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CANCER EPIDEMIOLOGY, BIOMARKERS & PREVENTION | NULL RESULTS IN BRIEF 

Folate Metabolism and Risk of Childhood Acute 
Lymphoblastic Leukemia: A Genetic Pathway 
Analysis from the Childhood Cancer and Leukemia 
International Consortium 
Catherine Metayer1, Logan G. Spector2, Michael E. Scheurer3,4, Soyoung Jeon5, Rodney J. Scott6,7, 
Masatoshi Takagi8, Jacqueline Clavel9,10,11, Atsushi Manabe12, Xiaomei Ma13, Elleni M. Hailu1, 
Philip J. Lupo3,4, Kevin Y. Urayama14,15, Audrey Bonaventure9, Motohiro Kato16, Aline Meirhaeghe17, 
Charleston W.K. Chiang5, Libby M. Morimoto1, and Joseph L. Wiemels5 

�
 ABSTRACT 

Background: Prenatal folate supplementation has been consis-
tently associated with a reduced risk of childhood acute lympho-
blastic leukemia (ALL). Previous germline genetic studies examining 
the one carbon (folate) metabolism pathway were limited in sample 
size, scope, and population diversity and led to inconclusive results. 

Methods: We evaluated whether ∼2,900 single-nucleotide 
polymorphisms (SNP) within 46 candidate genes involved in 
the folate metabolism pathway influence the risk of childhood 
ALL, using genome-wide data from nine case-control studies in 
the Childhood Cancer and Leukemia International Consortium 
(n ¼ 9,058 cases including 4,510 children of European ancestry, 
3,018 Latinx, and 1,406 Asians, and 92,364 controls). Each study 
followed a standardized protocol for quality control and impu-
tation of genome-wide data and summary statistics were meta- 
analyzed for all children combined and by major ancestry group 
using METAL software. 

Results: None of the selected SNPs reached statistical signifi-
cance, overall and for major ancestry groups (using adjusted 
Bonferroni P-value of 5 � 10�6 and less-stringent P-value of 3.5 
� 10�5 accounting for the number of “independent” SNPs). 
None of the 10 top (nonsignificant) SNPs and corresponding 
genes overlapped across ancestry groups. 

Conclusions: This large meta-analysis of original data does not 
reveal associations between many common genetic variants in the 
folate metabolism pathway and childhood ALL in various an-
cestry groups. 

Impact: Genetic variants in the folate pathway alone do not 
appear to substantially influence childhood acute lymphoblastic 
leukemia risk. Other mechanisms such as gene–folate interac-
tion, DNA methylation, or maternal genetic effects may explain 
the observed associations with self-reported prenatal folate 
intake. 

Introduction 
Leukemia is the most common cancer in children comprised 

primarily of acute lymphoblastic leukemia (ALL). One-carbon 
micronutrients such as folic acid play an essential role in the 
maintenance of genomic integrity and epigenetic control. Pooled 
analyses of original data from the Childhood Cancer and Leukemia 
International Consortium (CLIC) have shown that self-reported 

prenatal folate and vitamin supplementation reduces the risk of 
childhood ALL (1). However, germline genetic studies investi-
gating the role of the one carbon (folate) metabolism and child-
hood ALL risk mostly in European populations have been limited 
in size and scope focusing on single genes such as MTHFR, TS, 
MTR, and MTRR, and generally yielding inconsistent results (2). 
We conducted a meta-analysis of CLIC genetic data to investigate 
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the role of ∼2,900 candidate single-nucleotide polymorphisms 
(SNP) in the folate metabolism pathway among diverse 
populations. 

