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The Information Theoretic Foundations of a Probabilistic and 

Predictive Micro and Macro Economics 

George Judge* 

Abstract 

 Despite the productive efforts of economists, the disequilibrium nature of the 

economic system and imprecise predictions persist. One reason for this outcome is 

that traditional econometric models and estimation and inference methods cannot 

provide the necessary quantitative information for the causal influence-dynamic 

micro and macro questions we need to ask given the noisy indirect effects data we 

use. To move economics in the direction of a probabilistic and causal based predictive 

science, in this paper information theoretic estimation and inference methods are 

suggested as a basis for understanding and making predictions about dynamic micro 

and macro economic processes and systems. 
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processes, Inverse problems, Dynamic economic systems. 

JEL Classification: C40, C51 

___________________________ 

*George G. Judge, Professor in the Graduate School, 207 Giannini Hall, University of California, 

Berkeley, Berkeley, CA, 94720 (e-mail: gjudge@berkeley.edu).  

It is a pleasure to acknowledge the helpful comments of Mike George, J. Geweke, A. Plastino, J. 

Stiglitz, S. Turnovsky, S. Berto-Villas and A. Zaman. The information theoretic models presented 

represents joint work over the years with A. Golan, M. Grendar, D. Miller and R. Mittelhammer. 

 

mailto:gjudge@berkeley.edu


REIRM_dk_4-19-12 1 1.docx 2 

1.  Introduction 

 In a recent article, “Rethinking Macroeconomics: What Failed and How to 

Repair It”, Stiglitz (2011) provides a multi-faceted, critical critique of the reigning 

paradigm in macroeconomics.  The usual methodological problems are identified and 

suggestions are made as to how to patch things up and set things right. Certainly, a 

reform of the macro standard form is welcome event. In reading the Stiglitz article I 

had the feeling that it was not only important to rethink macroeconomics, but to also 

rethink all of the MME components of economic information recovery.  

 In the golden age of economic innovation in the 1940’s, there was the feeling 

that micro, macro and econometrics acted as a team and that they joined forces to 

understand and consider solutions to economic problems.  Since understanding and 

predicting the state of a dynamic system is essentially a statistical undertaking, in one 

sense it all came together in econometrics. There was a feeling of a common goal of 

the three MME economic foundation stones and how they might be used in a decision 

context and for policy purposes.   

 Today, there are all kinds of specialties and a major economics department 

may have, in any one week, as many as fifteen specialized seminars, with each 

member of the audience glued to their iPhone or iPad and thinking about, and 

working on, their specialized topic. Over time, the knowledge slices in economics 

have become so thin that the sum of the parts does not serve as a basis for 

understanding and making predictions concerning the whole. The academic pursuit of 

economic self-interests does not lead, as if by an invisible hand, to an understanding 
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of economic processes and systems and has limited our ability, in a probability 

context, to make viable economic predictions. Although, much of the macro ills deal, 

among other things, with a lack of understanding of the micro foundations of 

macroeconomics and the single equilibrium concept, the focus in this discussion 

paper is on econometrics. No matter how good the macro-micro conceptual models 

are, their usefulness is impaired by the lack of reliable quantitative-econometric 

information.  

 

1.1  The Statistical Complexity Issue  

 Economic-behavioral processes involve the rich ingredients of uncertainty, 

complexity, volatility and ambiguity. The statistical complexity econometric measure 

that results, reflects the unknown initial condition and the dynamics of the economic 

system and is a function of two ingredients: i) the choice of the probability metric 

space and, ii) the best distance (disequilibrium) choice in the probability space. 

Working models of the economy such as dynamic stochastic general equilibrium 

models, have little chance of success, because economic-behavioral processes and 

systems are seldom if ever in equilibrium and from the econometric  side the 

estimation methods are not appropriate for solving the resulting stochastic inverse 

problem. Although, there is only one sampling distribution consistent with an 

economic system in equilibrium, there are a large number of possible ways an 

economic process-system may be out of equilibrium.  For many econometric 

problems the natural solution is not a fixed distribution, but a well defined set of 
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distributions, each with its own probability. Uncertainty about existing conditions and 

the dynamics of the process creates problems for model specification and prediction. 

