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Abstract 

Theoretical methods have been developed for the analytic 

determination of second energy derivatives (i.e., force constants) 

from restricted Hartree-Fock wave functions for certain types 

of open-shell systems. Specifically treated are systems for 

which all electrons outside closed shells have their spins 

parallel. Although the open shell formalism is somewhat 

complicated, its applicatio~ once implemented, is not greatly 

more arduous than the closed-shell theory presented in 1979 by 

Pople and coworkers. Like previous procedures for the evaluation 

of the second derivatives of electron repulsion integrals, the 

present method exploits the Rys polynomial concept. Beyond this 

general framework, however, significant departures appear, and 

these differences are described. Preliminary application of the 

new method has been to the two lowest. t:r.ipl'tM:..:st:ates. Gf the formaldehyde 

molecule, for which both equilibrium geometry and harmonic 

vibrational frequencies have been evaluated. 
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Introduction 

Electronic structure theorists are no longer content with 

variationally determining the energies of selected molecules 

at their equilibrium geometries.
1 

The continuing progress in 

both theory and computation now allows much more complete ab initio 

studies to be undertaken for moderately large polyatomic systems. 2 

However, the methods used in the past for the exploration and 

characterization of diatomic and triatomic potential energy 

surfaces are insufficient for the complicated hypersurfaces 

encountered with polyatomics.
3 Thus as methods and computers 

have become powerful enough for studies of polyatomic systems to 

be feasible, there has been a concomitant increase in int·erest in 

the analytic computation of the first and second derivatives4 

of the potential energy surface, in addition to the energy itsel.f. 

This interest parallels the situation encountered with semi.,.. 

5 empirical methods, which reached this stage some years ago, inasmuch 

as semi-empirical calculations require less effort than their 

ab initio counterparts. First derivatives are particularly 

helpful in indicating in which direction to move on the potential 

energy surface when finding stationary points or following reaction 

6 7 paths. ' Currently first derivatives also find extensiye 

application in calculating second derivatives via finite difference ~ 

8 9 methods; ' of course, as analytic second derivative methods become 

widely available, this use will vanish. The second derivatives 

themselves are extremely useful, particularly since within local 

areas the potential energy surface is often approximately 
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quadratic . The most direct use of the second derivative 

matrix is in the calculation of (harmonic) vibrational frequencies. 10 

Additionally, as a tool for the theoretical chemist 1 the second 

derivatives are valuable in providing an indication of how large 

a step to take when following the gradients. Efficient algorithms 

to locate minima and transition states can be developed using the 

d d . . . 11 secon er1vat1ve matr1X. Finally, having found a stationary 

point, the vibrational frequencies found for the second derivatives 

indicate whether the point is a minima, transition state, or some 

other type of stationary point, 12 •13 It should be noted, of course, 

that normal coordinates for non-statio.nary points are also useful in 

that they give an accurate local representation of the potential. 

Because of their value, much effort has gone into developing 

methods for the determination of first and second derivatives of 

. 14-24 the energy for different types of wavefunct1ons. Starting 

14 
with the formalism described in the late 1960's by Pulay, it 

is now possible to calculate the first derivatives for almost any 

type of theoretical scheme, from unrestricted Hartree~Fock8 to 

Moller-Plesset second order4 and configuration interaction 

20-24 methods. These first derivative programs have been found 

to be economical to use, since the first derivatives can usually 

be found in only two or three times the time needed for a single 

energy point. By comparison, for a system with N atoms, fini~e 

differences would require 3N+l or 6N+l energy points using one~ or 

two-point differences respectively. 

