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Abstract
There is a need to identify strategies for type 2 diabetes prevention. Therefore, we

investigated the efficacy of pioglitazone and alogliptin alone and in combination to

prevent type 2 diabetes onset in UCD-T2DM rats, a model of polygenic obese type 2 diabetes.

At 2months of age, ratswere divided into four groups: control, alogliptin (20 mg/kg per day),

pioglitazone (2.5 mg/kg per day), and alogliptinCpioglitazone. Non-fasting blood glucose

was measured weekly to determine diabetes onset. Pioglitazone alone and in combination

with alogliptin lead to a 5-month delay in diabetes onset despite promoting increased food

intake and body weight (BW). Alogliptin alone did not delay diabetes onset or affect food

intake or BW relative to controls. Fasting plasma glucose, insulin, and lipid concentrations

were lower and adiponectin concentrations were threefold higher in groups treated with

pioglitazone. All treatment groups demonstrated improvements in glucose tolerance

and insulin secretion during an oral glucose tolerance test with an additive improvement

observed with alogliptinCpioglitazone. Islet histology revealed an improvement of islet

morphology in all treatment groups compared with control. Pioglitazone treatment also

resulted in increased expression of markers of mitochondrial biogenesis in brown adipose

tissue and white adipose tissue, with mild elevations observed in animals treated with

alogliptin alone. Pioglitazonemarkedly delays the onset of type 2 diabetes in UCD-T2DM rats

through improvements of glucose tolerance, insulin sensitivity, islet function, and markers

of adipose mitochondrial biogenesis; however, addition of alogliptin at a dose of 20 mg/kg

per day to pioglitazone treatment does not enhance the prevention/delay of diabetes onset.
Key Words

" pioglitazone

" type 2 diabetes

" alogliptin

" islet
Journal of Endocrinology

(2014) 221, 133–144
Introduction
The prevalence of type 2 diabetes is steadily rising with

approximately one in ten adults affected in industrialized

countries (Danaei et al. 2011), necessitating the advent of

more effective therapeutic strategies for the prevention
and treatment of type 2 diabetes (DeFronzo & Abdul-

Ghani 2011). While the pharmacotherapeutic options

for the treatment of type 2 diabetes are expanding and

improving, patients suffering from type 2 diabetes

http://joe.endocrinology-journals.org
http://dx.doi.org/10.1530/JOE-13-0601
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continue to experience a higher risk of developing co-

morbidities such as cardiovascular disease, cancer, and

renal failure (Ritz et al. 1999, Czyzyk & Szczepanik 2000,

Mazzone et al. 2008). Delaying the onset of frank type 2

diabetes will likely delay the development of these long-

term complications. The development of multimodal

therapies may be more effective in the treatment and

prevention of type 2 diabetes and its co-morbidities than

monotherapy. Two common drug targets for the treat-

ment of type 2 diabetes are peroxisome proliferator

receptor g (PPARg) and glucagon-like peptide 1 (GLP1).

PPARg is a nuclear receptor that is highly expressed

in adipose tissue and macrophages and acts to upregulate

the expression of factors involved in adipocyte differen-

tiation and triglyceride storage (Ferre 2004). PPARg is

targeted by the thiazolidinedione (TZD) class of drugs

(Nolte et al. 1998, Rosen & Spiegelman 2001, Semple et al.

2006). Agonism of PPARg by TZDs leads to decreases in

circulating glucose and lipid concentrations and marked

improvements of insulin sensitivity in type 2 diabetic

patients, making TZDs commonly prescribed for the

treatment of type 2 diabetes (Olefsky 2000, Sharma &

Staels 2007, Nissen et al. 2008). Pioglitazone is a member of

the TZD family and is commonly used in the treatment of

type 2 diabetes due to its potent glucose-lowering and

insulin-sensitizing effects (Olefsky 2000, Semple et al.

2006). Furthermore, a recent clinical study demonstrated

that pioglitazone treatment of patients with impaired

glucose tolerance reduced the risk of conversion to type 2

diabetes by 72%, demonstrating that pioglitazone alone

is an effective strategy for delaying type 2 diabetes onset

(DeFronzo et al. 2011).

GLP1 has become a well-established drug target for the

treatment of type 2 diabetes (Drucker & Nauck 2006). We

have previously reported that the GLP1 receptor agonist,

liraglutide, substantially delays the onset of diabetes in the

UCD-T2DM rat model (Cummings et al. 2010). Endogen-

ous GLP1 has a short half-life in the circulation of !2 min

due to rapid degradation by DPP-IV (Baggio & Drucker

2007). Therefore, DPP-IV inhibitors, such as aloglipitin,

have been developed in order to prolong the activity of

endogenous GLP1 (Feng et al. 2007, Thomas et al. 2008).

As an incretin hormone, GLP1 potentiates glucose-

stimulated insulin secretion (Baggio & Drucker 2007).

Furthermore, GLP1 has been shown to lower glucagon

secretion, preserve b-cell mass, and improve insulin

sensitivity, independent of its effects on insulin secretion

(Brubaker & Drucker 2004, Baggio & Drucker 2007).

Alogliptin has proven effective for improving glucose

and lipid homeostasis in rodent models of type 2 diabetes
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-13-0601 Printed in Great Britain
and in type 2 diabetic patients (DeFronzo et al. 2008,

Moritoh et al. 2008, Pratley et al. 2009a, Zhang et al. 2011).

