can come from the implicit

regularization induced by the training algorithms such as gradient descent for early-time

dynamics. In this work, however, we show that in the high dimensional limit, this simplicity

can be a result of the uniformity of input distribution over the space. In fact, we show that

in this regime, kernel methods are no better than linear models.

3.2 Kernel Methods Learn Linear Models

In this section we show the first result of this work: in the proportional, quasi-uniform

high-dimensional regime, fitting kernel models is equivalent to fitting a regularized least

squares model with appropriate regularization parameters. A short review of reproducing

kernel Hilbert spaces (RKHS) and kernel regression was presented in Section 2.1.

Suppose we have n data points (xi, yi), i = 1, . . . , n with xi ∈ Rp, and an RKHS H

corresponding to the kernel K(·, ·). Let τ = limp→∞ tr(Σx)/p, ψ ∈ Rn be a vector with

ψi = ∥xi∥22/p− τ , and ψ = 1/n
∑

i ψi.

Consider two models fitted to this data:

1. Kernel ridge regression model f̂krr which solves

f̂krr = argmin
f∈H

1

n

n∑
i=1

(yi − f(xi))
2 + λ∥f∥2H, (3.1)
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where ∥f∥H =
√

⟨f, f⟩H is the Hilbert norm of the function.

2. Linear model f̂lin(x) = γ1⟨ŵ, x⟩ + γ2θ̂2 +
γ3√
n
θ̂3 fitted by solving the ridge regression

problem

(ŵ, θ̂2, θ̂3, θ̂4) = argmin
w,θ2,θ3,θ4

J(w, θ2, θ3, θ4), (3.2)

J(w, θ2, θ3, θ4) :=
1

n

n∑
i=1

(
yi − γ1⟨w, xi⟩ − γ2θ2 −

γ3√
n
θ3 − γ3θ4ϕ4(xi)

)2

+ λ∥w∥22 + λ(θ22 + θ23 + θ24),

where ϕ4(x) =
∥x∥22/p−τ−ψ
∥ψ−ψ1∥2

and γis are constants that are defined in Theorem 1.

Our goal in this section is to show that in the proportional, quasi uniform large scale limit

presented in Chapter 1 , the kernel model and the linear model are equivalent for specific

values of the scaling parameters γ1 and γ2, and γ3.

As we mentioned in Chapter 2.1, using the representer theorem [61], the optimal function

in (3.1) also has the form

f̂ker(x) =
n∑
i=1

K(x, xi)αi,

where

α =

(
1

n
K(Xtr, Xtr) + λI

)−1
y

n

which gives us the following kernel model on test data x

f̂krr(x) =
K(x,Xtr)√

n

(
K(Xtr, Xtr)

n
+ λI

)−1
ytr√
n
.

Similarly, the optimization in (3.2) is also a quadratic problem in w and θis which also

has a closed form solution. Note that even though ϕ4(x) is a nonlinear feature and is used

in the learning problem, this feature is not used at the time of inference on the test data

and hence the model that is learned is linear. Using this feature at the learning phase would

affect the learned coefficients and hence if we completely ignore these features the models
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that is learned would be different. Therefore, even though the coefficient of ϕ4 is not used at

inference time, we cannot simply ignore this feature.

To state the result we need to define the following constants related to the kernel and its

associated function g from assumption A3

c1 = g(τ, 0, τ) +
∂2g

∂z22
(τ, 0, τ)

trΣ2
p

2p2
, (3.3a)

c2 =
∂g

∂z2
(τ, 0, τ), (3.3b)

c3 =
∂g

∂z1
(τ, 0, τ), (3.3c)

where z1 and z2 denote the first and second argument of the kernel function g respectively.

Our first result shows that with an appropriate choice of γ1, γ2, and γ3 the two models

f̂krr and f̂lin are in fact equivalent.

Theorem 1. Under Assumptions (A1-A3), if we use the same data to train f̂krr in (3.1) and

f̂lin in (3.2) with

γ1 =

√
c1 + 2ψc3, γ2 =

√
c2, γ3 =

(
2
√
n∥ψ − ψ1∥2c3

)1/2
,

where the constants c1, c2, and c3 are defined in equations (3.3), then at a test sample, xts

drawn from the same distribution as the training samples,

lim
n,p→∞

|f̂lin(xts)− f̂krr(xts)|
p
= 0.

Proof. See Appendix A. □

When the kernel considered is an inner product kernel, i.e. norms of the data points are

not present in the kernel function, the results are simplified significantly. For these kernels,

c3 = 0 and hence both at the time of training and inference, the same linear model is used as

the coefficients of ϕ4 would be zero. This is stated in the next corollary.
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Corollary 1. Under the same assumptions as Theorem 1, if we further assume that the

kernel is an inner product kernel, i.e.

K(xi, xj) = g

(
⟨xi, xj⟩
p

)

then the kernel model in (3.1) is equivalent to a linear model flin(x) = γ1⟨ŵ, x⟩+ γ2b̂ where

(ŵ, b̂) = argmin
w,b

1

n

n∑
i=1

(yi − γ1⟨w, xi⟩ − γ2b)
2 + λ∥w∥22 + λb2.

Therefore, in this case the kernel model is equivalent to a standard ridge regression

problem except that usually the bias term b is not regularized whereas here we are also

regularizing the bias term.

Remark 1. Note that the result in Theorem 1 is not uniform, i.e. it does not imply that the

linear model and the kernel model are equal in probability for all the points in the domain

of these functions in the proportional quasi-uniform regime, but rather over a random test

point as given by assumption A1. However this suffices for understanding the generalization

properties of these functions.

Remark 2. Since convergence in probability implies convergence in distribution, we also

have that the generalization error of f̂krr is the same as that of f̂lin for any bounded continuous

metric.

Remark 3. Theorem 1 states a convergence in probability for a single test point. This holds

for nts test samples so long as nts grows sublinearly in the number of training samples, i.e.

nts = nγtr, where γ < 1 and the outputs of kernel model and the linear model would be equal

in probability over all these test samples. Refer to the proof of the theorem for more details.

Remark 4. The result in Theorem 1 is similar to Theorem 3.5 in [32] where the authors

consider training the parameters of a two-layer wide neural network under similar data

assumptions. As in our result, a similar feature that contains the norm of the inputs is also
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also present in their work. However, our result holds for a much larger class of kernel models

that includes the NTK of fully connected networks and not just two-layer neural networks.

3.3 Linear Training Dynamics of Kernel Models

Our next result shows that if a kernel ridge regression is solved using gradient descent, every

intermediate estimator during training has an equivalent linear model.

Consider a kernel model that is parameterized as f̂krr(x) = ⟨η(x), θ̂krr⟩ (where η(x) is a

feature map, e.g. η(x) = K(x, ·)) that is trained by regularized empirical risk minimization:

θ̂krr = argmin
θkrr

1

n

n∑
i=1

(yi − ⟨η(xi), θkrr⟩)2 + λ∥θkrr∥2L2 .

The gradient descent iterates for this problem are with θ0krr = 0 are

θt+1
krr =

(
I − ρ

(
(η(Xtr)

Tη(Xtr)/n+ λI
))
θtkrr + ρη(Xtr)

Tytr
n
.

Here, η(Xtr) is a matrix with η(xi) as its ith row and η is the learning rate. Therefore, the

kernel model at the tth iteration of the gradient descent has the form f̂ tkrr(x) = ⟨η(x), θ̂tkrr⟩.

