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Abstract
Microglia, the immune cells of the central nervous system, are dynamic and heterog-
enous cells. While single cell RNA sequencing has become the conventional methodol-
ogy for evaluating microglial state, transcriptomics do not provide insight into functional 
changes, identifying a critical gap in the field. Here, we propose a novel organelle phe-
notyping approach in which we treat live human induced pluripotent stem cell-derived 
microglia (iMGL) with organelle dyes staining mitochondria, lipids, lysosomes and ac-
quire data by live-cell spectral microscopy. Dimensionality reduction techniques and 
unbiased cluster identification allow for recognition of microglial subpopulations with 
single-cell resolution based on organelle function. We validated this methodology using 
lipopolysaccharide and IL-10 treatment to polarize iMGL to an “inflammatory” and “anti-
inflammatory” state, respectively, and then applied it to identify a novel regulator of 
iMGL function, complement protein C1q. While C1q is traditionally known as the initia-
tor of the complement cascade, here we use organelle phenotyping to identify a role for 
C1q in regulating iMGL polarization via fatty acid storage and mitochondria membrane 
potential. Follow up evaluation of microglia using traditional read outs of activation 
state confirm that C1q drives an increase in microglia pro-inflammatory gene produc-
tion and migration, while suppressing microglial proliferation. These data together vali-
date the use of a novel organelle phenotyping approach and enable better mechanistic 
investigation of molecular regulators of microglial state.

K E Y W O R D S
C1q, complement, inflammation, microglia, organelles

1  |  INTRODUC TION

As the immune cells of the central nervous system (CNS), microg-
lia are constantly surveying the microenvironment via dynamic 
processes and protrusions to facilitate a rapid response to damage 

(Nimmerjahn et  al.,  2005). In response to neuropathological stim-
uli (such as CNS disease or injury), microglia respond within min-
utes by transitioning states via functional reprogramming (Hakim 
et  al.,  2021). While it is well-understood that microglial state is 
not binary as once believed (Ransohoff,  2016), many microglial 

www.wileyonlinelibrary.com/journal/jnc
https://orcid.org/0000-0002-1422-4609
mailto:
mailto:aja@uci.edu
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fjnc.16173&domain=pdf&date_stamp=2024-07-17


2  |    SAKTHIVEL et al.

subpopulations that appear after disease/injury are associated with 
an inflammatory gene signature. These microglia release proinflam-
matory cytokines that are critical for the initial response to disease; 
however, prolonged cytokine release at the chronic stage of dis-
ease can inhibit neural repair and contribute to worsened pathol-
ogy (Block et al., 2007; Polazzi & Contestabile, 2002; Zhang, 2011). 
Despite the notion that microglial inflammation heavily influences 
disease recovery, it remains unclear what molecular mechanisms 
regulate microglial inflammatory subpopulations in the healthy and 
diseased CNS.

One potential molecular regulator of interest is C1q, the initia-
tor molecule of the complement cascade. While C1q is traditionally 
known for its role in the immune system, it has recently become rec-
ognized for novel functions as a single molecule within the CNS. For 
example, C1q can regulate neurodevelopment (Schafer et al., 2012; 
Stevens et al., 2007) and neurite outgrowth (Peterson et al., 2015). 
Here, we investigate a novel role for C1q in regulating microglial state 
and function. C1q protein increases by 300-fold in the aged versus 
control brain (Stephan et al., 2013) and further accumulates within 
the context of neurodegeneration (Yasojima et al., 1999), highlight-
ing the potential for C1q to influence CNS cells as a paracrine signal. 
Indeed, one previous study found that C1q drives release of inflam-
matory cytokines (TNFα and IL-6) in rat microglia primary cultures 
(Färber et  al.,  2009). In parallel with its traditional role within the 
complement cascade, we hypothesize that C1q is a molecular cue 
for regulating human microglial function and inflammation within 
the diseased CNS.

Critically, technological limitations have historically made it diffi-
cult to assess microglial responses to treatment or disease at the res-
olution needed to discern complex heterogeneity. Recent advances 
in single-cell RNA sequencing (scRNAseq) allow for identification 
of numerous context-dependent microglial subpopulations, for ex-
ample, inflammatory and anti-inflammatory microglia (Michelucci 
et al., 2009), disease-associated microglia (Keren-Shaul et al., 2017), 
interferon-responsive microglia (Sala Frigerio et al., 2019), and white 
matter-associated microglia (Safaiyan et  al.,  2021). While scRNA-
seq is a powerful tool for identifying microglial heterogeneity and 
highlighting pertinent signaling pathways, these naming conven-
tions label subpopulations based on transcriptomic signature with-
out addressing the fundamental question of microglia function. 
Additionally, there are a number of caveats with scRNAseq that limit 
its applications, including: (1) gene expression does not predict the 
function of identified subpopulations; (2) transcriptomic changes 
often do not correlate with protein (Koussounadis et al., 2015); and 
(3) technical limitations do not allow for detection of lowly tran-
scribed genes. Critically, evaluation of microglial functional het-
erogenetiy at the single cell level remains a major gap in the field 
(Paolicelli et al., 2022).

