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We present calculations of secondary electron emission (SEE) yields in tungsten as a function of primary
electron energies between 100 eV and 1 keV and incidence angles between 0 and 90�. We conduct a
review of the established Monte Carlo methods to simulate multiple electron scattering in solids and
select the best suited to study SEE in high-Z metals. We generate secondary electron yield and emission
energy functions of the incident energy and angle and fit them to bivariate fitting functions using sym-
bolic regression. We compare the numerical results with experimental data, with good agreement found.
Our calculations are the first step towards studying SEE in nanoarchitected surfaces for electric propul-
sion chamber walls.

� 2018 Elsevier B.V. All rights reserved.
1. Introduction

Secondary electron emission (SEE) is the emission of free elec-
trons from a solid surface, which occurs when these surfaces are
irradiated with external (also known as primary) electrons. SEE is
an important process in surface physics with applications in
numerous fields, such as electric propulsion [1–5], particle acceler-
ators [6], plasma-walls in fusion reactors [7–11], electron micro-
scopy and spectroscopy [12,13], radio frequency devices [14–16],
etc. In Hall thrusters for electric propulsion, a key component is
the channel wall lining protecting the magnetic circuits from the
discharge plasma. These channel walls are a significant factor in
Hall thruster performance and lifetime through its interactions
with the discharge plasma. These interactions are governed by
the sheath formed along the walls, and so the properties of the
sheath determine the amount of electron energy absorbed by the
wall, which in turn affects the electron dynamics within the bulk
discharge [1,17–19]. Furthermore, the energy imparted by the
sheath to the ions within the discharge determines the impact
energy and incident angle of ions upon the surface, thus affecting
the amount of material sputtered and consequently the wall ero-
sion rate [20,21]. Thus, understanding how SEE affects sheath sta-
bility is crucial to make predictions of channel wall lifetime.

Recently, a new wall concept based nano-architected surfaces
has been proposed to mitigate surface erosion and SEE [22–25].
Demonstration designs based on high-Z refractory materials have
been developed, including architectures based on metal nanowires
and nanofoams [26–30]. The idea behind these designs is to take
advantage of very-high surface-to-volume ratios to reduce SEE
and ion erosion by internal trapping and redeposition. Preliminary
designs are based on W, W/Mo, and W/Re structures, known to
have intrinsically low sputtering yields secondary electron emis-
sion propensity. A principal signature of electron discharges in
plasma thrusters is the low primary electron energies expected
in the outer sheath, on the order of 100 eV, and only occasionally
in the several hundred eV regime. Accurate experimental measure-
ments are exceedingly difficult in this energy range due to the lim-
ited thickness of the sheath layer, which is often outside the
resolution of experimental probes [31–33]. Modeling then suggests
itself as a complementary tool to experiments to increase our qual-
itative and quantitative understanding of SEE processes.

To quantify the net SEE yield from these surfaces, models must
account for the explicit geometry of these structures, which
requires high spatial resolution and the capacity to handle large
numbers of degrees of freedom. However a precursor step to the
development of these descriptions is the characterization of the
SEE yield functions as a function of incident electron energy and
angle of incidence in flat surfaces. Once defined, these functions
can then be implemented at the level of each surface element to
create a spatially-dependent emission picture of the SEE process.
This is the subject of the present paper: to calculate SEE yield func-
tions from flat W surfaces in terms of primary electron energy and
incidence angle. To this end, we carry out Monte Carlo calculations
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of electron scattering processes in pure W using a series of scatter-
ing models specifically tailored to high-Z metals.

The paper is organized as follows. First we discuss the theoret-
ical models employed to study electron scattering in W. This is
followed by a discussion of the implementation of these models
under the umbrella of a Monte Carlo framework. Our results
follow, with emphasis on emission yield and energy functions.
We finalize with the conclusions and the acknowledgments.

