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Abstract

The biosynthesis of the active site of the [FeFe]-hydrogenases (HydA1), the H-cluster, is of 

interest because these enzymes are highly efficient catalysts for the oxidation and production of 

H2. The biosynthesis of the [2Fe]H subcluster of the H-cluster proceeds from simple precursors, 

which are processed by three maturases: HydG, HydE, and HydF. Previous studies established 

that HydG produces an Fe(CO)2(CN) adduct of cysteine, which is the substrate for HydE. In this 

work, we show that by using the synthetic cluster [Fe2(μ-SH)2(CN)2(CO)4]2− active HydA1 can be 

biosynthesized without maturases HydG and HydE.
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As highly efficient catalysts for the redox chemistry of H2, both its oxidation and 

its production from protons, the [FeFe]-hydrogenases have attracted much attention.1-3 

Knowledge of these enzymes inspires the design of catalysts relevant to fuel cells and thus 

sustainable energy.4 The fact that the catalytic active site of these enzymes is iron-based 

makes this quest especially enticing.5 While our understanding of how [FeFe]-hydrogenases 

function is substantial, major gaps remain as to how nature makes the remarkable active 

site.6,7 Understanding these steps promises to reveal new organometallic chemistry and 

could even underpin rational methods for modifying these enzymes.

The catalytic H-cluster consists of a canonical [4Fe─4S]H subcluster linked through a 

bridging cysteine (Cys) residue to a diiron subcluster.1 This subcluster, called [2Fe]H, 

is the active site for the substrate H+/H2 binding and activation.8 Although simple 

in stoichiometry, [2Fe]H features unusual cofactors (CO, CN−, and (SCH2)2NH2− 

(azadithiolate, adt)) and an Fe─Fe bond. Three maturation enzymes, HydG, HydE, and 

HydF, are responsible for the synthesis of [2Fe]H (Figure 1).6,7 Although consensus is 

lacking for the full biosynthetic pathway, it is widely agreed that the process starts with 

HydG. This radical S-adenosyl-L-methionine (rSAM) enzyme produces CN− and CO via 

the cleavage of tyrosine.9-11 Of overarching interest is the assembly of the Fe2S2 core 

of the [2Fe]H subcluster. One hypothesis proposes that [2Fe]H is derived by retrofitting a 

typical preformed cysteine-ligated [2Fe─2S] cluster with free CO and CN−.12 We have 

proposed that [2Fe]H is derived from [FeII(CN)(CO)2(cysteine)]−.13 Termed complex B, this 

cysteine–Fe complex is the product of HydG11,13,14 and the substrate of HydE.15,16 The 

HydE maturase, also an rSAM enzyme, reduces the low-spin Fe(II) center of complex B 

to Fe(I) via a radical mechanism, followed by dealkylation to form a mononuclear FeIS(CN)

(CO)2 entity.15,16 It has recently been speculated that a pair of these Fe(I) entities dimerize 

to generate an immature Fe2S2 cluster (Figure 1A), which is released by HydE and further 

processed by HydF for the installation of the bridging NH(CH2)2. A stringent test of this 

combination/dimerization hypothesis would entail the demonstration that a synthetic Fe2S2 

cluster species allows the biosynthesis of active hydrogenase in the absence of HydG and 

HydE. In this communication, we provide such evidence.

The key Fe2S2 species was prepared from K[Fe(CN)(CO)4] (K[1], Figure S7). Related 

salts of [Fe(CN)(CO)4]− have long been known,17,18 but this inorganic salt has distinctive 

solubility characteristics, being soluble in diethyl ether and producing derivatives that are 

water-soluble as required for biosynthetic experiments. Typical of other iron carbonyls, 

the CO ligands in [Fe(CN)(CO)4]− are labilized upon ultraviolet (UV) light irradiation.19 

This allows for the introduction of the inorganic sulfur ligands, providing access to 

Fe─S─CN─CO assemblies. Such species have been invoked as intermediates in the iron–

sulfur hypothesis of the origin of life.20

Irradiating an ether─pentane solution of K[Fe(CN)(CO)4] with monochromatic 365 nm 

light under an atmosphere of H2S resulted in a complicated mixture. A series of 

crystallizations and extractions culminating with the addition of the crown ether (18-

crown-6) gave the salt [K2(18-crown-6)2(thf)][Fe2μSH)2(CN)2(CO)4] ([K2(18-c-6)2(thf)][2]) 

in 8% yield. We propose that [2]2− arises from the dehydrogenative dimerization of 

[FeII(SH)(H)] species, analogous to Darensbourg’s synthesis of Fe2(μSPh)2(CO)6 by the 
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protonation of [Fe(SPh)(CO)4]−. 21 The low yield (8%) of our synthesis contrasts with 

the efficiency of the biosynthesis, which also proceeds by the dimerization of two Fe─S─
(CO)2─CN species within HydE.16