These complementary mechanisms of action suggest

that alogliptin and pioglitazone given in combination may

act synergistically to improve glucose and lipid homeo-

stasis. Indeed, studies on rodents and clinical studies on

type 2 diabetic patients report that addition of alogliptin to

pioglitazone monotherapy results in additive effects to

lower blood glucose concentrations (Moritoh et al. 2009,

Pratley et al. 2009b, Rosenstock et al. 2010, DeFronzo et al.

2012). However, the efficacy of alogliptin alone and in

combination with pioglitazone to delay the onset of type 2

diabetes has not been previously investigated. Therefore,

we used the UCD-T2DM rat model to test the hypothesis

that pioglitazone and alogliptin in combination would be

more effective in delaying type 2 diabetes onset in

prediabetic UCD-T2DM rats than either treatment alone.

The UCD-T2DM rat model develops adult-onset polygenic

obesity, insulin resistance, and subsequent type 2 diabetes

(Cummings et al. 2008).
Materials and methods

Diets and animals

Male UCD-T2DM rats were individually housed in wire

cages in the Department of Nutrition animal facility at the

University of California, Davis, and maintained on a 14 h

light:10 h darkness cycle. Starting at 2 months of age, male

siblings were divided into four groups: control, alogliptin

(20 mg/kg per day), pioglitazone (2.5 mg/kg per day), and

alogliptinCpioglitazone (nZ32 per group). Groups were

matched for weight at the initiation of treatment and all

animals received ground chow (no. 5012, Ralston Purina,

Belmont, CA, USA). Drug compounds were mixed into the

ground chow such that animals received the appropriate

daily dose throughout the study. Food intake and

body weight (BW) were measured three times a week.

Non-fasting blood glucose was monitored every week with a

glucose meter (One-Touch Ultra, LifeScan, Milpitas, CA,

USA) at 1300–1400 h using a lancet to collect a drop of blood

from the tail. Diabetes onset was defined as a non-fasted

blood glucose value above 11.1 mmol/l on 2 consecutive

weeks (Cummings et al. 2008). One half of the animals in

each group (nZ16) were killed for tissue collection at

6.5 months of age (short-term study), and the remaining

half (nZ16) continued treatment up to 1 year of age (long-

term study). Monthly blood samples were collected up to

8 months of age. An oral glucose tolerance test (OGTT;

1 g/kg BW gavage with dextrose) was conducted after
Published by Bioscientifica Ltd.
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3.5 months of treatment. The experimental protocols were

approved by the UC Davis Institutional Animal Care and

Use Committee. Standard methods for plasma and tissue

analyses are described in detail in the Supplemental

Materials and Methods, see section on supplementary data

given at the end of this article.
Statistics and data analysis

Data are presented as meanGS.E.M. Statistical analyses were

performed using GraphPad Prism 4.00 for Windows,

GraphPad Software (San Diego, CA, USA). All time course

datawerecomparedbytwo-factor repeatedmeasuresANOVA

followed by post hoc analysis with Bonferroni’s multiple

comparison test. Incidence data were analyzed by log-rank

testing of Kaplan–Meier survival curves. Age of onset, OGTT

incremental area under the curve (AUC), tissue weights, and

tissue measurements were analyzed by Student’s t-test.

Differences were considered significant at P!0.05.
Results

Pioglitazone delays type 2 diabetes onset alone and in

combination with alogliptin

Compared with control animals, pioglitazone admini-

stration alone and in combination with alogliptin

delayed type 2 diabetes onset by w5 months (Fig. 1A).
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Figure 1

Kaplan–Meier analysis of diabetes incidence in control, alogliptin-,

pioglitazone-, and alogliptinCpioglitazone-treated animals up to

12months (nZ16 per group) (A) and 6months (nZ32 per group) (B) of age.

***P!0.0001 compared with control and alogliptin by log-rank test.

http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-13-0601 Printed in Great Britain
In the long-term study, the average age of diabetes onset

was 6.0G0.6, 5.8G0.5, 11.0G0.6, and 11.1G0.6 months

in control, alogliptin-, pioglitazone-, and alogliptinC

pioglitazone-treated animals respectively (P!0.001). In

the long-term study, all animals in the control and

alogliptin-treated groups developed diabetes whereas

only 43.8% (7/16) of animals in the pioglitazone and

37.5% (6/16) of animals in the alogliptinCpioglitazone-

treated groups developed diabetes. When data from

animals up to 6 months of age in the long- and short-

term studies were combined, the incidence of diabetes up

to 6 months of age was 0% for both the pioglitazone- and

alogliptinCpioglitazone-treated groups, whereas diabetes

incidence was 53.1% (17/32) and 59.4% (19/32) in the

control and alogliptin-treated groups respectively

(Fig. 1B). The delay of diabetes onset in animals treated

with pioglitazone alone and in combination with

alogliptin was reflected in lower fasting and fed circulating

glucose concentrations and lower HbA1c concentrations

at 5 and 6 months of age compared with the control group

(P!0.001; Fig. 1C, D and E).

