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STABILITY OF AXISYMMETRIC, ANNULAR _FLUID INTERFACES 

AT ZERO CONTACT ANGLE 

Ilkka Karasalo 

ABSTRACT 

We study the stability, in terms o~ minimal total potential energy, 

of liquid configurations in axisymmetric containers, such that the 

liquid-vapor interface is annular and meets the container walls at zero 

contact angle. The proper limits of sufficient and necessary conditions 

for stability, respectively, as the contact angle tends to ze'ro, are 

formulated in terms of the Jacobi accessory differential equations. The 

stability is shown to depend crucially on whether the equilibrium liquid-

vapo~ interface stays inside the container or not when continued 

analytically past the three-phase contact lines. 
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1. INTRODUCTION 

We shall study in this paper the stability of certain configura-

tions of liquid partially filling an axially symmetric tank in a 

gravitational field directed along the axis of symmetry. We require, 

that the tank shape and the liquid volume are such that the liquid-

vapor interface is annular, i.e. it does not intersect the axis of 

symmetry, cf• figure 1: 

z 

Vapor 

r 

Vapor 
Container 

wall 

XBL 766-3054 

Figure 1: Example of permissible liquid-tank configuration 
and associated coordinate system. 
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A configuration is in stable equilibrium if and only if it strictly 

minimizes the total static potential energy of the system, 

E = cr · (A - cos y · A ) + E . 
f w g 

(1.1) 

among all nearby configurations with the same liquid volume V. Here 

cr > 0 (the liquid-vapor surface tension) and 0 ~ y ~ TI (the contact 

angle between the liquid-vapor surface and the container wall) are 

constants, Af and Aw are the areas of the liquid-vapor and the liquid-

wall interfaces, respectively, and E is the gravitational potential 
g 

energy of the liquid. This constrained minimization problem has 

received much attention in the literature, see e.g. Huh [5] and 

Gillette [4] for extensive lists of references. By a suitable choice 

of variables, it may be viewed as a variable-endpoint problem of 

variational calculus ([4] p. 21 and p. 145). When y > 0, this approach 

results in conditions which distinguish between stable and unstable 

cases in a rather satisfactory way. There appear to be fewer rigorous 

results, however, concerning to what extent these stability conditions 

also apply to the limiting casey= 0 (cf. [4], p. 23). The purpose 

of this paper is to analyze this limiting case for axially symmetric 

liquid configurations of the above kind. More specifically, we shall 

look at necessary and sufficient conditions, respectively, for 

minimum of E based on the Jacobi accessory minimization problem for 

the second variation of E (see e.g. Akhiezer [1], p~ 69), as y 4 0. 

The formal limits, as y 4 0, of the boundary conditions associated 

with the Jacobi accessory differential equations depend crucially on 
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whether the curvatures of the equilibrium liquid-vapor interface and 

the container wall coincide or not at the three-phase contact lines. 

In the latter case these limiting boundary conditions will be of the 

fixed end-point type (when using a parametric representation of the 

surfaces, see further Section 2.1 below). 

We will show, firstly (Theorems 3.1 and 3.2) that the stabili..!L__ 

conditions (sufficient and necessary, respectively) based on the fixed 

end-point boundary conditions in fact apply to (1.1) withy= 0 if 

only the analytic continuation of the equilibrium liquid-vapor interface 

does not penetrate the container walls at the three-phase contact lines. 

Secon"dly (Theorem 3. 3), we show that if the analytic continuation of 

the equilibrium liquid-vapor interface does penetrate the wall at either 

of the contact lines, the configuration will be unstable regardless of 

the conditions on the second variation of E. 
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2. NOTATION AND SOME PRELIMINARY RESULTS 

2.1 The Euler-Lagrange and Jacobi Conditions 

It will suffice to consider (1.1) at small perturbations from 

axially symmetric configurations. We will use a parametric arc-length, 

normal displacement representation of the surfaces (see e.g. Reynolds, 

Saad, Satterlee [8)). Thus the unperturbed liquid-vapor interface is 

described by 

R(s) 

