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Continuum descriptions of membranes and their interaction with 
proteins: towards chemically accurate models

David Argudo*, Neville P. Bethel*, Frank V. Marcoline, and Michael Grabe**

Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of 
California San Francisco, San Francisco, CA 94158

Abstract

Biological membranes deform in response to resident proteins leading to a coupling between 

membrane shape and protein localization. Additionally, the membrane influences the function of 

membrane proteins. Here we review contributions to this field from continuum elastic membrane 

models focusing on the class of models that couple the protein to the membrane. While it has been 

argued that continuum models cannot reproduce the distortions observed in fully-atomistic 

molecular dynamics simulations, we suggest that this failure can be overcome by using chemically 

accurate representations of the protein. We outline our recent advances along these lines with our 

hybrid continuum-atomistic model, and we show the model is in excellent agreement with fully-

atomistic simulations of the nhTMEM16 lipid scramblase. We believe that the speed and accuracy 

of continuum-atomistic methodologies will make it possible to simulate large scale, slow 

biological processes, such as membrane morphological changes, that are currently beyond the 

scope of other computational approaches.
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1. Introduction

Biological membranes are crowded with transmembrane proteins and peripherally 

associated proteins that carry out a host of tasks ranging from ion and small molecule 

transport to cell motility. The distribution of proteins is highly variable and heterogeneous 

leading to specialized compartments with dedicated chemistries, polarized cells with distinct 

apical and basal membranes, and membrane structures with intricate morphologies. In this 

review, we are interested in the role that membrane proteins play in sculpting membrane 

shape as well as how local membrane properties influence protein function. The distinct 

shapes of many intracellular membrane structures are often the result of specific membrane 

proteins as is the case for the spherical vesicles that shuttle between the endoplasmic 

reticulum (ER) and Golgi that have a defined protein coat composed of COPI or COPII 

complexes [1], the convoluted folds of the inner mitochondrial membrane whose cristea are 

created by rows of transmembrane F-ATPase dimers [2], and ER tubular networks created by 

the homotypic fusion of embedded proteins on opposing membranes [3]. Additionally, 

membranes can adopt exotic configurations such as the cubic phases, or ‘plumber’s 

nightmares’, and the equilibrium between flat Lα phase and other membrane phases can be 

biased by the presence of membrane proteins [4, 5], which forms the basis of membrane 

protein crystallization from the lipidic cubic phase (LCP) [4, 6]. Meanwhile, the mechanical 

properties of the membrane can affect the biophysical properties of the protein. For instance, 

the thickness of the membrane drives dimerization of gramicidin channels, antibiotics that 

kill bacteria through the dissipation of ion concentration gradients [7], in-plane tension and 

the hydrophobic thickness of the membrane bias the opening and closing of 

mechanosensitive channels in response to touch and osmotic stress [8, 9], and tension can 

induce redistribution of Slm1 proteins that subsequently lead to downstream signalling [10]. 

Additionally, the shape or curvature of the membrane is thought to influence the probability 

of alamethicin conductance states [11] and to allosterically regulate the ion channel function 

of α–hemolysin [12], while also influencing the mobility of proteins in the membrane [13].

There are several mechanisms by which membrane proteins are thought to influence the 

shape of membranes, and here we present several top candidates loosely following the work 

of Kozlov and coworkers [14, 15]. We have grouped the shaping mechanisms into two main 

categories:

• First, proteins can induce membrane deformations by forming a coat around the 

membrane in which hydrophilic protein domains insert into the bilayer while 

adjacent soluble domains impart forces on the membrane surface. Two examples 

are the scaffolding mechanism and protein crowding effect. The scaffolding 

machinery involves the creation of a rigid protein coat composed of a protein 

template, such as clathrin in the case of endocytosis, that molds the membrane 

underneath (Fig. 1A). COPI and COPII complexes, discussed above, fall into this 

category since the array of proteins cover the membrane causing bending and 

curvature to produce a final shape. Additionally, the protein crowding effect gives 

rise to membrane bending through protein-protein forces resulting from membrane 

bound proteins [16, 17]. As the density of bound proteins increases, the rate of 

thermally driven protein-protein collisions of the soluble domains also increases 
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causing lateral steric pressure parallel to the membrane surface that can drive 

bending (Fig. 1B).

• Second, membrane shaping can occur through changes induced by the insertion of 

hydrophobic protein domains into the lipid bilayer. Within this category two non-

mutually exclusive mechanisms have been proposed: local spontaneous curvature 
and the bilayer-couple mechanism [14, 18]. In the local spontaneous curvature 

mechanism, the embedded protein interacts with the surrounding lipid molecules to 

alter the membrane’s local properties such as the propensity to curve, which is 

known as the spontaneous curvature (Fig. 1C). For instance, a shallow inserting 

amphipathic helix (circle) or conically shaped transmembrane protein (wedge) may 

differentially distort the packing of the lipid head-groups compared to the 

hydrocarbon chains resulting in a local change of the spontaneous curvature. 

However, besides spontaneous curvature changes, the locally induced packing 

distortions by inserted proteins can potentially change the value of other bilayer 

parameters such as the Gaussian/mean bending moduli, or compression modulus. 

In this manner, a few proteins in a region may make the local membrane more 

accommodating toward tubulating or budding into a vesicle. Proteins that contain 

BAR (Bin-Amphiphysin-Rvs) domains, which are banana-shaped proteins that 

have their own intrinsic curvature [19, 20], deform membranes potentially through 

a local spontaneous curvature mechanism; however, scaffolding may also be 

important [21–23]. Finally, the bilayer-couple mechanism involves an area 

expansion of one leaflet of the membrane with respect to the other (Fig. 1D). This 

can occur if a large number of proteins partially insert into one leaflet causing a 

differential area expansion. The area mismatch will cause in-plane compression on 

the protein side and tension in the opposing leaflet, and the relief of this strain can 

cause large scale bending into cylindrical, spherical and curved surfaces. Because 

the strain is spread over the entire surface, this mechanism works as a global 

phenomenon rather than a local one.

Different shaping mechanisms may be involved in the formation of specific geometries as 

recently suggested for endophilin A1 [23], where vesiculation and tubulation were found to 

be a function of the protein depth of insertion. But given the membrane shaping mechanisms 

are not mutually exclusive, it is possible that these mechanism work in concert to generate 

various types of membrane curvature.

Membrane proteins adopt different conformations, and forces from the lipids can bias these 

conformations. Thus, just as membrane proteins can influence the shape of the surrounding 

membrane, the local structure of the membrane can act back on the protein. There are 

several ways that this can occur, such as hydrophobic mismatch. In-plane tension can thin 

membranes causing a decrease in the hydrophobic thickness, which causes tilting of 

hydrophobic stretches of transmembrane proteins so that the greasy portions of the protein 

remain buried in the membrane core. Mechanosensitive channels, such as MscS and MscL, 

are thought to gate in this manner, whereby membrane thinning causes helix tilting and 

outward radial expansion that opens a water filled pathway through the center of the channel 

[8]. A second view of this gating mechanism is that the in-plane tension acts to expand the 
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area of the channel through line tension at the membrane-protein interface. Single channel 

studies have also demonstrated that the membrane curvature can influence the conduction 

state of ion channels, as is the case for hemolysins that lyse red blood cells [12]. It is unclear 

how the physical forces and torques from the membrane are imparted to the protein in this 

later case, but it is likely to occur through a mechanism similar to the previous example in 

which the local ordering of the lipids causes a reconfiguration in the protein to minimize 

hydrophobic and electrostatic energy. In addition to influencing protein function, membranes 

may guide the localization, diffusional properties, and protein-protein interactions of 

membrane and membrane associated proteins.

While there is emerging evidence that the interaction of the membrane with resident 

membrane proteins is important to many biological phenomena, it is difficult to elucidate 

these interactions both experimentally and computationally. From an experimental 

perspective, this is a difficult problem because the length scales are small and the lipid 

environment is dynamic making it difficult to probe via standard high resolution techniques 

such as X-ray crystallography, NMR and cryo-electron-microscopy. From a computational 

stand point, the study of protein interactions with the membrane presents its own challenges. 

Fully atomistic molecular dynamics (MD) simulations can elucidate with very high spatial 

and temporal resolution the interactions that the membrane has with the membrane protein. 

One particularly illuminating example is the studies of N-BAR proteins interacting with a 

membrane in which it is shown that the membrane can adopt a curvature similar to the 

intrinsic curvature of the BAR domain [24, 25]. However, typical simulations last for 

hundreds of nanoseconds to microseconds, and even long multi-microsecond simulations 

have highlighted the difficulty in capturing the local relaxation of the membrane to 

penetration by small amphipathic helices [26]. The other difficulty is the size of relevant 

systems. Even small highly curved vesicles contain thousands of lipids and millions of 

atoms [27]. Propagating these large systems forward in time is computationally taxing 

resulting in even shorter simulation timescales. Coarse-grained MD simulations are 

becoming more popular, and they make it possible to simulate larger systems by reducing 

the number of atoms at the expense of some loss of chemical detail [28–32]. However, many 

of the same problems inherent to fully atomistic MD are still present in CG simulations. 

