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The Impact of Granularity on the Effectiveness of Students’ Pedagogical Decision
Guojing Zhou, Collin F. Lynch, Thomas W. Price, Tiffany Barnes, Min Chi

Department of Computer Science
North Carolina State University

{gzhou3,cflynch,twprice, tmbarnes,mchi}@ncsu.edu

Abstract

In this study we explored the impact of student versus tutor
pedagogical decision-making on learning. More specifically,
we examined what would happen if we let students decide
how to handle the next task: to view it as a worked exam-
ple or to solve it as a problem solving. We examined this im-
pact at two levels of task granularity: problem vs. step. This
2× 2 study was conducted on an existing Intelligent Tutoring
System (ITS) called Pyrenees. 279 students were randomly
assigned to four conditions and the domain content and re-
quired steps were strictly controlled to be equivalent across
four conditions: all students used the same system, followed
the same general procedure, studied the same training materi-
als, and worked through the same training problems. The only
substantive differences among the four conditions were deci-
sion agency {Student vs. Tutor} and granularity {Problem vs.
Step}. That is: who decided to present an example or to solve
a problem; and was the decision made problem-by-problem or
step-by-step? Our results showed that there was a significant
interaction effect between decision agency and granularity on
student learning and a significant main effect of granularity on
time on training. That is, step level decisions can be more ef-
fective than problem level decisions but the students were more
likely to make effective pedagogical decisions at problem level
than step level. In general, on both problem and step levels, the
students were significantly more likely to decide to do problem
solving rather than study it as a worked example.
Keywords: pedagogical policy, student-centered learning,
problem solving, faded worked example, granularity

Introduction
Human one-on-one tutoring is one of the most effective way
to improve student learning (Bloom, 1984). Intelligent Tu-
toring Systems (ITSs) are computer systems that mimic as-
pects of human tutors and have also shown to be successful as
well (Koedinger, Anderson, Hadley, & Mark, 1997; Vanlehn,
2006). Most ITSs are tutor-centered. The tutor is respon-
sible for selecting the next action to take at any given time.
Each of these decisions affects student’s successive actions
and performance. In the learning literature, the skills used to
make such decisions are generally referred to as pedagogical
skills. More formally, Chi et al. defined pedagogical skills
are those “involve skillful execution of tactics, such as giving
explanations and feedback, or selecting the appropriate prob-
lems or questions to ask the students” (M. T. H. Chi, Siler, &
Jeong, 2004). Most ITSs generally employ fixed pedagogi-
cal policies that do not adapt to users’ needs, or they rely on
hand-coded rules that seek to implement existing cognitive or
instructional theories that may not have been well-evaluated.
For example, in most ITSs students are asked to solve a se-
ries of training problems while research showed that studying
worked examples can be more effective than solving prob-
lems and the former generally takes much less time (Sweller
& Cooper, 1985; McLaren & Isotani, 2011).

On the other hand, much previous research showed that it
is desirable for student to experience a sense of control over
their own learning (Harackiewicz, Sansone, Blair, Epstein, &
Manderlink, 1987). People are likely to persist at doing con-
structive things, like learning, exercising, quitting smoking,
or fighting cavities, when they are given the choice and when
they can make decisions. Letting students make decisions
during the tutorial process should make them feel that they
are actively directing their own learning process and not just
passively following it. Therefore, in this paper we provided
the students with two different yet both reasonable choices
and let them decide how they want to solve the problem next.
So the question is: can students make effective pedagogical
decisions that would promote their learning?

Moreover, we investigated the impact of students’ deci-
sions across two levels of granularity: problem versus step.
Tutoring in domains such as math and science can be viewed
as a two-loop procedure (Vanlehn, 2006). In the outer loop,
the tutor makes task or problem-level decisions such as de-
ciding what problem to solve next, while the inner loop con-
trols step level decisions such as whether or not to give a hint.
In educational literature, ‘steps’ often refer to the application
of a major domain principle such as Newton’s Third Law of
Thermodynamics. Solving a complete problem generally in-
volves applying many individual principles in a logical order.