~econd derivative techniques are just beginning to emerge as 

a practical alternative to finite differences of first derivatives. 4 

The ultimate goal, of course, is the analytic determination of 
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second derivatives from any type of wavefunction. The first 

such calculation for a self-consistent-field (SCF) wavefunction 

25 
was reported in 1973 by Thomsen and Swanstrom for the water 

molecule. Unfortunately, the reported calculation serves as a 

reminder that no matter how elegant the theory may be, it is of 

limited value if the implementation requires an unreasonable amount 

of computer time. Thomsen and Swanstrom's calculation took more 

than 18 hours on a CDC-6400, and appeared to confirm the prevalent 

view that the only practical scheme for the evaluation of the 

second derivatives was through finite differences of first derivatives. 

4 Undaunted by this example, Pople and coworkers in 1979 reported a 

h d b d R 1 . 1 h . 26 f h 1 . f met o ase on ys po ynom~a tee n~ques or t e eva uat~on o 

the first and second derivative integrals, and could reproduce 

Thomsen and Swanstrom's result 25 in perhaps half an hour on a 

comparable computer .. This factor of 30 in time made the difference 

25 . 4 
between an interesting theoretical result and a powerful tool 

for the exploration of the complex potential energy surfaces of 

polyatomic systems. For SCF wavefunctions only, a second de:riyqtiye 

calculation requires about three or f.0ur times ;3,S much work 

as the first derivatives, while the finite difference approach 

again requires at least 3N+l first derivative calculations. The 

savings are again considerable for polyatomic systems. .,. 

The second derivative method of Pople, Krishnan, Schlegel, 

and Binkley4 is applicable to single.,..determinant self.,...consistent.,.. 

field (SCF) wavefunctions within the unrestricted Hartree-Fock 

27 (UHF) framework. However, for some systems, particularly excited 
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electronic states, the restricted Hartree~Fock (RHF) formalism 

of Roothaan
28 

is preferable. The RHF method of course guarantees 

that the resulting wavefunction will be an exact eigenfunction 

2 of S • A provocative recent example of the failure of the UHF 

method is the work of Be11 29 on the structure of nitrosyl cyanide, 

O=N-C=N. In that case the ground state UHF wavefunction is so 

severely contaminated by the low-lying 3A' state that an equilibrium 

geometry in poor agreement with experiment is predicted. It must 

be emphasized of course that such cases are exceptions, with the 

UHF method proving quite acceptable for most ground state molecules. 

Nevertheless, it is fair to say that the RHF method is probably 

preferable to UHF for the theoretical treatment of most excited 

electronic states. Therefore, in the present research, analytic 

methods have been developed for the evaluation of energy second 

derivatives for RHF wavefunctions. 
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General Theory 

1. Review for Closed-Shell Systems (see also reference 4) 

A closed-shell system can be described in terms of one Slater 
~I 

determinant at the SCF level of theory. The Fock operator in 

30 Roothaan 's RHF theory is given by ·" 

F = H + 2J - K (1) 

where H is the one-electron operator, while J and K are the 

Coulomb and exchange operators. The electronic energy for 

this system may be expressed as 

d.o. 
E = elec E 

i 
(2) 

where hii and e:i are the one ... electron molecular integrals and 

orbital ene·rgies defined in· the equation 

d.o. 
I: {2.(iiljj)-(ij lij)} 
j 

(3) 

In Eq, (3), (iiljj) and (ij.lij) are· the standard Coulomb and exchange molecular 

integrals, and the abbreviation d.o. is meant to imply a summation over the 

doubly-occupied molecular orbitals. 

The energy derivative of Eq. (2) with respect to a nuclear aartesian • 

coordinate "a" may be given by 

< > aE 1 a d, o, 
Ee~ec = ( ~a e~ = 2 aa ~ 

a d ,o. 
hii +as r {2(iiljj.-(ij l±j)} 

1,j 
(4) 
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The one-electron part [first summation in Eq. (4)] is explicitly 

given by 

E(a) 
one 

2 
d •. o. 

r 
i 

d.o. 
h a + 4 ·t""' 
ii '­i 

all 

I: (5) 
r 

where Ua. is the first order change in the ith molecular orbital rJ. 