2. Theory and methods

2.1. Electron scattering theory

The present model assumes that electrons travel in an isotropic
homogeneous medium undergoing collisions with bulk electrons.
Each collision results in a trajectory change with an associated
energy loss, which depend on the nature of the electron-electron
interaction. As well, collisions may result in secondary electron
production. We classify interactions into two broad categories:
elastic and inelastic, each characterized by the corresponding col-
lision mean free path and an angular scattering function. These
processes are then simulated using a Monte Carlo approach, where
collisions are treated stochastically and trajectories are tracked as a
sequence of scattering events until the resulting secondary
electrons are either thermalized or emitted back from the surface.

Scattering theory provides formulas for the total and the differ-
ential scattering cross sections, from which the mean free path and
polar scattering angle can be obtained, respectively. Next, we pro-
vide a brief description of the essential theory behind each of the
distinct collision processes considered here. Our implementation
accounts for the particularities of low-energy electron scattering
in high-Z materials. The validity range of the present approach in
Z, which is for atomic numbers up to 92, and in primary electron
energy, from 100 eV to 30 keV.

2.2. Elastic scattering

Elastic scattering takes place between electrons and atomic
nuclei, which–due to the large mass difference–results in no net
energy loss for the electron, only directional changes [34]. A widely
used electron-atom elastic scattering cross section is the screened
Rutherford scattering cross section [35,36], which provides a sim-
ple analytical form and is straightforward to implement into a
Monte Carlo calculation. However, the screened Rutherford scat-
tering is generally not suitable for low-energy electron irradiation
of high-Z metals.

In this work, we use an empirical total elastic scattering cross
section proposed by Browning et al. (1994), which is obtained via
fitting to trends in tabulated Mott scattering cross section data
set described by Czy _zewski et al. [37] using the relativistic
Hartree-Fock potential. This is amenable to fast Monte Carlo com-
putations at a high degree of accuracy. The equation for the total
elastic scattering cross section is [38,39]:

rel ¼ 3:0� 10�18Z1:7

ðEþ 0:005Z1:7E0:5 þ 0:0007Z2=E0:5Þ ½cm2�; ð1Þ

which is valid for atomic numbers up to 92 and for energies from
100 eV to 30 keV. From this, the elastic mean free path can be
derived:

kel ¼ 1
Nrel

¼ AW
Naqrel

½cm� ð2Þ

where N is the number of atoms per cm3. For its part, the polar
scattering angle can be obtained by a random number R uniformly
distributed between 0 and 1:
R ¼

Z h

0

drR

dX

� �
dXZ p

0

drR

dX

� �
dX

ð3Þ

where dX ¼ 2p sin hdh is the infinitesimal solid angle.
Solving the above equation for the Mott cross section requires

numerical integration, as there is no simple analytical form for
the polar scattering angle h. Drouin [40] et al. (1994) gives a
parameterized form of the function as

cos hbi
� � ¼ 1� 2aR�

1þ a� R� ð4Þ
where hi is given in degrees. Then first parameter, a, as a function of
the energy is obtained with

log10ðaÞ ¼ aþ blog10ðEÞ þ clog2
10ðEÞ þ

d
elog10ðEÞ

ð5Þ
where E is the energy in keV, a; b; c and d are constants that have
been calculated using the least-square method, and e ¼ 2:7813. A
tabulation form of a; b; c and d for the first 94 elements of the peri-
odic table is found in Table 2 in Ref. [40]. For tungsten (Z ¼ 74),
a ¼ �2:0205; b ¼ �1:2589; c ¼ 0:271737;d ¼ �0:695477.

The second parameter, b, is calculated using the following
equations:

b� ¼ aþ b
ffiffiffi
E

p
lnðEÞ þ c lnðEÞ

E
þ d
E

b ¼ 1 if b� > 1
b� if b� � 1

� ð6Þ

where E is the energy in keV, a; b; c and d are constants that have
been obtained using the least-squares fitting. A tabulation form of
a; b; c and d for the first 94 elements of the periodic table is found
in Table 3 in reference [40]. For tungsten (Z ¼ 74),
a ¼ 0:71392; b ¼ 0:00197916; c ¼ �0:0172852; d ¼ �0:0570799.