In theory, problem-level decisions are at a larger grain size
and thus once students make one ‘big’ decision, they can
focus on comprehending an example or solving a problem.
However, such ”big” decision might not be very sensitive to
students’ specific moment-by-moment needs. For example, a
student faces difficulty with a single principle then a complete
worked example may rob them of the chance to exercise other
skills. When making step-level decisions, by contrast, stu-
dents may be better able to tailor their decisions to their im-
mediate needs and current knowledge level. However, mak-
ing many fine grain decisions can be more frustrating than
beneficial over time.

In order to investigate the effectiveness of students’ ped-
agogical decision-making at both levels of granularity, it is
necessary to separate the pedagogical decisions from the in-
structional content, strictly controlling the content so that it is
equivalent for all participants. To strictly control the content
to be equivalent, 1) we used an ITS which provides equal sup-
port for all learners; and 2) we focused on tutorial decisions
that cover the same domain content at both problem and step
levels, in this case Worked Examples (WE) versus Problem-
Solving (PS). In WE, student were given a detailed example
showing the expert solution for the problem or were shown
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the best step to take given their current solution state. In PS,
by contrast,the students were tasked with solving the same
problem using the ITS or completing an individual problem-
solving step. While engaging students in decision-making
within an ITS is not novel, prior researchers have generally
focused on letting students dictate content by letting them de-
cide what problem they wish to solve but not how they wished
to solve it (Koedinger et al., 1997). So as far as we know, no
prior research has investigated pedagogical decision-making
independently of content selection.

In short, our primary research question is: will the gran-
ularity of the pedagogical decisions have an impact on the
effectiveness of students’ pedagogical decision-making? To
investigate this question we will compare students’ pedagog-
ical decisions against tutor’s decisions.

Background

WE/PS, vs. FWE

A number of researchers have examined the impacts of
problem-level PS, problem-level WE, vs. Faded Worked
Example (FWEs) (Renkl, Atkinson, Maier, & Staley, 2002;
Schwonke et al., 2009; Najar, Mitrovic, & McLaren, 2014;
Salden, Aleven, Schwonke, & Renkl, 2010). FWEs interleave
problem-solving steps with worked example steps within a
single problem. Renkl et al. compared WE-PS pairs with
FWE using a fixed fading policy (Renkl et al., 2002). In that
study the number of example steps and problem-solving ac-
tions were strictly equal between the conditions. They found
that FWEs with the fixed fading policy significantly outper-
formed the WE-PS pairs. They found no significant time-
on-task differences between the two groups. Schwonke et
al. compared FWE with a fixed fading policy to tutored PS
(Schwonke et al., 2009). Over the course of two studies,
they found no significant differences between the two condi-
tions in terms of their learning outcomes. However the FWE
group spent significantly less time on task than the tutored PS
group. Najar and colleagues compared FWE with an adap-
tive fading policy to WE-PS pairs. They found that the FWE
condition significantly outperformed the WE-PS condition in
their learning outcomes and spent significantly less time on
task (Najar et al., 2014). Finally, Salden et al. compared
three conditions: FWE with a fixed fading policy, FWE with
an adaptive fading policy, and PS-only (Salden et al., 2010).
They found that the adaptive FWE group outperformed the
fixed FWE who, in turn, outperformed PS-only. They found
no significant time-on-task differences among three groups.

Thus prior researchers have shown that FWE with effective
pedagogical polices can outperform fixed WE-PS pairs. It has
also been shown that the former may require significantly less
time on task than the latter. However all of these studies re-
lied on hand-coded tutor pedagogical polices whereas in this
study, we investigated whether students can make effective
pedagogical decisions on whether to do PS or study a WE at
either problem level or step level.

Students Pedagogical Decision on ITS
Prior research on problem-level decision-making has primar-
ily focused on the impact of letting the students dictate con-
tent, e.g which problem to solve but not let students to decide
how, e.g. WE vs. PS. The results for student step-level ped-
agogical decision-making are inclusive. Aleven & Koedinger
studied students’ help-seeking behaviors in the Cognitive Tu-
tor (Aleven & Koedinger, 2000) where tutor permits students
to request help when they do not know what step to take next.
Help is provided via a sequence of hints that progress from
general top-level hints that prompt the student to consider a
principle or variable, to bottom-out hints that tell them exactly
what action to take. They found that students do not always
have the necessary metacognitive skills to know when they
need help. They tend to wait too long before requesting infor-
mation, and then focus only on applying the bottom-out ac-
tion rather than processing the top-level conceptual guidance.
Roll et al. by contrast examined the relationship between stu-
dents’ help-seeking patterns and their learning (Roll, Baker,
Aleven, & Koedinger, 2014). They found that asking for
help on challenging steps was generally productive while help
abusing behaviors were correlated with poor learning.