Z(s) 

s < s < s 
0 - - 1 

0 < <P < 21T 
(2.1) 

in the polar co-ordinate system of figure 1, where s is the arc-length 

along the curve of intersection between the interface and any plane 

<P = constant. Then the equations 

R(s) n(s,<f>)Z'(s) C. Z(s) + n(s,<f>)R' (s) 

s (</>) < s < 
0 

0 < <P < 21T 
(2.2) 

describe a surface obtained by moving each point of the surface (2.1) 

the distance n(s,</>) in the direction ofthe normal at (s,¢). (In 

general, since we want the perturbed surface (2.2) to intersect the 

container walls, the functions R and Z of (2.1) must be continued to 

some open interval containing [s
0

,s
1

]. A convenient way of doing this, 

which we will use in the sequel, is provided by the differential 

equations (2.9) below). Similarly, in some neighborhood of the 

unperturbed contact lines (s = s and s 
0 

s in (2 .1) Y, the container 
1 
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wall will be given by 

r = R(s)- w(s)Z'(s) 

0 < cp < 2rr. (2. 3) 

z = Z(s) + w(s)R'(s) 

Then, denoting by oE(n) and oV(n). the increments of the energy (1.1) 

and the liquid volume at the perturbation (2.2), we obtain in a 

straightforward way 

where we have put 

T 
~ = ~(s,cp) = (n(s,cp),ns(s,cp),ncp(s,cp)) 

~ = ~(s) = (w(s) ,w' (s) ,0) T 

~. =the interval (s (cp),s )u(s
1

,s
1

(cp)) 
~ 0 0 

and, denoting R = R(s), Z = Z(s), 

(2.4) 

(2.5) 

(2.6) 
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+ n2(1 + n(R"Z' - Z"R')) 2}1/ 2 
·¢ 

(2. 7) 

Here p is the constant liquid density and g is the gravitation constant 

with g > 0 if the gravitation force acts towards the negative z-axis 

in figure 1. 

The condition, that all first order n-terms in oE(n) should 

vanish for all n such that oV(n) = 0 then leads to 

()fA ()f ()fv 
-a-(O,s) + ~(O,s) A-a -(O,s) 0 

n - n - n -

in s :5 s :5 s 1 , with the boundary conditions (2 .8) 
0 

cos y fA(w(s.),s.) fA (Q,si) = 0 i=O,l , 
- 1 1 

where A is a constant (the Lagrange multiplier). Putting B = pg/a, 
0 

H = Aja, using (2.6), (2.7) ~nd the i~entity R'(s)
2 + Z'(s)

2 ~ 1,(2.8) 
0 . 

becomes the Euler-Lagrange boundary value problem 

R" -z 1 (B z - H - z' /R) 
0 0 

Z" R I (B z - H - z' /R) 
0 0 

w(s.) = 0 
1 

i+l w'(s.) = (-1) tan y 
1 

i=O,l. 

(2.9) 
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(Without loss of generality we have excluded the contact angles 

n- y allowed by (2.8)). 

Assuming now that (2.9) is satisfied, the condition, that all 

second order n-terms should give a non-negative contribution to 

oE(n) for all n such that oV(n) 0, takes the form 

Q (]J) 
0-

2 2 2 } {A(s)]Js + B(s)]J¢ + C(s)]J dsd¢ 

2TI 

+ f {a.o]J(s~,¢)2 + Cl.l]J(sl,¢)2} d¢ 
0 

for all ]J(s,¢) such that 

/

2n/s1 

Here we have put 

0 s 
0 

R(s)]J(s,¢)dsd¢ -

> 0 

0 . 

(2.10) 

(2 .11) 

fA (O,s) + f (O,s) nn - gm- fv (O,s) 
.nn-

diag{C(s),A(s),B(s)} , (2.12) 

a . 
i 

i=O, 1. 

By (2.12) and (2.7), the A, Band C of (2.10) are 

A(s) CJR(s) 

B(s) CJ/R(s) 

C(s) = -2CJR" + pg{RR' - ZZ' + ZR(R"Z' - Z"R')} 

+ A.{Z' - R(R"Z' - Z"R')} . 