Here, we test a novel functional-based organelle phenotyping 
approach via multidimensional microscopy (Scipioni et  al.,  2024) 
to evaluate microglia organelles at a single-cell level. In contrast 
with traditional transcriptomic or proteomic techniques, organelle 
phenotyping quantifies real-time functional changes in energetic 

and anabolic metabolism. Microglia are labeled with environment-
sensitive dyes for mitochondria, lysosomes, and lipids and data are 
acquired in live cells by spectral microscopy. This combination of 
organelle dyes and live microscopy allows for functional and mor-
phological changes to be probed in individual, live cells following 
treatment. We validated this approach using human induced plu-
ripotent stem cell-derived microglia (iMGL) and quantification of 
cellular changes in response to the classical stimulants lipopoly-
saccharide (LPS) and IL-10. Furthermore, we applied this functional 
phenotyping approach to test the hypothesis that purified human 
C1q also influences microglial organelle function. Overall, we identi-
fied that C1q influences microglial function via multiple quantitative 
endpoints: organelles, gene expression, proliferation, and migration. 
These data highlight the capacity of organelle phenotyping to iden-
tify new molecules that regulate microglial state, and suggest a novel 
function for C1q as a single ligand separate from its traditional role in 
the complement cascade.

2  |  MATERIAL S AND METHODS

2.1  |  Acquisition and maintenance of iPSC

UCI Alzheimer's Disease Research Center (ADRC)76 cell line was ob-
tained from human fibroblasts to generate iPSC. The cell line was de-
rived from subject 76 (male) with informed consent; reprogramming 
and differentiation was approved by the University of California, 
Irvine Institutional Review Board. iPSC use and differentiation to-
wards microglia was approved by the University of California, Irvine 
Human Stem Cell Research Oversight Committee (hSCRO protocol 
# 3682).

iPSC were plated onto 6-well plates (Corning cat#08-772-1B) 
coated with growth factor-reduced Matrigel (1 mg/mL; BD 
Biosciences, cat#356231). iPSC cell maintenance involves daily media 
changes in mTeSR Plus (Stem Cell Technologies, cat#100-0276) and 
a humidified incubator (5% CO2, 37°C). Medium was supplemented 
with 0.5 μM Thiazovivin (StemCell Technologies, cat#72252) for the 
first 24 h post-passage to promote colony survival. iPSC were tested 
for mycoplasma every 3 months and were confirmed to be negative.

2.2  |  Differentiation of microglia from iPSC

iPSC were differentiated into microglia using a previously published 
protocol (McQuade et al., 2018). Briefly, iPSC were passaged in a 
6-well plate with mTeSR Plus at a density of 40–80 small colonies 
(<100 cells) per well. iPSC-derived hematopoietic progenitor cell 
differentiations were completed with STEMdiff Hematopoietic Kit 
(Stem Cell Technologies, cat#5310) where cells are fed with Media 
A (day 0–2) and Media B (day 3–10). Non-adherent CD43+ iHPC are 
collected on days 11/12 and plated in iMGL medium (Table 1), freshly 
supplemented with 100 ng/mL IL-34 (Peprotech, cat#200-34),  
50 ng/mL TGFb1 (Peprotech, cat#100-21), and 25 ng/mL M-CSF 
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(Peprotech, cat#300-25) for 28 days. The last 3 days in culture 
involve feeding in iMGL maturation media, which is iMGL me-
dium freshly supplemented with 100 ng/mL CD200 (Novoprotein, 
cat#BP004) and 100 ng/mL CX3CL1 (Peprotech, cat#300-18). 
Mature iMGL were treated with 100 ng/mL LPS (ThermoFisher 
Scientific, cat#00-4976-03), 10 ng/mL IL-10 (R&D Systems, cat#21-
7IL0-10), or C1q[1–200 nM] (My Biosource, cat#MBS147305) as 
described.

2.3  |  Microglia organelle phenotyping

Following 24-h treatment, iMGL were processed and data were 
analyzed as previously described (Scipioni et al., 2024). Briefly, cells 
were labeled with the following environment-sensitive dyes to ob-
serve changes in organelles: TMRM (mitochondrial membrane po-
tential), Lysotracker Green (lysosomal pH), Lipi-Blue (lipid droplet 
polarity), and SiR-Hoechst (DNA). Live-cell data were acquired using 
a Zeiss LSM880 confocal microscope with hyperspectral (Quasar) 
detection. Cells were images with a 63×/1.4 NA Oil objective, 
single-cell segmentation was achieved via Cellpose using the “cyto2” 
pretrained convolutional neural network. All data analyses were per-
formed in Python.

2.4  |  qPCR

Following treatment, cells were lysed using RLT buffer mastermix 
(10 μL beta-mercaptoethanol: 1 mL RLT) and cells were lysed with 
RNAeasy micro kit (Qiagen, 74 004). RNA quality and quantity was 
validated using a nanodrop (ThermoFisher Scientific). Any remaining 
genomic DNA from the collected samples was degraded using RNA 
clean up kit (Invitrogen, cat#:AM1906). RNA samples were then 
converted to cDNA using high-Capacity RNA-to-cDNA kit (Applied 
Biosystems, cat#:4387400). qPCR reaction was performed in a 
10 μL volume using the qPCR primers listed in Table 2 (ThermoFisher 
Scientific, cat#: 4448892). Reaction included 20× TaqMan Gene 
Expression Primer, 2× TaqMan Gene Expression Fast Mastermix 
(Applied Biosystems, cat#:4444557), cDNA template, and RNAse 
free water. Plate was sealed, centrifuged briefly, and loaded into 

Quantstudio7. Data were analyzed using the comparative delta–
delta Ct method.