Although economic relationships are, in general, simple in nature, the underlying 

dynamics is complicated and not well understood. This means the economic-

econometric model that we use to confront the data is in some way incorrectly 

specified  

 In terms of data associated with information transfer in a dynamical system, 

this usually consists of mutual indirect noisy effects observations, and thus does not 

contain dynamic or directional information. Even introducing a lag in the mutual 

observations fails to distinguish information that is actually exchanged from shared 

information, and does not support predictions such as causal influence. Also since the 

model is conceptual in nature, it usually contains certain inadequacies regarding the 

specification of moment conditions- estimating equations that are directly connected 

to the data.  This means the indirect noisy effects observations that are used in an 

attempt to identify the underlying dynamic system and to measure causal influence, 

involve the solution of a stochastic inverse problem, where usually the number of 

measurements-data points are smaller than the number of unknown parameters to be 

estimated. Thus this stochastic ill posed underdetermined problem cannot be solved 

by traditional estimation and inference   methods. As a result, traditional parametric 

structural estimation and inference methods are fragile under this type of model and 

data uncertainty and are, in general, not applicable for the causal influence dynamic 

macro economic questions that we need to ask and the data we must use. 
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1.2  Coping With the Uncertainty of Uncertainty 

 Given these basic critical propositions, as they relate to micro and macro 

economic information recovery, the next question is what can we do about it?  A 

natural solution would seem to be to use estimation and inference methods that are 

designed to deal with observational data and solve this type of ill posed inverse 

problem. In this context the Cressie-Read (CR- 1983,1988) family of likelihood 

functionals permits the researcher to exploit the statistical machinery of information 

theory to gain insights relative to the underlying causal behavior of a dynamic process 

that may or may not be in equilibrium. In developing this type of information 

theoretic econometric approach to estimation and inference the Cressie-Read single 

parameter family of informational functionals-divergences represent possible 

likelihood functions associated with the underlying sampling distribution. 

Information functional-likelihood-divergences of this type have an intuitive 

interpretation reflecting the uncertainty of uncertainty as it relates to out of 

equilibrium processes. This gives new meaning to what is a likelihood function and 

what is the appropriate way to represent the possible underlying sampling distribution 

of an econometric-statistical model.  One possibility for implementing this approach 

would be to use estimating equations-moment conditions as a link to the data, and 

discrete members of the Cressie-Read family to identify the weighting of the possible 

density-likelihood functions.  The outcome would reflect in a probability sense, what 

we know about the unknown parameters and a possible density function. The result 
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may be a canonical hyper distribution density of possible underlying distributions.  

An advantage of this approach, in addition to its optimality base, is that it permits the 

possibility of non Gaussian like and possibly volatile distributions. Within this 

context the importance of developing probabilistic and predictive results from a 

sample of indirect noisy effects data, guides the information theoretic framework 

sketched ahead.  

 

2.  Minimum Power Divergence  

 In identifying measures that may be used as a basis for characterizing the data 

sampling process of indirect noisy observed data outcomes, we begin with the family 

of divergence measures proposed by Cressie and Read (1984) and Read and Cressie 

(1988). Cressie and Read (CR) developed a family of goodness-of-fit test statistics 

and proposed the following power divergence family of measures:  

   (2.1) 

In (2.1),  is a parameter that indexes members of the CR family, represent the 

subject probability distribution and the , are interpreted as reference probabilities.  

Being probabilities, the usual probability distribution characteristics of 

1
1, 0,1 , 1i i iip q i p=

  ∈ ∀ =∑ , and 1 1n
ii q= =∑  are assumed to hold.   

 The CR family of power divergences is defined through a class of additive 

convex functions and the CR power divergence measure encompasses a broad family 

( ) ( )

γ

1

1, , γ 1 .
γ γ 1

n
i

i
i i

pI p
q=

  
 = − +    

∑p q
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of test statistics, and leads to a broad family of likelihood functions within a 

moments-based estimation context.  In addition the CR measure exhibits proper 

convexity in p, for all values of  and q, and embodies the required probability 

system characteristics, such as additivity and invariance with respect to a monotonic 

transformation of the divergence measures. In the context of extremum metrics, the 

general Cressie-Read (1984) family of power divergence statistics represents a 

flexible family of pseudo-distance measures from which to derive empirical micro 

and macro probabilities.   