Therefore prior research on students’ help-seeking sug-
gests that the students can benefit substantially from effec-
tive pedagogical decision-making. Yet they often lack the
metacognitive skills that are required to do so. On the other
hand, help in ITSs is generally provided on demand, and
better-performing students are less likely to ask for it. Thus
some students may simply never need to do so. In this
study we controlled for this possible conflict by focusing on
WE/PS decisions, and by examining both problem and step-
level decision-making. This allows us to evaluate all stu-
dents’ decision-making, not just the lower-performers and
help-abusers. It also allows us to investigate the impact of
granularity on student learning outcomes.

Our Approach
Previous studies on problem-level decision-making, PS vs.
WE, mainly employed some fixed pedagogical polices (either
WE-PS or PS-WE) and prior studies on step-level decision-
making, FWE, either used fixed fading polices or relied on
hand-coded adaptive polices. With adaptive policies, the sys-
tem decides whether the next step is WE or PS based on a
realtime assessment of the student’s concept mastery. For ex-
ample, students may be asked to solve steps involving the
same concepts repeatedly until they demonstrate mastery and
then such steps would be faded away by presented as WEs
only. However there is no clear consensus on how or when
students should be given a WE, nor how the faded policy
should change on each level.

Therefore in this study we will investigate the impact of
students’ pedagogical decisions on learning by comparing
students’ decisions to tutors’ random decisions at either
problem or step level in order to avoid the impact of possi-
bly misguided pedagogical policies. This study is 2 {Student,
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Tutor} × 2 {Problem, Step} design with four conditions:

1. StudProb: problem-level student decisions.

2. StudStep: step-level student decisions.

3. TutProb: problem-level random tutor decisions.

4. TutStep: step-level random tutor decisions.

All students in this study were given the same problems in
the same order. We compared the four groups using pre- and
post-tests as well as their time on task.

Methods
Participants
This study was conducted in the undergraduate Discrete
Mathematics course at the Department of Computer Science
at North Carolina State University in the Fall of 2015. 279
students were enrolled in the course and this study was their
final homework assignment. The students had two weeks to
complete it and they were graded based upon their effort in
completing the assignment, not their post-test scores.

Conditions
The students were assigned to the four conditions via bal-
anced random assignment based upon their course section
and performance on the class mid-term exam. Since the
two tutor-random decision groups were already compared
in our prior study (Zhou, Price, Lynch, Barnes, & Chi,
2015) and the primary goal of this work is to examine the
nature and effectiveness of students’ pedagogical decision-
making, we assigned twice more students to the two student-
decision groups, StudProb & StudStep, than the two tutor-
random groups, TutProb & TutStep. The final group sizes are
as follows: N = 92 for StudProb, N = 93 for StudStep, N = 47
for TutProb, and N = 47 for TutStep.

Due to the holiday break, preparations for final exams,
and length of the experiment, 212 students completed the ex-
periment. 11 students were excluded from our subsequent
analysis because they performed perfectly on the probability
pretest. The remaining 201 students were distributed as fol-
lows: N = 70 for StudProb; N = 59 for StudStep; N = 38 for
TutProb; N = 34 for TutStep. We performed a χ2 test of the re-
lationship between students’ condition and their rate of com-
pletion and found no significant difference among the groups:
χ2(3) = 1.159,p = 0.763.

Probability Tutor
Pyrenees is a web-based ITS for probability. It covers 10 ma-
jor principles of probability, such as the Complement The-
orem and Bayes’ Rule. In prior studies Pyrenees was com-
pared against Andes, another well-evaluated ITS (Vanlehn
et al., 2005). Results showed that Pyrenees significantly
outperformed Andes in both physics (VanLehn et al., 2004)
and probability (M. Chi & VanLehn, 2007). This improve-
ment was observed in part because Pyrenees teaches students

domain-general problem-solving strategies, which draw stu-
dents’ attention to the conditions under which each domain
principle is applicable. The differences were apparent on
all types of test problems: simple/complex problems and
isomorphic/non-isomorphic problems, and the effects were
large, with Cohen’s d=1.17 for overall post-test scores.