2.5  |  Transwell migration assay

iMGL were collected and resuspended to a concentration of 
300 000 cells/mL. 30 000 cells (100 μL) of the single-cell resuspen-
sion was added to each migration assay chamber, before placing 
chambers into feeder trays (Millipore) containing 150 μL of media 
for each condition; the chambers were then incubated at 37 C̊ for 
3 hr. Subsequently, the chambers were transferred onto new 96-well 
trays containing 150 mL of prewarmed cell detachment buffer and 
incubated for 30 min at 37°C. At the end of this incubation, 50 mL 
1:75 dilution of CyQuant GR Dye:Lysis buffer was added to the 
cell detachment buffer and incubated for 15 min at room tempera-
ture. Finally, 150 mL CyQuant GR Dye:Lysis/detachment solution 
was transferred to a new 96-well plate, and migration was quanti-
fied using a 480/520 nm filter set on a fluorescent plate reader. All 
experiments were conducted in biological triplicate with technical 
triplicates.

2.6  |  Flow cytometry (Click-it EdU and AnnexinV)

All samples were acquired on the BD Fortessa and data were analyzed 
using FloJo. All experiments were conducted in biological triplicate 
and technical triplicate. EdU: Cell proliferation was assessed using 
flow cytometric detection of EdU incorporation. iMGL were incu-
bated with EdU (Cayman, cat#: 20518) 1:000 for 24 h in combination 
with treatment in the incubator. iMGL were collected and fixed with 
4% PFA for 15 min prior to detection with the Click-iT™ Plus Alexa 
Fluor™ 488 Picolyl Azide Toolkit (Invitrogen, cat#: C10641). Briefly, 
cells were washed in PBS-1%FBS and permeabilized with 0.1% sapo-
nin in PBS-1%FBS for 15 min before incubation with staining solu-
tion [1x click-it reaction buffer, CuSO4, AF488 picolyl azide, and 
1x additive] for 45 min at room temperature. Cells were once again 

TA B L E  1  Components of iMGL media.

Product Manufacturer

DMEM/F12 Gibco, #1103901

Insulin-Transferin-Selenite Gibco, #41400045

2× B27 Gibco, #17504044

0.5× N2 Gibco, #17502048

1× Glutamax Gibco, #35050061

1× NEAA Gibco, #11140050

400 mM monothioglycerol Sigma, #M6145

5 μg/mL human insulin Sigma, #I2643

TA B L E  2  qPCR primers used to evaluate microglial gene 
signature.

Gene Assay ID

18 s Hs03003631_g1

CCL2 Hs01574247_m1

IL1b Hs01555410_m1

IL6 Hs00174131_m1

IL-10 Hs00961622_m1

BDNF Hs02718934_s1

IGF1 Hs01547656_m1

P2RY12 Hs01881698_s1

SELPLG Hs05033974_s1

CX3CR1 Hs01922583_s1
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washed with PBS-1% FBS before acquisition. Annexin: Apoptosis 
was assessed using PE Annexin V Apoptosis Detection Kit with 7-
AAD (Biolegend, cat#: 640934). iMGL were collected and washed 
twice with Biolegend's cell staining buffer. Cells were resuspended 
in 100 μL Annexin V binding buffer and treated with PE Annexin 
V 1:20 and 7-AAD viability staining solution 1:20. Antibodies were 
incubated for 15 min room temperature and 400 μL of Annexin C 
binding buffer was added to each tube before acquisition.

2.7  |  Apolive Glo cell viability/apoptosis assay

iMGL viability and apoptosis was quantified with ApoLive-Glo™ 
Multiplex Assay (Promega, cat#: G6410) per manufacturer's instruc-
tions. Briefly, iMGL were treated with GF-AFC, a cell-permeant sub-
strate that becomes fluorescent when it enters the cell to quantify 
viable cells. Then, cells are lysed and treated with a luminogenic cas-
pase-3/7 substrate to quantify amount of caspase present. Data are 
shown as caspase luminescence/live cell fluorescence as a normali-
zation measure. All experiments were conducted in n = 3 biological 
replicates and n = 5 technical replicates.

2.8  |  Statistical analysis

Statistical analyses were performed using Prism GraphPad Prism 
version 10. The number of biological replicates (n), statistical tests 
conducted, and statistical significance are indicated in all figure 
legends. All data are expressed as mean ± standard error of the 
mean. Data collection and analysis were performed by investiga-
tors blinded to experimental groups. One-way ANOVA, followed by 
Tukey's multiple comparisons when appropriate, was used for all sta-
tistical analyses following confirmation of normality by Kolmogorov–
Smirnov tests (alpha = 0.05). Figure 5a was additionally analyzed by 
one sample t-test to compare between untreated control and each 
C1q treatment. No outlier tests were performed.

3  |  RESULTS

3.1  |  Organelle phenotyping and multidimensional 
microscopy identify functional microglial 
subpopulations in an unbiased manner

Microglia undergo rapid transcriptomic changes in response to 
various molecular cues. However, changes in microglial organelles 
and their downstream impacts on cellular function (particularly in 
a single-cell, high throughput manner) are much less understood. 
Microglial state is associated with changes in metabolism, such as a 
mitochondrial shift towards glycolysis (Voloboueva et al., 2013), and 
an increase in acidic lysosomes (Majumdar et  al.,  2007) and lipids 
(Button et al., 2014). Because organelle changes are integrally linked 
to cell metabolism, these readouts can provide direct insight into cell 

function. We therefore hypothesize that organelle phenotyping and 
multidimensional microscopy can identify microglial subpopulations 
by probing changes in microglial organelles as an alternative output 
to study activation.