The Fourier transform infrared (FTIR) spectrum of solid [K2(18-c-6)2(thf)][2] shows a weak 

band at 2501 cm−1, which is assigned to νSH (Figure S11).22 The bands for νCN (m, 

2080 cm−1) and νCO (s, 1971, 1931, 1893 cm−1) in acetonitrile (Figure 2B) are similar to 

those for [Fe2(adt)-(CN)2(CO)4]2−.23 Fe─SH clusters, although rare, have been discussed as 

intermediates for dinitrogen fixation by the nitrogenases.24

The structure of [K2(18-c-6)2(thf)][2] was established by X-ray crystallography (Figure 

2A). In the solid-state structure, the two cyanide ligands are readily distinguished from 

CO by their Fe─CN distances, which are 0.194 Å longer than the Fe─CO bonds. 

Furthermore, both cyanide ligands bond to K(18-crown-6)+ centers, reminiscent of the 

tendency of FeCN groups in HydA1 to engage in hydrogen bonds.25 The cyanide ligands 

occupy apical positions. This stereochemistry is typical for other derivatives of the type 

[FeI
2(SR)2(CO)6–xLx] but differs from the situation for the [2Fe]H cluster where the 

two cyanides are equatorial. The metal–ligand and metal–metal distances are statistically 

indistinguishable from those for [Fe2(adt)(CN)2(CO)4]2−. The S─H centers, which were 

located and refined isotropically, are both axial (aa isomer). In solution, however, the 

axial–equatorial (ae) isomer predominates, as is normally observed26 and as predicted 

computationally (Figure S15). A third isomer of [2]2− is detected by 1H NMR spectroscopy 

(δSH-ee = −1.78) as well, consistent with a diequatorial (ee) isomer (Figure 3). In the ae 

isomer, the CO ligands are diastereotopic, which was confirmed by 13C NMR analysis 

showing two 13CO (δCO-ae = 222, 221) signals and one 13CN (δCN-ae = 149) signal.

The biochemical phase of this work commenced with testing the possibility that synthetic 

[2]2− can replace HydG and HydE maturases in the biosynthesis of the H-cluster, i.e., in 
vitro HydG/HydE-less maturation. Only the HydF maturase, apo-CrHydA1 (that harbors 

a [4Fe─4S]H subcluster), [K2(18-c-6)2(thf)][2], E. coli cell lysate, pyridoxal phosphate 

(PLP), and guanosine triphosphate (GTP) (details in the Supporting Information) were 

included in the maturation. Indeed, this HydG/HydE-less medium allows the biosynthesis 

of CrHydA1 with H2 production activity comparable to that of the standard holo-CrHydA1 

(Figure 1B). Our in-vitro-assembled H-cluster was interrogated by electron paramagnetic 

resonance (EPR) spectroscopy. Both the Hox and Hox─CO (the CO-inhibited form) states 

are mixed-valence S = 1/2 systems, which are ideally suited for EPR investigation. As 

shown in Figure 4A, the EPR spectrum of the resulting [2]2−-CrHydA1 poised in the 

thionine-oxidized state exhibits a rhombic signal with a g tensor of [g1, g2, g3] = [2.103, 

2.041, 1.998], characteristic of Hox. Hox-CO is also observed with its typical axial signal 

with a g tensor of [2.055, 2.009, 2.007], as routinely observed in in-vitro-maturated 

hydrogenase samples13,27,28 as well as [Fe2(adt)(CN)2(CO)4]2−-maturated hydrogenases.29 

This finding strongly implies that the H-cluster is assembled from an Fe2(SH)2 precursor.

To further support the above results, the maturation was conducted with [2]2− wherein 

both cyanide ligands are 13CN-labeled (13CN-[2]2−). The isotopologues 12CN-[2]2− and 
13CN-[2]2− are readily distinguished by their FTIR spectra as the νCN band shifted to lower 
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energy by 45 cm−1 as compared to naturally abundant [2]2−, while the νCO bands are 

almost unchanged (Figure 2B). The 13C NMR spectrum of 13CN-[2]2− shows three signals 

in the 13CN region with integrated intensities matching those of isomers assigned by the 

SH signals in the 1H NMR spectrum (Figures S5 and S6). HydG/HydE-less maturation 

using 13CN-[2]2− generated the corresponding 13CN-[2]2−-CrHydA1 as the exclusive EPR-

detectable product once oxidized by thionine. The EPR spectrum (Figure 4E) of the 13CN-

labeled Hox sample clearly shows ~30 MHz hyperfine splitting, which is identical to the 

hyperfine splitting observed from the 13CN-labeled H-cluster.13 The constitution of HydA1 

derived from 13C-[2]2− was further characterized by electron–nuclear double-resonance 