Pioglitazone alone and in combination with alogliptin

led to a marked delay in diabetes onset despite its

well-known effects to increase food intake, BW, and

adiposity. Pioglitazone alone and in combination with

alogliptin led to a w10% increase in food intake between

2 and 4.5 months of age and increased BW throughout the

first 6 months of study (P!0.01; Fig. 2A, B and C).
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HbA1c (E). CCCP!0.001 by two-factor repeated measures ANOVA,

***P!0.001, and **P!0.01 compared with control and alogliptin by

Bonferroni’s posttest.
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Food intake (g/animal per day) (A), food intake (kcal/animal per day) (B),

and body weight (C). ***P!0.001 and **P!0.01 by two-factor repeated

measures ANOVA and Bonferroni’s posttest compared with control and

alogliptin, nZ32 per group.
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Alogliptin treatment did not affect food intake or BW

compared with the control group. Food intake increased

in the control and alogliptin-treated animals starting at

5 months of age because diabetes prevalence in these

groups had increased resulting in diabetic hyperphagia,
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-13-0601 Printed in Great Britain
as previously reported (Cummings et al. 2008).

The epididymal, retroperitoneal, subcutaneous, and total

white adipose tissue (WAT) weights were significantly

elevated in pioglitazone and alogliptinCpioglitazone

groups compared with the control group (P!0.001);

however, mesenteric adipose depot weight did not differ

between groups (Table 1).
Pioglitazone alone and in combination with alogliptin

reduces circulating insulin and lipid concentrations

Similar to previous studies demonstrating that pioglita-

zone markedly improves insulin sensitivity (Ferre 2004,

Kim & Ahn 2004), pioglitazone alone and in combination

with alogliptin significantly reduced fasting plasma insulin

concentrations (Fig. 3A). Insulin concentrations began

to fall in control and alogliptin-treated groups at 5 and

6 months of age because a large proportion of these

animals had developed diabetes and were undergoing

pancreatic b-cell decompensation with the progression

of their diabetes, as previously described (Cummings et al.

2008). Furthermore, pioglitazone alone and in com-

bination with alogliptin resulted in a threefold increase

in circulating adiponectin concentrations (Fig. 3B) with

corresponding increases in AMPK phosphorylation

(Thr172) in subcutaneous WAT and brown adipose tissue

(BAT) (Fig. 3C). Interestingly, animals treated with

alogliptin alone exhibited a significant increase in AMPK

phosphorylation in both subcutaneous BAT and WAT

compared with controls; however, this enhancement of

AMPK signaling was significantly lower than that seen in

pioglitazone-treated animals (P!0.01). Pioglitazone treat-

ment resulted in a twofold increase in fasting plasma leptin

concentrations compared with controls, which was likely

due to the expansion of adiposity (Fig. 3D). Interestingly,

pioglitazone and alogliptin in combination significantly

reduced fasting plasma glucagon concentrations after 2

and 3 months of treatment compared with controls and

compared with pioglitazone and alogliptin alone (Fig. 3E).

Pioglitazone treatment alone and in combination with

alogliptin resulted in improvements of lipid metabolism

including marked reductions of fasting plasma free fatty

acid (FFA), cholesterol, and triglyceride (TG) concentrations

(P!0.001; Fig. 4A, B and C). Enzymes involved in the

regulation of fatty acid oxidation and lipogenesis were

measured in subcutaneous WAT and BAT by immuno-

blotting in order to perform an initial investigation of the

molecular basis for the observed improvement of circulating

lipid concentrations with pioglitazone treatment. Phos-

phorylation and inactivation of acetyl-CoA carboxylase
Published by Bioscientifica Ltd.
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Table 1 Tissue weights, tissue TG content, and pancreatic insulin and glucagon content. Values are meanGS.E.M. (nZ16)

Control Alogliptin Pioglitazone AlogliptinCPioglitazone

Epididymal fat depot (g) 8.1G0.4 7.0G0.4* 10.9G0.6‡ 12.0G0.7‡

Retroperitoneal fat depot (g) 12.9G0.6 10.9G0.8* 22.8G1.4‡ 23.3G1.2‡

Subcutaneous depot (g) 45.8G2.8 40.1G3.9 85.1G6.5‡ 94.7G5.0‡

Mesenteric depot (g) 7.2G0.5 5.7G0.6 7.8G0.4 8.1G0.4
Total white adipose tissue (g) 74.8G4.0 64.5G5.6 129.4G8.6‡ 141.1G7.2‡

Heart (g) 1.6G0.1 1.5G0.1 1.7G0.1* 1.7G0.1*
Kidney (g) 2.0G0.1 2.0G0.1 1.9G0.1* 1.9G0.1
Liver (g) 21.1G0.5 20.5G0.4 17.8G0.3‡ 18.8G0.4‡

Liver TG (mmol/g tissue) 25.2G3.2 19.6G4.0 21.0G2.0 19.8G1.9
Skeletal muscle TG (mmol/g tissue) 4.2G0.7 3.0G0.5 7.6G0.9† 7.4G0.7†

Pancreas insulin (mmol/g tissue) 3.4G0.9 2.7G0.8 4.9G0.5 5.3G0.5*
Pancreas glucagon (pmol/g tissue) 95G17 62G8* 72G11 60G11*