(2 .13) 

(2.14) 
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By (2.9), since R(s) ~ Rinin > 0 in s
0 

:: s :: s 1 , A, B and C will be 

smooth (in fact analytic) in some open interval containing [s
0

,s
1

] 

and A(s) > A . > 0, B(s) > B > 0 will hold there. By standard 
- m1n min 

results for symmetric, semibounded quadratic forms in Hilbert space 

(see e.g. Kato [7], p. 322 and 352-353), (2.10) may be analyzed in 

terms of the eigenvalues and eigenfunctions of an associated selfadjoint 

differential operator: . 

a a 
T]l = - ag (A(s)]1

5
) - acp (B(s)]l¢) + C(s)]l 

in s
0 

:: s :: s
1

, 0 :: ¢ < 2TI, with the boundary conditions, that ]1 

should be periodic in ¢ with period 2TI and 

A(s.)]l (s.,(j>) 
1 s 1 

i 
= (-1) Cl.ll(S. ,¢) 

1 1 
0 < ¢ < 27T 

i = 0,1 

T has a complete, orthogonal system of eigenfunctions of the .form 

with associated eigenvalues {Kik}~=l;k=O (ordered increasingly in the 

index i), determined from the boundary value problems 

A(s.)]l~k(s.) = (-l)ja.]l.k(s.) 
J 1 J J 1 J 

j=O,l 
i=l,2,3, .. . 

(2.15) 

k=O;l, 2, .. . 



0 () () u 7 2 .. I 

-9,-

We notice, that all eigenfunctions but those with k = 0 satisfy the 

constraint (2.11) and that, since B(s) > 0 in s < s ~ s
1

, the 
0 -

eigenvalues Kik are increasing functions of k. It then follows that 

(2.10) with the side-condition (2.11) holds for all~ in the class of 

continuous functions in s
0 

~ s ~ s
1 , 0 ~ ¢ ~ 2TI, which are periodic 

in ¢ with period 2TI and have square integrable first derivatives 

(see e.g. Kato [7], p. 322-323, Cor. 2.3) if and only if 

(2.16) 

where, denoting (f,g)
0 

f(s,¢)g(s,¢)dsd¢, B2 
and 62 

are the 1 2 

·solutions to 

0 

(2.i7) 

with 62 = 0 if the solutions are non-unique. 

(2.15) - (2.17) are(the equivalent of)the Jacobi accessory 

boundary value problems ·for our constrained minimization problem. By 

(2.13), (2.6) and (2.7), the boundary conditions are 

(-l)itan y ~~k(s.) 
1. J 

(2 .18) 

j=O' 1. 

We notice, that if w"(s.) :f O, j=O,l, (2.18) converges formally to 
J 
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0 j=O,l 

2.2 Permissible Perturbations. Two Lemmas. 

(2.19) 

By the contact lines of the liquid-vapor interface we mean the 

two closed curves within the container wall, any open neighborhoods 

of which intersects the interiors of both the liquid and the vapor 

inside the container (cf. fig. 1). The contact lines determine 

by (2.2) a closed region s0 (~) < s ~ s1 (~), 0 ~ ~ ~ 2n in the 

(s,~)-plane. We denote this region with l: and require the following 

regularity properites from l: and the associated function n: 

a) n is continuous in l: and periodic in ~ with period 2TI. 

b) ns and n~ are continuous in l: except possibly at finitely 

many isolated points or finitely many piecewise smooth curves 

d) 

with finite length. In particular, n is piecewise s 

continuous as function of s for all 0 < ~ < 2TI. ' 

where the supremum is taken over all points of l: where 

ns and n~ are continuous. 

s.(~), i=O,l are continuous and such that s.(~) - s., i=O,l, 
1. 1. 1. 

change sign at most finitely many times in 0 ~ ~ ~ 2TI. 

s~(~), i=O,l, are continuous except possibly at finitely 
1. 
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many points in 0 < ¢ < 2TI and 

1 
d (L:) =L (2.21) (supls.(¢)- s.l + supls~(¢)1) < 00 

1 1 1 

i=O 

where the supremum is taken over all points of 0 < ¢ < 2n 

where s~(¢) and si(¢) are continuous. 

Remark: The sufficient conditions to be considered below will 

ensure the stability of the surface (2.1) with respect to all pertur-

bations (2.2) which satisfy a) - d) above and for which d(n) + d(L) 

is sufficiently small. Thus in terms of variational calculus (see 

e.g. Bolza [2), p. 68-70) the extremum will be "weak". The detailed 

assumptions under b) and d) are introduced for simplicity in what 

follows, and could be relaxed slightly by introducing more advanced 

concepts from the theory of Lebesque integrals. With regard to the 

physical background, however, nothing essential is lost by the above. 