(MO). a In Eq. (5), the one-electron derivative integrals h .. are 
l.l. 

given by 

a 
h .. = 

l.l. 
(6) 

where ci is the coefficient of the ~th.basis function in the 
~ 

ith MO. 

The two-electron contribution is explicitly given by 

E(a) 
two 

d.o. 

I: 
i,j 

d.o. 
{2(iijjj)a-(ij lij)a}+t4 r 

i 

all 

E 
r 

d.o. I {2(riljj)-(rj jij)} 
j 

(7) 

a In Eq. (7), each element of the first term, designated T., is 
l. 

obtained from 

(8) 

Combining Eqs. (5) and (7) leads to the following expression 
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for the first order energy derivative 

E(a) 
elec 

d.o. d,o. d.o. all 
= 2 t a 

h .. + 
~~ 

r. {2(iiljj)a.,-(ijlij)a}-'+4 J: r 
~ ~.J ~ r 

which is equivalent .to 

E(a) 
elec 

d.o. 

= ' L 
i 

a a 
(h .. +e: .. ) + 4 

~l. l.~ 

df. 
i 

a In Eq. (10), e: .. is defined as 
~~ 

a 
=h .. + 

~l. 

d.o. 

r 
J 

all r 
r 

The orthonormality condition for molecular orbitals 

provides the relationship 

u~ . + u~. + s ~. 0 
~J J l. l.J 

In Eq. (12), the overlap derivative integrals in terms of 

MO's are given straightforwardly as 

a s .. 
l.J 

as 
= \' ci cj (~) 

t.. ]..! \) aa 
]..!\) 

(9) 

(10) 

(11) 

(12) 

(13) 

Use of the relationship (12) simplifies the expression (10) to 

give a compact final result 

·~· 
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a a 
(h .. + e: •• ) - 2 

u. ~l. 

d,o. 

I: 
i 

a 
e::. s .. 
~ ~~ 

(14) 

Similarly, we may obtain second derivatives of the Hartree-Fock 

energy by differentiating Eq, (14) with respect to a second 

variable "b". This leads to 

E(ab) = elec 

.,. 2 

- 2 

d[. 
(h ~~ +e:: ~~) 

i 

d.o. 

I: 
i 

d.o. 

L: 
i 

~~ ~-~· 

e::9'l 
~ 

E. 
~ 

sa 
ii 

df, all 
1Jb. + 4 I: a e:: 

:r;t. 
"t. :r X =I. 

·d,o, all 
Uo. .... 4 I: L: sa 

Ei ti 'ri 
i r 

(15) 

where E(b) are the derivatives of ·molecular orbital ener-gies and 
i. 

quantities with superscript "ab" have similar definitions as in 

the first derivative case, i.e., 

az 
hab L: i ci h}J\) 

(16) = c <aaab ) ii ll \) 
}.1\) 

ab hab + T~b (17) Eii = 
ii ~ 

T~b ci ci 
d.o. 

cj 
. a2 az 

= L: L c;{2 aaab<vviJ.cr) .. aaab (}lA I VO") } (18) 
~ ll \) A 

}.1\) j 

sab ci ci 
a2s 

L }.1\) (19) = <aaab ) ii ll \) 

llV 

a In Eq. (15), the quantity e::ri is defined in a manner analogous 
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E;i = h;i + r {2(riljj)a-(rj lij)a} 
j 

(20) 

In Eq. (15) the contribution from atomic orbital (AO) 

changes is given by the sum of first and last terms, while 

the contribution due to MO changes is reflected in the sum 

of second, third and fourth terms. The latter contribution 

can be evaluated using the results obtained by solving the 

coupled-perturbed Hartree-Fock equations~• 31 By the same 

token, it is worthwhile to mention that the contribution due 

to MO changes can be calculated in the MO basis. 