*P!0.05, †P!0.01, and ‡P!0.001 compared with control by one-factor ANOVA.
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(ACC Ser79) was elevated in pioglitazone-treated animals in

both BAT and WAT compared with controls (P!0.05),

suggesting an enhancement of fatty acid oxidation (Fig. 4D

and E). Inactive phosphorylated ACC (Ser79) was also

significantly elevated in alogliptin-treated animals in BAT

only (P!0.05; Fig. 4D). Similar to a previous report in

humans (Ranganathan et al. 2006), fatty acid synthase (FAS)

protein expression was elevated with pioglitazone treat-

ment in both BAT and WAT, suggesting an enhancement of

lipogenesis in adipose tissue. Liver TG content did not differ

significantly between groups (Table 1); however, when

diabetic animals were excluded from the control group, liver

TG concentrations were significantly elevated in control
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Figure 3

Fasting plasma insulin (A), adiponectin (B), leptin (D), and glucagon

(E) concentrations. CCCP!0.001 by two-factor repeated measures

ANOVA, ***P!0.001 compared with control and alogliptin, ##P!0.01, and
#P!0.05 for alogliptinCpioglitazone compared with control, alogliptin,

and pioglitazone by Bonferroni’s posttest, nZ32 per group. Representative

http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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animals (controlZ29.7G3.8 mmol TG/g tissue) compared

with pioglitazone and alogliptinCpioglitazone (P!0.05). By

contrast, skeletal muscle TG concentrations were signi-

ficantly elevated in pioglitazone- and alogliptinCpioglita-

zone-treated animals (Table 1). This difference persisted

when diabetic animals were excluded from the analysis.
Pioglitazone and alogliptin improve glucose tolerance

and insulin secretion

Based on the significant improvements of fasting plasma

glucose concentrations with pioglitazone treatment, we

investigated potential improvements of glucose tolerance
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Figure 4

Fasting plasma FFA (A), cholesterol (B), and TG (C) concentrations.
CCCP!0.001 by two-factor repeated measures ANOVA, ***P!0.001, and

*P!0.05 compared with control and aloglitpin by Bonferroni’s posttest,

nZ32 per group. Representative immunoblots for FAS, pACC (Ser79), ACC

and tubulin. All blots were scanned and quantified using FluorChem 9900.

Results were quantified in densitromic units and expressed relative to the

protein of interest or to tubulin for FAS in subcutaneous BAT (D) and WAT

(E). *P!0.05 compared with control by Student’s t-test, nZ16 per group.
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and glucose-stimulated insulin secretion by OGTT (at

5.5 months of age). Glucose excursions during the OGTT

were significantly reduced in all treatment groups compared

with controls. However, the glucose AUC was significantly

lower in animals treated with pioglitazone and alogliptin in

combination compared with either pioglitazone or aloglip-

tin alone, suggesting that pioglitazone and alogliptin act in

an additive manner to improve glucose tolerance (Fig. 5A;

glucose AUC: controlZ549G30, alogliptinZ468G34, pio-

glitazoneZ458G28, and alogliptinCpioglitazoneZ376G

24 mmol/l!120 min; P!0.05).

While fasting plasma insulin concentrations at base-

line were significantly lower in animals treated with

pioglitazone alone and in combination with alogliptin,

the insulin AUC was significantly higher in animals

treated with pioglitazone alone and in combination with

alogliptin compared with control animals (insulin AUC:

controlZ22 039G3506, alogliptinZ19 268G3075, piogli-

tazoneZ33 946G2484, and alogliptinCpioglitazoneZ

34 857G2510 pmol/l!120 min; P!0.05). However, insu-

lin concentrations were significantly lower in pioglita-

zone- and pioglitazoneCalogliptin-treated animals at

multiple time points and all three treatment groups

demonstrated a significantly greater percent increase in

circulating insulin concentrations from baseline to peak
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-13-0601 Printed in Great Britain
values (% change from baseline: controlZ118G14%,

alogliptinZ206G35%, pioglitazoneZ319G49%, and

alogliptinCpioglitazoneZ458G91%; P!0.05; Fig. 5B).

GLP1 concentrations were measured during the OGTT

in order to identify potential influences of chronic

alogliptin and pioglitazone treatment on endogenous

postprandial GLP1 secretion. Surprisingly, the GLP1 AUC

was significantly lower in animals treated with alogliptin

alone and in combination with pioglitazone (GLP1 AUC:

controlZ130G13, alogliptinZ93G10, pioglitazoneZ

131G13, and alogliptinCpioglitazoneZ101G11 pmol/l!

120 min; P!0.05; Fig. 5C). In order to ensure that

alogliptin treatment was prolonging the half-life of

endogenously secreted active GLP1, the acute effects of

alogliptin administration on plasma active GLP1 concen-

trations was measured in a separate group of male

UCD-T2DM rats. Rats were fasted overnight and the next

morning they received a gavage of dextrose (1 g/kg

dextrose) with or without alogliptin (1 mg/kg BW) and

active GLP1 was measured. Animals receiving alogliptin

exhibited a twofold higher active GLP1 AUC than control

animals, demonstrating that UCD-T2DM rats exhibit

appropriate postprandial increases in active GLP1 (active

GLP1 AUC: controlZ148G19 pmol/l!60 min and

alogliptinZ317G90 pmol/l!60 min; P!0.05; Fig. 5D).
Published by Bioscientifica Ltd.
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Figure 5