We will denote the closed rectangle s
0 

~ s ~ s
1

, 0 ~ ¢ ~ 2n by 

L: and use, for any f(s,¢) which is square integrable on L: , 
0 0 

llfll
2 = (f,f) 
0 0 

(2.22) 

where ( , ) is defined as in (2.17). Then the following result will 
0 

be useful: 

Lemma 2.1: Let ]J (s ,ell) satisfy the requirements a)-c) on ~~ and the condi bun 
0 
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0 0 < </> < 2TI. (2. 23) 

Let Q (~) be defined as in (2,10) and assume that A > A(s) > A > 0, 
o - max min 

B > B(s) > B . > 0 and /C(sY < C hold in s
0 

<_ s < s
1

. Then 
~X ~n ~X 

there exist positive constants K
0

, x
1

, L
0 

and L
1

, depending on 

A . , A , B , B and C but not on ~, such that 
m~n max min max max 

S I 

0 

(2.24) 

(2.24) follows from the mean value theorem in a straightforward 

way and the proof is omitted. (By use of a Sobolev-type inequality 

(see e.g. Kato [7], p. 193), condition (2.23) could in fact be omitted, 

and this .stronger result could be used for a similar treatment of the 

casey> 0, Karasalo '[6]). 

Before stating our second Lemma we need some further notation. 

For any ~(s,<f>) satisfying a) - c) on L and (2.23) we·put, for clarity 
0 

where Q (~) is defined in (2.10). Further, if oA(s,</>), oB(s,</>) o-

and oC(s,</>) are bounded and integrable on L and £ is a positive 
0 

constant, we put 

¢ = ¢(oA,oB,oc,£) inf Q (A+ oA,B + oB,C + oB,~) 
0 -

over all ~ satisfying a) - c) on L , (2.23) and the conditions 
0 

11~11 
0 1 ' 

(2.25) 

(2.26) 

(2.27) 
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j(R,l.l)
0
l < E(lll.lll + lll.l"'ll + 11].111 ). (2.28) s 0 ~ 0 0 

If f(s,cf>) is bounded onE , we will let, as usual, llfll denote the 
0 00 

supremum of jf(s,cf>)j over (s,<f>) in E. Then we have 
0 

Lemma 2.2: Let A(s), B(s) and C(s) satisfy the requirements in 

Lemma ~.1 and let oA(s,<f>), OB(s,<f>) and oC(s,<f>) be bounded and 

integrable onE . Let E > 0, define~ as in (2.25) - (2.28), denote 
0 

~ ~(0,0,0,0) and put 
0 

11 oAII + 11 Mil + 11 ocll + E . 
00 00 00 

(2.29) 

Then there exist positive constants c and 0 , independent of OA, oB, 
0 

oc and E, such that 

I~- ~.I< c. o 
0 

holds true, if only o < o . 
0 

Proof: Throughout this proof, M., N., oi, i=l,2,3, ••• will 
. 1 1 

(2.30) 

denote positive constants, independent of oA, oB, oC, E and ll· Let 

l.l satisfy conditions a) - c) on E • (2. 23) and (2 ~ 27). With the notation 
0 

of (2.25), put for brevity, oQ (l.l) = Q (oA,oB,oC,l.l). (oQ will be 
0- 0 - 0 

well defined. because of the assumptions.) Then there exist M1 , M2 , 

·N
1 

and N2 , such that 

(2.31) 
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because of Lemma 2.1 and the mean value theorem. Noting by (2.26) 

and (2.28), that~ is a non-increasing function of£ and that, by 

(2.10) and (2.25), Q (A,B,C,~) is a linear function of A, Band C 
0 -

we obtain from (2.31) 

(2.32) 

It follows, that we need only consider those~ which satisfy, e.g~, the 

additional condition Q0 (~) + oQ0 (~) ~ (1 + 2M1o)l~0 ~ + 2N1o when 

forming the infimum in (2.26). By (2.31) and Lemma 2.1, however, for 

all such ~ 

(2.33) 

if only, e.g., 1 0 < 0 =
- 1 2M Let ~ be any function satisfying a) - c) 

on L , ( 2 • 2 3) , 
0 

1 
(2.27), (2.28) 

f*(s,</>) 

and (2.33). Put 

c (~ - c f*) 1 2 . 