Figure 1 shows the interface of Pyrenees, which is divided
into multiple windows. Through the dialogue window, Pyre-
nees provides messages to the students such as explaining
a worked example step, or prompting them to complete the
next step. Students can enter their inputs, such as writing an
equation or selecting the answer to a multiple-choice ques-
tion, through the response text box below. Any variables or
equations that are defined through this process are displayed
on left side of the screen for reference. Any time an an-
swer is submitted, Pyrenees provides immediate feedback on
whether or not it is correct.

In addition to providing immediate feedback, Pyrenees can
also provide on-demand hints prompting the student with
what they should do next. As with other systems, help in
Pyrenees is provided via a sequence of increasingly specific
hints. The last hint in the sequence, the bottom-out hint,
tells the student exactly what to do. For the purposes of
this study we incorporated four distinct pedagogical decision
modes into Pyrenees to match the four conditions.

Procedure
In this experiment, students were required to complete 4
phases: 1) pre-training, 2) pre-test, 3) training on Pyrenees,
and 4) post-test.

During the pre-training phase, all students studied the do-
main principles through a probability textbook. They read a
general description of each principle, reviewed some exam-
ples of its application, and solved some single- and multiple-
principle practice problems. After solving each problem, the
student’s answer was marked in green if it was correct and red
if incorrect. They were also shown an expert solution at the

Figure 1: The interface of the Pyrenees probability tutor used
in this study.
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same time. If the students failed to solve a single-principle
problem then they were asked to solve an isomorphic one;
this process was repeated until they either failed three times
or succeeded once. The students had only one chance to solve
each multiple-principle problem and were not asked to solve
an isomorphic problem if their answer was incorrect.

The students then took a pre-test which contained 10 prob-
lems. The textbook was not available. They were not given
feedback on their answers, nor were they allowed to go back
to earlier questions. This was also true of the post-test.

During phase 3, students in all four conditions received the
same 12 problems in the same order on Pyrenees. Each pri-
mary domain principle was applied at least twice. The min-
imum number of steps needed to solve each training prob-
lem ranged from 20 to 50. The steps included variable def-
initions, principle applications and equation solving. The
number of domain principles required to solve each problem
ranged from 3 to 11. For the FWE problems, the StudStep
students were asked to make decision only on two types of
steps: principle selection and principle application. To ap-
ply each principle, students need to first do principle selec-
tion: to choose the principle that they will use and then do
principle application: to write the appropriate equation to ap-
ply it. We evaluated the students’ decisions on both types of
steps in our analysis below. The only procedural differences
among the four conditions were the decision agency: Student
vs. Tutor and the granularity of the decision: Problem vs.
Step. Apart from this, the system was identical.

Finally, all of the students took a post-test with 16 prob-
lems. Ten of the problems were isomorphic to the pre-
test problems given in phase 2. The remainder were non-
isomorphic complicated multiple-principle problems.

Grading Criteria
The test problems required students to derive an answer by
writing and solving one or more equations. We used three
scoring rubrics: binary, partial credit, and one-point-per-
principle. Under the binary rubric, a solution was worth 1
point if it was completely correct or 0 if not. Under the partial
credit rubric, each problem score was defined by the propor-
tion of correct principle applications evident in the solution.
A student who correctly applied 4 of 5 possible principles
would get a score of 0.8. The One-point-per-principle rubric
in turn gave a point for each correct principle application. All
of the tests were graded in a double-blind manner by a single
experienced grader. The results presented below were based
upon the partial-credit rubric but the same results hold for the
other two. For comparison purposes, all test scores were nor-
malized to the range of [0,1].

Results
A one-way ANOVA test on students’ pre-test score show
that there is no significant difference among the four groups.
F(3,197) = 1.969, p = 0.12. The second column in Table 1
showed students’ pretest scores and as we can see, the two
Tutor decision groups, TutProb and TutStep, had higher pretest

scores than the two Student decision groups: StudProb and
StudStep but the difference is not significant. Next we will
compare students’ learning performance in the post-test and
training time across the four conditions. We discuss each
comparison in turn.