Circulating glucose (A), insulin (B), and total GLP1 (C) concentrations

during an OGTT at 3.5 months after the initiation of treatment. Animals

were fasted overnight and received a 1 g/kg gavage of a 50% dextrose

solution. CCCP!0.001 for all groups compared with control, and CP!0.05

for alogliptin and alogliptinCpioglitazone compared with control by one-

factor ANOVA of the AUC. ***P!0.05 by one-factor ANOVA of the percent

increase in insulin from baseline to peak values compared with the control

group, nZ32 per group. Plasma active GLP1 in a separate group of male

UCD-T2DM rats (nZ4). Rats were fasted overnight and then received a

gavage of dextrose (1 g/kg) with or without alogliptin mixed in with the

dextrose to provide a dose of 1 mg alogliptin/kg body weight. CP!0.05

compared with control by Student’s t-test of the AUC (D). Representative

immunoblots for pAkt (Ser473), Akt, pERK (Thr202/Tyr204), and ERK in white

adipose tissue. All blots were scanned and quantified using FluorChem

9900. Results were quantified in densitromic units and expressed relative to

the protein of interest (E). *P!0.05 compared with control by Student’s t-

test, nZ16 per group.
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In order to investigate the molecular basis for enhanced

insulin sensitivity in pioglitazone-treated animals, we

analyzed downstream components of insulin signaling

pathways in subcutaneous WAT of fasted animals at study

termination (6.5 months of age). Akt (Ser473) and ERK1/2

(Thr202/Tyr204) phosphorylation, normalized to their

protein expression, were two- to threefold higher in WAT

in animals treated with pioglitazone compared with

controls (P!0.05; Fig. 5E). Alogliptin did not significantly

affect Akt or ERK1/2 phosphorylation.
Pioglitazone and alogliptin treatment preserve islet

morphology

In order to investigate the potential effects of pioglitazone

and alogliptin on b-cell mass and islet morphology,

immunostaining for pancreatic insulin and glucagon was

performed in a subset of animals killed at 6.5 months of age.

Cohorts in which none of the animals had developed

diabetes were specifically selected for immunohisto-

chemistry in order to avoid confounding by the presence
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-13-0601 Printed in Great Britain
of diabetes. In general, islets from all the three treatment

groups appeared smaller with better preservation of islet

architecture than islets from control animals (Fig. 6A, B, C

and D). Quantification of b-cell mass, average islet size, and

average number of islets per section revealed that control

animals exhibited greater b-cell mass with larger islets and

fewer islets per section compared with all the three

treatment groups (P!0.05; Fig. 6E, F and G).

As a confirmation of the immunohistochemistry data

set, insulin and glucagon were extracted from whole

pancreas samples as an index of b-cell and a-cell mass.

When all animals were included in the analysis, pancreatic

insulin content was significantly higher in pioglitazone-

and pioglitazoneCalogliptin-treated groups compared with

the control and alogliptin treatment groups (Table 1).

However, consistent with the islet immunohistochemistry

results, when diabetic animals were excluded from the

analysis, pancreatic insulin content was significantly higher

in the control animals compared with pioglitazone- and

pioglitazoneCalogliptin-treated groups (excluding diabetic

animals: controlZ7.3G0.9 mmol/g pancreas; P!0.05).
Published by Bioscientifica Ltd.
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Representative images from pancreas sections from prediabetic control,

alogliptin-, pioglitazone-, and alogliptinCpioglitazone-treated animals.

Insulin immunostaining is in red, glucagon is in green, and nuclei are

stained blue with DAPI. Merged insulin, glucagon, and DAPI staining in

control (A), alogliptin (B), pioglitazone (C), and alogliptinCpioglitazone (D).

Quantificationof average islet size (E), average b-cell area per section (F), and

average number of islets per section (G); **P!0.01 and *P!0.05 compared

with control by Student’s t-test, nZ3 per group. Ten sections per pancreas

used for quantification.
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Interestingly, pancreatic glucagon content was significantly

lower in animals treated with alogliptin alone and in

combination with pioglitazone compared with controls

(P!0.05).
Pioglitazone increases markers of mitochondrial

biogenesis

In order to determine whether changes in adipose tissue

mitochondrial biogenesis may be contributing to the

improvements of glucose tolerance with pioglitazone and

alogliptin treatment, markers of energy uncoupling and

mitochondrial biogenesis were measured in subcutaneous

WAT and BAT by RT-PCR. All the three treatment groups

exhibited significant increases in uncoupling protein 1

(UCP1), peroxisome proliferator-activated receptor g

coactivator 1a (PGC1a), and cytochrome c oxidase subunit

8b (Cox8b) mRNA in BAT and WAT (Fig. 7A and B). UCP1 is

an inner mitochondrial membrane transporter of FFAs that

allows for the dissipation of energy as heat (Cardoso et al.

2010). PGC1a is a key transcriptional regulator of oxidative

metabolism and Cox8b is a gene involved in mitochondrial

oxidative phosphorylation that is upregulated by PGC1a.

Increases in markers of mitochondrial biogenesis were more

pronounced in pioglitazone-treated animals than in
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-13-0601 Printed in Great Britain
animals receiving alogliptin alone (P!0.05). Addition

of alogliptin to pioglitazone treatment did not produce

an additional elevation in UCP1 or PGC1a expression.

However, alogliptin and pioglitazone in combination

resulted in higherCox8bmRNA levels than either alogliptin

or pioglitazone alone (P!0.05).
Discussion

Results from previous studies have suggested that piogli-

tazone and alogliptin in combination may act synergisti-

cally to provide greater glucose-lowering effects than

either agent alone (DeFronzo et al. 2008, Pratley et al.