As a validation for this methodology, iMGL either remained un-
treated as a negative control, or were treated with LPS or IL-10 for 
24 h. Although we acknowledge microglia are non-binary cells, the 
extreme ends of microglial heterogeneity can be described via the 
“inflammatory” and “anti-inflammatory” nomenclature. Because LPS 
and IL-10 have traditionally been used to polarize microglia to these 
states, we used these treatments as positive controls to investigate 
whether this methodology could identify microglial subpopulations 
in an unbiased manner. Because a previous study suggested a role 
for C1q in regulating cytokine release in rodent microglia (Färber 
et al., 2009), iMGL were also treated with purified C1q to test the 
hypothesis that C1q similarly regulates human microglial state and 
function. We predicted that C1q would polarize microglia towards 
an inflammatory phenotype, and thus expected to observe a simi-
lar but distinct pattern when compared to LPS-treated cells. In ad-
dition to these treatments, iMGL were labeled with the following 
environment-sensitive dyes for 1 h to observe changes in organelles 
while triggering minimal dye toxicity: TMRM (mitochondrial mem-
brane potential), Lysotracker Green (lysosomal pH), Lipi-Blue (lipid 
droplet polarity), and SiR-Hoechst (DNA; Figure  1a–d). Multicolor 
images were acquired using live-cell hyperspectral microscopy, al-
lowing for quantification of organelle characteristics with single-cell 
resolution in a single image.

Once the hyperspectral was acquired, images of the single or-
ganelles were unmixed by phasor spectral unmixing and intensity 
histogram, and auto- and cross-correlation curves were extracted 
using image (cross-)correlation spectroscopy. Individual bins of the 
intensity histograms and correlation curves were area-normalized 
and used as organelle features, similarly to gene expression profiles 
in scRNA-seq. Feature extraction was followed by PacMAP dimen-
sionality reduction and unbiased subpopulation identification by 
Gaussian Mixture Model clustering. The optimal number of clusters 
was identified by minimizing the Davies–Bouldin Index. Clusters 
represent groups of cells with distinct organelle characteristics and 
therefore distinct functions of the organelle network. The data re-
vealed eight distinct microglial subpopulations (Figure 1e). We first 
visualized the proportion of each cluster based in each treatment 
group; that is, 30% of all C1q-treated cells were associated with clus-
ter 0 (Figure 1f). These data show how certain clusters are predom-
inantly associated with treatment groups. PacMAP can alternatively 
be visualized by treatment (Figure 1g), highlighting how treatments 
differentially influence cells, and identifying that untreated cells clus-
ter separately from treated cells. Moreover, we can similarly visual-
ize the proportion of each treatment within each cluster; that is, 66% 
of cluster 0 is made up of C1q-treated cells (Figure 1h). These data 
revealed that clusters 3 and 7 were largely made up of IL-10 treated 
cells, whereas cluster 4 identified many  untreated cells. Cluster 6 
was equally comprised of all four treatment groups, suggesting that 
it may represent a baseline homeostatic or trophic subpopulation 
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present regardless of treatment. Critically, four out of eight clusters 
(0, 1, 2, and 5) were associated predominantly with C1q and LPS-
treated iMGL; the observation that these clusters shared identifi-
cation between C1q and LPS-treated cells suggests that C1q drives 
changes in organelle function that are consistent with a classical 
proinflammatory phenotype. In sum, organelle phenotyping iden-
tified changes in microglia in response to treatment, and PacMAP 
followed by unbiased cluster identification was able to read out dis-
tinct cell subpopulations in an unbiased manner. These data support 
organelle phenotyping as a useful methodology for characterizing 
microglial state based on function.

3.2  |  C1q drives complex changes in iMGL 
morphology and organelle function

Cell morphology is one the first prominent changes observed in mi-
croglia within the diseased CNS (Nimmerjahn et  al.,  2005). While 
homeostatic microglia are typically branched, activated microglia 
are known to adopt larger cell volume and decreased branching 

complexity. As expected, live-cell imaging highlights striking mor-
phological changes following treatment with LPS, IL-10, or C1q. 
Figure  2 shows low-power images of microglia following treat-
ment and categorization of each individual cell into a correspond-
ing cluster. Untreated microglia (Figure  2a,b) displayed a classical 
long and branching morphology which is essential for surveillance 
of the microenvironment and quick response to signs of disease. 
Conversely, microglia in response to treatment displayed several 
distinct morphological changes consistent with an “activated” phe-
notype. A subpopulation of microglia treated with LPS (Figure 2c,d) 
showed classical ameboid morphology—round, small, and circular. 
Moreover, few microglia adopted a slimmer elongated morphol-
ogy that retained branching following LPS treatment. Because 
rod-shaped morphology has previously been described as an inter-
mediate transition state between a branched and amoeboid micro-
glia (Au & Ma, 2017), LPS-treated microglia may be displaying this 
elongated morphology before transitioning towards the classical 
amoeboid state. In contrast, IL-10 drove a much larger, non-circular 
shaped microglia (Figure 2e,f). Notably, C1q-treated microglia more 
consistently showed a classical activated, ameboid morphology that 