Materials and Methods 
This study is based on genome-wide data from nine CLIC 

case-control studies in Europe, North America, Asia, and Oce-
ania, including 9,058 childhood ALL cases and 92,364 study- 
specific and publicly available controls (Table 1). Each study 
was given standardized quality control (QC) guidelines for 
generating genome-wide data, as following: (i) pre-imputation 
QC (separately for cases and controls if genotyped separately) 
included filters for SNP call rate <98%, sample call-rate per 
person <95%, Hardy Weinberg Equilibrium P < 10�5 in con-
trols, minor allele frequency (MAF) < 0.01; genome-wide 
identity by descent > 0.20, and genome heterozygosity rate 
within 6sd of mean; (ii) for populations with multiple ancestries, 
principal component analysis (PCA) was performed with known 
ancestral populations to identify racial and ethnic groups (Eu-
ropeans, Asians, Latinx, and Black individuals), and exclude 
population outliers; (iii) PCAs were generated on post QC data 
for adjustment in association analyses; (iv) missing data were 
imputed to HRC reference panel, and (v) post-imputation QC 
thresholds included MAF < 0.01 and r2 < 0.5. Each study con-
ducted their analyses independently, separately by race and 
ethnicity (if applicable) using SNPTEST or Plink2, adjusting for 
PC eigenvectors as appropriate. Prior to sharing summary sta-
tistics, each study was asked to assess for genomic inflation and 
adjust accordingly (lambda < 1.1 was considered sufficient). 
Summary results for each study, including snpID (chr:position), 
alleles, allele frequency, risk estimate, standard error, P-value, 

genome build, separately by race/ethnicity, were uploaded to 
a secure portal. Details on each study are published else-
where (3–8). 

We identified 46 genes in the folate metabolism pathway by 
curating biological pathways in Gene Ontology, Kyoto Ency-
clopedia of Genes and Genomes, gene set enrichment analysis/ 
MSigDB (Broad Institute), USC Genome Browser, and Bio-
conductor (R) databases and by reviewing published literature 
(Table 2). Each selected gene was annotated from the Genome 
Assembly GRCh37/hg19 using the Bioconductor R package, and 
SNPs were extracted within 5 kb upstream and downstream 
from each gene location using UCSC genome table browser, 
leading to 7,979 candidate SNPs. Genome-wide meta-analyses 
were conducted using METAL software (version March 2011) 
for 9,058 ALL cases combined and for the major ancestry sub-
groups separately i.e., European (n ¼ 4,510 cases), Latinx (n ¼

Table 1. Participants by country/study and ancestry: CLIC. 

Countrya Study name (period) Overall Cases Controls 

Australia Aus-ALL (1998–2006) 1,550 358 1,192 
France ESCALE (2003–2004)e 1,983 441 1,542b 

ESTELLE (2010–2011)e 1,758 343 1,415c 

Japan TCCSG (1990–2011) 4,254 540 3,714 
JPLSG (2012–2018) 2,149 548 1,601 

United States ACCESS, Texas (2005–ongoing)e 6,965 658 6,307 
CCLS, California (1995–2009) 2,011 1,184 827 
CCRLP, California (1988–2011) 76,317 3,482 72,835d 

COG, US-wide (2000–2014) 4,435 1,504 2,931 
Total 

All combined 101,422 9,058 92,364 
Major ancestry groups 

European 74,521 4,510 70,011 
Latinx 12,972 3,018 9,954 
Asian 11,738 1,406 10,332 

Abbreviations: CCLS, California Childhood Leukemia Study; CCRLP, California Childhood Cancer Record Linkage Project, which does not overlap with CCLS; COG, 
Children Oncology Group; JPLSG, Japanese Pediatric Leukemia/Lymphoma Study Group; TCCSG, Tokyo Children Cancer Study Group. 
aAlphabetical order. 
bGeneric controls from the SU.VI.Max study, France. 
cGeneric controls from the MONALISA Lille study, France. 
dIncludes publicly available controls from the Wellcome Trust Case–Control Consortium and Resource for Genetic Epidemiology Research in Adult Health and 
Aging awarded to the Kaiser Permanente Research Program on Genes, Environment, and Health and the University of California San Francisco Institute for 
Human Genetics, United States. 
eEstimated proportion of B-cell/T-cell for studies with available subtype information: ESCALE (84%/16%), ESTELLE (80%/20%), ACCESS (89%/11%). 

Table 2. Selected genes in the folate metabolism pathway. 