The third parameter, R� is obtained as:

R� ¼ R� Rmax ð7Þ
where R is a random number uniformly distributed between 0 and 1
and Rmax is the value of R� obtained when hi is set to 180� in Eq. (4),
i.e.:

Rmax ¼ cosð180bÞ þ a cosð180bÞ � 1� a
cosð180bÞ � 1� 2a

ð8Þ

The azimuthal angle / can take any value in the range 0–2p as
determined by a random number R uniformly distributed in that
range.

/ ¼ 2pR ð9Þ
2.3. Inelastic scattering

In contrast to elastic scattering, inelastic scattering implies col-
lisional energy loss. There are several distinct inelastic interaction
processes to be considered, including phonon excitation, secondary
electron excitation, Bremsstrahlung or continuum X-ray generation,
and ionization of inner electron shells. Each mechanism is
described by a model that provides expressions for the scattering
cross section, scattering angle, and mean free path. The physics
behind some of these processes is complex, and detailed expres-
sions for the associated cross sections are often unavailable [41,42].

In conventional Monte Carlo approaches, Bethe’s theory of
stopping power based on a continuous slowing-down approxima-
tion (CSDA) [35,43,44] is used to describe the average energy
dissipation rate of a penetrating electron along its path, in which
the contribution of all possible excitation processes to the energy
loss has been represented by a factor called the mean ionization
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energy, J. However, this formula is not valid in the low energy
regime (0.1–30 keV) or for high atomic number elements (Z >

30). To resolve this, much effort has been devoted to modifying
the Bethe formula, from which systematization of tabulated elec-
tron stopping powers for various elements and attempts to sim-
plify the calculations have emerged. [45–49] In general, the use
of these formulas for elements or compounds with fitting parame-
ters requires a detailed and accurate supply of experimental data
on which to base its physics and against which to test its predic-
tions. [50] Nevertheless, the CSDA strategy may still become obso-
lete when an electron occasionally loses a large fraction of its
energy in a single collision as well as when secondary electron
emission distribution spectra are required. To develop a more com-
prehensive Monte Carlo approach, incorporating differential cross
sections for each of the inelastic events seems necessary [51–54].

Ritchie et al. (1969) have demonstrated that the stopping power
described by Bethe’s formula is obtained by the summation of the-
oretical stopping powers for conduction electron, plasmon and L-
shell electron excitations for aluminum. [53] Fitting (1974) [55]
has also shown that this stopping power derived by Ritchie et al.
is in very good agreement with experimental investigation even
in the energy range between 0.8 and 4 keV. Accordingly, the model
of inelastic scatterings considered in the present approach are
electron-conduction electron scattering, electron-plasmon scatter-
ing and electron-shell electron scattering as shown in Fig. 1.

2.3.1. Inner shell electron ionization
The classical formalism of Gryziński (1965) [56–59] has been

adopted to describe inner-shell electron ionization. The differential
cross section can be written as:

drsðDEÞ
dDE

¼ pe4

ðDEÞ3
EB

E
E

Eþ EB

� �3=2

1� DE
E

� �EB=ðEBþDEÞ

� DE
EB

1� EB

E

� �
þ 4
3
ln 2:7þ E� DE

EB

� �1=2
" #( ) ð10Þ

where DE; E and EB are the energy loss, the primary electron energy,
and the mean electron binding energy, respectively.
Fig. 1. Schematic diagram of the discrete collision model of ele
At each inelastic scattering event, the energy loss of the primary
electron resulting from an inelastic scattering with the shell is
determined using a uniform random number R and by finding a
value of DE which satisfies the relation

R ¼
Z DE

EB

drsðDE0Þ
dDE0

dDE0

rs
ð11Þ

The integral is given by the approximate expression [60]Z DE

EB

drsðDE0Þ
dDE0 dDE0 ¼ pnse4

EEB

� �
E

Eþ EB

� �3=2

1� DE
E

� �1þðEB=ðEBþDEÞÞ

� DE
EB

þ 2
3

1� DE
E

� �
ln 2:7þ E� DE

EB

� �1=2
" #( )

� E2
B

DE2 ðDE P EBÞ ð12Þ

where ns is the occupation number of electrons in the shell.
The total cross section of the inner electron excitation is

obtained by integrating over all possible values of DE

rsðEÞ ¼
Z DEmax

EB

drsðDE0Þ
dDE0 dDE0 ¼ 6:5141� 10�14 ns

E2
B

EB

E
E� EB

Eþ EB

� �3=2

� 1þ 2
3

1� EB

2E

� �
ln 2:7þ E

EB
� 1

� �1=2
 !" #

½cm2� ð13Þ

where the maximum amount of energy that can be lost DEmax is
equal to E.