Similarly, consider a linear model of the form f̂lin(x) = γ1⟨ŵ, x⟩+γ2θ̂2+ γ3√
n
θ̂3 fitted by solving

the ridge regression problem in (3.2) via gradient descent. If we define the featur matrix over

the data as Φ(Xtr) where

[Φ(Xtr)]i∗ =

[
γ1xi, γ2, γ3

√
1

n
, γ3

∥xi∥22/p− τ − ψ

∥ψ − ψ1∥2

]
,

then the gradient descent updates for this model with the same learning rate ρ is

θt+1 =

(
I − ρ

(
(Φ(Xtr)

TΦ(Xtr)/n+ λI
))
θtkrr + ρΦ(Xtr)

Tytr
n
,

where θ = [wT, θ2, θ3, θ4]
T and the gradient descent is initialized at zero. Therefore, the linear
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model learned at the tth iteration of gradient descent has the form f̂ tlin(x) = γ1⟨ŵt, x⟩+γ2θ̂t2+
γ3√
n
θ̂t3. We have the following result.

Theorem 2. Under Assumptions A1-A3 and with

γ1 =

√
c1 + 2ψc3, γ2 =

√
c2, γ3 =

(
2
√
n∥ψ − ψ1∥2c3

)1/2
,

for any step t ≥ 0 of gradient descent (initialized at zero) and any test sample drawn from

the same distribution as the training data we have

lim
p→∞

|f̂ tker(xts)− f̂ tlin(xts)|
p
= 0.

Proof. The proof can be found in Appendix D. □

As in Corollary 1, for the case of inner product kernels this result can be simplified.

Corollary 2. Let f̂ tlin(x) = γ1⟨ŵt, x⟩+γ2b̂t where (ŵ, b̂) are the parameters at the tth iteration

of gradient descent on

min
w,b

1

n

n∑
i=1

(yi − γ1⟨w, xi⟩ − γ2b)
2 + λ∥w∥22 + λb2.

with learning rate ρ. Then under assumptions A1-A3 with the further assumption that the

kernel is an inner product kernel, for any step t ≥ 0 of gradient descent and any test sample

drawn from the same distribution as the training data the kernel model we have

lim
p→∞

|f̂ tker(xts)− f̂ tlin(xts)|
p
= 0.

Remark 5. Theorem 2 provides an insight into the training dynamics of kernel models in

the proportional uniform regime. This could potentially have implications regarding the

Kernel-SVM solution in this regime, following the work of [49].
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3.4 Optimality of Linear Models

Our last result shows that in the proportional uniform large scale limit, if the true model

has a Gaussian process prior with a kernel that satisfies assumption A3, then linear models

are in fact optimal, even though the true underlying relationship between the covariates and

the responses could be highly nonlinear. See Appendix 2.2 for a review of Gaussian process

regression.

Assume that we are given n training samples (xi, yi)

yi = f ∗(xi) + ξi, ξi
i.i.d.∼ N (0, σ2), (3.4)

and the function f ∗ is a zero mean Gaussian process with covariance kernel K(·, ·). An

example occurs in the so-called student-teacher set-up of [4, 25] where the unknown function

is of the form

f(x) = g(x, θ), (3.5)

and g(x, θ) is a neural network with unknown parameters θ. If the network has infinitely

wide hidden layers and the unknown parameters θ are generated with randomly with i.i.d.

Gaussian coefficients with the appropriate scaling, the unknown function f(x) in (3.5) becomes

asymptotically a Gaussian process [17, 38,46,50].

Now assume that we are given a test sample from the same model (xts, yts) and we are

interested in estimating yts. It is well known (see Appendix 2.2) that the Bayes optimal

estimator with respect to squared error in this case is

f̂opt(xts) = K(xts, Xtr)(K(Xtr, Xtr) + σ2I)−1ytr, (3.6)

and its Bayes risk is

Eopt(xts) = σ2 +K(xts, xts)−K(xts, Xtr)(K(Xtr, Xtr) + σ2I)−1K(Xtr, xts).
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Next consider a linear model f̂lin(x) = γ1⟨ŵ, x⟩+ γ2θ̂2+ γ3√
n
θ̂3 fitted by solving the regularized

least squares problem in (3.2). Define the square error risk of this model as

Elin(xts) = E[(yts − f̂lin(xts))
2|xts, Xtr, ytr],

where the expectation is with respect to the randomness in f as well as the noise ξts.

Theorem 3. Under assumptions A1-A3 (where K is now interpreted as the covariance

kernel) and the Gaussian data model (3.4) if the linear model f̂lin in equation (3.2) is trained

with regularization parameter λ = σ2/n and constants

γ1 =

√
c1 + 2ψc3, γ2 =

√
c2, γ3 =

(
2
√
n∥ψ − ψ1∥2c3

)1/2
, (3.7)

where c1, c2 and c3 are defined in (3.3), then f̂lin achieves the Bayes optimal risk for any test

sample drawn from the same distribution as training data, i.e.

lim
n→∞

|Elin(xts)− Eopt(xts)|
p
= 0.

Proof. The result of Theorem 1 shows that with the specified choice of regularization parameter

and γis in (3.7), the linear model and the kernel model in (3.6) are equivalent in the asymptotic

regime

lim
n→∞

f̂lin(xts)
p
= f̂opt(xts).

The result then immediately follows as the kernel model is Bayes optimal for squared error.

□

This result is rather surprising as it claims even though the relationship between the

covariates and the response could be quite nonlinear, in the proportional, quasi-uniform large

scale limit the no learning algorithm can beat suitably tuned linear models as the Bayes

optimal model is itself linear. In other words, in this regime, all we can learn from the data
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are linear relationships.

As was the case in Corollaries 1 and 2, when the covariance kernel is an inner product

kernel, c3 = 0 and the result of this theorem can be simplified similarly to equivalence between

the optimal model and a simple linear model.

It is important to contrast this result with [29] and [4]. The works [4, 29] consider exactly

the case where the true function is of the form (3.5) where g(x, θ) is a neural network with

Gaussian i.i.d. parameters. However, in their analyses, the number of hidden units in both

the true and trained network are fixed while the dimension of x and number of samples grow

with proportional scaling. With a fixed number of hidden units, the true function is not a

Gaussian process, and the model class is not a simple kernel estimator – hence, our results

do not apply. Interestingly, in this case, the results of [4, 29] show that nonlinear models can

significantly out-perform linear models. Hence, very wide neural networks can underperform

networks with smaller numbers of hidden units. It is an open question as to which scaling of

the number of hidden units, number of samples, and dimension yield degenerate results.

3.5 Sketch of Proofs

Here we provide the main ideas behind the proofs of our main theorems. The details of

the proof of Theorem 1 can be found in Appendix C. Proof of Theorem 2 can be found in

Appendix D.

3.5.1 Degeneracy of empirical kernel matrices

Our first result modifies Theorems 2.1 and 2.2 of [21] to kernels that are both functions of

the inner product as well as the Euclidean norm of the inputs. This result is presented in

Theorem 1 and may be of independent interest to the reader. Using this theorem, we can

prove the next Proposition.
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Proposition 1. If K is a n × n kernel matrix with entries Kij = K(xi, xj) such that

assumptions (A1-A3) hold, then

lim
p→∞

1√
n
∥K −M∥2

p
= 0,

where M = c111
T + c2XX

T + c3(1ψ
T + ψ1T) where c1, c2, c3 are defined in equation (3.3),

X ∈ Rn×p is the design matrix with samples xi as rows and ψ ∈ Rn with ψi = ∥xi∥22/p− τ .