2009a, Rosenstock et al. 2009, Kaku et al. 2011, Eliasson

et al. 2012). However, the efficacy of alogliptin alone and

in combination with pioglitazone to delay the onset of

type 2 diabetes has not been previously assessed. In this

study, we report that while pioglitazone and alogliptin

both produced metabolic benefits, the addition of

alogliptin at a dose of 20 mg/kg per day to pioglitazone

treatment did not produce a greater delay in diabetes onset

than pioglitazone alone. Furthermore, alogliptin did not

produce a delay in diabetes onset at this dose on its own.

Of note, only one dose of alogliptin was tested in this

study. While this dose is similar to or higher than doses of
Published by Bioscientifica Ltd.
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mRNA of Ucp1, Pgc1a, and Cox8b in subcutaneous BAT (A) and WAT (B),

normalized to b-actin mRNA. *P!0.05 compared with control and CP!0.05

compared with pioglitazone alone by Student’s t-test, nZ16 per group.
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alogliptin employed in most previously published rodent

studies (Feng et al. 2007, Lee et al. 2008, Asakawa et al.

2009), there is a possibility that the efficacy of alogliptin

would have been enhanced at a higher dose. By contrast,

pioglitazone alone and in combination with alogliptin

delayed type 2 diabetes onset by w5 months compared

with control UCD-T2DM rats.

The effect of pioglitazone to delay diabetes onset was

independent of food intake and BW as both were higher in

pioglitazone-treated animals compared with controls.

Numerous studies on rodents and humans have reported

that TZDs increase BW by increasing adipogenesis, fluid

retention, and food intake (Shimizu et al. 1998, Lehrke

et al. 2005). Similar to previous studies, alogliptin did not

affect food intake or BW (Kawashima et al. 2011, Shah et al.

2011). Increases of adiposity in pioglitazone-treated

animals primarily involved the subcutaneous adipose

depot and not the mesenteric adipose depot. Previous

studies have shown that the effect of TZDs to increase

adiposity is primarily restricted to the subcutaneous

adipose depot, sparing the more metabolically detrimental
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-13-0601 Printed in Great Britain
visceral depot, allowing for improved insulin sensitivity

in the face of increased adiposity (Miyazaki et al. 2002).

Pioglitazone and alogliptin appear to act in an additive

manner to improve glucose tolerance and insulin secretion

during the OGTT. Furthermore, fasting plasma insulin

concentrations were lower and activation of downstream

insulin signaling proteins were higher in pioglitazone-

treated animals, suggesting that improvements of insulin

sensitivity likely contributed to the improvement of

glucose tolerance with pioglitazone treatment. The effect

of pioglitazone treatment to improve insulin sensitivity

has been previously described in both human clinical

studies and studies on rodents (Olefsky 2000, Ferre 2004).

We hypothesize that the decrease in GLP1 secretion during

the OGTT in alogliptin-treated animals is likely due to

downregulation of GLP1 secretion over time following

repeated increases in postprandial GLP1 secretion.

Islet immunohistochemistry revealed marked

improvements of islet morphology in all treatment groups

compared with the control group. We hypothesize that

b-cell mass was lower in the groups treated with

pioglitazone because these groups were more insulin

sensitive resulting in less islet hypertrophy. The improve-

ment of islet morphology in alogliptin-treated animals

was surprising in light of alogliptin’s lack of effect on

diabetes onset. This suggests that the development of

type 2 diabetes in the UCD-T2DM rat is, at least initially,

more heavily reliant on development of insulin resistance.

The effect of alogliptin to reduce pancreatic glucagon

content is in line with previous studies reporting that

GLP1 signaling results in decreased glucagon secretion

from a-cells, partially indirectly due to GLP1-induced

pancreatic somatostatin secretion (Fehmann & Habener

1991). The effect of alogliptin to reduce pancreatic

glucagon likely contributed to the effect of alogliptin in

combination with pioglitazone to reduce circulating

glucagon concentrations and represents a metabolic

benefit of addition of alogliptin to pioglitazone therapy.

Another potential mechanism by which pioglitazone

treatment delayed diabetes onset is by increasing circulating

adiponectin concentrations leading to subsequent increases

in AMPK activation. Activation of AMPK promotes glucose

uptake and lipid oxidation and inhibits glucose and lipid

production (Long & Zierath 2006). We confirmed that

pioglitazone treatment increases AMPK activation with

corresponding increases in phosphorylation and inacti-

vation of ACC in BAT and subcutaneous WAT. Previous

studies have demonstrated that AMPK can inactive ACC

resulting in reduced malonyl-CoA concentrations, which

enhances the movement of long-chain acyl-CoA into the
Published by Bioscientifica Ltd.
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mitochondria for b-oxidation (Winder & Hardie 1996,