When the random number selection gives an energy loss less
than the binding energy EB, the actual energy loss is set to be zero.
The scattering angle for an inelastic electron-electron event is cal-
culated according to the binary collision approximation (BCA) as

sin h ¼ DE
E

� �1=2

ð14Þ

In tungsten, for primary energies E 61 keV, inner shell electron
ionization can be safely neglected, as the energy is insufficient to
knock out inner shell electrons.
ctron scattering simulated using Monte Carlo calculation.
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is provided in Appendix D.
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2.3.2. Conduction electron excitation
For metals bombarded by electrons, Streitwolf (1959) [61] has

given the differential cross section for conduction electron excita-
tion by using perturbation theory as

drcðESEÞ
dESE

¼ e4Nap
EðESE � EFÞ2

ð15Þ

The total energy loss cross section rcðEÞ can be obtained by
integrating the above expression between the lower energy limit
EF þU and the upper energy limit E:

rcðESEÞ ¼ e4Nap
E

E� EF �U
UðE� EFÞ ð16Þ

The obtained relation samples the energy of the secondary elec-
tron with the random number R:

ESEðRÞ ¼ REF � AðEF þUÞ½ �=ðR� AÞ ð17Þ
where U is the workfunction and A = (E � EF)/(E � EF � U). Once the
energy of the secondary electron is known (equal to the energy lost
by the primary electron), the next question is how the two electrons
are oriented in space. More accurate results can be obtained if the
classical BCA is used, which results from conservation of energy
and momentum. The azimuthal angle is again assumed to be isotro-
pic. For the incident electron, we then have:

sin h ¼
ffiffiffiffiffiffi
DE
E

r
ð18Þ

/ ¼ 2pR

where DE is the energy lost by the incident electron. For the sec-
ondary electrons, scattering angles can be calculated as follow:

sin# ¼ cos h ð19Þ

u ¼ pþ / ð20Þ
The above expression is applied to the inner shell electron as

well as conduction electron excitations.

2.3.3. Plasmon excitation
The Coulomb field of the primary electron can perturb electrons

of the solid at relatively long range as it passes through the target.
The primary electron can excite oscillations (known as plasmons) in
the conduction electron gas that exists in a metallic sample with
loosely bound outer shell electrons. The differential cross section
for plasmon excitation is given by Ferrel (1956) [62–64], per
conduction-band electron per unit volume

drpðE; hÞ
dX

¼ 1
2pa0

hp
h2 þ h2p

ð21Þ

hp ¼ DE
2E

¼ �hxp

2E
ð22Þ

where a0 is Bohr radius (5:29� 10�9 [cm]). In plasmon scattering,
primary electron energy loss is quantized and ranges from 3 to
30 eV depending on the target species, which is detected as strong
features in electron energy-loss spectra (EELS). Plasmon scattering
is so sharply peaked forward that the total plasmon cross section,
rp, can be found by setting dX ¼ 2p sin hdh � 2phdh:

rp ¼
Z

drpðhÞ ¼ hp
2pa0

Z h1

0

2phdh
h2 þ h2p

ð23Þ

By assuming the upper integration limit as h1 = 0.175 rad, where
h � sin h, and incorporating the factor ðncAW=NaqÞ to put the cross
section on a per-atom/cm2 basis gives the total cross section of the
plasmon excitation as

rp ¼ ncAWhp
2Naqa0

lnðh2p þ 0:1752Þ � lnðh2pÞ
h i

½cm2� ð24Þ

where nc is the number of conduction-band electrons per atom.
Essentially, the scattering of primary electrons due to plasmon exci-
tations is restricted with h < hmax; kc being the cut-off wavenumber.
Since hmax is so small, about 10 mrad in the energy range discussed
here, the angular deflection due to plasmon excitation is neglected
in this approach.