Proof. See appendix A. □

In [21], a similar result is presented for kernels of the form g(⟨xi, xj⟩) or g(∥xi − xj∥22).

Importantly, the NTK has a form that is neither g(⟨xi, xj⟩) or g(∥xi − xj∥22), but in fact of

the form in equation (1.1), whereby Proposition 1 provides new insights into the behavior of

empirical kernel matrices of the NTK for a large class of architectures.

3.5.2 Equivalence of Kernel and Linear Models

Proposition 1 is the main tool we use to show that kernel methods and linear methods are

equivalent in the proportional, uniform large scale limit.

The model learned by the kernel ridge regression in equation (3.1) can be written as

f̂krr(x) =
K(x,Xtr)√

n

(
K(Xtr, Xtr)

n
+ λI

)−1
ytr√
n
. (3.8)

Using Proposition 1

We use Proposition 1 to show that there exists a feature map ϕ such that for the data

X = [xT
ts, X

T
tr]

T, we have

lim
p→∞

1√
n
∥K(X,X)− ϕ(X)ϕ(X)T)∥2

p
= 0.
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Furthermore, the feature map ϕ is almost linear

ϕ(x) =

[
γ1x, γ2, γ3

√
1

n
, γ3

∥x∥22/p− τ − ψ

∥ψ − ψ1∥2

]
.

Next we show that each of the kernel terms in (3.8) converge in probability to the same term

with the kernel K replaced by a kernel that is induced by the feature map ϕ(·). We should

emphasize that ϕ is not a proper feature map in the strict sense as it has parameters in it that

depend on all the data, but for the purpose of the proof, we can regard them as constants.

See the proof of Theorem 1 for the details. Next, we use Lemma 3 to show that the models

leanrned by the the kernel K and the kernel with feature map ϕ are equivalent. Finally, we

prove that the model that is learned by this feature map is linear. This proves Theorem 1.

3.5.3 Equivalence Throughout Training

The proof of equivalence of the kernel model and linear model after t steps of gradient descent

is very similar. The updates for parameters of the kernel model have linear dynamics. By

unrolling the gradient update through time, we can write the parameters after t step as a

summation over the past time steps. Using this, we can simplify the sums to write the output

of the kernel model at time t over a test sample as

f̂ tker(xts) =
K(xts, Xtr)√

n

(
(
K(Xtr, Xtr)

n
+ λI

)−1(
I −

(
I − ρ((

K(Xtr, Xtr)

n
+ λI)

)t) ytr√
n
,

where ρ is the step size of the gradient descent. Here, we could use the same argument as

the proof of Theorem 1. We show that the kernel K can be evaluated with the feature map

ϕ in the asymptotic limit. Hence, we can replace each term by the same term with kernel

K replaced by the kernel induced by the feature map ϕ. Next, we use Lemma 3 to show

that the two models evaluated at a text sample xts are equal in probability in the limit. We

further show that the model learned by the feature map ϕ is linear throughout training. This

completes the proof of Theorem 2. Refer to Appendix D for the details.
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Chapter 4

Numerical Experiments and Conclusion

4.1 Linearity of Kernel Models for NTK

We demonstrate via numerical simulations the predictions made by our results in Theorems

1, 2, 3.

As shown in [39] and [41], wide fully connected neural networks can be approximated by

their first order Taylor expansion throughout the training

flin(x) = f(x; θ0) + ⟨∇θf(x, θ0), θ − θ0⟩,

and this approximation becomes exact in the limit that all the hidden dimensions of the

neural network go to infinity. Therefore, training a network f(x; θ) by minimizing

θ̂ = argmin
θ

1

n

n∑
i=1

(
yi −

(
f(x; θ)− f(x; θ0)

))2
+ λ∥θ − θ0∥22 (4.1)

is equivalent (in the limit of wide network) to performing kernel ridge regression in an RKHS

with feature map x 7→ ∇θf(x; θ0) and neural tangent kernel KL(x, x
′) as its kernel. See

Section 2.3 for a brief review of the neural tangent kernel. Instead of removing the initial

network, one can use a symmetric initialization scheme which makes the output of neural

29



Figure 4.1: Comparison of test error with respect to the number otraining samples for three
different models: (i) a neural network with a single hidden layer, (ii) NTK of a two layer
fully-connected network, and (iii) the linear equivalent model prescribed by Theorem 1. The
errors of the kernel model and the equivalent linear model match perfectly and neural network
follows them very closely. The oracle model is the true model and represents the noise floor.
We use λ = 0.005.

network zero at initialization without changing its NTK [15,32,68].

A key property of the NTK of fully connected neural networks is that it satisfies assumption

A3 since it has the form in equation (1.1). Hence, if the input data x satisfies the requirements

of this theorem, in the proportional asymptotics regime the NTK should behave like a linear

kernel. The first and second order derivatives of the kernel function can be obtained by

backpropagation through the recursive equations in (2.7) and (2.8).

Figure 4.1 illustrates a setting where kernel models and neural networks in the kernel

regime perform no better than appropriately trained linear models. This verifies the main

result of this work – Theorem 1.

We generate training data for i = 1, 2, . . . , n as

yi = f ∗(xi) + ξi, xi ∼ N (0, Ip×p), ξi ∼ N (0, σ2),

where p = 1500 and σ2 = 0.1 and f ∗ is a fully-connected ReLU network with two hidden
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layers with 100 hidden units each.

We train 3 models:

(i) A fully connected ReLU neural network with a single layer of 20,000 hidden units to fit

this data using stochastic gradient descent (SGD) with momentum parameter 0.9. The

initial network is remove from the output as in (4.1).

(ii) A kernel model as in equation (3.1) corresponding to the NTK of the model in (i) above.

The kernel is evaluated using the recursive formulae given in (2.7) and (2.8).

(iii) A linear model as in equation (3.2) trained using the parameters prescribed by Theorem

1.

We compare the test error for these models, measured as 1 − R2 over nts = 200 test

samples:

Ets =
∑nts

i=1(yts,i − ŷts,i)
2∑nts

i=1(yts,i)
2

, (4.2)

We compare the test error for different number of training samples n averaged over 3 runs.

We can see that the test error of the NTK model and the equivalent linear model almost

match perfectly over the whole range of number of training sample so muc h as the two

curves are almost indistinguishable. The test error of the neural network model follows them

very closely, matching them very well for smaller number of training samples.

There are two main sources of mismatch between the neural network model and the NTK

model: first the width of the network while large (20,000) it is still finite, and secondly the

training of the neural network model is stopped after 150 epochs, i.e. the neural network

trained differs from the optimal neural network. Finally, the oracle model’s performance is

the noise floor.
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Figure 4.2: Equivalence of test error of linear model and the neural network vs. epochs of
gradient descent.

4.2 Equivalence of Kernel and Linear Models Throughout

Training

Next, we verify Theorem 2 by showing that the test error of the linear model and neural

network match for all the steps of gradient descent. The setting is the same as in Section 4.1.