 The CR statistic is a one parameter family of divergence measures that 

indexes a set of empirical goodness-of-fit and estimation criteria.  As γ varies, the 

resulting estimators that minimize power divergence exhibit qualitatively different 

sampling behavior.  Using empirical sample moments such as ℎ(𝑌,𝑋,𝑍;𝛽) =

𝑛−1[𝑍′(𝑌 − 𝑋𝛽) = 0, as constraints, a solution to the stochastic inverse problem, 

based on the optimized value of , is one basis for representing a range of 

data sampling processes and likelihood function values.1   

                                                        
1 To place the CR family of power divergence statistics in an entropy perspective, we note that there 
are corresponding Renyi (1961, 1970) and Tsallis (1988) families of entropy functionals-divergence 
measures.   As demonstrated by Gorban, Gorban and Judge (2010), over defined ranges of the 
divergence measures, the CR and entropy families are equivalent. Relative to Renyi and Tsallis, the 
CR family has a more convenient normalization factor 1/((+1)),  and has proper convexity for all 
powers, both positive and negative. The CR family has the separation of variables for independent 
subsystems (Gorban, et al.,2010) over the range of lambda. This separation of variables permits the 
partitioning of the state space and is valid for divergences in the form of a convex function. 

γ

( ), ,I γp q
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2.1  Minimum Power Divergence Estimation 

 In a linear econometric model context, if we use (2.1) as the goodness-of-fit 

criterion, along with moment-estimating function information, the estimation problem 

based on the CR divergence measure (CRDM) can, for any given choice of the  

parameter, be formulated as the following extremum-type estimator for β: 

  (2.2) 

where,  is usually taken as a uniform distribution. This class of estimation 

procedures is referred to as Minimum Power Divergence (MPD) estimation (see 

Judge and Mittelhammer, 2011).  

 It is important to note that the family of power divergence statistics, that are 

defined by (2.1), is symmetric in the choice of which set of probabilities are 

considered as the subject and reference distribution arguments of the function (2.4). 

In particular, whether the statistic is designated as  the same 

collection of members of the family of divergence measures, are ultimately spanned.  

 Two discrete CR divergences for have received the most attention in 

the literature. We utilize the abbreviated notation, , where the 

arguments and are tacitly understood to be evaluated at relevant vector values.  In 

the two special cases where, , the notations are to 

be interpreted as the continuous limits,  and , 

respectively. 

γ

( ) ( ) ( ){ }. .1 1
ˆ arg min min , , | , 1, 0

n n

i i i i i ii i
I p y p p i

= =∈

 ′γ = γ Σ − = Σ = ≥ ∀  p
β p q z x β

β Β
0

q

( ) ( ), ,  or , ,I Iγ γp q q p

( )I , ,γp q

( ) ( )CR γ I , ,γ≡ p q

p q

γ 0 or 1,= − ( ) ( )CR 0  and CR 1−

( )γ 0lim CR γ→ ( )γ 1lim CR γ→−
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 Minimizing  leads to the traditional maximum empirical log-

likelihood (MEL) objective function, and to the Kullback-Leibler (KL)(1951) and 

Kullback(1959) divergence DCR, -1 = . 
The specification  leads, 

under a uniform reference distribution, to the objective function DCR,0 =

 
and this divergence is equivalent to Shannon's (1948) relative 

entropy measure.  

 In regard to inference with the MPD (CR(γ ) family) estimators, under the 

usual assumed regularity conditions, all of the MPD estimators of  are consistent 

and asymptotically normally distributed. They are also asymptotically efficient, 

relative to the optimal estimating function (OptEF) estimator (Baggerly, 1998), when 

a uniform distribution, or equivalently the empirical distribution function (EDF), is 

used for the reference distribution.  The solution to the constrained optimization 

problem yields optimal estimates, , that cannot, in general, be 

expressed in closed form, and thus must be obtained using numerical methods.    