AHCY DHFRL1 MPST RTBDN 

ALDH1L1 DPEP1 MTHFD1 SARDH 
ALDH1L2 FOLH1 MTHFD1L SHMT1 
AMT FOLR1 MTHFD2 SHMT2 
ATIC FOLR2 MTHFD2L SLC19A1 
ATPIF1 FOLR3 MTHFR SLC19A2 
BHMT FPGS MTHFS SLC19A3 
C2orf83 FTCD MTR SLC25A32 
CBS GART MTRR SLC46A1 
CPS1 GCH1 MUT TYMS 
CTH GGH NOX4 
DHFR LRP2 PIPOX 
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3,018 cases), and Asian (n ¼ 1,406 cases). SNPs were included in 
the meta-analysis if (i) they were available in at least two studies 
and among >50,000 subjects overall or of European ancestry and 
>10,000 subjects of Asian or Latinx ancestry, and (ii) the allele 
frequency difference across studies was <0.5 among controls (as 
a quality control check), resulting in ∼2,900 SNPs available for 
analysis [total and European (n ¼ 2,855), Latinx (n ¼ 2,930), 
Asian (n ¼ 2,230)]. To account for multiple testing, we applied 
Bonferroni correction (adjusted P-value ¼ 5 � 10�6) and a less- 
stringent correction defined by the number of “independent” 

SNPs (based upon 1,000 Genomes, calculating the pairwise ge-
notypic correlation using a 100-SNP window, a 10-SNP shift, 
and a r2 threshold of 0.2, which average to 350 independent 
SNPs) and the number of test for each four group examined 
(total, and Europeans, Latinx, and Asian ancestries) resulting in 
an adjusted P-value of 3.5 � 10�5 (0.05/350/4). 

The study was approved by Institutional Review Boards for the 
California Health and Human Services and the University of Cal-
ifornia, Berkeley, and was conducted according to the U.S 
Common Rule. 

Table 3. Top 10 SNPs and corresponding genes, sorted by crude P-value of the meta-risk estimate for all subjects combined and by 
ancestry group: CLIC. 

Rs# Symbol Gene 
Reference allele 
frequency Beta coefficient P-value 

Total 
rs2239910 SLC46A1 Solute carrier family 46 (folate transporter), member 1/sterile alpha and 

TIR motif containing 1 
0.3643 0.0788 2.65E�04 

rs9371202 MTHFD1L Methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1-like 0.8455 0.1103 4.35E�04 
rs12947270 SLC46A1 Solute carrier family 46 (folate transporter), member 1/H3 histone, family 