Again, the azimuthal angle / can take on any value in the range
0 to 2p selected by a random number R uniformly distributed in
that range.

/ ¼ 2pR
3. Monte Carlo calculations

As indicated above, electron trajectories are simulated by gen-
erating a spatial sequence of collisions by randomly sampling from
among all possible scattering events. The distance traveled by elec-
trons in between collisions, Ds, is assumed to follow a Poisson dis-
tribution defined by the total mean free path kT [35]

Ds ¼ �kT log R ð25Þ
where

1
kT

¼ 1
kel

þ 1
kp

þ 1
kc

þ 1
ks

¼ Nðrel þ rp þ rc þ rsÞ; ð26Þ

N is the number of atoms per cm3 and R is a random number
uniformly distributed in the interval ð0;1�. From this, we define
the following probabilities:

Pel ¼ kT=kel : the probability that the next collisionwill be elastic
Pp ¼ kT=kp : the probability that the next collisionwill cause

a plasmon excitation
Pc ¼ kT=kc : the probability that the next collisionwill cause

a conduction electron excitationPs ¼ kT=ks : the probability
that the next collisionwill cause an inner shell electron excitation

ð27Þ
The type of collision is then chosen based on the following par-

tition of the value of R:

0<R6 Pel ) elastic scattering
Pel <R6 PelþPp )plasmon excitation
PelþPp <R6 PelþPpþPc ) conduction electron excitation
PelþPpþPc <R61 	 PelþPpþPc þPs

� �) inner shell electron excitation

ð28Þ
The flow diagram corresponding to the implementation of the

model just described is provided in Appendix C. Following this
approach, electron trajectories1 are tracked in the energy-position
space until a scattered electron either thermalizes, i.e. its energy fol-
lows below the surface escape threshold (Fermi level plus workfunc-
tion) within the material, or reaches the surface with a velocity
having a component pointing along the surface normal with an
energy larger than the escape threshold. In the latter case, the elec-
tron is tallied as a secondary electron and its energy and exit angle
f
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are recorded.
Next we analyze the Monte Carlo calculations performed fol-

lowing this method and present results of secondary electron yield
and emission energies as a function of primary electron energy and
angle of incidence.
4. Results

The total secondary electron yield for perfectly-flat tungsten
surfaces is calculated for primary incident angles of 0�, 30�, 45�,
60�, 75� and 89� measured off the surface normal, and incident
energies in the range 100–1000 eV. In this work, the typical
number of primary particles simulated ranges between 104 and
105, which generally results in statistical errors around 3%. Our
Fig. 2. Normalized distributions for 100-eV primary electrons incident at 0�: (a) Energy

Fig. 3. (a) Depth distribution of both emitted and thermalized (captured) electrons for a
of the main scattering mechanisms as a function of primary energy for normal incidenc
first set of results includes the energy and angular distributions
of emitted secondary electrons for normal incidence and 100 eV
and a primary electron energy of 100 eV. The normalized distri-
butions are given in Fig. 2a and b, where the characteristic energy
decay of 1=E and cosine angular distribution of collisional pro-
cesses can be appreciated in each case. One of the advantages
of using a discrete event method for simulating electron scatter-
ing processes is that useful information of discrete nature can be
extracted from the data. For example, in Fig. 3a we show the
depths from which secondary electrons are emitted (last scatter-
ing collision inside the material) as well as the depth distribution
of thermalized (non-emitted) electrons, i.e. the depth at which
electrons attain an energy less than the threshold. Both cases
are for normal incidence and E ¼ 100 eV. In Fig. 3b we break
the total number of collisions down into the main scattering
distribution of secondary electrons; (b) Angular distribution of secondary electrons.

primary electron energy and incident angle of 100 eV and 0� . (b) Relative occurrence
e.



Fig. 5. Total SEE yield from an ideally-flat W as a function of primary electron
energy, for electrons incident at 0� , 30� , 45� , 60� , 75� and 89� .
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modes as a function of primary energy and normal incidence. It
can be seen that scattering with conduction electrons is always
the dominant mechanism, although its relative importance
reduces with E.