We generate data using a random neural network with two hidden layers of 100 units each

and train a neural network with a single hidden layer of 10,000 units as well as the linear

model using gradient descent. We plot the the error of each of the models over the test data

throughout the training. We train each model for 100 epochs. Figure 4.2 shows that the two

models have approximately the same test error over the course of training.

4.3 Optimality of Linear Models

A polynomial kernels of degree d has the following form

K(x, x′) = (⟨x, x′⟩/p+ c)d,

where x, x′ ∈ Rp and c ≥ 0 is a constant that adjusts the influence of higher degree terms and

lower degree terms. In this examples, we samples test and train samples from the following
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Figure 4.3: Normalized errors vs. number of training samples for a kernel model and the
equivalent linear model for a data generated from a Gaussian process. The curves for the
kernel and linear fit match almost perfectly. The dashed line corresponds to the theoretical
optimal error given in equation (10).

model

x ∼ N (0, Ip×p), y = f(x) + ξ, ξ ∼ N (0, σ2),

where f is a Gaussian process with covariance kernel being a polynomial kernel. We use

c = 0.1, d = 2 for the polynomial kernel and set σ2 = 0.1, p = 2, 000. We generate ntr samples

and train the kernel model and the equivalent linear model and estimate the normalized

mean squared error of the estimator by averaging the normalized error over nts = 500 test

samples. We use λ = σ2 = 0.1 as the regularization parameter which makes the kernel

estimator Bayes optimal (with respect to squared error). The results are averaged over 5

runs. The results are shown in Figure 4.3 where normalized errors (defined in equation (4.2))

are plotted against the number of training samples. The dashed line corresponds to optimal

error curve obtained from Equation (3.6). The generalization errors for the linear model and

the kernel model match almost perfectly which confirms Theorem 1 and as Theorem 3 proves

both of the curves are very close to the optimal error curve. This figure verifies that the

optimal estimator is indeed linear.

33



Figure 4.4: normalized error of kernel model, linear model and the Bayes optimal error with
respect to number of training samples. When assumptions A1-A3 are not satisfied, the kernel
model and linear model are not equivalent.

4.4 Counterexample: Beyond the Proportional Uniform

Regime

Our results should not be misconstrued as ineffectiveness of kernel methods or neural networks.

The equivalence of kernel models and linear models holds in the proportional, quasi-uniform

data regime. However kernel models and neural networks outperform linear models when we

deviate from this regime, as demonstrated in Figure 4.4.

This observation is closer to real-world experiences of the machine learning community,

which perhaps suggests that the assumptions A1-A3 are unrealistic for understanding high

dimensional phenomena relating large datasets and high dimensional models.

We consider a Gaussian process regression problem as in Section 4.3, but the input variables

x are generated from a mixture of two zero mean Gaussians with low-rank covariances, which

clearly violates assumption A1. The probability of each mixture component is set to 1/2. We

use p = 2000 and set rank of covariance of each component to r = 200. The covariance of
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each component c = 1, 2 is generated as

Σc = ScS
T
c , Sc ∈ Rp×r, [Sc]ij

i.i.d.∼ N (0, 1/
√
p).

Under this model, the resulting covariance matrix of the data would be

Σx =
1
2
Σ1 +

1
2
Σ2,

which would have rank 2r almost surely. In other words, the data only spans a subspace of

dimension 400 of the 2000-dimensional space.

Figure 4.4 shows that the kernel model which is the optimal estimator has a generalization

error very close to the expected optimal error over the whole range of number of training

samples, whereas the linear model performs worse. In this example, the linear approximation

M of the true kernel matrix K(Xtr, Xtr) is inaccurate when we deviate from the proportional

quasi-uniform data regime and cannot be used to consistently approximate the kernel model.

4.5 Conclusions

This work, of course, does not contest the power of neural networks or kernel models relative to

linear models. In a tremendous range of practical applications, nonlinear models outperform

linear models. The results should interpreted as a limitations of Assumptions A1-A3 as a

model for high-dimensional data. While this proportional high-dimensional regime has been

incredibly successful in explaining complex behavior of many other ML estimators, it provides

degenerate results for kernel models and neural networks that operate in the kernel regime.

As mentioned above, the intuition is that when the data samples are generated as x = Σ
1/2
x z

where z has i.i.d. components and Σx is positive definite, so long as the number of samples n

only scales linearly with p, it is impossible to learn models more complex than linear models.

This limitation suggests that more complex models for the generated data will be needed
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if the high-dimensional asymptotics of kernel methods are to be understood.

4.6 Future Work

The results of this work only apply to a class of kernels that are rotationally invariant. In

other words, the output of the kernel function does not change if the inputs are rotated via

an orthogonal matrix. As mentioned earlier, this class is quite large and includes many of

the widely used kernels such as kernels that are functions of the Euclidean distance or the

inner product. However, the neural tangent kernel of many architectures is not a function

of the inner product or the Euclidean distance. A very common example is the NTK of

convolutional architectures. There are some works that empirically show that convolutional

models learn linear models in certain high-dimensional problems. In the future, we plan to

extend the results of this work to more general kernels that would also include the NTK of

convolutional networks.
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Chapter 5

Appendices

A Spectrum of Random Kernel Matrices

In this section we modify the results of [21]. In [21], kernels of the form K(xi, xj) =

g(⟨xi, xj⟩/p) are considered whereas here we consider a more general form where K(xi, xj) =

g(∥xi∥22/p, ⟨xi, xj⟩/p, ∥xj∥22/p). Define τ = limp→∞ trΣp/p. Similar to [21] we assume that

• n/p→ γ ∈ (0,∞) as p→ ∞.

• xi = Σ
1/2
x yi where yi ∈ Rp has i.i.d. sub-Gaussian entries with Eyik = 0,Ey2ik = 1.

• Σx is positive definite with bounded operator norm.

• g is a C3 function in a neighborhood of (τ, 0, τ) and a neighborhood of (τ, τ, τ).

• g is a valid kernel function and hence is symmetric in its first and third argument.

Let ψ ∈ Rn be the vector with entries ψi = ∥xi∥22/p− τ . We have the following result.

Theorem 4. Let xi ∈ Rp for i = 1, . . . , n be n i.i.d. random vectors and form the kernel

matrix

Kij = g

(
∥xi∥22
p

,
⟨xi, xj⟩
p

,
∥xj∥22
p

)
, i, j = 1, . . . , n.
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Then under the assumptions above we have

lim
p→∞

∥K −M∥2
p
= 0,

where

M = c0I + c111
T + c2

XXT

p
+ c3(ψ1

T + 1ψT) + c4ψψ
T + c5

(
(ψ ◦ ψ)1T + 1(ψ ◦ ψ)T

)
(1)

c0 = g(τ, τ, τ)− g(τ, 0, τ)− ∂g

∂z2
(τ, 0, τ)

trΣp

p
,

c1 = g(τ, 0, τ) +
∂2g

∂z22
(τ, 0, τ)

trΣ2
p

2p2
,

c2 =
∂g

∂z2
(τ, 0, τ)

c3 =
∂g

∂z1
(τ, 0, τ)

c4 =
∂2g

∂z1∂z3
(τ, 0τ)

c5 =
1

2

∂2g

∂z21
(τ, 0, τ)