That is, timescales are often too short to observe major reorganization events that involve 

long wavelength, low energy conformational changes in the membrane [33, 34].

An alternative to atomistic simulations is the use of continuum methods to model the 

membrane and the surrounding aqueous environment. Instead of explicitly representing 

every atom in the system, or groups of atoms, the biophysical properties and shape of the 

membrane are represented mathematically. Such a description dramatically reduces the 

computational load allowing for the determination of equilibrium configurations over very 

long length scales. However, chemical accuracy is lost and the mathematical equation can be 

very difficult to solve. There is a long history of describing the shapes and equilibrium 

fluctuations of membrane systems using elasticity theory starting with the work of Helfrich 

[35] and Canham [36] in the early 1970s. The propensity to bend and adopt different shapes 

is dictated by the material properties (elastic moduli) of the membrane, which must be 

determined from experiment or atomistic simulation. However, once these values are known, 

a set of partial differential equations (PDEs) can be derived that satisfy the minimum energy 
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configurations of the membrane, and their shapes can be computed. Several theoretical 

approaches have been developed to incorporate the influence of membrane proteins into this 

framework. Initial studies focused on the membrane deformation energies of single particles 

embedded in membranes with finite thickness, known as mattress models [37–39]. Later in 

the 1990s, researchers became interested in the interplay between embedded particles and 

whether membrane-mediated interactions could give rise to attraction or repulsion [40–42]. 

A common theme among all of these early studies is that the protein is represented as a 

simple point particle or rigid cylinder, and its influence on the surrounding membrane is 

included through a boundary condition imposing height, angle, and/or curvature constraints 

at the membrane where it meets the protein. Unfortunately, these models lack all of the 

complex geometric and chemical features present in real proteins. Later, the Honig lab began 

to explore the energetics of alpha helices associating with model lipid bilayers using an 

energy model with terms for continuum electrostatics [43], hydrophobic interactions, lipid 

perturbation effects, and other terms following the work of Jacobs and White [44]. While 

membrane deformations were not explicitly considered, the protein was treated with atomic 

detail. This allowed for a description of the system with increased chemical accuracy for the 

protein, while still using fast continuum calculations to account for electrostatic and other 

energetic terms.

In this review, we will focus on recent advances that have merged continuum models of the 

membrane with atomistic representations of the embedded proteins. In Section 2, we will 

briefly outline the mathematical and geometrical tools required to model thin sheets. Next, 

in Section 3 we will present the Helfrich Hamiltonian and other commonly used continuum 

models to describe the energetic state of pure membranes. We then survey in Section 4 ways 

in which the protein is coupled to the membrane, and we outline the evolution of protein 

representations from simple point particles to realistic high resolution structures. In Section 

5, we highlight the recent advances from several groups that have made progress in bridging 

continuum membrane mechanics with atomistic representations of the protein, while Section 

6 provides a detailed view of the hybrid model and associated machinery developed in our 

lab to carry out these calculations. In Sections 7, we present an application of our hybrid 

atomistic-continuum model showing that the predicted membrane deformations are in good 

agreement with fully-atomistic MD simulations making it possible to explore the biological 

function of membrane proteins and suggest testable hypotheses. Concluding remarks 

concerning future directions and challenges are discussed in Section 8.

2. Membrane geometry

Lipid bilayers are fascinating soft-matter systems which self-assemble from single 

molecules into very thin fluid films that can extend over macroscopic lateral scales. 

Therefore, the natural limit when the lateral dimensions greatly exceed the thickness is to 

describe the membrane as a two dimensional curved surface (single sheet) embedded in a 

three dimensional space. We start by reviewing some of the important geometric elements 

and definitions required to describe membranes in a continuum fashion including differences 

between a two-sheet model that describes the upper and lower leaflets independently versus 

a one-sheet model that represents the bilayer by a single surface. For a more complete 

description of the differential geometry tools necessary to model soft materials and 
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membranes, we refer the readers to work by Kamien [45] and Deserno [46]; here, we 

simplify the discussion to the most essential elements needed to describe membrane 

deformations in the small angle deflection limit.

The two-leaflet model is composed of two very thin surfaces (monolayers) that are stacked 

upon each other at an equilibrium distance L0 = 2h0 (Fig. 2). From here on, we denote 

variables associated with the upper and lower leaflets by + and − superscripts, respectively, 

unless otherwise noted. We use a Monge Gauge parametrization of the surfaces, such that 

each leaflet shape is described by a height function (h±(x, y)) [47]. Working within the 

linearized, small deflections limit, the normal vector to each surface N⃗± is [45]:

(1)

where the geometries are depicted in Fig. 2. The thickness variables (u±(x1, x2)) represent 

compression or expansion perpendicular to the plane of the membrane relative to the 

undeformed height ±h0:

(2)

It is also important to distinguish the true monolayer surface in three dimensional space (Γ±) 

from the two dimensional projection of the surface used in calculations (Ω±) [48]:

(3)

where the dΩ± is the differential dx dy in the projected plane. Often the bilayer geometry 

and energetics are represented by the dilation (d) and bilayer midplane (h) as shown in Fig. 

2:

(4)

For those cases where the in-plane compression is ignored, the bilayer can be represented by 

a single midplane surface (h) and the normal vector and projected surface area are defined 

analogously to Eqs. (1) and (3).

3. Continuum elastic energy models of the membrane

Many theoretical models have been developed starting from different view points [35, 36, 

48–51], and they all reach similar a conclusion – the crucial soft-mode is the membrane 

curvature deformation [46]. The separation of length scales between the thickness and lateral 

dimension of lipid membranes makes it possible to construct a large-scale membrane 

Hamiltonian that primarily depends on the curvature of the surface, and then additional 

energetic terms concerning local lipid physics enter through a small set of parameters that 

couple to the curvature [46]. The seminal work in this field comes from Canham [36] and 
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Helfrich [35] where they derived a Hamiltonian, which is only a function of membrane 

geometry (Fig. 2):

(5)

where σ penalizes the creation of new surface area Γ, 2H is the mean curvature, K is the 

Gaussian curvature, J0 is the preferred curvature of the membrane in the absence of external 

forces and torques, and KC and KG are the bilayer bending modulus and Gaussian modulus, 

respectively. The integral of σ corresponds to the total surface tension energy (ES), while the 

second term is the mean curvature bending energy (EB), and the last term is the Gaussian 

curvature energy (EG). The mean and Gaussian curvatures are defined in the small angle 

limit as:

(6)

and they correspond to shapes shown in Fig. 3. For the chosen normal vector N⃗ in Fig. 2, 

positive curvature H > 0 corresponds to a concave up bilayer. Similarly, for the two-leaflet 

model, positive curvature at the upper leaflet is a concave up shape, while positive curvature 

at the lower leaflet is concave down.

Rewriting Eq. (5) in the small angle deflection limit we arrive at:

(7)

where the effective surface tension contribution is given by . Since σ is 

constant, it does not contribute to the equilibrium solution, and it is commonly dropped (see 

Ref. [52] for instance). However, the physical interpretation of α(σ) is complicated, and it 

has generated significant controversy [46]. For a more in depth description of membrane 

surface tension, we refer the reader to the work of Schmid [53], Diamant [54] and Watson et 

al. [52]. Here we interpret σ as the conjugate variable that opposes the addition of new area 

Γ, in which case σ plays the role of a chemical potential with the area per lipid constant.

The Gauss-Bonnet theorem shows that the total Gaussian bending energy integrated over a 

closed surface, such as a vesicle with no defects or inclusions, is a constant [55]. Thus, the 

Gaussian term is often neglected. However, vesicles undergoing shape transitions with co-

existing fluid phases [56] or vesicles with open patches that contain embedded protein 

inclusions, as we consider here, require more care [57, 58]. For this reason, we retain the 

Gaussian term. Next, we consider two extensions to the basic Helfrich model that we believe 

are important when considering interactions with membrane proteins: compression of the 

membrane and orientation of the lipid.
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3.1. Compression of the membrane

Going beyond the Helfrich Hamiltonian framework, which depends solely on curvature 

variations, additional microscopic details can be added, and a logical first step is to include 

the finite thickness of the membrane [48]. Assuming incompressibility of individual lipids, 

changes in thickness can be related to the change in area (ΔA) per lipid molecule [47, 48] 

allowing for a description of the membrane in terms of curvature and area changes. In 

contrast to idealized single sheet descriptions where the midplane is used to describe the 

membrane, when a single surface also accounts for thickness variations, the choice of 

surface representation becomes important [48]. To better illustrate how this choice 

influences the mathematics, consider the downward bending of a thin film: stretching occurs 

at the upper surface and compression at the lower surface. Thus, a representation of the 

membrane at the upper surface will result in a different description than a representation at 

the lower surface. We are free to choose any surface, but it is often useful to construct the so 

called neutral plane [48]. Due to the geometry at a mathematical surface and how the 

geometry relates to the local curvature and thickness values, the energy description may 

involve cross terms between these two values, and the neutral plane is constructed to 

explicitly remove these cross terms. Therefore, in the small deflection limit, the Helfrich 

Hamiltonian (Eq. (7)) is modified by the addition of a single quadratic energy term related to 

area changes [59]:

(8)

where we have assumed V = Ah = A0h0, u = h − h0, and Ka is the bilayer compression 

modulus [46, 60].