Next, we plot the SEE yields as a function of primary electron
energy for angles of incidence of 0 and 45� to facilitate comparison
with existing experimental data and other published Monte Carlo
simulation results. The results are shown in Fig. 4a and b, respec-
tively, with error bars provided in each case. In general, the simu-
lation results are found to agree reasonably well with experimental
data. The agreement is slightly worse for 45� than for 0� incidence,
which we rationalize in terms of the higher incidence direction. It
is well-known that the fraction of reflected particles increases with
the angle of incidence [71]. In addition, the roughness of ‘real’
experimental surfaces compared to the ideally-smooth ones in
the model likely plays a significant role in the comparison. SEE
yields as a function of E for all angles of incidence considered here
are given in Fig. 5.

Surface plots of both SEE energy distributions and the yields are
given in Fig. 6a and b As mentioned earlier, these data will be used
in ray-tracing Monte Carlo simulations of SEE in arbitrary surface
geometries. In these simulations, primary rays are generated above
the material surface with the corresponding incident energy E.
Intersections of these primary rays with surface elements determi-
nes the corresponding angle of incidence a. E and a are then used
to sample from the data shown in, e.g., Fig. 2, after which sec-
ondary rays with appropriate energies ESE and exit angles (sampled
from a cosine distribution) are generated. These ‘daughter’ rays are
themselves tracked in their interactions with other surface ele-
ments, after which the sequence is repeated and subsequent gen-
erations of rays are produced. This process goes on until rays
either escape the surface with an upward velocity –in which case
the event is tallied as a successful SEE event– or until their energy
is below the threshold escape energy (Fermi level plus workfunc-
tion). However, directly interpolating from our data tables poten-
tially hundreds of thousands of times can slow down the
simulations considerably. To avoid that, it is more efficient to fit
Fig. 4. (a) Total SEE yield from an ideally-flat W surface as a function of primary electron
[66]; cyan dashed line = Coomes (1939) [67]; j = Bronshtein and Fraiman (1969) [68];
distribution of electron energies in the valence band; . = Ding et al. (2001) using the met
et al. (2016) [30]. (b) Total SEE yield from smooth W as a function of primary electron e
the data to suitable analytical expressions that can be evaluated
very fast on demand. To this end, we fit our raw data to bivariate
mathematical functions obtained using symbolic regression (SR),
which is a type of genetic evolutionary algorithm for machine
learning which utilizes evolutionary searches to determine both
the parameters and the form of the fitting expressions simultane-
ously, to speed up our calculation. We have used the trial version of
Eureqa [72,73], a commercial SR engine, to generate a catalog of
potential candidate expressions for mathematical fitting. We then
select the final expression by capping the fitting errors to be no
higher than the intrinsic statistical errors of the Monte Carlo
energy for electrons incident at 0� . 
 = this work; black dashed line = Ahearn (1931)
N = Ding et al. (2001) using the method where the SE is assumed to come from a
hod where the SEs are assumed to originate from the Fermi level [69,70]; r = Patino
nergy, for electrons incident at 45� . 
=this work; r = Patino et al. (2016) [30].



Fig. 6. (a) Surface plot of the total SEE yield from an ideally-flat W as a function of primary electron energy and angle of incidence. (b) Surface plot of the SEE energy
distributions from an ideally-flat W as a function of primary electron energy and angle of incidence.
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calculations (� 3%). This ensures that the fitted functions always
provide solutions to within the natural variability of the fitted data.
Beyond that, we generally try to use functions that are well
behaved numerically in as wide an energy range as possible, e.g.
discarding those with logarithmic terms, etc. The final expressions
for the total SEE yield and energy distributions are

cðE;aÞ¼3:05288þ1:7949�10�5a2þ6:15912�10�7E2

þð3:71317�102�expð4:8259�10�2aÞÞ=ð�8:760195�10�1�EÞ
�1:974�10�4E�1:0971�10�1 cosð1:20187�10�1þ2:469421aÞ