Proof. Define τ := limp→∞
trΣ
p

, z = [∥xi∥22/p, ⟨xi, xj⟩/p, ∥xj∥22/p]T and for i ̸= j write the

second order Taylor expansion of g(z1, z2, z3) around z0 = [τ, 0, τ ]⊤ for i ̸= j

g(∥xi∥22/p, ⟨xi, xj⟩/p, ∥xj∥22/p) = g(x0) + ⟨∇g(x0), z⟩+
1

2
⟨∇2g(x0), z

⊗2⟩+Rij,

where Rij is the Lagrange remainder of this Taylor expansion and has the form

Rij =
1

6

∑
α1,α2,α3∑

k αk=3

∂α1α2α3

∂zα1
1 ∂zα2

2 ∂zα3
3

g(ξij1 , ξ
ij
2 , ξ

ij
3 )

(
∥xi∥22
p

− τ

)α1
(
⟨xi, xj⟩
p

)α2
(
∥xj∥22
p

− τ

)α3

,
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where αk ≥ 0 for some ξij1 , ξ
ij
2 , ξ

ij
3

min(τ, ∥xi∥22/p) ≤ ξij1 ≤ max(τ, ∥xi∥22/p),

min(0, ⟨xi, xj⟩/p) ≤ ξij2 ≤ max(0, ⟨xi, xj⟩/p),

min(τ, ∥xj∥22/p) ≤ ξij3 ≤ max(τ, ∥xj∥22/p).

For i = j, consider the second order Taylor expansion of g(z1, z2, z3) around z0 = [τ, τ, τ ]⊤

g(∥xi∥22/p, ∥xi∥22/p, ∥xj∥22/p) = g(x0) + ⟨∇g(x0), z⟩+
1

2
⟨∇2g(x0), z

⊗2⟩+Rii,

where again Rii is the Lagrange remainder of this Taylor expansion and has the form

Rii =
1

6

∑
α1,α2,α3∑

k αk=3

∂α1α2α3

∂zα1
1 ∂zα2

2 ∂zα3
3

g(ξii1 , ξ
ii
2 , ξ

ii
3 )

(
∥xi∥22
p

− τ

)3

.

where αk ≥ 0 for some ξii1 , ξii2 , ξii3

min(τ, ∥xi∥22/p) ≤ ξiik ≤ max(τ, ∥xi∥22/p), for k = 1, 2, 3.

As is shown in [21], under the Assumptions A1-A3 we have

max
i

∣∣∥xi∥22/p− τ
∣∣ ≤ p−1/2 log p, max

i ̸=j
|⟨xi, xj⟩/p| ≤ p−1/2 log p.

See Lemma A.3 of [21] for the proof. This inequalities are a result of the sub-Gaussianity

assumption on yis. This assumption can be relaxed to moment assumptions of suitable order.

Therefore, for the remainder of the Taylor expansion of off-diagonal entries we have

max
i ̸=j

|ξijk − τ | → 0 a.s. for k = 1, 3,
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and

max
i ̸=j

|ξij2 | → 0 a.s.

Therefore, by continuity assumptions ∂α1α2α3

∂z
α1
1 ∂z

α2
2 ∂z

α3
3
g(ξij1 , ξ

ij
2 , ξ

ij
3 ) → ∂α1α2α3

∂z
α1
1 ∂z

α2
2 ∂z

α3
3
g(τ, 0, τ) and it

is also bounded.

Similarly, for the remainder of Taylor expansion of the diagonal entries we have

max
i ̸=j

|ξijk − τ | → 0 a.s. for k = 1, 2, 3.

Therefore, again by the continuity assumption we have

∂α1α2α3

∂zα1
1 ∂zα2

2 ∂zα3
3

g(ξii1 , ξ
ii
2 , ξ

ii
3 ) →

∂α1α2α3

∂zα1
1 ∂zα2

2 ∂zα3
3

g(τ, τ, τ)

and it is also bounded.

The argument is very similar to the argument made in [21]. We consider the diagonal

entries of the kernel matrix and the off-diagonals separately. We also consider terms of the

zeroth, first, second, and third order separately. Many of the terms are either exactly the

same as the ones considered in [21] or the bounds that are derived therein can be used to

bound them consistently in operator norm.

The zeroth order term: this term is exactly the same as the one considered in [21]. This

term does not necessarily vanish and we need to keep it in the Taylor expansion to have

consistent approximation of the kernel matrix in operator norm.

The first order terms: There are three first order terms. We consider them one by one.

First, consider the n× n matrix M1
1 with entries

[M1
1 ]ij =

∥xi∥22
p

− τ, for i, j = 1, . . . , n.
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This matrix is a rank-one matrix: if we consider a vector ψ ∈ Rn with ψi = ∥xi∥22/p− τ , we

have

M1
1 = ψ1T.

Therefore the operator norm of M is bounded by

∥M∥1 = ∥ψ∥2∥1∥2 ≤
√
np−1/2 log p

√
n = np−1/2 log p.

Hence, the operator norm of this term does not vanish and we need to keep it in the Taylor

expansion to have a consistent approximation of the kernel matrix. However, note that the

kernel matrices in our kernel models (see for example Equation (2.4)) are all divided by n.

In these cases, in the limit of n, p → ∞ this term can be ignored as the operator norm of

M/n is bounded by p−1/2 log p which vanishes in the limit.

The next first order term is a multiple of the matrix M1
2 with entries [M1

2 ]ij = ⟨xi, xj⟩/p

i.e. M1
2 = XXT/p. This term is exactly the same as the term considered in [21], does not

vanish, and it is what makes this kernels all similar to an inner product kernel.

The last first order term has is a multiple of the matrix M1
3 with entries [M1

3 ]ij =

∥xj∥22/p − τ . Therefore, M1
3 = M1

1
T and we could use the equations that we had for M1

1 .

in particular, the operator norm of this matrix does not vanish, but the operator norm of

M1
3/n which appears in kernel model equations does indeed vanish and thus this term can

be ignored in those instances. This completes the analysis of the first order terms. This

concludes the treatment of the first order terms.

The second order terms: In total, there are nine second order terms in the Taylor

expansion some of which are similar due to the symmetries of the kernel function.

First, let us consider the term that is a multiple of M2
1 with entries

[M2
1 ]ij =

(
∥xi∥22
p

− τ

)2

.
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Recalling the definition of the vector ψ as the vector with entries ψi = ∥xi∥22/p− τ this matrix

can be written as M2
1 = (ψ ◦ ψ)1T where ◦ denotes the Hadamard product. Therefore, the

operator norm of this matrix is

∥M2
1∥2 = ∥ψ ◦ ψ∥2∥1∥2 ≤ log p

√
n

p
.

Therefore, this term also does not vanish in operator norm, but M2
1/n vanishes and can be

ignored.

The next second order term to consider is of the form M2
2 where

[M2
2 ]ij =

(
∥xi∥22
p

− τ

)
⟨xi, xj⟩
p

.

If we denote the diagonal matrix with entries ∥xi∥22/p− τ on the diagonal with diag(ψ), we

have M2
2 = diag(ψ)XXT/p, therefore,

∥M2
2∥2 ≤ ∥diag(ψ)∥2∥XXT/p∥2 ≤ p−1/2 log p∥XXT/p∥2∥Y ΣxY

T∥2,

where Y is the matrix of i.i.d. sug-Gaussian random variables that generate X (refer to

Assumptions A1-A3). By sub-Gaussianity assumption (in fact finite 4th moment is enough),

the operator norm of the matrix Y converges in the limit of n, p → ∞ with n/p finite

(Theorem 2.1 of [57]). Therefore, ∥M2
2∥2 → 0 almost surely in the limit and this term can be

ignored.