 Since the likelihood function and the sample space are inexplicably linked, 

given a sample of indirect noisy observations and corresponding moment conditions, 

it would be useful to have an optimum choice of a member of the CR family.  Usually 

in traditional econometrics, given a sample of data and corresponding moment 

conditions, there is ambiguity-uncertainty regarding the choice of likelihood 

functions. At this point we again emphasize that in an economic disequilibrium 

( )1CR −

( )1
1
lnn

ii
n p−

=∑ ( )0CR

( )1
lnn

i ii
p p

=
−∑

β

( ) ( )ˆˆ γ  and γp β
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situation the solution may not be a fixed distribution, but a well defined set of 

distributions- likelihood functions-PDFs.  

 

2.2  Identifying the Probability Space 

 Given the CR family of divergence measures (2.1), indirect noisy dynamic 

data and linear functionals in the form of moments, the next question is how to go 

about identifying the underlying probability distribution function-probability space of 

a system or process that may or may not be in equilibrium. Divergence measures 

permit us to exploit the statistical machinery of information theory to gain an insight 

into the PDF behavior of dynamic disequilibrium economic systems and processes. 

The likelihood functionals-PDFs-divergences, have an intuitive interpretation in 

terms of uncertainty and measures of distance.  Many formulations have been 

proposed for a proper selection of the probability space, but their applicability 

depends on characteristics of the data, such as stationarity and the noise process. In 

the section ahead we suggest how to make use of the CR family of divergence 

measures to choose the optimal probability system under quadratic or Kullback-

Leibler loss. 

 In Section 2.1, we used the CR power divergence measure (2.1), to define a 

family of likelihood functions. Given this family of likelihood functions, one might, 

as in (2.3), consider a parametric family of concave entropy-likelihood functions, 

which satisfy additivity and trace conditions.  Given a family of divergence 

functions,one might follow Gorban (1984) and Gorban and Karlin (2003) and 
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consider a parametric family of convex information divergences, which satisfy 

additivity and trace conditions.  Convex combinations of CR(0)) and (CR-1) produce 

a remarkable family of divergences-distributions. Using the CR divergence measures, 

this parametric family is essentially the linear convex combination of the cases where 

0 and = 1γ = γ − . This family is tractable analytically and provides a basis for joining 

(combining) statistically independent subsystems. When the base measure of the 

reference distribution q is taken to be a uniform probability density function, we 

arrive at a one-parameter family of additive convex dynamic Lyapunov functions In 

this context, one would be effectively considering the convex combination of the 

MEL and maximum empirical exponential likelihood (MEEL) measures. From the 

standpoint of extremum-minimization with respect to p, the generalized divergence 

family ,  under uniform q, reduces to 

 
( ) ( ) ( )( )*

1
1 ln ln , 0 1

n

i i i
i

S p p pα
=

= − −α +α ≤ α ≤∑ . (2.3) 

In the limit, as 0α→ , the Kullback-Leibler or minimum I divergence I(p || q) 

of the probability mass function p, with respect to q, is recovered. As 1α→ , the 

MEL stochastic inverse problem I(q||p)  results. This generalized family of divergence 

measures permits a broadening of the canonical distribution functions and provides a 

framework for developing a loss-minimizing estimation rule(Hall,1987, Jeffreys, 

1983). In line with the complex nature of the problem, in the section to follow, we 

demonstrate convex estimation rules, that choose among MPD-type estimators to 

minimize quadratic risk (QR). 
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2.3  A Minimum Quadratic Risk (QR) Estimation Rule 

 In this section, we use the well-known squared error-quadratic loss criterion 

and associated QR function to choose among a given set of discrete alternatives for 

the CR goodness-of-fit measures and associated estimators for β . The method seeks 

to define the convex combination of a set of estimators for β  that minimizes QR, 

where each estimator is defined by the solution to the extremum problem 

     
( ) ( ) ( ){ }. .1 1

ˆ arg max max , , | , 1, 0
n n

i i i i i ii i
I p Y p p i

= =∈

 ′γ = − γ Σ − = Σ = ≥ ∀  pB
p q Z X

β
β β 0 . (2.4) 