ð29Þ

ESEðE;aÞ ¼ 1:95� 10�1Eþ 1:69� 10�4E2 þ 1:48� 10�1a sinðEÞ
þ 3:44� 10�15Ea7 � 6:54

ð30Þ
We note that these expressions do not necessarily reflect the

physics behind SEE and are just intended for efficient numerical
evaluations strictly in the ranges shown in the figures.
5. Discussion and conclusions

Electron-matter interactions are complex processes. To make
the theoretical treatment of electron scattering a tractable analyt-
ical problem, it is assumed that elastic scattering occurs through
the interatomic potential, while inelastic scattering only through
electron–electron interactions. Evidently, the accuracy of the
Monte Carlo simulations depends directly on how precisely the
approximations introduced in the model are described. Most mod-
els treat elastic interactions within Mott’s formalism [34] (or adap-
tations thereof). For their part, inelastic scattering processes in this
work are considered individually, each one characterized by its
own differential cross sections, corresponding to valence, inner
shell, conduction, and plasmon electron excitation. In contrast,
Ding et al. [69] use Penn’s dielectric function [74] for electron
inelastic scattering obtained from a modification of the statistical
approximation. Many other models for metals account for valence
interactions only [35,75,76]. Here, we improve in these models,
although we do not capture the generation of SE from plasmon
decay, backscattered electrons, reflected electrons, and transmitted
electrons (coming out from the back side of the sample). This must
be kept in mind when comparing the simulation results with
experimental data (cf. Fig. 4). In this sense, it can be said that our
results provide a first-order check of the importance of internal
scattering processes, which helps us understand the governing
physics behind SEE.

In any case, discrete event simulations–e.g. as the Monte Carlo
model implemented in this paper–present the advantage that they
provide a measure of the statistical errors associated with a given
formulation. This is not just a numerical matter because experi-
mental measurements themselves correspond to averages of a
given realization of the scattering process. In the discrete approach
the energy loss of electrons traveling through a solid is determined
by considering different inelastic scattering processes–including
conduction electron excitation, plasmon decay, and inner shell
electron ionization–are considered individually, whereas within
the so-called continuous slowing down approximation (CSDA),
the overall inelastic scattering mechanisms are averaged out by
using the total stopping power. From this point of view, the CSDA
and the discrete-event simulation method would formally con-
verge in the limit of an infinite number of events. Discrete simula-
tions also allow a better physical and spatial dissection of electron
scattering processes, providing spatial distributions and break-
downs among the different scattering mechanisms. This informa-
tion is important to ascertain what scattering events dominate
the secondary electron emission process in each material. This is
what is shown in Fig. 3b, where the partition of scattering mecha-
nisms for normal incidence and 100 eV primary energy is given. A
disadvantage of discrete vs continuous simulations is, however, the
longer computational cost required to obtain acceptable statistics.
Modelers, therefore, must weigh in each of these factors (better
spatial resolution and statistical information vs worse computa-
tional efficiency) and decide what approach to use.

To summarize, in this work we have carried out Monte Carlo
calculations of low energy electron induced SE emission from flat
tungsten surfaces. Our model includes multiple elastic and inelas-
tic scattering processes, implemented via a discrete energy loss
approach. We compare predictions of our model with other Monte
Carlo techniques as well as experimental data, with generally good
agreement found. We have calculated the total SEE yield and
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secondary electron energy spectrum for primary electron beams at
incident angles of 0�, 30�, 45�, 60�, 75� and 89�, in the range 100–
1000 eV. We have used SR to obtain analytical expressions that
represent the numerical data. These functions are currently being
used in ray-tracing Monte Carlo simulations of SEE in arbitrary sur-
face geometries.
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Appendix A. List of Symbols
a0
 Bohr radius