The next term is of the form M2
3 where

[M2
3 ]ij =

(
∥xi∥22
p

− τ

)(
∥xj∥22
p

− τ

)
,

which can be rewritten as M2
3 = ψψT. Thus, ∥M2

3∥2 = ∥ψ∥22 ≤ log2 p. Therefore, this term

also does not vanish but M2
3/n vanishes in operator norm.
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Next up is a term of the form M2
4 with entries

[M2
4 ]ij =

(
⟨xi, xj⟩
p

)2

.

This term is exactly the same as the term that is considered in [21]. Its operator norm

converges in the limit and operator norm of M2
4/n vanishes in the asymptotic limit.

All the other second order terms have similar forms to the ones considered here thus far.

Therefore, the same results apply to them. This concludes the analysis of the second order

terms.

The third order terms: It only remains to show that the remainder of the second order

Taylor expansions vanish in operator norm. The remainders consist of the third order terms.

here we consider these terms one by one.

First, let us consider the term of the form M3
1 with entries

[M3
1 ]ij =

(
∥xi∥22
p

− τ

)3

,

i.e. M3
1 = (ψ ◦ ψ ◦ ψ)1T. The operator norm of this term can be bounded as

∥M3
1∥2 = ∥ψ ◦ ψ ◦ ψ∥2∥1∥2 ≤

log p

p

√
n,

which goes to zero almost surely in asymptotic limit, and hence can be ignored.

The next term is M3
2 = diag(ψ ◦ ψ)(XXT/p). Recall that as we showed earlier in the

analysis of the second order terms, the operator norm of XXT/p is bounded, and the operator

norm of diag(ψ ◦ ψ) goes to zero as log2 p/p. Therefore, this term also vanishes.

Next, consider the term M3
3 = diag(ψ)

(
XXT/p ◦XXT/p

)
. Again, the operator norm of

the second matrix is bounded but the operator norm diag(ψ) vanishes in the limit. Hence,

this term can also be ignored.
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Next, consider the term of the form M3
4 = (ψ ◦ ψ)ψT. The operator norm of this term is

bounded by

∥M3
4∥2 = ∥ψ ◦ ψ∥2∥ψ∥2 ≤

log3 p
√
p
,

which also goes to zero.

Next up is the term of the form M3
5 =

(
XXT/p ◦XXT/p ◦XXT/p

)
which is exactly of

the form analyzed in [21], and shown therein to vanish in the limit.

All the other third order terms have similar forms to the ones considered here thus far

and hence they all can be ignored and still have a consistent approximation of the kernel

matrix in operator norm in the limit. This shows that in the limit, the second order Taylor

expansion is exact, i.e. it converges in operator norm in probability to the kernel matrix.

Corrections for the diagonal terms: Recall that we used different Taylor expansions

for the diagonal and the off-diagonal terms of the kernel matrix. In our analysis, when we

considered first, second, and third order terms, we should have made the diagonals of such

terms zero. For example, a first order term was of the form M1
1 = ψ1T. The diagonal entries

of this matrix can be zeroed by subtracting the matrix diag(ψ). Notice that the operator

norm of diagonal matrices is very easy to control. For example, the operator norm of diag(ψ)

goes to zero as maxi |∥xi∥22/p− τ | ≤ log p/
√
p. All the other diagonal corrections except for

the zeroth order terms go to zero in operator norm using a similar argument. Hence, we

only need to correct for the diagonals of the zeroth order terms which are constants. This

concludes the proof.

□

Corollary 3. The normalized kernel matrix K/n can be consistently approximated in operator

norm by the matrix M/n where

M = c111
T + c2

XXT

p
.
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Proof. This is a direct result of Theorem 4. In the proof, we derived upper bounds for the

operator norm of the terms that remain in Equation (1). Once we normalize the matrix M

by n, many of these terms vanish in operator norm in the limit. See the proof of Theorem 4

for the details. □

Corollary 4. The normalized kernel matrix K/
√
n can be consistently approximated in

operator norm by the matrix M/
√
n where

M = c111
T + c2

XXT

p
+ c3(ψ1

T + 1ψT).

Proof. The proof is the same as the proof of Corollary 3. We use Theorem 4 and only keep

the terms which have non-vanishing operator norm when normalized by
√
n. □

These two corollaries will be used in what follows to prove the results of this work.

B Some Useful Lemmas

Lemma 1. Let A be an invertible n× n matrix, and U ∈ Rd×n for some d, then

(A+ UUT)−1U = A−1 − A−1U(In + UTA−1U)−1UTA−1.

Proof. This is a special case of the Woodbury matrix identity. □

Lemma 2. For any integer t′ ≥ 0 and matrix A ∈ Rn×p we have

(αIp×p − ATA)tAT = AT(αIn×n − AAT)t.

Proof. This result can be easily proved by using the singular value decomposition of A =

UΣV T. □
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Lemma 3. Let Ai ∈ Rn1×n2 and Bi ∈ Rn2×n3 be two sequences of random matrices and

assume that

lim
i→∞

∥Ai − A∥2
p
= 0, lim

i→∞
∥Bi −B∥2

p
= 0.

Then if ∥A∥2, ∥B∥2 <∞ we have

lim
i→∞

∥AiBi − AB∥2
p
= 0.

Proof.

∥AiBi − AB∥2 = ∥AiBi − ABi + ABi − AB∥2

≤ ∥AiBi − ABi∥2 + ∥ABi − AB∥2

≤ ∥Ai − A∥2∥Bi∥2 + ∥A∥2∥Bi −B∥2
p
= 0,

where the last equality follows from the continuous mapping theorem ( [45]). This proves the

claim.

□

A special case of this theorem is when Bi is a sequence of n2 × 1 matrices, i.e. a sequence

of vectors. In this case, the operator norm is the same as the ℓ2 norm. Therefore, we have

the following corollary.

Corollary 5. Let Ai ∈ Rn1×n2 and xi ∈ Rn2×n3 be a sequence of random matrices and random

vectors respectively and let

lim
i→∞

∥Ai − A∥2
p
= 0, lim

i→∞
∥xi − x∥2

p
= 0.
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Then if ∥A∥2, ∥x∥2 <∞ we have

lim
i→∞

∥Aixi − Ax∥2
p
= 0.

The next corollary considers limits of powers of a matrix which can be proven by a simple

induction using Lemma 3.

Corollary 6. Let Ai ∈ Rn×n be a sequence of random matrices and assume that limi→∞ ∥Ai−

A∥2
p
= 0. Then for any finite m ∈ N we have limi→∞ ∥Ami − Am∥2

p
= 0.

C Proof of Theorem 1

Let X = [xT
ts, X

T
tr]

T and partition the kernel matrix, K(X,X) as

K(X,X) =

 K(xts, xts) K(xts, Xtr)

K(Xtr, xts) K(Xtr, Xtr)

 .
The optimal estimator in (3.8) is

f̂ker(xts) =
K(xts, Xtr)√

n

(
1

n
K(Xtr, Xtr) + λI

)−1
ytr√
n
. (2)

This is a product of three terms. Our proof relies on Lemma 3. We will show that each of

these terms converge in operator norm to a kernel with a simple (almost linear) feature map

in probability. Furthermore, they all have bounded operator norms. Therefore, this Lemma

implies that for a given test data, the output of the model learned by the kernel model is

the same as the model learned by the kernel with the simple feature map in probability.