2. Open--Shell Systems 

A high-spin system, w,ith all electrons outside closed shells 

having parallel spins, mayalso be described in terms of one Slater 

determinant at the SCF level of theory. The Pock operator in Roothaan's 

open-shell RHF theory is there given by
28 

(21) 

where H is the one-electron operator, JT and K.r are the total 

Cou~omb and exchange operators, MT is the total exchange coupling 

operator, and K0 is the exchange operator for open 

shells. 

.~. 
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The electronic energy for such an open-shell system is 

given by 

d.o. 
+.!. 

h.o. 
E = r (~k+£k) r elec 2 

k m 

d.o. 1 h.o. 
- ~ ~k- 4 I: K 

mm 
m 

where £. are the orbital energies 
]. 

d.o. 

(h 
nnn 

£i = hii + ~ {2(iilkk)-(iklik)} 

+ 
h.o. 

I: 
m 

-3-,.2f. 
(iilmm) - 1 K 

2 .. 
].]. 

+ £ ) 
m 

and f. is the occupation number of ith molecular orbital. 
]. 

(22) 

(23) 

Similarly in Eq. (22) K .. is the sum of exchange integrals 
l.J 

over open shell MO 's 

h.o. 
K .. = 

l.J 
r (imljm) 
m 

(24) 

In an analogous manner to the closed~shell case, the first 

derivative expression for the open-shell system is expressed 

as 

E{a) 
aE d.o. 1 h.o. 

( elec) I: a a + ~ L (ha +£a ) 
elec a a (hkk+£kk) 2 mm mm 

k m 

d.o. 1 
h.o. occ 

I: a I:. Ka .L:. 
a (25) Kkk -- w .. s .. 4 nnn l.J l.J k m l.,J 
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a a 
where hii and Sij have the meanings established in the previous 

section. 

. a 
e: .. 

l.J 

a 
K .. = 

l.J 

w .. = 
l.J 

a a In Eq. (25) the quantities E .. , K .. and W .. are given by 
l.J l.J l.J 

a 
h .. + 

l.J 

h.o. 
+ t 

3-f ..... f. 
(ij lmm)a - l. J 

2 
m 

h.o. 
L (imljm)a 
m 

1 f.e:.oi. - -2· f.f.K .. 
l. l. J l. J l.J 

a 
K •. 

l.J 
(26) 

(27) 

(28) 

The matrix W defined by Eq. (28) is usually called the Lagrangian 

23,24 
matrix. 

The second derivatives of the energy can be obtained by 

differentiating Eq. (25) with respect to a second variable "b". 

E(ab) 
d.o. 

(hab+ ab) +.!. 
h.o. 

(hab+e:ab) = r r elec kk Ekk 2 mm mm k m 

d.o. 

~~ 
1 

h.o. 
Kab + 

occ all 
ub.wa. 

occ occ 
w(b)sa r -4 [ 2 ~ I: - I: r mm rJ. r1 ij ij 

k m r l. j 

occ occ all 
b a+ b a 

occ occ ab 
~ [ r: [ wi.OJ .s. u .s. ) .,... [ !: w.js .. 

i j r J r1. Jr rJ 1.r i j 
l. l.J 

(29) 
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ab and S~~ are defined in where h .. 
~J ~J 

(16) and (19). In Eq. (29) a and W~~) are given by Eqs. w .. 
~J ~J 

w~. f. 
a 1 

f. 
a (30) = E •• - 2 fi K .. 

~J ~ ~J J ~J 

w~~) fi e:~b) 0 .. 
1 f. K(b) (31) = - 2 fi 

~J ~ ~J J ij 

In Eq. (31), the e:~b) are derivatives of orbital energies and 

the K~~) are defined as 
~J 

K(b) 
all 

b b = r: (U iK .+U .K. ) ij 
r r rJ rJ ~r 

all h.o. 
ub {(irjjm)+(imjjr)} + K~. + !: 2: (32) 

rm ~J r m 

In Eq. (29) the contribution from AO changes is given by the sum 

of first, second, third, fourth and last terms, while the contribution 

due to MO changes is reflected in the sum of fifth, sixth, and seventh 

terms. 