Winder et al. 1997). These findings suggest that pioglitazone

treatment promotes an increase in fatty acid oxidation in

adipose tissue, which likely contributed to the decreases

in circulating and liver lipid concentrations; however,

further studies are needed to confirm these findings. This

reduction of hepatic lipid deposition likely contributed to

the improvement of insulin sensitivity with pioglitazone

treatment as lipid deposition in liver has been shown to

inhibit insulin signaling through promotion of serine

phosphorylation of insulin receptor substrate proteins

(Samuel & Shulman 2012). Surprisingly, TG deposition

was increased in skeletal muscle in pioglitazone-treated

animals compared with controls despite improvements of

fasting plasma insulin concentrations and glucose tole-

rance observed with pioglitazone treatment. Interestingly,

a previous study on human type 2 diabetic patients reports

that treatment with pioglitazone improves insulin sensi-

tivity without altering skeletal muscle TG deposition (Rabol

et al. 2010). Furthermore, a previous study in sucrose-fed

rats reports an increase in muscle TG deposition with

pioglitazone treatment (Markova et al. 2010). By contrast,

pioglitazone treatment also appears to enhance fatty acid

synthesis as indicated by increased protein expression of

FAS in BAT and WAT. This is similar to a previous report

on humans and suggests that pioglitazone also reduces

hepatic ectopic lipid deposition by diverting lipid into

adipose stores (Ranganathan et al. 2006). In line with this

finding, studies have shown that increases in de novo

lipogenesis in WAT improve insulin sensitivity (Cao et al.

2008, Roberts et al. 2009, Eissing et al. 2013).

Interestingly, alogliptin treatment also resulted in a

small but significant elevation of AMPK activation in BAT

and subcutaneous WAT and inactivation of ACC in BAT.

However, alogliptin treatment did not produce decreases

in circulating lipid concentrations or ectopic lipid

deposition, similar to what has been reported in previous

clinical studies (Bosi et al. 2011). This suggests that these

modest elevations of AMPK activity are not sufficient to

lower circulating lipids or ectopic lipid deposition.

Increases in markers of mitochondrial biogenesis in

WAT and BAT may have also contributed to the delay

in diabetes onset in pioglitazone-treated animals. BAT is

highly thermogenic leading to the loss of energy as heat

and subsequent BW loss. Recent reports have revealed

that WAT has the capacity to express a BAT-like pheno-

type under certain conditions such as cold exposure,

b-adrenergic stimulation, and PPARg agonism (Kajimura

et al. 2010). Results from previous studies indicate that

PPARg agonists can enhance the thermogenic activity of
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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BAT and can induce a WAT-to-BAT conversion by

activating PPARg and PPAR response elements on the

promoter and/or enhancer region of brown adipose genes

(Sears et al. 1996, Ohno et al. 2012). Increased markers of

mitochondrial biogenesis in BAT and WAT with pioglita-

zone treatment corresponded with increased markers of

b-oxidation. Previous studies have reported that pioglita-

zone does not increase energy expenditure despite its

effects on mitochondrial biogenesis but that it does

increase the capacity for sympathetically mediated energy

expenditure in rodents (Sell et al. 2004). However,

increases in mitochondrial biogenesis may have also

contributed to the improvements of lipid metabolism

with pioglitazone treatment by favoring the use of lipids

for energy through b-oxidation.

Interestingly, alogliptin-treated animals also exhib-

ited increases in markers of mitochondrial biogenesis

compared with control animals, although these increases

were less dramatic than those observed in pioglitazone-

treated animals. These results are similar to those from a

previous report that another DDP-IV inhibitor, des-fluoro-

sitagliptin, increases mRNA expression of UCP1 and

PGC1a in BAT (Shimasaki et al. 2013).

In conclusion, we have demonstrated that pioglitazone

markedly delays the onset of type 2 diabetes in the UCD-

T2DM rat and that this delay in onset is not enhanced by

co-administration with alogliptin. Alogliptin treatment at a

dose of 20 mg/kg per day resulted in modest improvements

of glucose tolerance, glucose-stimulated insulin secretion,

islet morphology, and markers of mitochondrial bio-

genesis. While alogliptin is effective in the management

of type 2 diabetic patients (Bosi et al. 2011, DeFronzo et al.

2012), the metabolic improvements observed with alog-

liptin treatment in prediabetic UCD-T2DM rats do not

appear to be sufficiently robust to result in a delay in

diabetes onset alone or in combination with pioglitazone.
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Supplementary Material 

 

Materials and Methods: 

Monthly Hormone and Metabolic Profiles  

Blood samples were collected from rats in both the short term and long term treatment 

groups once a month after an overnight (13 hour) fast and placed into EDTA treated tubes. The 

plasma was separated by centrifugation and assayed for glucose, insulin, glucagon, free fatty 

acids (FFA), triglycerides (TG), cholesterol, leptin and adiponectin.  Whole blood samples were 

collected for the measurement of HbA1c. Plasma glucose, cholesterol, FFA and TG 

concentrations were measured using enzymatic colorimetric assays (Thermo DMA Louisville, 

CO).  Leptin, glucagon and adiponectin were measured with rodent/rat specific RIAs (Millipore, 

St. Charles, MO).  HbA1c was measured using an enzymatic colorimetric assay (Diazyme; 

Poway, CA). 

 

Oral Glucose Tolerance Testing 

An OGTT was performed after 3.5 months of treatment on animals from the short term 

and long term groups. Animals were fasted overnight and then received a 50% dextrose solution 

(1 g/kg BW) by oral gavage. Blood was collected from the tail for measurement of glucose and 

insulin concentrations. A second aliquot of blood was placed in tubes containing EDTA, 

aprotinin and a DPP-IV inhibitor and analyzed for total GLP-1. Serum glucose was measured 

using an enzymatic colorimetric assay for glucose (Thermo DMA Louisville, CO). Serum 

insulin and plasma GLP-1 were measured by sandwich electrochemiluminescence immunoassay 

(Meso Scale Discovery; Gaithersburg, MA).  