Learning Performance
A repeated measures analysis using test type (pre-test and
isomorphic post-test) as factors and test score as the depen-
dent measure showed a main effect for test type F(3,197) =
163.160, p < 0.0001. On the isomorphic questions, all
four groups of students scored significantly higher on the
post-test than on the pre-test, F(1,69) = 68.04, p < 0.0001
for StudProb; F(1,58) = 65.35, p < 0.0001 for StudStep;
F(1,37) = 8.349, p = 0.004 for TutProb; and F(1,33) =
32.04, p < 0.0001 for TutStep. Therefore all four conditions
made significant gains from pre- to post-test by training on
Pyrenees. This suggests that the basic practice and problems,
domain exposure, and interactivity of Pyrenees might help
students to learn even when the problem- and step-level deci-
sions are made randomly.

Table 1 shows a comparison of the pre-test, isomorphic
post-test (10 isomorphic questions), and overall post-test
scores among the four conditions, showing the mean (and
SD) for each score. We calculated a two-way ANCOVA anal-
ysis on decision agency (Student vs. Tutor) × granularity
(Problem vs. Step) using pretest scores as a covariate. We
found a significant interaction effect on the isomorphic post-
test scores: F(1,196) = 5.664, p = 0.018. However, there
was no significant main effect on either decision agency or the
granularity alone. Pairwise t-tests showed a significant differ-
ence between StudProb and TutProb groups: t(106) = 2.514,
p= 0.013, d = 0.477, that is, the StudProb scored significantly
higher than the TutProb on isomorphic post-test scores. Ad-
ditionally, there is a trend that TutStep group out-performed
TutProb group: t(70) =−1.853, p = 0.068, d = 0.444. There-
fore, this result showed that students were able to make effec-
tive problem-level decisions in that StudProb group learned
significantly more than random decision TutProb group but
not step level decisions in that StudStep is not significantly
better than those trained with the random decisions TutStep.

Similarly, a two-way ANCOVA on the factors of granu-
larity and decision using pretest scores as a covariate also
showed significant interaction effect on the overall post-test
score: F(1,196) = 4.375, p = 0.038. Again there was no
significant main effect on either the granularity or decision

Table 1: Learning Performance

Cond pre Iso Post Overall Post
StudProb(70) .684(.186) .890(.119) 0.788(.137)
StudStep(59) .671(.212) .861(.129) 0.778(.152)
TutProb(38) .737(.189) .818(.177) 0.726(.198)
TutStep(34) .754(.167) .882(.101) 0.811(.133)
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Table 2: Time on task (in minutes)

Cond # Stud Total Time
StudProb 70 130.39(28.26)
StudStep 59 148.54(42.31)
TutProb 38 121.53(47.15)
TutStep 34 136.44(30.27)

agency alone. Post-hoc pairwise t-tests showed the TutStep
group had significantly higher scores than the TutProb group:
t(70) = −2.107, p = 0.039, d = 0.503 and a trend that the
StudProb group out-performed the TutProb group: t(106) =
1.933, p = 0.056, d = 0.368. Therefore, it seems that tutor’s
step-level decision is more effective than tutor’s problem-
level decision. But no significant difference was found be-
tween the two student decision making groups.

To summarize, our results showed that: 1) the granular-
ity can make a significant difference on student learning in
that tutor’s step-level decisions can be more effective than tu-
tor’s problem-level decisions; and 2) students can make better
problem-level decision than random, but not better step level
decisions. Therefore, one potential explanation for the lack
of the difference between the two student decision groups is
that: while the step level decisions can indeed be more effec-
tive than problem-level decisions, the students cannot make
effective step level decisions to fully take advantage of the
learning power that step level decisions can provide. Further
research is needed to investigate this hypothesis.

Training Time
Table 2 shows the average amount of total training time
(in minutes) students spent on Pyrenees for each condi-
tion. A two-way ANOVA analysis on granularity and deci-
sion agency revealed there is no significant interaction effect.
However, there is a significant main effect of granularity:
F(1,197) = 10.283, p= 0.0015 and a marginal main effect of
decision agency: F(1,197) = 3.609, p = 0.059. Subsequent
pairwise t-tests showed that the StudStep condition spent sig-
nificantly more time than the StudProb and TutProb condi-
tions: t(127) = −2.902, p = 0.004, d = 0.504 (StudProb);
t(95) =−2.937, p = 0.004, d = 0.603 (TutProb).

Overall, we found that decision granularity can make a dif-
ference on the time on task: 1) students spent more time with
step-level decisions than problem-level decisions in that the
two step-level groups spent significantly more time than the
two problem-level groups; 2) the two student decision groups
seemingly spent more time on task than the two random tutor
groups, but the difference was only marginally-significant.