Therefore, the two models are equivalent. We make this argument precise below.

First, note that the kernel shows up with a scaling factor of 1/
√
n for K(xts, Xtr) and a

scaling factor of 1/n for K(Xtr, Xtr). Hence, we only need to have a consistent approximation

of the kernel with these scaling factors. We have the following result.
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Proposition 2. Consider the kernel matrix K(X,X) under assumptions A1-A3. Then, there

exists constants γ1, γ2 and γ3 such that for the kernel Klin with feature map x 7→ ϕ(x) (i.e.

Klin(x1, x2) = ⟨ϕ(x1), ϕ(x2)⟩) where

ϕ(x) =

[
γ1x, γ2, γ3

(
∥x∥22/p− τ − ψ

∥ψ − ψ1∥2
+

1√
n

)
, −γ3

(
∥x∥22/p− τ − ψ

∥ψ − ψ1∥2
− 1√

n

)]
(3)

we have

lim
p→∞

1√
n
∥K(X,X)−Klin(X,X)∥2

p
= 0.

Here, ψ is a vector with ψi = ∥xi∥22/p− τ , ψ = 1/n
∑

i ψi and

γ1 =

√
c1 + 2ψc3, γ2 =

√
c2, γ3 =

(√
n∥ψ − ψ1∥2c3

)1/2
,

and c1, c2 and c3 are defined in Theorem 41.

Proof. By Corollary 4, the kernel matrix K(X,X)/
√
n can be approximated in operator

norm by M/
√
n where

M = c111
T + c2

XXT

p
+ c3(ψ1

T + 1ψT).

Therefore, we only need to show that a feature map of the form claimed, can generate M . In

other words, if we denote by ϕ(X) the matrix whose ith row is ϕ applied to the ith row of X,

then we need to show that

lim
p→∞

1√
n
∥M − ϕ(X)ϕ(X)T∥2

p
= 0.

Or stated otherwise, we need to find a symmetric decomposition of M .

The first two terms are already in the correct form. We next obtain a symmetric

decomposition of ψ1T + 1ψT. First note that this is a rank-two matrix symmetric matrix.

1We are using the term feature map here with some abuse of notation. Please refer to Remark 6.
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Therefore, it has an eigenvalue decomposition. Also, the eigenvectors corresponding to the

non-zero eigenvalues are in the span of {ψ, 1}. We first orthogonilize these vectors. Let

ψ = 1/n
∑

i ψi be the empirical average of the components in ψ. Then the vectors {ψ−ψ1, 1}

are orthogonal. We can also rewrite

ψ1T + 1ψT = (ψ − ψ1)1T + (1(ψ − ψ1)T) + 2ψ11T,

which decomposes this matrix in an orthogonal basis. Therefore,

M = (c1 + 2ψc3)11
T + c2

XXT

p
+ c3

(
(ψ − ψ1)1T + 1(ψ − ψ)T

)
,

and we need to find a decomposition of A :=
(
(ψ − ψ1)1T + 1(ψ − ψ1)T

)
.

Now, let u = α(ψ − ψ1) + β1 be an eigenvector of the matrix A with corresponding

eigenvalue λ, i.e.

A
(
α(ψ − ψ1) + β1

)
= λ

(
α(ψ − ψ1) + β1

)
.

Simplifying this equation we get

nβ = λα

λβ = α∥ψ − ψ1∥22.

If we set α = 1/∥ψ − ψ1∥2 (as the the norm of eigenvectors are arbitrary) we get

λ = ±
√
n∥ψ − ψ1∥2, α =

1

∥ψ − ψ1∥2
, β = ± 1√

n

49



which gives us the decomposition

A =
√
n∥ψ − ψ1∥2

(
ψ − ψ1

∥ψ − ψ1∥2
+

1√
n
1

)(
ψ − ψ1

∥ψ − ψ1∥2
+

1√
n
1

)T

−
√
n∥ψ − ψ1∥2

(
ψ − ψ1

∥ψ − ψ1∥2
− 1√

n
1

)(
ψ − ψ1

∥ψ − ψ1∥2
− 1√

n
1

)

From this factorization, the Proposition easily follows. □

Remark 6. Note that the feature map defined in Equation (3) is not actually a feature map

as it ψ and ∥ψ − ψ1∥2 are both functions of all the data points. However, what we need for

the proof is only a consistent factorization of the kernel matrix in operator norm and not a

feature map is its strict sense. Therefore, for the purpose of the proof, we can treat these as

constants and with some abuse of notation still call it a feature map.

Next, we show that each of the K(xts, Xtr)/
√
n and K(Xtr, Xtr)/n can be obtained using

Proposition 2. First, another application of Proposition 2 to Xtr instead of X shows that

K(Xtr, Xtr)/
√
n and hence K(Xtr, Xtr)/n can be obtained from the feature map in (3). Also,

observe that ψ and ∥ψ − ψ1∥2 computed over Xtr and over X are the same in the limit.

Hence, that same feature map as of the one used on X gives the correct normalized kernel

matrix in operator norm in probability. In other words, with ϕ(·) given in (3) we have

limp→∞
1

n
∥K(Xtr, Xtr)− ϕ(Xtr)ϕ(Xtr)

T∥2
p
== 0.

Now, consider the term K(xts, Xtr)/
√
n. By Proposition 2 we have

lim
p→∞

1√
n
∥K(X,X)− ϕ(X)ϕ(X)T∥2

p
= 0.
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Let e1 = [1, 0, 0, ..., 0]T ∈ Rn+1. We have

lim
p→∞

1√
n
∥(K(xts, X)− ϕ(xts)ϕ(X)T∥2 = lim

p→∞

1√
n
∥(K(X,X)− ϕ(X)ϕ(X)T)e1∥2

≤ lim
p→∞

1√
n
∥K(X,X)− ϕ(X)ϕ(X)T∥2∥e1∥2

p
= 0.

Hence, we have

lim
p→∞

1√
n
∥K(xts, Xtr)− ϕ(xts)ϕ(Xtr)

T∥2
p
= 0

Now, consider the model parameterized as f̃(x) = ⟨ϕ(x), θ̂⟩, where

θ̂ = argmin
θ

1

n

n∑
i=1

(yi − ⟨ϕ(xi), θ⟩)2 + λ∥θ∥22,

and ϕ(·) is the feature map defined in (3). As we showed in Section 2.1, this model is

equivalent to the kernel model with kernel K(x1, x2) = ⟨ϕ(x1, ϕ(x2)⟩ and has the form

f̃krr(xts) = ϕ(xts)θ̂

=
ϕ(xts)ϕ(Xtr)√

n

T( 1

n
ϕ(Xtr)ϕ(Xtr)

T + λI

)−1
ytr√
n
. (4)

First note that as we mentioned in the proof of Theorem 4, we have

max
i

∣∣∥xi∥22/p− τ
∣∣ ≤ p−1/2 log p.