The same procedure was followed for the performance of an acute study of the effects of 

alogliptin administration on circulating concentrations of active GLP-1. A separate set of male 

UCD-T2DM rats were fasted overnight and received an oral gavage of dextrose (1 g/kg) with or 

without alogliptin added to the gavage (1 mg alogliptin/kg body weight).  

 

Body Composition and Liver and Muscle Triglyceride Content  

 After 4.5 months of treatment (6.5 months of age) animals in the short-term groups were 

euthanized with an overdose of pentobarbital (200 mg/kg i.p.) after an overnight fast. 

Subcutaneous, mesenteric, retroperitoneal and epididymal adipose depots and liver, heart, 

gastrocnemius muscle and kidney were dissected, weighed and flash frozen in liquid nitrogen 

and stored at -80 °C. Liver and skeletal muscle TG content were measured using the Folch 

method [33] for lipid extraction followed by spectrophotmetric measurement of TG content 

(Thermo Electron, Louisville, CO).  

 

Islet Immunohistochemistry and Pancreatic Insulin Content 

 Pancreas samples were collected and insulin and glucagon were extracted and analyzed 

as previously described [34]. Pancreas samples were also collected from a subset of animals for 

immunohistochemistry, as previously described [35]. Briefly, samples were fixed in 4% 

paraformaldehyde and embedded in paraffin. Ten sections (1µm) per pancreas were obtained. 

Sections were deparafinized in a xylene ethanol series and placed in Tris-EDTA buffer for 

antigen retrieval (10mM Tris, 1mM EDTA, 0.05% Tween, pH=9.0) and then blocked in 5% 

BSA. Sections were immunostained for insulin using a monoclonal anti-mouse antibody (1:100) 

and for glucagon using monoclonal anti-rabbit antibody (1:50) (Santa Cruz Biotechnology; 



Dallas, TX). Detection of the primary antibodies was performed using Alexa Flour 488 anti-goat 

and Alexa Flour 633 anti-mouse secondary antibodies (1:200) (Invitrogen; Foster City, CA). 

Nuclei were detected using 4′,6′-diamino-2-phenyl inodole (DAPI), included in the mounting 

solution (Invitrogen; Foster City, CA). Ten sections per pancreas, taken throughout the pancreas, 

were imaged for quantification. Pancreatic β-cell area was analyzed using Image J software.  

 

rtPCR 

RNA was extracted from brown and subcutaneous white adipose tissue using TRIzol 

reagent (Invitrogen, CA). cDNA was generated using high-capacity cDNA Archive Kit 

(SuperScript™ III Reverse Transcriptase, Invitrogen). mRNA of UCP1, Cox8b and PGC1α was 

assessed by reverse transcription PCR (iCycler, BioRad) and normalized to β-actin. For RT-

PCR, Absolute blue qPCR premix (Fisher Scientific) was mixed with each primer. UCP1 

primers: 5′- ATACTGGCAGATGACGTCCC -3′ (For.), 5′-ATCCGAGTCGCAGAAAAGAA-

3′(Rev.); Cox8b primers: 5′- CCGAGAATCATGCCAAGGCT -3′ (For.), 5′- 

TCCTGCTGGAACCATGAAGC -3′ (Rev.); PGC1α primers: 5′- 

TAGCGGTCCTCACAGAGACA-3′ (For.),  5′- AGTGCTAAGACCGCTGCATT-3′ (Rev.); β-

actin primers: 5′- CACGGCATTGTCACCAACTG-3′ (For.), 5′- 

GGGGTGTTGAAGGTCTCAAA-3′ (Rev.).  

 

Immunoblotting 

Tissues were ground in the presence of liquid nitrogen and lysed using radio-

immunoprecipitation assay (RIPA) buffer (10 mM Tris-HCl, pH 7.4, 150 mM NaCl, 0.1% 

sodium dodecyl sulfate [SDS], 1% Triton X-100, 1% sodium deoxycholate, 5 mM EDTA, 1 mM 



NaF, 1 mM sodium orthovanadate and protease inhibitors). Lysates were clarified by 

centrifugation at 13,000 rpm for 10 min and protein concentrations were determined using 

bicinchoninic acid protein assay kit (Pierce Chemical, IL). Proteins (20-50ug) were resolved by 

SDS-PAGE (10-12%) and transferred to PVDF membranes. Immunoblots were performed with 

the relevant antibodies and proteins were visualized using Luminata™ Forte (Millipore; 

Billerica, MA). For quantitation purposes, pixel intensities of immuno-reactive bands from blots 

that were in the linear range of loading and exposure were quantified using FluorChem 9900 

(Alpha Innotech, CA). Antibodies for FAS, PGC1α and Tubulin were purchased from Santa 

Cruz Biotechnology (Santa Cruz, CA). Antibodies for acetyl-CoA carboxylase (ACC), pACC 

(Ser79), AMP-activated protein kinase (AMPK), pAMPK (Thr172), protein kinase B (AKT), 

pAKT (Ser473), extracellular-signal-regulated kinase1/2 (ERK1/2) and pERK1/2 (Thr202/Tyr204) 

were from Cell Signaling (Beverly, MA). Horseradish peroxidase (HRP)-conjugated secondary 

antibodies were purchased from BioResources International (Carlsbad, CA).  
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