where c
1 

and c2 are chosen so as to make ~ satisfy (2.27) and (2.28) 

with£= 0, Le. c2 = (R,~)/(R,f*) 0 , c1 = 1/11~- c2f*ll
0

• Noting 

that (R,f*) is a positive constant, dependent only on s o o' 

R(s), it follows from (2.27) - (2.29) and (2.33) that 

(2. 34) 

Furthermore, since f* vanishes on s = s and s = s
1

, ~satisfies (2.23). 
·o 
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Then form 

Q (i}) 
o-

Here we use Lemma 2.1, (2.31), (2.33), (2.34), the mean .value theorem 

and the Schwartz inequality to find upper bounds for the terms to the 

right. We obtain, that for some M6 , o2 

(2.35) 

holds true, if only o < o
2 . Hence 

<P-<P<M ·o 
0 - 6 

(2.36) 

if o < o2. The statement of the lemma follows by combining (2.32) and 

(2.36). 
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3. STABILITY RESULTS AT y 0. 

Our first statement concerns sufficient conditions for stability 

at zero contact angle: 

Theorem 3.1: Let y = 0 in (1.1) and assume that the unperturbed 

surface satisfies the Euler-Lagrange equations with the associated 

boundary conditions (2.9), and does not intersect the z-axis. Assume 

further that the function w(s) of (2.3) is twice continuously 
I 

differentiable and that 

w(s) < 0 in some open neighborhoods of s s and s 
0 

Let K be defined as in (2.15) - (2.17) but with the boundary 
o. 

(3.1) 

conditions in (2.15) replaced by.the fixed end-point conditions (2.19), 

and assume that K > 0. Let d(n) and d(6) be defined as in (2.20) and 
0 

(2.21). Then there exists a constant d > 0, such that in (2.4) 
0 

OE(n) > 0 with equality iff n 0 in 6 (3.2) 

holds for all n satisfying the volume constraint OV(n) = 0 in (2.5), 

the conditions a) - d) of Section 2.2 and the condition 

dfnJ + d(6J < d . 
0 

( 3. 3) 

Remark: When y = 0, both the energy (1.1) and the liquid volume 

remain unchanged if the liquid-vapor interface is continued past the 

contact lines by "wetting" dry parts of the container walls. Thus, 

when y = 0, any configuration is neutrally unstable with respect to 
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such "wetting" perturbations. With our notation, however, the region 

E is unchanged at "wetting" (see the beginning of Section 2.2), 

and there is no ambiguity in (3. 2) in this respect. 

Proof of Theorem 3.1:' Let Q be defined as in (2.10). Then, 
0 

by (2.15) - (2.17) and the representation theorem for quadratic forms 

in Hilbert space (see e.g. Kato [7], p. 322-323): 

inf Q (l.l) o-
K. > 0 

0 
(3. 4) 

where the infimum is taken over all ].l satisfying in E the conditions 
0 

a) -c) of Section 2.2, (2.11), (2.23) and (2.27). 

Using the notation of (2.7) we put 

(3.5) 

where A is the constant in (2.8). Then, by (2.4) and (2.5), 

(3.6) 

·for all n satisfying the volume constraint ov(n) 0. For convenience 

in the following we denote 
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z.:+ = complement of (l:nl: ) w.r.t. 2:, 
0 

z.;_ = complement of o::nz.: ) w.r.t. E and 
0 0 

~ 

z.: = z.:uz.: = 2:
0
02:+ = Z.:uZ.:_ (3. 7) 

0 

and define a function n(s,¢) on f by 

n(s,¢) (s,¢) E L: 

n(s,¢) = (3.8) 

w(s) (s,¢) E z.:_ 

(i.e. n is obtained by extending n by wetting those parts of the wall 
~ 

which dried because of the perturbation n). By (2.6) and (3.7), L: 

has the boundaries 

s (¢) = min{s (¢),s} 
0 . 0 0 

0 < ¢ < 2'1T. (3. 9) 

Putting further 

0 ' (s,¢) E 2: 
0 

(3.10) 

w(s) 

v(s,¢) * = n(s,¢) - n (s,¢) , . 
~ 

(s,¢) E L: (3.11) 

we obtain by (3.6) and (2.5), noting that fE(Q,s) 0 and fv(Q,s) = 0, 
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21T 

dsd¢ -1 1 
0 75.¢ 

(3.12) 

for all n satisfying the volume constraint 

0. (3.13) 

In the sequel M., N. and d., i=l,2,3, •.• , will denote positive constants, 
~ ~ ~ 

independent of~. n, ~. s and¢. By (3.8) - (3.11), n, n*, V and 

s.(¢) will satisfy the requirements a)- d) of Section 2.2. Furthermore, 
~ 

since w(s) = O(s- s.) 2 in the neighborhood of s = s., we may find some 
~ ~ 

M
1 

and d
1

, such that 

(3.14) 

if only d(~) + d(n) ~ d1 . 