F I G U R E  1  C1q triggers changes in iMGL organelles and morphology, similar to LPS. (a–d) iMGL remain untreated as a control (a) or 
are treated with lipopolysaccharide (LPS) (b), IL-10 (c), or C1q (d). Cells are labeled with lysotracker green (lysosomes, red), lipi-blue (lipids, 
yellow), TMRM (mitochondria, green), and SiR-hoechst (DNA, blue). Live cells are imaged 24 h following treatment. (e–h) Data acquisition is 
followed by PacMAP dimensionality reduction and cluster identification, revealing eight distinct cluster that are associated with treatments 
(e, g). Cluster composition by treatment (f) and treatment composition by cluster (h) show cluster analysis is able to recognize heterogeneity 
and functional changes driven by treatment in an unbiased manner. n = 1296 microglia, three biological replicates. Scale bar = 30 μm.
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is small and circular (Figure 2g,h). Organelle phenotyping therefore 
provides high throughput morphological data at the single-cell level, 
ultimately allowing for morphological changes to be correlated with 
functional changes within identified subpopulations.

iMGL subpopulations identified by cluster analysis were fur-
ther analyzed to identify which characteristics drive cluster sep-
aration, providing unbiased insight into which characteristics are 
most different across cell treatments and clusters. As expected, 
morphological differences based on cell area and solidity (a read-
out of how circular a cell is) were two characteristics that drove 
cluster separation. IL-10 drove an increase, and C1q drove a de-
crease in cell area, whereas LPS did not influence overall cell area 
(Figure 3a). Moreover, IL-10 drove a decrease in solidity (increase 
in branching), and C1q drove an increase in solidity (decrease in 
branching), whereas LPS did not influence cell solidity in compar-
ison to untreated cells (Figure  3b). Quantification of additional 
morphological readouts may have revealed physical alterations 
associated with LPS treatment; consistent with this interpretation, 
an unpaired t-test between untreated solidity and LPS solidity re-
vealed a statistically significant increase (p = 0.0373), suggesting 
LPS does trigger a slight decrease in microglial branching. Overall, 
these data suggest that LPS, IL-10, and C1q may function through 
different mechanisms and thereby have discrete impacts on cell 
morphology and function.

Accumulation of fat storage and lipid droplets are often asso-
ciated with inflammation and activation in immune cells (D'Avila 
et  al.,  2008). Indeed, LPS drove an increase in fatty acid storage 
(Figure 3c), as has been previously noted in the literature for murine 

microglia (Khatchadourian et al., 2012). Consistent with the predi-
cation that IL-10 would drive the converse effect, IL-10 treated mi-
croglia displayed a slight decrease in fatty acid storage (Figure 3c). 
Furthermore, C1q displayed an increase in fatty acid storage that 
was comparable to LPS. These data together show that LPS and C1q 
influence microglial fatty acid storage similarly, while IL-10 drives the 
opposite phenotype.

As the primary phagocytes within the CNS, microglial lysosomes 
are indicative of phagocytosis and digestion. Indeed, an increased 
number of microglial lysosomes has been consistently noted in 
the context of neurodegeneration and neuroinflammation (Quick 
et  al.,  2023). While both LPS- and IL-10-treated microglia display 
an increase in lysosomes (Figure 1b,c), only IL-10-treated microglia 
display a significant increase in lysosome acidity (Figure 3d). This is 
consistent with previous findings showing IL-10 treatments increase 
phagocytic capacity of microglia (Yi et al., 2020). Interestingly, auto-
phagy is known to regulate lipid metabolism (Singh et al., 2009) and 
IL-10-treated microglia accordingly show a stark decrease in fatty 
acid storage (Figure 3c). These data highlight the complexity of or-
ganelle function and its influence on microglial state, moreover high-
lighting the value of this tool in studying how microglial organelles 
change in the context of disease.

We next investigated intensity of SiR-Hoechst (DNA stain) as 
a characteristic that separates out the identified subpopulations 
(Figure 3e). We observed a significant decrease in SiR-Hoechst in-
tensity following IL-10 treatment, suggesting chromatin unfolding. 
This is validation of IL-10 and its influence on epigenetic modifica-
tions that has previously been noted in the literature (Rajbhandari 

F I G U R E  2  All stimulants trigger distinct changes in iMGL morphology. iMGL remain untreated as a control (a, b) or are treated with 
lipopolysaccharide (LPS) (c, d), IL-10 (e, f), or C1q (g, h). lysotracker green (lysosomes, red), lipi-blue (lipids, yellow), TMRM (mitochondria, 
green), and SiR-hoechst (DNA, blue). Live cells are imaged 24 h following treatment. (a, c, e, g) show low power image of microglia following 
treatment and (b, d, f, h) show cells highlighted by identified cluster. n = 1296 microglia. Scale bar = 100 μm.
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    |  7SAKTHIVEL et al.

et al., 2018). Chromatin changes following LPS treatments have also 
been noted in other cell types (Shen et al., 2016). However, our data 
do not show a significant increase in SiR-Hoechst intensity in either 
LPS or C1q treatment. These data could suggest DNA compaction is 
influenced in anti-inflammatory microglia and that DNA/chromatin 
is a meaningful output to observe when considering epigenetics in-
fluence on microglial state.