AW
 atomic weight

Z
 atomic number

Na
 Avogadro’s number

q
 density of the target

N ¼ qNa=AW
 atomic number density

ns
 number of electrons in shell or subshell

nc
 number of conduction-band electrons per

atom

e
 electron charge

�
 permittivity of vacuum

me
 mass of electron

�h
 reduced Planck constant

xp
 plasma frequency

E
 primary electron energy

ESE
 secondary electron energy

EF
 Fermi energy

kF
 Fermi wave number

EB
 binding energy of the shell

Epl ¼ �hxp
 plasmon energy

DE
 energy loss of primary electron

U
 work function

J
 mean ionization potential

a
 incident angle of primary electron

rel
 elastic scattering cross section

rp
 plasmon excitation cross section

rc
 conduction electron ionization cross section

rs
 inner shell electron ionization cross section of

dr/dX
 differential scattering cross section with

respect to direction

dr/dE
 differential scattering cross section with

respect to energy

kel
 elastic mean free path

kp
 plasmon excitation mean free path

kc
 conduction electron excitation mean free path

ks
 inner shell electron excitation mean free path

kT
 total mean free path

h
 polar scattering angle of the primary electron

#
 polar scattering angle of the secondary

electron

/
 azimuthal scattering angle of the primary

electron

u
 azimuthal scattering angle of the secondary

electron

hp
 plasmon loss scattering angle

d
 depth
Appendix B. Constants & kinematical quantities

Na ¼ 6:022� 1023; Avogadro’s number

� ¼ 8:85� 10�12 ½F=m�; permittivity of vacuum

me ¼ 9:1� 10�31 ½kg�
e ¼ 1:6� 10�19 ½C�; electron charge

�h ¼ 6:58� 10�16 ½eV � s=rad�; reduced Planck constant

Eh ¼ mee4=�h
2 ¼ 2Ry ¼ 27:2114 ½eV�;Hartree energy

Ry ¼ 13:6 ½eV�;Rydberg energy

a0 ¼ �h2
=ðmee2Þ ¼ 5:29177� 10�9 ½cm�; Bohr radius

pe4 ¼ pða0EhÞ2 ¼ 6:5141� 10�14 ½cm2 eV2�
mec2 ¼ 510:999 ½keV�; rest energy of the electron

The Fermi energy can be estimated using the number of elec-
trons per unit volume as

EF ¼ 3:64645� 10�15n2=3 ½eV� ¼ 1:69253n2=3
0 ½eV�

where n and n0 are in the units of [cm�3] and n ¼ n0 � 1022. The
Fermi wave number is calculated as

kF ¼ 6:66511� 107n1=3
0 ½cm�1�:

The Fermi velocity is calculated as

vF ¼ 7:71603� 107n1=3
0 ½cm=s�:
Appendix C. Program flowchart

Fig. 7.

Appendix D. Definition of coordinate system

The basic geometry for the simulation assumes that the electron
undergoes an elastic scattering event at some point Pn, having trav-
eled to Pn from a previous scattering event at Pn�1 as shown in
Fig. 8. To calculate the position of the new scattering point Pnþ1,
we first require to know the distance Dsnþ1 between Pnþ1 and the
preceding point Pn.

The path is described using direction cosines, ca, cb and cc. The
coordinates at the end of the step at Pnþ1; xnþ1; ynþ1 and znþ1, are
then related to the coordinates xn; yn and zn at Pn by the formulas
[65]

xnþ1 ¼ xn þ Dsnþ1 � ca
ynþ1 ¼ yn þ Dsnþ1 � cb
znþ1 ¼ zn þ Dsnþ1 � cc

The direction cosines ca; cb; cc are found from the direction
cosines cx; cy and cz with which the electron reached Pn. The result
is

ca ¼ ðcx � cos hÞ þ ðV1 � V3Þ þ ðcy � V2 � V4Þ
cb ¼ ðcy � cos hÞ þ ðV4 � ðcz � V1� cx � V2ÞÞ
cc ¼ ðcz � cos hÞ þ ðV2 � V3Þ � ðcy � V1 � V4Þ
where

V1 ¼ AN � sin h

V2 ¼ AM � AN sin h

V3 ¼ cos/
V4 ¼ sin/



Fig. 7. Flow chart of the Monte Carlo program.

Fig. 8. Definition of coordinate system used in the Monte Carlo simulation program.
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and

AM ¼ � cx
cz

AN ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ AM � AMp
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