By (2.9) and since R(s) > 0 in s
0 

< s ~ s
1

, the functions R and Z 

can be continued analytically to some open interval containing [s
0

,s1 ] 

and it will hold R(s) > R • > ,0 there. It then follows from (2.7), - m~n 

(3.5) and (3.9) that there exist some d2 and d3, such that fE(.!]_,s) 

and fV(.!]_,s) are analytic functions of the arguments n, ns' and n¢ in 

the region In! + Ins! + lncpl ~ d2 at all points of ~. if only d(~) < d3. 

Hence, putting in (3.12) and (3.13) 
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(3.15) 

and 

(3 .16) 

there will exist some M2 and d
4

, such that 

(3.17) 

holds at all points of ~ where~* and v are continuous, if only 

d(n) + d(~) ~ d
4

. 

We now observe, that since w(s) ~ 0 in some open neighborhoods of 

s = s
0 

and s = s
1

, the first term to the right in (3.15) gives a 

non-negative contribution to oE(n). To see this, first note that 

fEn(~*,s) = 0 in ~0 , by (3.10), (3.5), (2.7) and (2.8). Second, 

when (s,¢) E ~+we have by (3.10), (2.12) and (2.14) 

where, for some M
3 

and d5 , 

(3.18) 
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if only d(~) ~ d5 • Furthermore, since w"(s) is continuous in ~+• DR 

will be continuously differentiable there. Hence, after partial 

integration of the first term in (3.18) noting that v(s,¢)w' (s) = 0 

on the boundaries of ~+' we obtain 

(3.19) 

where, for some d6 ; M4 , ID(s)l ~ M4 1:w'(s)j if only d(~) ~ d6 . Now by 

(3.1), since w(s.) = w'(s.) = 0, i=O,l, w"(s) < 0 in some open 
1 1 

neighborhoods of s = s
0 

and s = s
1

, whence the first factor of the 

last integrand will be non-negative, if only d(~) is sufficiently 

small. Since further, by (3.8) - (3.11), V(s,¢) > 0 at interior 

points of ~' we can then find some d
7

, such that for all permissible 

n for which oV(n) = 0 

if only d(n) + d(~) ~ d7. Furthermore, (3.20) holds with equality 

if ~+ is empty or if w(s) = 0 in ~+· 

In (3.13) and (3.20) we introduce a change of variable by 

putting 
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s' - s 
s = s(~'.¢) = ~o(¢) + s - s0 (~1(¢)- ~o(¢)) 

1 0 

~(s' ,¢) = V(s(s' ,¢),¢) . 

-

(3.21) 

(3. 22) 

(3.21) takes L: onto the rectangle L: in the (s' ,¢)-plane. It follows 
0 

by (3.17), (3.21), (3.22) and the smoothness ~roperties of A, Band 

c that in the notation of (2.25) 

1 
OE(n) ~ 2 Q

0 
(A + oA,B + oB,C + oC,.l!) 

where OA(s' ,¢), OB(s',¢) and OC(s' ,¢) are bounded and integrable 

on L:
0 

and such that for some M5 and d8 

if d(n) + d(L:) ~ d8 . Similarly, by (3.13), (3.16), (3.17) anc 

(2.7), there exist M6 and d
9

, such that 

I (R,~) I < M6
1d(n) + d(L:)} Jll~ II + ll~thll + 11~11 } 

0 - l . l s 0 ~ 0 0 

if d(n) + d(L:) ~ d9 . Furthermore, ~(s',¢) satisfies (2.23) and 

requirements a) - c) of Section 2.2 on 2: • We may then use (3.4) 
0 

·and Lemma 2.2 to conclude that there exists some d such that, e.g., 
0 

K 2 
OE(n) ~ 3° 11~11 0 

for all n satisfying the volume constraint, if only d(n) + d(L:) < d . 
- 0 

Since, by (3. 7) - (3. 11) and (3. 21) - ( 3. 2 2) II ~II 
0 

0 if and only if 
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n - 0 in E, this comp~etes the proof of Theorem 3.1. 