(ENDOR) spectroscopy. Measurements were recorded at Q-band EPR frequencies (~34 

GHz) using the Davies ENDOR sequence to characterize the hyperfine coupling between 

the 13C magnetic nuclei and the electron spin center (i.e., the distal Fe center in the Hox 

state). Two inequivalent hyperfine-coupled 13C nuclei are detected (Figure 4F) and are 

assigned to the distal and proximal 13CN sites (Figure 4G), with hyperfine tensors of [30.2, 

26.2, 29.0] and [5.26, 5.24, 4.46] MHz, respectively, that match our previous studies of the 
13CN-labeled Hox state (Figure S12).30 This result clearly indicates that the CN− ligands in 

the H-cluster come from [2]2−, which is consistent with the role of [2]2− as a competent 

organometallic precursor to the H-cluster.

Implicit in our HydG/HydE-less maturation of HydA1 is that the bridging HN(CH2)2 group 

is installed on the Fe2(SH)2 core. This scenario was confirmed by the maturation of [2]2− 

using 3-13C/15N-labeled serine in the medium,6,7 as our previous work28 had identified 3-C 

and N of serine as the source of the respective C and N centers of the bridging HN(CH2)2 

group.6,7 As observed by 13C/15N Mims-ENDOR (Figure 4B,C), two sets of 13C hyperfine 

coupling interactions (A(13C1) = [3.40, 1.35, 1.37] MHz and A(13C2) = [0.28, 1.32, 1.28] 

MHz) and one l5N hyperfine coupling interaction (A(15N) = [1.90, 1.57, 1.63] MHz), as 

illustrated in Figure 4D are detected by recording the ENDOR spectra at magnetic field 

positions corresponding to the g1 and g3 of Hox, where there are no contributions from the 

Hox-CO EPR signal. These hyperfine couplings are identical to previously reported values 

(Figure S12).28,31,32 All results show that [2]2− is a competent precursor en route to the 

H-cluster.

An additional control experiment, omitting HydF from HydG/HydE-less maturation, 

resulted in no assembled H-cluster in the HydA1 sample (Figure S13), which consequently 

exhibited no H2 production activity (Figure 1B). Clearly, HydF plays an essential role in 

transforming [2]2− into the H-cluster.

In summary, insights into the biosynthesis of the H-cluster are provided by a synthetic Fe2S2 

cluster, which allows the in vitro production of active [FeFe]-hydrogenase in the presence 

of only one maturase, HydF. These results help to define a roadmap for the biosynthesis of 

the [FeFe]-hydrogenase by three maturases : HydG produces [FeII(CN)-(CO)2(cysteine)]−, 

HydE converts this synthon into [Fe2(SH)2(CN)2(CO)4]2−, and HydF installs the amine 

cofactor.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) Proposed biological and inorganic synthetic pathways for the assembly of the 

[FeFe]-hydrogenase H-cluster. (B) H2 production activity (20 °C) of [2]2−-CrHydA1, holo-

CrHydA1, and an inactive maturated sample omitting the HydF maturase from the in vitro 
HydG/HydE-less maturation.
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Figure 2. 
(A) Structure of [K2(18-c-6)2(thf)][2]. Non-SH protons were omitted for clarity. (B) 

FTIR spectrum of [K2(18-c-6)2(thf)][2] (black) and [K2(18-c-6)2(thf)]-13CN-[2] (red) in 

acetonitrile under N2.
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Figure 3. 
(A) Isomers for [2]2−. (B) 1H NMR spectrum (high-field region) of [K2(18-c-6)2(thf)][2] in 

CD3CN solution.
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Figure 4. 
EPR spectroscopic characterization of CrHydA1 maturated with [2]2−. X-band continuous-

wave (CW) EPR spectra (15 K) of (A) [2]2−-CrHydA1 and (E) 13CN-[2]2−-CrHydA1 

oxidized by thionine. Both spectra are simulated using two components: Hox in red with 

g = [2.103, 2.041, 1.998] and Hox-CO in gray with g = [2.055, 2.009, 2.007]. (B) Q-band 
13C- and (C) 15N-Mims ENDOR spectra of [2]2−-CrHydA1 with the isotopically labeled 
15NH(13CH2)2 bridgehead as illustrated in (D). (F) Q-band 13C-Davies ENDOR spectra of 
13CN-[2]2−-CrHydA1, as illustrated in (G). The ENDOR spectra were recorded at 15 K and 

at the magnetic field positions corresponding to g1 = 2.103 and g3 = 1.998 of Hox, where 

there are no EPR signal contributions from Hox-CO. The black traces are experimental 

spectra, and the colored traces are simulated spectra (details in the Supporting Information). 

The ENDOR features marked by asterisks in (C) correspond to the third-order harmonics of 
13C ENDOR signals shown in (B).
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