3.2. Lipid tilt

The discussion up to this point has assumed that the lipids are oriented along the bilayer 

normal vector (N⃗); however, this is generally not the case. Experiments on DPPC bilayers in 

the gel-phase revealed that lipids tilt at an angle of approximately π/6 with respect to the 

surface normal [61]. At low temperatures, lipids exhibit internal structures with long range 

ordering, which are independent of local curvature and can only be described through the 

inclusion of an additional degree of freedom corresponding to the local orientation of the 

lipids [50, 62, 63]. A tilt degree of freedom has also been used in the literature to discuss a 

number of different phenomena including orientational lipid order in vesicles [63], inverted 

amphiphilic mesophases [64], and membrane fusion events [65]. Even for membranes in the 

liquid state at room temperature, order can be imposed on the tilt of the hydrocarbon chain 

due to geometrical constraints and imposed boundary conditions at the contact sites with 

rigid proteins [50, 66], and it has been suggested that tilt should be included in continuum 

models based on results from simulation [67, 68]. Recently, the first experimental support 

for lipid tilt in the fluid lamellar phase was provided based on X-ray scattering [69].

While originally introduced by Helfrich [35], a rigorous theoretical framework for studying 

lipid tilt in liquid state membranes was put forward by Hamm and Kozlov [50] in which they 

assumed that the core of a monolayer could be treated with standard elastic continuum 
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theory (as in Refs. [47, 70]). The key element is the definition of a variable t⃗, which 

characterizes the difference between the direction of the monolayer surface normals N⃗ and 

the average local head-to-tail vector of the lipids n⃗ (Fig. 2). For small deformations, we have 

[50, 64]:

(9)

Incorporation of tilt into the Helfrich model requires some care. First, the gradient of the tilt 

and surface bending curvature are additive, and both terms are penalized by the same 

macroscopic elastic moduli, which can be determined from experiment and/or simulation. 

Thus, in a model with tilt, the curvature (∇2h) in Eq. (7) is replaced by ∇⃗ · n⃗ yielding an 

analogous term to the mean-curvature deformation cost often referred to in the lipid tilt 

literature as the lipid splay penalty [50, 71]:

(10)

Second, there is an energy contribution due to the twist of the lipid molecules [50]:

(11)

where × is the cross product (∇⃗ × n⃗ = εi jknjk), Ktw is the lipid twist modulus, and the last 

equality comes from applying the small deformation relation (Eq. (9)) together with the fact 

that the curl of the divergence is zero (∇⃗ × ∇⃗h = 0). The lipid twist energy arises from the 

same physical origin as described above for Eq. (10) – spatial changes in the direction of the 

vector n⃗ [72]; however, (∇ · n⃗)2 does not always properly penalize all possible distortions, 

such as divergence free patterns. This is most easily understood by considering a flat bilayer 

with a divergence free director field n⃗, which adopts vortices as depicted in Fig. 4A. The 

difference between twist penalty (Eq. (11)) and splay penalty (Eq. (10)) becomes evident 

when comparing Fig. 4A with Fig. 4B. In Fig. 4A there is no splay since the divergence of n⃗ 

is zero, but the curl term properly penalizes the directional spiraling change of the lipid tails. 

On the other hand Fig. 4B shows pure splay of the lipids away from the center, which is 

penalized by the divergence.

Third, the use of n⃗ instead of N⃗ to penalize changes in orientation yields an analogous term 

to the Gaussian curvature penalty appearing in Eq. (7) [45, 73]:

(12)

Although having the same functional form as the Gaussian curvature term in Helfrich’s 

theory, the lipid tilt literature refers to the term above as the lipid saddle-splay penalty [50, 

71].
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Finally, when the tilt vector does not align with the monolayer surface normal, the lipids 

become stretched, which is penalized by an independent tilt elastic modulus Kt [50]:

(13)

The physical origin of the tilt-stretching penalty can be understood by considering a single 

hydrocarbon chain, which adopts a resting cross sectional area A0. The lipid volume can be 

approximated by the area times the equilibrium height h0: V = h0A0. Assuming 

incompressibility, if external forces cause the lipid vector t⃗ to deviate from the surface 

normal N⃗ with no change in the vertical height of the monolayer, then the lipid chain must 

stretch [50] as shown in Fig. 4C. The full lipid tilt energy is then:

(14)

where Etilt-twist is often assumed to be small, and Esaddle-splay is also often ignored since it is 

a Gaussian term.

3.3. Other approaches to membrane energetics

We end this section with a brief survey of additional techniques that have been developed to 

study membrane deformations. One of the most influential models has come from a liquid 

crystal description of the elastic energy of orientable molecules by Frank [72], and this 

methodology has been applied to the study of membranes and other soft materials [45, 55, 

73]. Another approach popularized by May and Ben-Shaul [49, 71], has been to build up a 

lipid bilayer total free energy F by starting from the average free energy per molecule f = 

F/N, where N is the total number of lipid molecules. The basic premise is that f can be 

expressed as the sum of three terms (f = fh + fi + fc): where fh is repulsive and arises from 

electrostatic and/or steric interactions between polar heads [74]; fi is attractive and reflects 

the surface energy associated with the hydrocarbon-water interface [74]; and fc is the chain 

conformational energy accounting for lipid-lipid interactions. Yet another more recent 

development is to use dimensional reduction to obtain membrane energetics [75]. The 

membrane is treated as a fluid surface of finite thickness with internal structure yielding an 

effective energy that depends on area changes and misalignment between the surface normal 

and lipid orientation. The equations naturally recover a large-scale Hamiltonian that depends 

on curvature with the addition of new terms that account for local-microscopic physics. 

Finally, while we have focused on single-lipid or single-component membranes, there are a 

number of continuum studies addressing multicomponent, fluid membranes that have 

varying lipid composition and inhomogeneous spontaneous curvature [76–78].

3.4. High order bending terms

The Helfrich Hamiltonian in Eq. (5) is a phenomenological expansion up to quadratic order 

in the curvature, and common concerns are whether higher order terms are needed to 

faithfully describe membrane mechanics and when does this description break down. There 

are biological situations in which it has been argued that higher order terms are required. For 

instance, elasticity equations with higher order terms produce stable tubular solutions [79], 
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and they have been used to study the periodic, egg carton shaped membranes observed in L-

form bacteria, which lack a cell wall [80]. Moreover, high order equations have proven 

useful in the analysis of inverted cubic phases [81]. On the other hand, experiments of 

membrane tether formation suggest that Eq. (5) is sufficient and that higher order terms are 

not needed to accurately describe the high curvature regime [82–84]. Similarly, coarse-

grained simulations also support the validity of the Helfrich framework for large deflections, 

with only minor errors [85–88]. In support of these later two observations, it has been argued 

that the higher order quartic curvature terms will only compete with the quadratic term when 

the radius of curvature is of the order of a lipid tail, which is half the bilayer thickness [46]. 

This theoretical argument is consistent with a study from the Cui lab showing that deviations 

between coarse-grained and continuum models of fusion pore formation only become 

notable when the radius of curvature is close to the monolayer thickness [88]. Another 

concern is whether a particular situation may fail because geometries exceed the small angle 

deflection limit in Eq. (7).

Next, we will explore how the membrane deformations discussed in this section relate to 

embedded or associated membrane proteins.