The second statement of this section is concerned with necessary 

conditions for stability at zero contact angle, based on the fixed 
r 

end-point conditions (2.19). As may be expected, these will apply 

regardless of the additional condition (3.1): 

Theorem 3.2: Let y = 0 and assume that the unperturbed surface 

satisfies (2.9) and.does not intersect the z-axis. Let K be defined 
0 

as in (2.15) - (2.17) but with the boundary conditions (2.19) and 

assume that K < 0. Then, for any d > 0 we may find a function n 
0 0 

satisfying a) - d) of Section 2.2, the volume constraint oV(nJ = 0 

in (2.5) and the con.dition d(n) + d(EJ < d such that in (2.4) o' 

oE(n) < o (3.23) 

Proof: We note that the infimum K in (3.4) under the conditions 
0 

stated there is attained for l.l = 0 where D is either l.lll or f\l.l 10 + S2l1 20 

in the notation of (2.15) - (2.17). We can use 0 to construct a function 

n with the properties required in the theorem as follows: Let e.g. 

(s - sOO )(slO - s) 

g(s) (3. 24) 

0 otherwise . 

Then put 

(3.25) 
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where a(£) is chosen so as to make n(s,~) satisfy the volume constraint. 

Using (2.5), the assumption (R,O) = 0 and the contraction mapping 
0 

theorem it can be shown that a(£) is well defined when lei is small 

and that a(£)= o(£), £ ~ 0. Since 0 and g are zero on s = s and 
0 

s = s 1 , ~+as defined in (3.7) will be empty. Hence, by putting 

0 (s,~) E ~ 

n*(s,~) = 

w(s) - e{!(s,~) (s,~) E ~...: 

we obtain by (3. 6) 

oE(n) 

(3. 26) 

(3.27) 

if only£ is small enough for.g(s) to be zero within ~-• cL (3.24), 

(3. 25). Noting that In* (s ,~)I < jeO(s .~)I in ~- and that the area 

of ~- tends to zero as £ ~ 0, we get from (3.27) 

2TT s
1 

<'iE(n) = £t [ tJlTfEnn(Q,s)jl_ dsd$ + o(£
2

) 

0 ' 

2 
E: ' 
-(K + o(l)) 2 0 

£ ~ 0. 

Since K < 0, the statement of Theorem 3.2 follows. 
0 

Finally, the following theorem states that if the analytic 

continuation of the equilibrium liquid-vapor interface penetrates 
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the container walls at either of the three-phase contact lines, the 

configuration is unstable: 

Theorem 3.3: Let y = 0 and assume that the unperturbed surface 

satisfies (2.9) and does not intersect the z-axis. Assume further, 

that for i~O or i=l the function w(s) is twice continuously differ-

entiable in some open neighborhood of s = s. and changes sign at 
~ 

s = s .. Then, for any d > 0, we may find a function n satisfying 
~ 0 

a) - d) of Section 2.2, the volume constraint (2.5) and the condition 

d(nJ + d(L) < d , such that (3.23) holds. 
0 

Proof: We may assume, e.g. i=l. Then w(s) > 0 

for s > s
1

, and since w(s
1

) = w'(s
1

) = 0, w"(s) > 0 holds in some 

open interval s
1 

< s < s
2

• Hence, the integral (3.19) can be made 

-negative by a suitable choice of ~¢. Furthermore, the integral is 

linear in v while by (3.12), (3.15) and (3.17) the other contributions 

to oE(n) are of higher order in v. The proof may then be completed 

by choosing some appropriate v(s,¢) and pr.oceeding as in the proof of 

Theorem 3.2 to satisfy the volume constraint. 

Remark: We note, that the instability stated in Theorem 3.3 

. holds regardless. of the stability conditions based on the second 

variation. The method of proof suggests that the instability should 

show by liquid building up towards the container wall at the contact_ 

line s = s in (3. 28). This kind of liquid behavior has some support 
i 

in experimental evidence [3]. 
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