Last, we evaluated changes in mitochondrial membrane potential 
across treatments (Figure 3f). LPS did not change TMRM intensity, 
while IL-10 drove a significant decrease, and C1q drove a significant 
increase. Interestingly, this is one organelle phenotype where LPS 
and C1q displayed separate responses, suggesting C1q likely pro-
motes microglial oxidative phosphorylation and ATP production in a 
manner that is distinct from LPS. These differing observations across 
all treatments highlight the variable changes in energy dynamics and 
the need for a functional output like mitochondria membrane po-
tential. Moreover, these data show that C1q influences microglial in-
flammation likely through a different mechanism from LPS and that 
organelle phenotyping has the capacity to quantify both the simi-
larities and differences between these two treatments. In summary, 
we demonstrate that organelle phenotyping can be used to interro-
gate multiple organelle outputs associated with microglial state in 
an unbiased manner, and we apply it to show C1q induces microglial 

organelles to exhibit characteristics consistent with a proinflamma-
tory phenotype.

3.3  |  C1q drives an inflammatory gene signature in 
iMGL, as predicted by the organelle changes observed 
with multidimensional microscopy

Because LPS- and C1q-treated iMGL show similar trends in orga-
nelle phenotyping, we predicted that LPS and C1q treated iMGL 
would also show similar trends in RNA production, a readout that 
is more historically used to evaluate microglial state. We thus used 
qPCR as a more traditional evaluation of gene expression to assess 
microglial state and quantify three representative inflammatory, 
anti-inflammatory, and homeostatic genes. To additionally investi-
gate a dose–response, iMGL were treated with three physiologically 
relevant concentrations of C1q produced by neutrophils [0.1 nM], 
macrophages [1 nM], and its concentration in the blood/serum 
[200 nM] (Hooshmand et  al.,  2017). After a 24-h C1q treatment, 
iMGL were lysed and mRNA was isolated for qPCR to investigate 
changes in transcription. Consistent with LPS, C1q also triggered 
an upregulation of inflammatory genes (CCL2, IL1-β, and IL-6) in a 
dose-dependent manner (Figure  4a). These data confirm that C1q 

F I G U R E  3  Functional changes in microglial organelles drive cluster separation. Subpopulation identification in an unbiased manner is 
largely due to changes in microglial morphology (a, cell area; b, cell solidity) and lipids (c), lysosome acidity (d), chromatin organization (e), and 
mitochondria membrane potential (f) in arbitrary units (AU). Statistical analysis by one-way ANOVA: [Cell area] F(3, 1292) = 21.25, p ≤ 0.0001; 
[Cell Solidity] F(3,1292) = 22.89, p ≤ 0.0001; [Fatty Acid Storage] F(3,1298) = 10.13, p ≤ 0.0001; [Lysosomal Acidity] F(3,1291) = 2.192, 
p = 0.0207; [Chromatin Organization] F(3,1292) = 5.965, p = 0.0001; [Mitochondria Membrane Potential] F(3,1292) = 6.865, p ≤ 0.0001. Post-
hoc Tukey's t-test as indicated. *p ≤ 0.05, ***p ≤ 0.001, ****p ≤ 0.0001. n = 1296 microglia, three technical replicates.
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increases the expression of inflammatory genes, in support of our 
prediction. Thus, the microglial phenotypes identified with multidi-
mensional microscopy (Figure 1) are correlated with changes in gene 
expression that are associated with an inflammatory state.

We additionally probed whether C1q changes the expression of 
representative anti-inflammatory or homeostatic genes. C1q had no 
effect on the anti-inflammatory genes IL-10 and BDNF, but slightly 
decreased the anti-inflammatory marker IGF-1 (Figure  4b). These 
data suggest that C1q can also decrease anti-inflammatory genes to 
promote an inflammatory phenotype. Lastly, C1q did not influence 
the homeostatic genes P2RY12 and SELPLG. However, C1q did drive 

an increase in CX3CR1 (Figure 4c). While CX3CR1 has historically 
been thought of as a homeostatic marker, CX3CR1 has recently been 
implicated in inflammatory processes as well (Freria et al., 2017; Ho 
et al., 2020). Interestingly, CX3CR1 has a known role in regulating 
phagocytosis (Zabel et al., 2016), thus, this may be a mechanism un-
derlying C1q-driven phagocytosis, consistent with the traditional 
function of C1q (Fraser et al., 2010). Overall, these data demonstrate 
that paracrine C1q influences human iMGL to adopt an inflammatory 
gene signature and are consistent with previous reports of C1q in-
fluencing rodent microglia to release inflammatory cytokines (Färber 
et al., 2009), suggesting the role of C1q as an inflammatory cue is 
conserved across species.

3.4  |  C1q triggers iMGL chemotaxis and 
phagocytosis, while attenuating iMGL proliferation

Microglia are well-known to rapidly respond to changes in ho-
meostasis by migrating towards regions of disease, proliferating, 
and/or inducing apoptosis. We therefore lastly evaluated iMGL re-
sponses to C1q via quantitative assays that characterize microglial 
functions distinct from their transcriptomic signature, providing 
us with a better understanding of how C1q influences microglial 
behavior.

Because microglia are highly dynamic and motile cells within the 
CNS, we tested the hypothesis that C1q can serve as a chemotac-
tic cue for iMGL. C1q is a known chemoattractant for numerous 
other cell types, including monocytes and macrophages (Agostinis 
et al., 2010; Kuna et al., 1996; Vogel et al., 2014). However, whether 
microglia migrate towards C1q remains unknown. iMGL were 
treated with all doses of C1q using a transwell migration assay. While 
all doses triggered chemotaxis, C1q[1 nM] interestingly induced in-
creased migration when compared to C1q[0.1 nM] and C1q[200 nM] 
(Figure 5a). These data show for the first time that C1q drives mi-
croglial chemotaxis in a dose-dependent manner.