4. Coupling between the membrane and embedded proteins

Membrane proteins are surrounded by a shell of lipid molecules often referred to as a lipid 

annulus. As the bilayer deforms, the lipids in this annulus will impart forces to the protein 

potentially influencing its conformation and function. Likewise, the chemistry and geometry 

of the protein will act back on the membrane causing it to deform. How does one merge the 

continuum elastic treatment of the membrane already discussed with the presence of a 

protein inclusion? Generally, researchers have treated the proteins as hard constraints on the 

local membrane geometry, and formally, the proteins enter as boundary conditions imposed 

on the partial differential equations describing the surface. These constraints are based on 

the assumption that proteins are much more rigid than the membrane so that it is more 

energetically favorable for the membrane to adjust to the protein than vice versa. However, 

several research groups have considered the gating or transition of proteins from one 

conformation to another and explored the role that the membrane plays in biasing those 

discrete protein conformations [89–92]. The protein is thought to influence the neighboring 

lipid membrane through its geometry and its surface chemistry. First, membrane proteins are 

characterized by a belt of hydrophobic amino acids that insert into the hydrophobic core of 

the membrane (Fig. 5). If the lipids pull away from this protein-membrane interface, then 

water becomes exposed to the region at a very high energetic penalty due to the hydrophobic 

effect. Meanwhile, there are typically a ring of residues on the membrane protein surface, 

such as tryptophans, at both the upper and the lower head-group regions that favor the 

amphipathic interfacial region. This ring provides favorable electrostatic contacts with the 

polar and charged moieties on the lipid molecules. These considerations impose geometric 

constraints on the adjacent membrane through a mechanism termed hydrophobic mismatch 
[93]. The tight hydrophobic seal between the protein and membrane then imposes geometric 

constraints on the membrane due to the specific chemistry and shape of the protein. For 

instance, wedge shaped proteins, such as the KcsA potassium channel (Fig. 5), can only 

smoothly mesh with lipids if the membrane approaches the interface at a prescribed angle 
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called the contact angle. This later consideration can also impose tilt constraints on the 

adjacent lipids. As we will discuss, the contact angle and hydrophobic mismatch enter the 

equations through the boundary conditions, and they couple to the curvature, compression, 

and lipid tilt ultimately influencing the membrane deformation energy. Because these 

protein-induced membrane deformations can extend for long distances [40], a significant 

amount of research has been dedicated to the role of membrane mediated interactions 

between embedded proteins, which we will review. In what follows, we constrain our survey 

to approaches that retain a geometrical description of the protein shape, but we acknowledge 

that a number of studies treat the proteins as a mean density field that couples to the 

membrane curvature [76, 94–97].

4.1. Coupling through hydrophobic mismatch

One of the most important sources of coupling between the protein and the membrane 

comes from hydrophobic mismatch [93]. This phenomenon arises when the length of the 

protein’s hydrophobic transmembrane domain (dp) is different from the hydrophobic 

thickness of the bilayer (d0). Whenever dp ≠ d0 the protein and bilayer will adapt to each 

other either by local changes in lipid bilayer thickness and/or changes in the orientation or 

tilt of the protein in the membrane [93]. If the mismatch is positive (d0 < dp), there is an 

energetic penalty for exposing hydrophobic residues to water, which will cause the 

membrane thickness to increase through stretching. On the other hand if the mismatch is 

negative (d0 > dp), then the bilayer will compress (pinch down) to prevent exposure of 

hydrophilic residues to the hydrophobic core. Early experiments investigated the aggregation 

propensity of bacteriorhodopsin in phophatidylcholine (PC) bilayers of varying thickness, 

which induced different degrees of hydrophobic mismatch [98]. The authors determined that 

the protein remains mono-dispersed in bilayers with thickness values close to the protein’s 

value, but that aggregation occurs at extreme positive and negative mismatch values.

The antibiotic ion channel forming peptide, gramicidin A (gA), has also been a model 

system used to study the role of hydrophobic mismatch in controlling protein function [99]. 

Gramicidin is a short peptide that forms functional ion channels when two monomers (one 

from each leaflet) come together to create a dimer. Each monomer alone cannot span the 

width of the membrane, and hence, dimer formation and channel activity are tightly coupled 

to the hydrophobic thickness of the host membrane through a hydrophobic mismatch 

mechanism. The changes in the average channel lifetimes are related to the bilayer 

energetics [99, 100] giving rise to a direct experimental readout of the underlying 

microscopic interactions between the membrane and the protein. Moreover, Harroun et al. 

[101] used small angle X-ray scattering to provide experimental evidence for the theorized 

membrane thinning adjacent to channels.

4.1.1. Proteins influence bilayer thickness—The first two theoretical models that 

addressed hydrophobic mismatch were carried out using simplified protein geometries and 

accounted for only two modes of deformation: interfacial tension (change in total surface 

area) and change in bilayer thickness [102, 103]. Marcelja’s model employed microscopic 

statistical mechanics in which the protein was treated as a simple hexagonal shape that 

occupied a certain number of lipid chain sites [102]. Meanwhile, Owicki and McConnell 
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used a phenomenological, Landau-type model, where the protein was assumed to be radially 

symmetric [103]. Both models assume that the membrane adopts a fixed width at the protein 

surface due to the hydrophobic mismatch constraint. The models predicted that the bilayer 

thickness relaxes exponentially from the value imposed at the site of contact with the protein 

to the bulk value. Additionally, both models predicted that the membrane-induced 

deformations create a short range, attractive force between proteins that decays 

monotonically with distance. A few years later, Mouritsen and Bloom took a slightly 

different approach and introduced the well known mattress model, where both the protein 

and the membrane (mattress) are represented as one-dimensional springs [37].

4.1.2. Proteins influence membrane curvature—Following initial work that focused 

on thickness changes [37, 102, 103], Huang then adapted the free energy description used in 

smectic liquid crystal theory and introduced membrane curvature as a third mode of 

deformation, while retaining both compression and tension [38]. For analytic tractability, 

Huang also assumed a simple cylindrical protein and imposed constraints on the membrane 

thickness where it contacted the protein. This study was among the first to show that 

curvature in fact dominated the bilayer deformation energy, not compression, and that the 

energy density was confined to the vicinity near the protein [38]. Thus, retaining thickness 

distortions and introducing curvature in the elastic membrane model yields a theoretical 

framework that describes both long range (curvature mediated) and short range 

(compression) deformations2. The resulting model is quite similar to the Helfrich model in 

Eq. (7), but rather than expressing the membrane shape as a single sheet representing the 

bilayer, the compression is incorporated by describing the upper and lower leaflets by two 

independent surfaces with similar forms:

(15)

where all symbols retain their meaning as in Eq. (5), we have used the u± definitions in Eq. 

(2), and factors of 2 are present due to a monolayer versus bilayer description.

The equilibrium shape of the membrane is then determined by taking the functional 

derivative of Eq. (15) to arrive at:

2In subsection 4.2 we will discuss models that specifically focus on curvature mediated large-scale deformations.
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(16)

(17)

(18)

The equations presented above are quite similar to the ones obtained by minimizing the 

linearized version of the Helfrich-Canham Hamiltonian (Eq. (7)), except the lateral 

compression of the membrane becomes an important degree of freedom necessitating the 

need for another independent variable. Additionally, membrane proteins exert their influence 

on the membrane surface through the boundary conditions, which can sometimes make the 

equations incredibly hard to solve, but does not change their form.

The method discussed here for incorporating the influence of membrane proteins into 

continuum models of the membrane is not unique. Rather than incorporating membrane 

compression through the use of relative height differences between two monolayers, others 

have followed the work of Safran and described the membrane thickness changes by a 

dilatation variable as well as surface curvature [59]. Nonetheless, the influence of proteins 

on the membrane energetics and shape are also incorporated through boundary conditions 

motivated by ideas of hydrophobic mismatch and shape constraints [51, 58, 59, 104, 105].

4.1.3. Proteins influence lipid tilt—As discussed in Section 3, the membrane exhibits 

internal lipid orientation degrees of freedom that are independent of the curvatures and 

compression, and many studies have described how to couple membrane proteins to the lipid 

tilt [71, 106–111]. Fournier proposed one of the earliest phenomenological models based on 

symmetry expansions of a Helfrich-type Hamiltonian in two structural variables for each 

monolayer: one for lipid orientation and one for shape [106]. The protein inclusion was 

treated as an idealized, radially symmetric, piecewise conical shape with two distinct angles 

pertaining to each monolayer. The conical shape asymmetry could consequently lead to 

independent deformations of the upper and lower leaflets by imposing two different contact 

angles [106]. This model was found to always produce repulsive forces between inclusions, 

but the lipid tilt relaxes membrane curvature more quickly at short distances reducing 

interprotein repulsion [106].

The hydrocarbon chains making up the core of the bilayer can rapidly change their 

conformations often resulting in tilt, which elastically stretches the molecules [50, 106]. The 

large number of conformational states also indicates that lipids have a considerable amount 

of entropy. Near the membrane-protein interface, tail movement is restricted reducing the 

number of available conformations that can be adopted [107, 108]. Thus, the entropic free 

energy (Eentropic) of the lipids can be written as an explicit function of the distance from the 

protein. May constructed a simple 1D model for the entropic energy that depended on the 

lipid orientation n⃗ [107]. It was assumed that at each point in the membrane a spontaneous 
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director field (n⃗0) existed that defined the maximum entropy orientation of the lipids, and a 

model for n⃗0 was developed based on the assumption that the inclusion is an infinitely hard 

wall. The value of n⃗0 reflects the preferred lipid orientation in the presence of an inclusion 

ignoring other elastic terms; and therefore, the value of n⃗ that maximizes the entropy need 

not be the value that minimizes the total bending and tilt energies. In the absence of a rigid 

inclusion, n⃗0 = 0 vanishes, the average lipid orientation will align perpendicular to the 

surface normal, and there is no loss of conformational entropy. In the small deviation limit, 

expanding the entropic energy to quadratic order [108] results in:

(19)

where symmetric deformations about the horizontal mid-plane are assumed and Ke(x, y) is 

the space dependent tilt-entropic modulus. Note that the tilt modulus Kt in Eq. (13) has a 

different physical origin from Ke, and hence they are not the same. Both Ke and n⃗0 have 

been estimated with molecular-level mean field theories [107, 108, 112] and simpler 

continuum chain models [107, 108], where both methods produce similar results. Unlike 

other membrane parameters, they have spatial dependence since they vary with the distance 

from the inclusion having larger values at the protein interface.