The squared error loss function is defined by ( ) ( ) ( )ˆ ˆ ˆ, ′= − − β β β β β β  and has the 

corresponding QR function given by 

  
( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ, ,E Eρ

 ′ = = − −    
β β β β β β β β . (2.5) 

The convex combination of estimators is defined by 

  
( ) ( )

1 1

ˆ , 0 , 1.
J J

j j j j
j j

where j and
= =

α γ α ≥ ∀ α =∑ ∑β α = β  (2.6) 

The optimum use of the discrete alternatives under QR is determined by 

choosing the particular convex combination of the estimators that minimizes QR, as 

  
( ) ( )

1

ˆˆ ˆ
J

j j
j=
α γ∑β α = β , where ( )( ){ }ˆ arg min ,

CH∈
ρ

α
α = β α β  (2.7) 

and CH denotes the J-dimensional convex hull of possibilities for the 1J ×  α  vector, 

defined by the nonnegativity and adding-up conditions. This convex combination rule 
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represents one possible method of choosing the unknown gamma parameter.  The CR 

family of likelihood functionals has an intuitive interpretation in terms of uncertainty 

measures and divergence between probability distributions. This permits 

discrimination in the context of density estimation and permits us to gain insights into 

the probability distribution-PDF behavior of dynamic state space economic processes 

and, importantly, to make predictions. Finally we note that i) information theoretic 

methods permit us to go outside the usual density specification and consider non 

Gaussian distributions, that in some cases may reflect volatility (bubbles) associated 

with the economic process, and ii) predictability in dynamic economic models 

appears naturally using information theoretic functions. The static probabilities in 

mutual observations can be given a directional meaning when transition probabilities 

are introduced. 

 

2.4  A Dynamic Probabilistic Information Recovery Process 

 To incorporate directional dynamic structure we us use transition 

probabilities, and focus on first-order Markov chain models of events with a finite 

number of outcomes measured at discrete time intervals (Lee, Judge and Zellner, 

1977, Miller, 2007, Miller and Judge, 2012 and Kristensen and Shin, 2012).  From the 

micro perspective, the decision outcomes for agent i = 1, 2,…,n are denoted Y(i,k,t) 

with finite states k=1,2,…,K at time t=0,1,2,…T. If the decision outcomes exhibit 

first-order Markov character, the dynamic behavior of the agents may be represented 

by conditional transition probabilities ( ), ,p j k t , which represent the probability that 
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agent i moves from state j=1, 2,…,K, to state k at a time t. Given observations on the 

micro behavior Y(i,k,t), the discrete Markov decision process framework may be used 

to model the agent-specific dynamic economic behavior. In this paper the focus is on 

conditional Markov models in which ( ), ,p j k t varies with t.  In the conditional 

case, we have ( ) ( )1 1T K K× − × −  unknown transition probabilities in the 

( ) ( )1 1K T− × −  estimating equations. Thus the estimation problem is ill posed and 

traditional estimation methods are not applicable.    

 Since the available data may be partial or incomplete, one key step is linking 

the sample analog of the Markov process to the indirect noisy observations 

  
( ) ( ) ( ) ( )

1
, , 1 , , ,

K

j
Y k t Y j t p j k t e k t

=

= − +∑  (2.8) 

For empirical purposes, the remaining task is to choose a feasible specification of the 

statistical model of the Markov transition probabilities. 

 This new class of conditional Markov models is based on a set of estimating 

equations-moment equations  

  ( ), 0tE z e k t′ =    (2.9) 

where tz  is an appropriate set of instrumental-intervention variables.  By 

substitution of (4.1) into (4.2), we form a set of estimating equations that are 

expressed in terms of the unknown transition probabilities.  Given there may be many 

feasible transition probability models that satisfy the moment-estimating equations, 

the next step is to provide a model for the data and a basis for identifying parametric 
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data sampling distributions and likelihood functions in the form of distances in 

probability space. In this context, again considerthe Cressie-Read (Cressie and Read, 

1984; Read and Cressie, 1988; Baggerly, 1998; Judge and Mittelhammer, 2011), 

family of power divergence measures that may be defined for a set of first-order 

finite and discrete conditional Markov probabilities as 

  (2.10) 

provides access to a rich set of distribution functions that encompasses a family of 

estimation objective functions indexed by discrete probability distributions convex in 

p. 