Student Decisions
Our preliminary analysis on students’ decision-making pref-
erence suggested that students are far more likely to choose
problem solving than worked examples.

Problem Level Decisions: Table 3 shows the number
of different types of problem level decisions made by the

StudProb and the TutProb groups. Columns 2 and 3 show
the average number of worked examples and problem-solving
problems that each condition experienced. We required each
student to solve two problems in order to familiarize them
with Pyrenees. Therefore each student made 10 problem-
level decisions. For the StudProb group, the students chose
less than two WEs on average; while the TutProb group, the
students received an almost equal number of WEs and PSs
(5.45 vs. 4.55) since the tutor makes random decisions. That
is, the StudProb group only received 15.8% of worked exam-
ples; while the TutProb group received 54.5% worked exam-
ples . This difference was statistically significant: t(106) =
−13.203, p < 0.0001, d = 2.614

Table 3: Number of problem-level decisions

Cond WE PS Total
StudProb 1.58(1.40) 8.44(1.40) 10
TutProb 5.45(1.57) 4.55(1.57) 10

Table 4: Number of step-level decisions

ST Cond WE PS Total
Principle StudStep 9(10) 58(11) 67
Selection TutStep 34(4) 33(4) 67
Principle StudStep 11(11) 56(11) 67
Application TutStep 34(5) 33(5) 67

Step Level Decisions: Table 4 shows the number of differ-
ent types of step level decisions made by the StudStep and
TutStep groups on the principle selection and principle ap-
plication steps. For both groups the number of WE and PS
decisions sum to 67. The StudStep group selected an aver-
age of only 9 WE steps and decided to do PS on the re-
maining 58 steps; while in the TutStep group, since the tu-
tor makes random decisions, the students received an almost
equal number of WE and PS steps (34 vs. 33). That is, the
StudStep group received 14.81% WE steps while the TutStep
group received 50.92% WE steps. This difference was also
statistically-significant: t(91) = 13.67, p< 0.0001. We found
the similar patterns on the principle application steps as well.

To summarize, the two tutor decision groups received
about equal number of WE vs. PS at either problem or step
levels while the two student decision groups, either problem
level or step level, are significantly more likely to decide to
do Problem Solving than Worked Examples.

Discussion
In this study, we investigated the impact of students’ peda-
gogical decision-making on learning. We focused on the de-
cisions whether to give students a WE or to engage them in
PS at two levels of granularity: problem versus step. We were
able to strictly control the domain content and thus to isolate
the impact of pedagogy from content. And we compared the
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students’ pedagogical decision making performance to a ran-
dom baseline with a goal of factoring out the impact of hand-
coded strategies on student learning.

Interestingly, our results showed that students can make ef-
fective problem-level decisions that enabled them to signifi-
cantly outperform students with random decisions. However,
the students were no better than a random tutor when mak-
ing step-level decisions. When comparing across the four
conditions we found that the Tutor random step-level deci-
sion group outperformed the Tutor random problem-level de-
cision group (TutStep > TutProb) but no significant difference
was found between the two student decision groups.

Our results suggests that different granularity of pedagogi-
cal policies can significantly impact students’ performance in
that the step-level decisions can potentially be more beneficial
than the step level ones; however, the students are more capa-
ble of making effective problem-level pedagogical decisions
than making step-level ones. This may be due to the fact that
students may lack the necessary metacognitive skills to make
such fine-grain decisions or because they get overwhelmed by
the number of decisions to make.

Surprisingly, students selected more problem solving than
worked example on both problem and step levels. The feeling
of engagement may partly explain their decisions. Prior work
has shown that students are more likely to be engaged in the
learning process when they experience a sense of control over
it(Harackiewicz et al., 1987). Therefore, the students might
decide to do problem solving simply because they feel more
involved in problem solving than in worked example. How-
ever, much further research is needed to fully understand why.

Currently we are applying Reinforcement Learning (RL)
to induce effective pedagogical policies directly from our
data. We will investigate whether the RL-induced policies
can be more effective than student decision making at both
levels of granularity. We will also investigate whether it
is possible to combine RL-induced policies with student
decision making and thus give students both beneficial
guidance and an all-important sense of agency.
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