4.1.4. Additional energetic terms—Several studies have included additional 

refinements to the protein-coupled membrane models presented already such as the 

relaxation of the constant lipid volume constraint [58], higher order coupling terms between 

changes in area per lipid molecule and curvature [51], and additional degrees of freedom that 

account for lipid protrusion in the short wavelength regime [105, 113]. Meanwhile, models 

for certain proteins such as mechanosensitive ion channels have added membrane tension as 

an external parameter that contributes to the total deformation free energy [89, 91, 114–117], 

rather than the intrinsic surface tension term in Eqs. (7) and (15).

4.2. Protein shape impacts membrane deformations

The interaction between the lipids and the protein surface impose height and angle 

constraints on the membrane, but the shape of the membrane protein itself and the placement 

and chemistry of residues at the interface are also crucial. For instance, a cylindrical protein 

with a well defined hydrophobic belt of uniform height will produce a different pattern of 

distortion than an elliptical protein whose hydrophobic belt changes height along the outer 

edge. Most theoretical studies have considered proteins as highly idealized shapes such as 

point particles, two dimensional flat disks and ellipses, or conical shapes - all lacking 

chemical detail [40, 41, 118]. As already discussed, the height of the hydrophobic domain of 

the protein, or conversely the membrane width, influence the compression and curvature 

energies of proteins that exhibit hydrophobic mismatch, but most studies assume simple 

cylindrically symmetric inclusions [38, 39, 93, 119, 120]. Similarly, Goulian and co-workers 

considered circular, conically shaped inclusions that imposed a fixed contact angle on the 

membrane all along the membrane-protein contact curve [40]. Minimizing the membrane 

elastic energy using a field-theoretic approach, the authors showed that proteins experience a 

membrane-mediated repulsion, and follow up corrections to these initial calculations also 

revealed purely repulsive interactions [121]. Adding membrane fluctuations to this 
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framework, however, produces attractions between proteins [40]. Interestingly, several years 

later, experiments with symmetric colloidal particles embedded in giant unilamellar vesicles 

produced colloid clustering, revealing that the source of the attraction was likely curvature 

mediated not fluctuations [122].

In an attempt to determine if the membrane could provide attractive forces between 

inclusions, Fournier and colleagues considered the interaction of point-like inclusions that 

imposed anisotropic curvatures on the membrane [123, 124]. With this change in protein 

geometry, the inclusions now exhibit long-range attractive interactions strong enough to 

induce aggregation; however, the results still failed to explain why symmetric particles 

aggregated [125]. Around the same time, Oster and co-workers employed a mechanical 

approach involving the solution of a PDE originating from the Helfrich Hamiltonian for the 

membrane with fixed height and contact angles corresponding to rigid, flat, circular, 

inclusions [41]. They showed that the solution is not additive, but rather the inclusions 

interact via an N-body potential that can exhibit stable clusters of particles. They 

emphasized that high order aggregates may exist even if the pair-wise forces are repulsive, 

and later work by Deserno highlighted this finding that the boundary conditions give rise to 

non-additive solutions even though the underlying equations are linear [122, 126]. In a 

follow up study, Oster’s lab extended the analysis to consider elliptical discs, and they 

concluded that the change in the shape of the inclusion greatly affects the character of the 

multi-body interactions [42]. An even more sophisticated treatment of the membrane shape 

employed a Fourier representation of the membrane-protein contact boundary to explore the 

membrane deformation energies of MscL mechanosensitive channels [116, 117]. 

Nonetheless, the vast majority of continuum membrane models have treated membrane 

proteins as highly idealized shapes that lack the complex geometric and chemical detail that 

real membrane proteins have, yet several studies have shown that shape is important [42, 

116, 117, 123, 124].

In Section 5, we will outline recent advances that have made strides in treating the complex 

nature of real membrane proteins.

5. Towards a more realistic geometric and chemical representation of the 

protein

In the last section, we suggested that a more detailed description of the protein is required to 

better understand how proteins interact with the membrane, how the membrane acts back on 

proteins, and how the membrane mediates protein-protein interactions. An outstanding 

question is then, “Can continuum elastic models really capture the salient features of 

membrane-protein interactions?” One of the best ways to quantitatively address this question 

is by comparing the membrane distortions generated by embedded proteins produced by 

fully-atomistic MD simulations with those from continuum theory. Lee and colleagues 

recently did this, and they showed that the lipid behavior in the annulus surrounding a 

gramicidin channel was quite complex, with specific tryptophan residues playing a key role 

in sculpting the membrane [119, 127]. When they compared their MD results with 

continuum calculations using a smectic-liquid crystal description of the membrane, they 
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realized that the model failed to produce the same deformations [119, 127]. Are we then 

stuck with atomistic MD simulations, or are there additional advances that can be made with 

continuum models? While fully atomistic MD simulations are powerful and provide a high 

level of chemical and spatial resolution, in certain cases, they are not able to match the 

timescale of biological phenomena, especially membrane relaxation, which can be very slow 

[26]. We believe that a new wave of hybrid continuum-atomistic models will be helpful in 

bridging the speed of continuum methods with the accuracy of MD simulations. To do this, 

the specific chemistry of the protein must be taken into account, as pointed out by Lee and 

colleagues [127], and we must move beyond idealized geometries.

In recent years, several research groups have worked on coupling continuum elastic models 

of the membrane with richer chemical and geometric descriptions of the protein to better 

understand membrane protein insertion and stability [33, 90, 128–132]. In many of these 

studies, the starting point for the protein is an atomic structure, often determined by X-ray 

crystallography or NMR, following the seminal work by the Honig lab in which they 

considered the interaction of a helix with a flat, rigid membrane [43]. This approach of 

bringing atomistic detail to the continuum membrane models makes it possible to carry out 

continuum electrostatics calculations, non-polar solvation energy calculations, and other 

protein mechanics considerations that are quite standard in molecular biophysics. A first 

order approximation to the total system energy is then:

(20)

where G(e) is the electrostatic energy, G(np) is the non-polar energy, is G(me) is the membrane 

bending energy. Thus, Eq. (20) might serve as a good alternative to fully atomistic 

approaches, while retaining the speed, and other positive attributes, of continuum membrane 

models. Moving beyond a flat, passive description of the bilayer, our group allowed the 

membrane to move in response to the presence of the protein [128] by adopting the 

continuum membrane deformation model put forth by Huang [38]. The presence of the 

membrane creates a complex dielectric environment around the protein that significantly 

impacts the electrostatic (G(e)) and non-polar energies (G(np)) of the system. We first solve 

for a given membrane deformation and then feed the shape of the solution into a continuum 

Poisson-Boltzmann electrostatic solver [133] by ‘painting’ the new dielectric environment 

around the protein [128]. Electrostatic considerations are crucial due to the low-dielectric 

environment of the membrane core, which poses a barrier to charged moieties on the protein, 

and computationally the protein, membrane, and aqueous solution are all given distinct 

dielectric values and solved easily with the numeric software APBS or APBSmem [134–

136]. One of the most important driving forces for protein association with the membrane is 

the hydrophobic effect or non-polar solvation energy. Upon entering the greasy, water free 

region of the membrane, water is liberated from the surface of the protein, which gives rise 

to an increase in the entropy of the water. This consideration, which is also an important 

determinant of protein folding, can be estimated from the shape of the protein and how the 

membrane forms around it. The simplest hydrophobic model assumes that the energy change 

is proportional to the surface area of the protein buried in the membrane with parameter 

values obtained from the Sitkoff and colleagues based on small molecule partitioning [137].

Argudo et al. Page 17

Biochim Biophys Acta. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The membrane distortions around proteins are then determined by identifying the membrane 

boundaries that minimize the total energy in Eq. (20). We identify the contact curve where 

the membrane touches the protein and then move the curve by hand [128] or through a 

search algorithm [33, 129] and calculate GT for each configuration (Fig. 6) We also use a 

Fourier expansion to describe the contact curve [33, 128, 129], similar to Haselwandter and 

Phillips [116, 117]. We can identify stable equilibria that show a mechanical balance 

between bending energies, electrostatic solvation of buried polar groups, and exposure of 

transmembrane domains to water [128]. With this approach, our lab has been able to 

quantitatively reproduce results from fully-atomistic MD simulations regarding the insertion 

energy of a helix harboring a charged residue [128], and we have qualitatively matched the 

energetics and deformations produced by the insertion of K+ channel voltage sensor 

segments (S4 segments) from coarse-grained and fully-atomistic simulations [129, 138]. 