3B (H3.3B) pseudogene 2 
0.675 �0.0781 5.28E�04 

rs9322291 MTHFD1L Methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1-like 0.865 0.1397 6.31E�04 
rs34449727 CPS1 Carbamoyl-phosphate synthase 1, mitochondrial 0.3292 �0.078 7.61E�04 
rs11679391 SLC19A3 Solute carrier family 19 member 3 0.3726 0.0777 8.36E�04 
rs2268369 LRP2 Low-density lipoprotein receptor-related protein 2 0.5444 �0.0645 1.09E�03 
rs2268367 LRP2 Low-density lipoprotein receptor-related protein 2 0.5445 �0.0643 1.12E�03 
rs11886318 LRP2 Low-density lipoprotein receptor-related protein 2 0.5349 �0.0635 1.34E�03 
rs28785011 MTHFD1L Methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1-like 0.8654 0.1345 1.40E�03 
European 
rs11679391 SLC19A3 Solute carrier family 19 (thiamine transporter), member 3 0.4029 0.1107 3.55E�04 
rs9371202 MTHFD1L Methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1-like 0.8636 0.1576 5.33E�04 
rs2138406 C2orf83 Chromosome 2 open reading frame 83 0.1873 0.1185 1.21E�03 
rs7601819 SLC19A3 Solute carrier family 19 (thiamine transporter), member 3 0.8777 0.1626 1.24E�03 
rs7583413 C2orf83 Chromosome 2 open reading frame 83 0.8086 �0.1156 1.32E�03 
rs76758508 SHMT2 Serine hydroxymethyltransferase 2 0.315 0.0958 1.63E�03 
rs68176600 NXPH4 Neurexophilin 4 0.6767 �0.0949 1.69E�03 
rs11679339 SLC19A3 Solute carrier family 19 (thiamine transporter), member 3 0.7727 �0.1108 1.74E�03 
rs4973234 SLC19A3 Solute carrier family 19 (thiamine transporter), member 3 0.7727 �0.1093 1.96E�03 
rs803456 MTHFD1L Methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1-like 0.5117 0.0907 2.24E�03 
Latinx 
rs8018688 GCH1 GTP cyclohydrolase 1 0.7902 0.1384 1.38E�03 
rs9980564 CBS cystathionine-beta-synthase 0.6155 0.1202 1.60E�03 
rs7147201 GCH1 GTP cyclohydrolase 1 0.7875 0.1298 2.73E�03 
rs9671455 GCH1 GTP cyclohydrolase 1 0.7462 0.1212 2.78E�03 
rs56213135 GCH1 GTP cyclohydrolase 1 0.2014 �0.1308 2.79E�03 
rs3759664 GCH1 GTP cyclohydrolase 1 0.1988 �0.13 3.07E�03 
rs11886318 LRP2 Low density lipoprotein receptor-related protein 2 0.5423 �0.1056 3.24E�03 
rs6433109 LRP2 Low density lipoprotein receptor-related protein 2 0.5391 �0.1047 3.37E�03 
rs7600336 LRP2 Low density lipoprotein receptor-related protein 3 0.4182 0.1047 3.73E�03 
rs113100590 GCH1 GTP cyclohydrolase 1 0.8052 0.1302 3.74E�03 
Asian 
rs11018581 NOX4 NADPH oxidase 4 0.2848 0.2081 7.74E�05 
rs11821838 NOX4 NADPH oxidase 4 0.2103 0.196 7.09E�04 
rs6677781 CTH Cystathionase 0.2337 0.1782 1.43E�03 
rs7925419 FOLH1 Folate hydrolase 1 0.4587 0.1463 3.79E�03 
rs609054 FOLH1 Folate hydrolase 2 0.5818 0.135 6.76E�03 
rs2734002 FOLH1 Folate hydrolase 3 0.5818 0.1348 6.82E�03 
rs10839236 FOLH1 Folate hydrolase 4 0.5658 0.1326 8.20E�03 
rs3872578 FOLH1 Folate hydrolase 5 0.5659 0.1326 8.22E�03 
rs9651571 FOLH1 Folate hydrolase 6 0.5658 0.1325 8.27E�03 
rs7120943 FOLH1 Folate hydrolase 7 0.4342 �0.1321 8.44E�03 
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Data availability 
Only summary statistics were shared by participating studies and 

no new data were generated as part of this analysis. Original study- 
specific data may be available at the discretion of the individual 
study principal investigators (information may be requested from 
the corresponding author). 

Results 
None of the selected SNPs in the folate metabolism pathway 

reached the levels of significance defined above, overall and for the 
three major ancestry groups. Table 3 presents the top 10 SNPs for 
all groups combined and by ancestry, with crude P-values. None of 
the 10 top SNPs (and corresponding genes) in each ancestry group 
overlapped (i.e., C2orf83, MTHFD1L, NXPH4, SHMT2, and 
SLC19A3 in Europeans; CBS, GCH1, and LRP2 in Latinx; and CTH, 
FOLH1, and NOX4 in Asians). 

Discussion 
This CLIC study is the largest and most comprehensive to date to 

investigate the role of genetic variants in the folate metabolism 
pathway and childhood ALL risk among populations of diverse 
ancestries. We did not observe statistically significant associations 
with ∼2,900 SNPs. Inherited genetic variants in the folate pathway 
alone do not appear to substantially influence childhood ALL risk. 
Alternatively, gene–folate interaction, epigenetic mechanisms, or 
maternal genetic effects may contribute to the risk. 
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