Therefore, we can set |∥xi∥22/p− τ | = 0 for any finite number of training or test samples. In

particular, for xts we could set ∥xts∥22/p− τ = 0 which gives us

ϕ(xts) =

[
γ1x, γ2, γ3

(
−ψ

∥ψ − ψ1∥2
+

1√
n

)
, −γ3

(
−ψ

∥ψ − ψ1∥2
− 1√

n

)]
:= [α1x, α2, α3, α4].
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Therefore,

f̃krr = θ̂1α1x+ θ̂2α2 + θ̂3α3 + θ̂4α4,

which is indeed a linear model.

So far we have shown that the model learned in the feature space is linear, and each of

the terms in the model in (4) converge in operator norm in probability to the corresponding

term in (2). All that remains to show is that each of the terms has bounded operator norm.

Then Lemma 3 would give us the desired result.

It remains to prove that all the terms in this product will have bounded operator norms.

Let us begin by considering the simplest term: ytr/
√
n. For this term we have

∥ytr/
√
n∥2 =

1

n

n∑
i=1

y2tr,i.

Therefore, if we have assumed that the training data distribution has finite second moments

over the labels. Thus, using strong law of large numbers we obtain

∥ytr/
√
n∥2

a.s.→ σ2
ytr <∞ as n→ ∞.

Next, by positive semi-definiteness of kernels, we have that K(Xtr, Xtr) ⪰ 0. Therefore,

∥K(Xtr, Xtr)/n+ λI∥op ≥ λ, and thus for any λ > 0, we obtain ∥(M22/n+ λI)−1∥op ≤ 1/λ.

Therefore, the middle term in both models also has bounded operator norm. Finally, the

approximation of the first term is

K(xts, Xtr) = c11
T + c2xtsX

T
trp+ c3ψ

T.

Using the bounds derived in the proof of Theorem 4, each of these terms when normalized by

1/
√
n have bounded operator norm.

lim
p→∞

|f̃krr(xts)− f̂krr(xts)|
p
= 0.
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In fact, we can prove a stronger result. So long as the number of test samples, nts, satisfy

nts = nγtr where γ < 1, the result that we have proven holds, using the same bounds that we

have derived thus far. Therefore, the number of test samples can grow to infinity, but at a

slower rate than the number of training samples.

In order to make the result look simpler, we could go one step further and combine some

of the features. In order to do so, we use the fact that the models learned by ridge regression

are invariant under orthogonal transformation of features. More specifically, if O ∈ Rp×p is

an orthogonal matrix, i.e. OOT = I, and we have two features maps ϕ1(x) and ϕ2(x) such

that, ϕ2(x) = ϕ1(x)O, then if we learn two models f1 and f2 using ridge regression with the

same regularization parameter over the features ϕ1 and ϕ2 respectively, then the two models

are exactly the same. This result can be shown very easily by a change of variables in the

ridge optimization problem.

Using this fact, we could transform the last two features in Equation (3) (let us call them

ϕ3, ϕ4) to

ϕ′
3 =

√
2

2
(ϕ3 + ϕ4), ϕ′

4 =

√
2

2
(ϕ3 − ϕ4).

Doing this would result in the feature map

ϕ′(x) =

[
γ1x, γ2, γ3

√
1

n
, γ3

∥x∥22/p− τ − ψ

∥ψ − ψ1∥2

]
,

where

γ1 =

√
c1 + 2ψc3, γ2 =

√
c2, γ3 =

(
2
√
n∥ψ − ψ1∥2c3

)1/2
,

Therefore, we could use this feature map to learn a linear model that is equivalent to the

kernel model in the asymptotic regime. This completes the proof.
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D Proof of Theorem 2

Here we show that if the kernel model and linear model are learned by gradient descent, they

are equivalent to each other throughout the training.

Consider a kernel model parameterized in the feature space

f̂ker(x) = ⟨ϕ(x), θ̂⟩

θ̂ = argmin
θ

1

n
∥(ytr − ϕ(Xtr)θ∥22 + λ∥θ∥2L2 ,

where ϕ(Xtr) is a matrix with ϕ(xi)
T as its ith row. The gradient descent update for this

problem is

θt+1 = (I − ρ(
1

n
(ϕ(Xtr)

Tϕ(Xtr) + λI))θt +
ρ

n
ϕ(Xtr)

Tytr,

where ρ is the learning rate. Therefore, if initialized with θ0 = 0, after t steps of gradient

descent we obtain

θt =
t−1∑
t′=0

ρ(I − ρ((
1

n
ϕ(Xtr)

Tϕ(Xtr) + λI))t
′
ϕ(Xtr)

Tytr
n
. (5)

Using Lemma 2 we have

θt =
t−1∑
t′=0

ρϕ(Xtr)
T(I − ρ((

1

n
ϕ(Xtr)ϕ(Xtr)

T + λI))t
′ ytr
n
.

Note that the identity matrix in this equation has a different size from the one in (5) and the

sizes can be inferred from the number of samples as well as dimension of the feature space as

in the Lemma 2. Therefore, by observing that K(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩ the model at time t

54



represented by f̂ tker evaluated on test data point xts has the form

f̂ tker(xts) = ρ
K(xts, Xtr)√

n

t−1∑
t′=0

(I − ρ((
1

n
K(Xtr, Xtr) + λI))t

′ ytr√
n

=
K(xts, Xtr)√

n
(
1

n
K(Xtr, Xtr) + λI)−1

(
I −

(
I − ρ((

1

n
K(Xtr, Xtr) + λI)

)t) ytr√
n

(6)

The series in the equation above and hence the gradient descent converges if all the eigenvalues

of I − ρ((1/nK(Xtr, Xtr) + λI) lie inside the unit circle which is always possible by choosing

ρ that is small enough and the limiting solution is the kernel regression solution

ŷts =
K(xts, Xtr)√

n

(
1

n
K(Xtr, Xtr) + λI

)−1
ytr√
n
.

The rest of the proof is very similar to the proof of Theorem 1 in Appendix C. In

particular, under Assumptions A1-A3, we showed in Proposition 2 that the kernels that we

have considered can be computed using the feature map

φ(x) =

[
γ1x, γ2, γ3

√
1

n
, γ3

∥x∥22/p− τ − ψ

∥ψ − ψ1∥2

]
,

where

γ1 =

√
c1 + 2ψc3, γ2 =

√
c2, γ3 =

(
2
√
n∥ψ − ψ1∥2c3

)1/2
.

Assume that we run the gradient descent on the model parameterized by this feature map

f̃krr(x) = ⟨φ(x), θ̂⟩

θ̂ = argmin
θ

1

n
∥(ytr − φ(Xtr)θ∥22 + λ∥θ∥2L2 .

Then, if the same optimization step ρ is used, at step t of the gradient descent, we have the

model
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f̃ tkrr(xts) =
φ(xts)φ(Xtr)

T
√
n

(
1

n
φ(Xtr)φ(Xtr)

T + λI

)−1(
I−
(
I−ρ(( 1

n
φ(Xtr)φ(Xtr)

T+λI)
)t) ytr√

n

(7)

First, since ∥xts∥22/p − τ = 0 almost surely in limit, the exact same argument as in proof

of Theorem 1 shows that f̃ tkrr is linear at each step of the gradient descent. Furthermore,

suing Proposition 2, we have that each of the product terms in (7) is equal in operator in

probability to the corresponding term in the last equality of (6) in the asymptotic limit. Also,

for small enough values of ρ, all the terms have bounded operator norm. Then applying

Lemma 3 completes the proof.
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