Moreover, this hybrid atomistic-continuum approach also explains why charged residue 

insertion into membranes is non-additive – charged residues bend the membrane as they 

insert, and once the first residue has paid the elastic cost of bending the membrane, the 

second residue is water exposed at very little additional cost [129]. In Latorraca et al. [33] 

the work was extended to explore the energetics of ion and small peptide penetration into 

membranes, where thickness and membrane mechanical properties played a crucial role. 

Most importantly, the hybrid model probes questions related to membrane distortion at a tiny 

fraction of the computational cost required by fully atomistic approaches. Lastly, we believe 

that our approach can overcome the failure of simpler continuum models employed by Lee 

and colleagues [127] through the incorporation of protein side chain chemistry and relaxing 

the assumption that the protein is cylindrically symmetric.

The Feig group has extended this mechanical deformation model to include a more dynamic 

view of small molecules, peptides, and proteins [130]. They coupled the membrane elastic 

energy with a dynamic heterogeneous generalized Born (DHDBG) formalism for fast 

dynamics simulations in the presence of an implicit membrane. The authors found that when 

using the dynamic version that allows for membrane bending, instead of a static implicit 

model of the membrane, the insertion of charged and polar molecules (amino acid side chain 

analogs, the WALP23 peptide, gramicidin channels and arginine-containing helices) is much 

more in-line with results from fully-atomistic simulations [130]. Another important advance 

has been to more realistically treat the membrane-protein boundary. TheWeinstein group 

runs fully atomistic simulations of a membrane protein of interest and then extract the 

membrane height directly from the simulations for use in continuum elastic energy 

calculations [132, 139]. They developed a Cartesian grid-based finite difference method to 

solve the underlying elasticity equations allowing them to calculate the energetic cost of the 

membrane deformations arising from hydrophobic mismatch and curvature. The contact 

angle boundary conditions were not obtained from the simulations, but rather by an iterative 

minimization procedure performed over the membrane curvature (H) at the boundary. This 

multiscale modeling approach proved to be a useful tool in quantifying the hydrophobic 

mismatch-driven remodeling of membranes by G-Protein Coupled Receptors (GPCRs) [132] 

and was later used to understand how the coupling to the membrane influences the 

conformational state of the bacterial leucine transporter (LeuT) [139].
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Other researchers have employed sophisticated numerics, such as finite-element methods 

and mean-field approaches, to treat membrane mechanics, while also retaining some level of 

chemical detail in the protein [90, 131, 140, 141]. Powerful numeric schemes, such as these, 

have the potential to accurately handle large membrane deformations where the small angle 

limit breaks down [142] and/or non-linear elasticity may play a role. For instance, Zhou and 

co-workers developed a finite-element model of a membrane with non-linear elasticity in 

close apposition to a curvature inducing BAR domain [131]. The protein was treated 

atomistically, and its electrostatic influence on the nearby membrane caused it to curve. 

Similarly, Khelashvili et al. [141] studied BAR-domain induced remodeling of a 

heterogeneous membrane making use of a self-consistent mean-field model that combined a 

BAR domain in atomistic detail with a free energy density functional based on the 

continuum Helfrich model and on Poisson-Boltzmann (PB) electrostatics. Another related 

area for improvement is the description of lipid order around the protein and how this can 

give rise to spatially dependent moduli [143].

Finally, while we have focused in this section on hybrid approaches that predict deformation 

profiles around a protein by solving a PDE. However, some authors have used MD 

simulations to determine the membrane shape, similar to the Weinstein group, but then 

analyze the energies, forces, and torques with a continuum model without formulating and 

solving a PDE [92, 144–146].

In Section 6, we will briefly outline the energetic terms of our hybrid continuum-atomistic 

model, discuss our recent advances in treating complex membrane shapes, and then show 

how our method compares to fully atomistic MD simulations for complex membrane 

proteins in Section 7.

6. A detailed look at our hybrid continuum-atomistic model

Here we describe the energetic terms in Eq. (20) and the machinery needed for identifying 

the membrane-protein contact curve, and optimizing the curve to determine deformations 

that minimize the total energy. As discussed in the last section, many other researchers are 

approaching this problem from a number of different interesting and unique perspectives - 

ours is just one of these approaches.

6.1. Electrostatic energy

We calculate the electrostatic component of the energetic cost for the protein to be in the 

membrane using Poisson-Boltzmann (PB) theory:

(21)

where ϕ(r⃗) is the reduced electrostatic potential at position r⃗, kB is the Boltzmann constant, T 
is the absolute temperature, κ is the Debye-Hückel screening coefficient, ε is the spatially-

dependent dielectric constant, ρ is the space-dependent charge density, and e is the 

fundamental charge unit. The influence of the membrane enters through the spatial 

dependence of ε, κ, and ρ in cases where we explicitly include charged groups to represent 
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anionic lipids at discrete locations in the head group interface [147]. The solution to the 

continuum membrane equations (Eqs. (16) – (17)) determine the boundaries delineating 

these spatial regions, and the APBS software provides a flexible platform for modifying 

these three parameters [34] and solving the PB equation [134]. Once ϕ(r⃗) is calculated, G(e) 

is readily computed:

(22)

where G(e) is the linearized form, but in practice we report values computed with the full 

non-linear energy. The electrostatic energy is formally divergent when calculated as in Eq. 

(22), and we always determine values with respect to the protein in solution far from the 

membrane [128], which removes the singularities.

6.2. Non-polar energy

The non-polar energy arises, in part, from the solvent reorganization that happens when 

large molecules are sequestered away from water. This phenomenon is responsible for the 

clustering of hydrophobic proteins and peptides and the stabilization of molecules in the 

membrane. A fast and simple theory for estimating the strength of this interaction within the 

continuum framework is to assume that the stabilization energy of the molecule in the 

hydrophobic environment is proportional to the solvent accessible surface area (SASA) 

[137, 148]. The physical motivation is that the number of conformationally restricted water 

molecules that are released upon removal from solution is related to the amount of surface 

area; however, more sophisticated theories have been applied to this problem [149–151]. We 

model the non-polar energy contribution to the protein in the membrane as [128]:

(23)

where Amem is protein’s SASA in the membrane and Asol is value in solution. The 

phenomenological constant a (a = 0.028 kcal/mol·Å2) is taken from earlier work exploring 

the transfer of small solutes between polar and non-polar solvents [137]; however, we set b 
to zero given that the meaning of this offset is difficult to interpret for partial insertion into a 

hydrophobic environment and its magnitude is small compared to all other energetic terms in 

Eq. (20). Finally, we use the MSMS program to quickly compute the protein surface area 

[152]. As described elsewhere [33], we use the solution for the upper and lower membrane 

leaflet surfaces to determine which portions of the protein are solvent accessible when 

computing Amem.

6.3. Membrane elastic energy

Any of the membrane models proposed in the literature and discussed in Section 4 could be 

used to compute the membrane energy G(me), but the models that are most compatible with 

our energetic treatment of the protein are ones that explicitly account for the membrane 

width. Thus, our work has utilized a dual monolayer leaflet description [33, 128, 129] as 

proposed by Huang [38], which treats the upper and lower leaflets independently and 

depends on changes in curvature (mean and Gaussian), thickness and tension. We assume 

that the total bilayer elastic energy is given by the sum of the contributions from each 
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monolayer, we employ a Monge gauge representation, and we ignore spontaneous curvature. 

Near the protein, where there is not always a one-to-one correspondence between a patch in 

the upper leaflet with a patch in the lower leaflet, it becomes difficult to define the 

compression, and we have recently developed a method for handling these complex 

boundaries (currently in preparation [153]). In the past, we used a finite difference approach 

to solve the underlying PDEs in Cartesian or radial coordinates, but more recently we have 

developed a finite volume approach [154] that is more appropriate for solving biharmonic 

equations on complex boundaries by using a level set function to describe the membrane-

protein boundary curves ([153]). In Section 7, we will employ this membrane model as 

shown in Eq. (15) with the standard parameters given in Table 1; however, our algorithm is 

flexible and any single energy term, including G(me), can readily be exchanged with a 

different theory.