We also assessed cell proliferation via EdU incorporation and 
cell death via AnnexinV and 7-AAD expression following 24 h of 
C1q treatment. Quantification of iMGL that incorporated EdU into 
the DNA during the 24-h incubation period demonstrated that ap-
proximately 25% of iMGL proliferate/turnover at baseline; how-
ever, this was significantly reduced in the presence of C1q[200 nM] 
(Figure 5b). Moreover, quantification of AnnexinV+/7-AAD- iMGL 
and AnnexinV−/7-AAD+ iMGL (Figure  5c) revealed no change in 
apoptosis (Figure  5d) or necrosis (Figure  5e), respectively. These 
findings were independently replicated using the ApoliveGlo vi-
ability assay, which provides a luminescent readout of Caspase 
3/7 activity as an alternative method to quantify apoptosis and 
cell viability (Figure  5d). Overall, we identify that C1q induced 
iMGL migration at all doses and attenuated iMGL proliferation at 
C1q[200 nM] only, but had no influence on iMGL apoptosis, necro-
sis, or cell viability. These data together show that C1q influences 
complex changes in microglial cell function by controlling migration 
and cell proliferation.

F I G U R E  4  Paracrine C1q drives an inflammation-associated 
transcriptional signature. iMGL are treated with C1q at three 
physiologically relevant concentrations: 0.1, 1, and 200 nM. 
Cells are lysed following 24-h treatment and mRNA is collected 
to investigate (a) inflammatory, (b) anti-inflammatory, and (c) 
homeostatic gene expression. Data show mean ± SEM normalized 
to untreated controls. Statistical analysis by one-way ANOVA: 
[CCL2] F(3, 12) = 1.144, p ≤ 0.0003; [IL-1b] F(3, 12) = 1.975, 
p ≤ 0.0001; [IL-6] F(3, 10) = 1.101, p ≤ 0.001; [IL-10] F(3, 12) = 4.053, 
p = 0.1203; [BDNF] F(3, 10)=3.947, p = 0.04; [IGF-1] F(3, 12)=2.117, 
p = 0.0074; [P2RY12] F(3, 11)=4.403, p = 0.1918; [SELPLG] F(3, 
11)=0.7597, p = 0.8368; [CX3CR1] F(3, 9)=1.188, p = 0.0012. 
Tukey's t-test as indicated. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. n = 3 
technical replicates per 3–4 biological replicates.
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4  |  DISCUSSION

Early studies in the mid-1970s first coined the term “microglial ac-
tivation” when observing the striking difference in microglial mor-
phology following brain damage (Tremblay et  al.,  2015). It is now 
understood that “microglial activation” is not black and white, and 
better tools are needed to evaluate these complex cells (Paolicelli 
et al., 2022). Here, we hypothesized that changes in organelles are 
a suitable methodology to investigate the wide spectrum of micro-
glial polarization. Because it is well-understood that mouse models 
do not recapitulate the genomic changes observed in human inflam-
matory and neurodegenerative disorders (Burns et al., 2015; Seok 
et  al.,  2013), we used human iPSC and a protocol to differentiate 
them towards iMGL (McQuade et  al.,  2018). Previous work has 
demonstrated that the transcriptomic of these iMGL in vitro closely 
resemble the transcriptome of human microglia that have been 

rapidly isolated from brain biopsies without culturing (Hasselmann 
et  al.,  2019). Interestingly, recent single cell sequencing studies 
have shown that iMGL exhibit considerable heterogeneity in gene 
expression when cultured in vitro and these subpopulations can be 
efficiently mapped onto human brain-derived single cell sequencing 
datasets (Dolan et al., 2023).

We used iMGL to apply a novel multidimensional phenotyping 
technique based on hyperspectral microscopy to quantify changes 
in iMGL organelles and investigate microglial subpopulations in an 
unbiased, functionality-based manner. We demonstrate the capac-
ity to quantify changes in microglial mitochondria, lipids, and lyso-
somes, as well as unbiased subpopulation clustering. We first tested 
the classical stimulants LPS and IL-10 to validate this functional 
phenotyping approach. We show that LPS increases lipid number, 
whereas IL-10 increases lysosomal pH and decreases mitochondria 
membrane potential. These data suggest inflammatory microglia are 