 In order not to introduce subjective information, the reference distribution will 

be specified as discrete uniform distributions. Formally, the MPD problem may be 

solved by choosing transition probabilities p to minimize ( ), ,I p q α  (for some α ), 

subject to the sample analogs of (3.2)  

  ( ) ( ) ( )
1 1

, , 1 , ,z 0
T K

t
t j

Y k t Y j t p j k t
= =

 
′ − − = 
 

∑ ∑  (2.11) 

for each j = 2, ... , K and the row-sum constraint 

  ( )
1

, , 1
K

k
p j k t

=

=∑  (2.12) 

for all j and t. When 0α →  the entropy-likelihood functional is 

  ( ) ( ) ( )( )
1 1 1

, , 0 , , ln , ,
T K K

t j k
I p q p j k t p j k tα

= = =

− → ∝ −∑∑∑
 

(2.13) 

( ) ( ) ( ) ( )
( )1 1 1

, ,2, , , , 1
1 , ,

T K K

t j k

p j k t
I p q p j k t

q j k t

α

α
α α = = =

  
 = −  +    

∑∑∑
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and has a general logistic functional form. When 1α → − , the entropy-empirical 

likelihood functional (Owen, 2001) is 

  ( ) ( )( )
1 1 1

, , 1 ln , , .
T K K

t j k
I p q p j k tα

= = =

− → − ∝∑∑∑  (2.14) 

Since the likelihood function and the sample space for the MPD estimation problem 

are inexplicably linked, it would be useful, given a sample of indirect noisy 

observations and corresponding moment conditions, to have, as in Section 3, an 

optimum choice of a member of the CR family. 

 If we consider a parametric family of concave entropy-likelihood functions, 

which satisfy additivity and trace conditions this parametric family is essentially the 

linear convex combination of the cases where 0α →  and 1α → − .From the 

standpoint of extremum-minimization with respect to the transition probabilities, the 

generalized divergence family  reduces to 

 
( ) ( ) ( )( ) ( )( )*

1 1 1 1 1 1
1 , , ln , , ln , ,

T K K T K K

t j k t j k
S p j k t p j k t p j k tβ β β

= = = = = =

= − − +∑∑∑ ∑∑∑  (2.15) 

a convex combination of the CR family members in (4.7) and (4.9). As noted in 

Section 3 this generalized family of divergence measures permits a broadening of the 

canonical distribution functions and provides a framework for developing a loss-

minimizing estimation rule. 
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3.  Summing Up 

 Economics seeks, given an information base, to provide a general theory of 

choice. From an economic policy standpoint there is much to be unhappy about 

concerning the disequilibrium nature of our economy and the uncertain nature of the 

predictive choices. Although, much of this unhappiness seems to be focused on the 

macro area of economics, in this paper the focus has been on quantitative economic 

information and the econometric component. Since the 1940s we have survived the 

Klein-MIT-Fed type large scale econometric models, Vector Auto Regressions-very 

awful regressions, rational expectations, and the arbitrariness of calibration that 

essentially picks a few parameters at random which may match a few arbitrarily 

chosen moments or empirical regularities. We have noted that although the desire for 

information has been on causal influence-information recovery, the intersection of 

this objective and the indirect noisy effects data and traditional direct econometric 

methods that are supposed to provide this type of information, is in many cases an 

empty set. The data for the most part are observational, and the estimation-

information recovery component requires methods designed for solving  stochastic ill 

posed inverse problems.  

 As a solution, we have suggested the use of information theoretic econometric 

methods that are designed to cope with these types of inverse problems and provide 

policy choices that are not drawings from a uniform-maximum entropy distribution. 

The message of this paper is that unless we develop and apply econometric models 

and methods that are appropriate to the data and economic problems-questions at 
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hand, our ability to understand and recover empirical system probabilities and to 

provide accurate predictions about dynamic economic processes, is going to continue 

to be uninformed and limited. Furthermore, our brightest and best graduate students 

are going to continue to be taught econometric history. 
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