6.4. Identifying and optimizing the contact curve

Within the dual monolayer framework, there are two contact curves – one for the upper 

leaflet and one for the lower leaflet (Fig. 6). These curves represent the lipid excluded 

surface, which is the surface of closest contact between a spherical lipid probe and the 

protein atoms [155]. We first erect a flat, Cartesian grid for the upper and lower leaflets, and 

then use level set theory to move grid points near the membrane-protein surface onto the 

boundary curve representing the lipid excluded surface [154]. Next, we represent the initial 

displacement of the membrane on the protein (the hydrophobic mismatch) by a Fourier 

expansion with an arbitrary number of terms. Such a representation gives rise to smooth 

boundary curves, which are generally seen in simulation, that are not characterized by 

prohibitively large curvature energies. Once the boundary is set up with particular values of 

the Fourier coefficients, we solve for the total membrane shape to determine G(me), then the 

monolayer surfaces from the solution are used to determine G(e) and G(np), as described 

above. Finally, we optimize using simulated annealing followed by Powell’s method to 

determine the membrane-protein contact curves and the total energy of the system as in Eq. 

(20). Convergence of the search is highly dependent on the protein, but generally it requires 

500 to 1500 iterations and about 2 to 7 hours on a desktop computer. For a more detailed 

description of the energetic model or its solution, we refer the reader to our previous studies 

[33, 128, 129, 147].

7. Continuum membrane models can match atomistic simulation

While membrane elastic models are incredibly fast, compared to coarse-grained and fully-

atomistic simulations, and make it possible to quantify membrane bending energies, there is 

an open question as to whether they can accurately reproduce the true membrane 

deformations induced by membrane proteins. Unfortunately, experimental methods cannot 

be used to benchmark the quality of continuum models since they lack the spatial resolution 

required to determine how lipids are configured around proteins, thus, atomistic simulations 

remain the best means of comparison. Only a few studies have directly compared continuum 

results with coarse-grained [33] and fully-atomistic [127, 145, 146] simulations, and the 

main conclusion from Lee and co-workers is that continuum models have major deficiencies 

[127]. Here we highlight some of the recent developments in our continuum model 
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discussed in Section 6 by showing that we can quantitatively match deformation profiles 

observed in MD simulations for the lipid scramblase nhTMEM16. The MD simulations and 

our model predict extensive membrane remodeling.

7.1. The nhTMEM16 lipid scramblase produces large deformations

The compositional asymmetry of lipids between the leaflets at the plasma membrane 

influences signaling properties of cells. Scramblases are a class of proteins that disrupt 

membrane asymmetry by facilitating the transfer of phospholipids from one leaflet to the 

other in an energy independent manner. These transmembrane proteins play a role in events 

such as coagulation of the blood and cellular apoptosis by transporting phosphotidylserine 

(PS) from the inner leaflet to the outer leaflet of the plasma membrane [163]. In particular, 

TMEM16 family members have gained recent attention for their role in phospholipid 

scrambling in platelets and fungi [164, 165]. Additional insight has come from the high-

resolution structure of a family member from Nectria hematococcus (nh) (nhTMEM16), 

which has revealed a possible mechanism for phospholipid conduction across the membrane. 

The molecule forms a dimer, and each subunit has a hydrophilic cavity that faces the core of 

the membrane. It is believed that head groups are conducted from one leaflet to the other 

through this groove, and this hypothesis is supported by chimera studies carried out on 

family members that have lost the ability to flip lipids [166].

No lipids were resolved in the 3.3 Å resolution structure, which is not surprising, so a 

molecular level view of how nhTMEM16 interacts with the membrane was not clear. Using 

their software, MemProtMD, the Sansom group embedded the protein in a DPPC lipid 

membrane and ran a microsecond coarse-grained simulation of nhTMEM16, and in this 

short time frame they observed deviations from a planar bilayer and 15 lipids traversed the 

lipid-facing cavity [167]. We turned to all-atom simulations to determine if the distortions 

around nhTMEM16 compared favorably with results from our continuum method. We 

centered the dimer in the membrane with far-field boundaries taken from OPM [168], and 

then used our algorithm to identify the membrane-protein boundary followed by 

optimization to minimize the total energy (Eq. (20)). Our model shows that nhTMEM16 

drives significant membrane bending in what appears to be a pinching mode from the upper 

and lower leaflets (green surfaces in Fig. 7A) indicative of hydrophobic mismatch. The 

induced curvature is largest at the hydrophilic groove, but it is also present at the periphery 

of the groove (Fig. 7B). Surface views of the upper (panel C) and lower (panel D) leaflets 

reveal a pseudo-two fold pattern consistent with nhTMEM16 being a dimer, and they also 

reveal that the leaflets bend down by as much as 10 Å from the upper leaflet and up by 

nearly as much from the bottom leaflet. Additionally, there is little compression as suggested 

from the comparison of the upper leaflet displacement (panels C and E) with the lower 

leaflet displacement (panels D and F), but rather the upper and lower leaflets move in 

concert (panel H).

Next, we ran four MD simulations for 50 ns (full simulation details in Table 2) for an 

aggregate simulation time of 200 ns and plotted the average height of the upper and lower 

leaflets (Fig. 7E, F). The pattern of the deformations predicted from the all-atom simulations 

is strikingly similar to the results from our continuum calculations. The two fold symmetry 
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is again present, and the pattern of downward deflection (blue) and upward deflection (red) 

at the upper leaflet is nearly identical (panels C and E). Moreover, our continuum model is 

also in quantitative agreement with MD in predicting the absolute magnitude of the 

deflections from −10 to +5 Å. The agreement at the lower leaflet is also quite good both 

qualitatively and quantitatively (panels D and F), with the biggest discrepancy (of about 5 Å) 

occurring at the inlets indicated by stars panel (Fig. 7D). We believe that our results provide 

insight into the function of nhTMEM16, and that the pattern of membrane distortion across 

the hydrophilic groove is likely essential for its ability to move lipids from one leaflet to the 

other efficiently, and this hypothesis can be tested through the design of future experiments. 

Lastly, the continuum calculations are very fast. The molecular dynamics simulations took 

32 GPU days to produce the full 200 ns trajectory, while the continuum calculation took 8 

hours to complete on a single CPU (100 times faster without considering the cost differences 

between GPUs and CPUs). We note that in our continuum methods rather than using the 

averaged structure from our MD, we have performed the calculations using the crystal 

structure of nhTMEM16 [169]. Often the protein conformation will change during the 

simulation, which can confound comparisons between simulation and continuum 

calculations on static snapshots. To quantify the structural differences and degree of 

nhTMEM16 drift we calculated the root mean squared deviation (RMSD) of the entire 

protein (4.3 Å) and the transmembrane domain (1.1 Å) alone. Since the latter region is 

responsible for inducing membrane deformations, and has a small RMSD value, we beleive 

that our continuum results on a single structure are relevant as evidenced by our close match 

to MD (Fig. 7). In cases where the protein drifts significantly, it may be more appropriate to 

use the averaged structure obtained from molecular simulations or carry out many 

continuum calculations on many different configurations.

8. Conclusions

In this review, we have briefly outlined the evolution of continuum elastic models of the 

membrane and how these models have been coupled to the presence of embedded integral 

membrane proteins. The original studies by Helfrich and Canham were concerned with the 

curvature energies of a membrane represented as a two dimensional sheet [35, 36]. Early 

attempts to include membrane proteins in this framework treated the proteins as simple 

geometric objects such as point particles, hard discs, or ellipses. Additional degrees of 

freedom such as bilayer thickness [38, 48, 106] and the tilt of the lipid molecules [50, 106, 

108] have become essential considerations for adequately studying different aspects of 

protein-membrane interactions. With these advances in membrane complexity, the height of 

embedded proteins could be explicitly accounted for, introducing the concept of 

hydrophobic mismatch as a means to couple membrane compression and curvature to the 

protein.

Here we have argued that the next generation of continuum models must adopt a more 

realistic representation of the protein both in terms of its chemical composition and its 

geometric shape [122, 127, 128, 131, 132, 170]. These steps require moving away from 

treating proteins as simple geometric shapes and employing modern molecular modeling 

methods together with high resolution structures to represent the protein. In Section 6, we 

presented our approach for merging protein biophysics with continuum elasticity theory to 
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better understand membrane protein interactions. By employing continuum electrostatics 

and fast non-polar estimates of the energy, the calculations remain extremely fast compared 

to CG and atomistic MD, but retain amino acid level detail. Thus, our model can be used to 

make in silico point mutations that can be tested experimentally, as we successfully did for 

the RegIIIα toxin [147].

In Sections 6 and 7, we highlighted our most recent advances to our continuum elasticity 

solver, in which we have developed new methods for defining the protein-membrane 

boundary and applying boundary conditions [153]. The model does a very good job at 

quantitatively predicting membrane deformations around proteins when benchmarked 

against fully-atomistic MD simulations, but at a tiny fraction of the computational cost. This 

close connection allows us to generate sound hypotheses regarding the function of 

membrane proteins. For instance, both MD and our hybrid atomistic-continuum model 

reveal extreme bending of the membrane around the hydrophilic groove in nhTMEM16. 