F I G U R E  5  C1q influences microglial migration and proliferation, but not necrosis or apoptosis. (a) C1q[0.1 nM], C1q[1 nM], and 
C1q[200 nM] all induce iMGL chemotaxis in transwell migration assays. C1q[1 nM] induces an increased level of migration, in comparison 
to low and high C1q doses. Statistical analysis using one sample t-test (*p ≤ 0.05, **p ≤ 0.01) for comparison with untreated control and C1q 
treatments. Statistical analysis by using one-way ANOVA (F(2, 6) = 0.06345, p = 0.0093). Tukey's post-hoc t-test as indicated (#p ≤ 0.05) 
for comparison between conditions. n = 3 biological replicates. (b–f) iMGL are treated with C1q[0.1 nM], C1q [1 nM], or C1q[200 nM] 
for 24 h and processed to quantify proliferation and cell death. (b) C1q[200 nM] drives a significant decrease in the percentage of EdU+ 
cells in comparison to untreated iMGL. Statistical analysis by using one-way ANOVA (F(3, 12) = 1.751, p = 0.023). Tukey's post-hoc t-test 
as indicated for comparison between conditions. **p ≤ 0.01. n = 4 biological replicates. (c–f) C1q treatment does not influence microglia 
cell death via apoptosis or necrosis. Representative flow cytometry plot of AnnexinV and 7AAD staining shown in (c). (d) Quantification 
of AnnexinV+/7AAD- microglia reveals no change in apoptosis. Statistical analysis by one-way ANOVA (not significant, F(3, 8) = 0.7259, 
p = 0.7867). n = 3 biological replicates. (e) Quantification of Annexin-/7AAD+ microglia reveals no change in necrosis. Statistical analysis 
by one-way ANOVA (not significant, F(3, 8)=0.3042, p = 0.6683). n = 3 biological replicates. (f) Quantification of apoptosis and viability by 
Apolive Glo assay also reveals no change in apoptosis following C1q treatment. Statistical analysis by one-way ANOVA not significant, F(3, 
8) = 0.1337, p = 0.9692. n = 3 technical replicates per 3 biological replicates.
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likely to increase fat storage, whereas anti-inflammatory microglia 
increase lysosomal digestion and decrease energy production. We 
next applied this method to investigate the hypothesis that C1q in-
fluences microglial state. Indeed, we show that C1q increases fatty 
acid storage in iMGL as LPS does, consistent with an inflammatory 
phenotype. However, unlike LPS, we show that C1q also upregulates 
mitochondria membrane potential, suggesting C1q drives an iMGL 
phenotype that is distinct from that of LPS. This critically suggests 
that C1q treatment increases energy production in microglia and 
provides new function-based insight into how C1q is modulating mi-
croglial state. These data together identify C1q as a novel and unique 
molecular regulator of microglial state/function.

The complement cascade is a key part of the innate immune sys-
tem's defense against pathogens, functioning by initiating a series of 
enzymatic reactions, recruiting inflammatory cells, tagging pathogens 
for removal, and triggering cell lysis. C1q, the recognition molecule of 
the classical complement cascade, has a well-defined role in recog-
nizing antigens and pathogens, initiating autocatalytic activation of 
the complement cascade, and tagging debris for clearance by phago-
cytic immune cells. In addition to its traditional roles in the immune 
system, C1q as a single molecule has recently become recognized for 
novel functions within the CNS. Indeed, C1q induces ERK, mitogen-
activated protein kinases, and Akt signaling pathways (Agostinis 
et al., 2010; Benavente et al., 2020; Lee et al., 2018), suggesting it 
could play a more complex role than opsonization of cells and debris. 
In support of this notion, C1q mediates neurodevelopmental plas-
ticity by tagging low-activity presynaptic terminals for elimination by 
microglia (Schafer et al., 2012; Stevens et al., 2007), modulates axon 
growth by suppressing myelin-associated glycoprotein growth inhibi-
tory signaling (Peterson et al., 2015), and serves as a chemotactic cue 
to initiate neural stem cell migration (Benavente et al., 2020).

C1q is present within the healthy and intact CNS, but is highly 
upregulated following aging (Stephan et  al.,  2013), injury (Figley 
et  al.,  2014), ischemia (Schäfer et  al.,  2000), Alzheimer's disease 
(Chatterjee et al., 2023), Parkinson's disease (Depboylu et al., 2011), 
and numerous other neurodegeneration conditions. These data 
suggest that C1q is likely to play a broad role in modulation of CNS 
inflammation in the context of disease and injury. In this regard, 
treatment of primary rat microglia cultures with exogenous C1q in-
creases proinflammatory cytokine and nitric oxide release (Färber 
et al., 2009). Here, we show that C1q similarly increases human iMGL 
transcription of proinflammatory markers in a dose-dependent man-
ner. Therefore, C1q in the diseased CNS is likely to modulate microg-
lial inflammation associated with aging, neurodegenerative disease, 
and injury. Future studies will investigate this hypothesis by moving 
towards a chimeric mouse model in which iMGL are transplanted 
into xenotolerant mice. The advantage of these in vivo studies lies 
in the fact that human microglia receive complex, in vivo cues and 
can successfully recapitulate the morphological regional diversity 
observed in murine microglia (Grabert et  al.,  2016; Hasselmann 
et al., 2019). These next set of studies will likely provide important 
additional data regarding the potential regional specific effects on 
human microglia that are likely to occur in vivo.

Overall, the data in this manuscript establish a novel tool to in-
vestigate changes in microglial organelles and thus provide insight 
into changes in microglial function. While traditional transcriptomic 
and proteomic tools are powerful, they provide only a limited under-
standing of these complex immune cells. Future studies will combine 
traditional evaluations of gene and protein signature with this novel 
organelle phenotyping approach to better characterize microglial 
responses to disease and treatment. For example, this tool provides 
us with the capacity to probe how different patient derived microg-
lia respond to disease stimulations (i.e., Aβ plaques, tau tangles, and 
alpha-synuclein) and how the same patient lines respond to potential 
pharmaceutical interventions. This combination will ultimately en-
able enhanced investigation of microglial state at the RNA, protein, 
and functional level. Taken together, this platform has the capacity 
to inform both basic science investigation and personalized medicine 
by providing a tool that will efficiently probe microglial state and 
function.
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