Since the continuum calculations are faster, they can be used to scan through various 

mutants and protein chimeras to determine which residues are responsible for the large-scale 

membrane rearrangements. These select residues could then be further examined with 

molecular dynamics simulations, followed by experimental tests on a much reduced subset 

of candidates. Thus, continuum and molecular dynamics approaches can be used in a 

pipeline to accelerate experimental predictions. Nonetheless, continuum elasticity 

approaches have unique advantages over simulation. First, it is difficult to determine the 

membrane bending energy from atomistic simulations, but this information is readily 

available from the solution of the PDEs or from integrating surfaces determined from 

simulation (see Refs. [2, 132]). Second, membrane relaxation around transmembrane 

peptides and proteins can be very slow [26], and simulations may not be at equilibrium. 

Continuum methods do not suffer from this limitation; however, identifying and optimizing 

membrane contact boundary curves can be difficult [129].

While we believe that the field is making good progress towards accurate continuum models 

of the membrane around proteins, there is much to be done. For instance, the comparison of 

continuum calculations with all-atom simulation from the Andersen and Im groups revealed 

a failure of the continuum models to show the correct behavior near the protein [119]. 

Likewise, there are regions around nhTMEM16 in which the direction of membrane 

deflection predicted from the continuum calculation gives the opposite sign from the MD 

simulations. It will always be difficult to describe specific lipid interactions with the protein 

using a continuum or field theory, but we spent a good portion of our review highlighting 

extensions that treat the orientation of the lipids and their entropy, because we believe that 

adding these degrees of freedom may significantly improve continuum models. Kim and co-

workers identified that continuum models failed to reproduce shell hardening or stiffening 

near the protein boundary [119], and we believe a more in-depth description of the lipid 

degrees of freedom may capture this feature. We have focused almost exclusively on the 

subset of continuum membrane models that have been formulated in the small angle 

deflection limit and represented in the Monge gauge. In order to address large-scale 

conformational changes that occur during SNARE-mediated fusion [171] or M2 channel 

mediated fission [172], more sophisticated mathematical approaches must be employed. 

Moreover, as with many numeric schemes, the fidelity of the solution to the elasticity 
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equations is highly dependent on how well refined the mesh is around the protein surface 

where the boundary conditions are applied. Extending dense grids far from the protein 

creates large sets of equations that are prohibitively difficult to solve, limiting solutions to 

small membrane patches. If adaptive mesh refinement were employed [173], then large 

membrane patches containing many inclusions could be examined, and membrane mediated 

interactions between proteins could be probed. This advancement would open up the 

possibility of studying multi-protein processes that involve long-timescale membrane 

rearrangements at large length scales while also requiring an accurate view of the protein-

membrane interaction at short length scales.
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Highlights

• The evolution of continuum elastic models of the membrane is briefly outlined.

• Membrane elastic models need to incorporate protein’s chemistry and geometry.

• A fast and accurate hybrid continuum-atomistic model is proposed.

• Hybrid model reveals extreme bending of the membrane in the presence of 

nhTMEM16.
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Figure 1. 
How can proteins bend membranes? A. Scaffold mechanism. A rigid array of proteins (blue) 

assemble over the much more compliant membrane deforming the entire system into a new 

shape. B. Protein crowding mechanism. Thermally driven protein-protein collisions of 

bound proteins to the membrane surface can create significant lateral pressure and drive 

bending. C. Spontaneous curvature mechanism. The proteins act locally to distort the 

surrounding lipid molecules and alter their elastic properties, such as the local spontaneous 

curvature. These local changes can give rise to new stable morphological structures such as 

tubules or vesicle budding events. Orange lipids inside the dashed boxes represent the region 

over which the protein insertion induces local distortions. D. Bilayer-couple mechanism. 

The asymmetric insertion of many proteins on one side of the membrane generates an area 

mismatch between the upper and lower leaflets resulting in stress that spreads globally over 

the entire surface. The generation of curvature relieves the in-plane components of the stress 

in both leaflets.
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Figure 2. 
Mathematical representation of the membrane. A. A cartoon model representing the upper 

and lower leaflets and the corresponding lipid molecules. N⃗ is the normal vector of the 

bilayer midplane (dashed line), n⃗ is the head-to-tail vector of the lipids, and t⃗ is the 

difference of these two vectors. B. The upper and lower surfaces representing the head-

group interfaces with the water from panel A (solid lines) and the bilayer midplane (dashed 

line). The lipids have been removed in this purely mathematical representation, but the 

vectorial descriptions N⃗± and n⃗± remain.
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Figure 3. 
Examples of curved surfaces. A. cylinder, B. spherical cap, and C. saddle. The geometry of 

each surface can be defined as a function of the two principal radii of curvature R1 and R2. 

When R1 and R2 change in a bilayer there is a curvature energetic penalty in the Helfrich 

Hamiltonian (Eq. (5)). The mean curvature is equal to the sum of the principal curvatures 

(inverse of the radius of curvature)  and the Gaussian Curvature is the product 

.
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Figure 4. 
Lipid tilt degrees of freedom. A. A patch of membrane exhibiting pure twist. In all panels, 

the top image is a side view of the upper leaflet, and the bottom panel is a top down view of 

a patch of lipids. Vectors demonstrate the head-to-tail orientation of individual lipids. B. A 

patch of membrane exhibiting pure splay. C. A patch of membrane exhibiting pure tilt. The 

lipid density was intentionally decreased for clarity.
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Figure 5. 
Cartoon models of membrane protein interactions. A. The potassium channel KcsA adopts a 

conical shape in the closed state (left). The hydrophilic residues are blue and the 

hydrophobic residues are white, and the hydrophobic residues localize to a belt around the 

protein that creates the energetic ‘seal’ with the membrane. This seal would impose a 

negative contact angle on the membrane (black lines) potentially causing bending in the 

simplified geometry on the right. B. The mechanosensitive channel MscL is cylindrical with 

a more well defined hydrophobic belt (left). This shape would not impose a contact angle on 

the protein, but if the hydrophobic height of the protein differed from the equilibrium width 
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of the membrane it may impose a hydrophobic mismatch that causes compression or 

expansion of the adjacent membrane (right).
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Figure 6. 
The geometry of the membrane near an atomistic protein. A. Side view of a membrane 

protein illustrating the membrane distortions around the protein by h+ (upper gray surface) 

and h− (lower gray surface). B. Close up view of the contact curve, showing the 

displacement (u+) and slope (S+) boundary conditions at one point of the upper leaflet 

contact curve.
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Figure 7. 
Membrane bending around nhTMEM16 determined from fully-atomistic MD and 

continuum elasticity. A. Membrane distortions caused by nhTMEM16 predicted from 

continuum elasticity. The protein is represented at the atomistic level, with the upper and 

lower head group-water interfaces in green and the surfaces delineating the hydrocarbon 

core gray. All hydrophobic amino acids are white and polar residues are blue. B. Enlarged 

view from panel A with the hydrophilic groove indicated. C, D. Upper and lower membrane 

surfaces averaged from fully-atomistic MD simulations. E, F. Upper and lower membrane 

surfaces determined from continuum elasticity. The protein is gray. White values correspond 

to the undeformed height of the membrane far from the protein, blue are downward 

deflections, and red are upward deflections. All color bars are in ångströms. Color scheme is 
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the same throughout. The stars in panel D indicate points of discrepancy between 

simulations (panel D) and continuum solution (panel F). G, H. Curvatures (G) and 

membrane heights (H) for upper and lower leaflets along the x equal y axis in panels E and 

F. The starting point and direction is specified by the dashed arrows in panels E and F.
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Table 1

Parameter values used in continuum model calculations in Fig. 7. All membrane values correspond to POPC 

bilayers, respectively. Additional parameters used in the electrostatic calculations are identical to values 

reported in Ref. [33].

Parameter Value Reference

Membrane thickness (L0) 27.95 Å, 28.5 Å [156, 157]

Surface tension (α) 3.00 × 10−13 N/Å [33]

Bending modulus (Kc) 8.5 × 10−10 NÅ [158]

Gaussian modulus (KG) ~ −0.9 × Kc [159, 160]

Compression modulus (Ka) 2.13 × 10−11 N/Å [156, 161]

Protein dielectric (εp) 2.0 [148]

Membrane core dielectric (εhc) 2.0 [162]

Head group dielectric (εhg) 80.0 [162]

Water dielectric (εw) 80.0 [148]

SASA prefactor for non-polar energy (a) 0.028 kcal/mol·Å2 [137]
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Table 2

Parameter values used in atomistic molecular dynamics simulations of nhTMEM16.

Parameter nhTMEM16

MD engine Amber

PDB ID 4WIS

Lipid type POPC

Forcefield CHARMM36

Ensemble NPT

Barostat Berendsen

Pressure coupling 0.5 ps

Pressure tensor Semi-isotropic

Thermostat Langevin

Temperature 303.15 K

Friction coefficient 1 ps−1

Time step 2 fs

Shake yes

Electrostatics PME

Non-bonded cutoff 8 Å

Switching distance N/A

Atom count 335,204

Aggregate time 200 ns
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