It is apparent from Eqs. (29)-(32) that the open-shell 

formulation of analytic energy second derivatives is far more 

intricate than the analogous closed-shell theory. Nevertheless, 

once the equations have been properly derived, the amount of 

effort required to obtain the second derivatives is of the same 

order of magnitude as for the simpler closed-shell case. Moreover, 

the coupled-perturbed Hartree-Fock equations (needed to obtain 

the first-order changes Ua in the molecular orbitals) are just 

those solved earlier in our treatment of analytic first derivatives 

for open shell CI wavefunctions. 23 
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Evaluation of the Second Derivatives of Integrals over Basis 

Functions 

The most time-consuming portion of the second-derivative 

determination for either the closed- or open-shell cases is the 

evaluation of the first- and second-derivatives of the two-

electron integrals. Therefore, for the method as a whole to be 

successful these integrals must be evaluated rapidly. The 

25 calculation reported by Thomsen and Swanstrom for water, where 

the evaluation of the various integrals took about 18 hours on 

a CDC-6400, illustrates the impracticality of a method based on 

an inefficient procedure for calculating integrals. The essential 

problem is that for a typical (i~e., having a fairly uniform 

distri;bution of basis functions over four or more atoms). poly-

atomic system most two-electron integrals are four-center ones 

and thus have 12 first and 78 second derivatives. It is 

quite simple to use translational invariance to reduce the 

number of derivatives explicitly calculated to 9 and 45 and 

this is indeed done in all current programs. The further 

f . 1 . . . 32 ld d th" t"ll use o rotat1ona 1nvar1ance cou re uce . 1s s 1 

further to 6 and 21, but the implementation of such a scheme is 

by no means trivial and although quite worthwhile, none of the 

current generation of methods exploit this reduction. The 

difficulty with calculating the first.,. and second-derivatives 

of the two-electron integrals is clear--there are a large number 

of them. If it takes anything like 45 or even 21 times as long as 

the integral evaluation portion of the ordinary SCF procedure, the 

method will require a prohibitive amount of effort, 

The various derivatives of an integral are intimately related 

•• 

... 
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and by treating entire shell-blocks of integrals simultaneously 

using the Rys quadrature method,
26

•33 one can indeed determine 

all the first and second derivatives of the two-electron integrals 

with only about ten times the effort required for the orig*nal, 

undifferentiated integrals. The crucial aspect of the Rys 

quadrature method for evaluating two-electron integrals over 

gaussian functions is that each integral is given as a sum over 

quadrature points of a product of three two-dimensional integrals 

(I ,I ,I) and a quadrature weight factor (Wa): 
X y Z 

n 
(ij l·kl) = r 

a=l 
zVF I (a) I (a, I* (a) w 

7T x y z a (.33) 

Each two-dimensional integral contributes to several integrals; 

for instance, for four different F shells, (here the capital letter 

F designates the collection of seven f orbitals with the same 

radial dependence 34) there are 256 two~dimensional int~grals per 

cartesian coordinate for se1ren quadrature points., and thus 5:31:6 

different two-dimensional integrals combine to form all 10,000 

integrals in the shell-block. 

Perhaps the simplest approach to calculating the derivatives 

of the integrals is through linear combinations of undifferentiated 

integrals over functions of different angular momentum. The 

derivative of a gaussian of angular momentum n is a combination of 

functions with momentum n+l and n .... 1; thus for example the 

derivatives with respect to the first center for an [FFjFFJ integral 

block can be computed from the corresponding [DFjFF] and 1GF!FFJ 
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blocks. However, for second derivatives this strategy is 

unsatisfactory for several reasons. The main difficulty is that 

in the interests of efficiency all the second derivatives should 

be evaluated simultaneously, but the core storage needed for the 

intermediate blocks of integrals may be prohibitive. For the 

example with four F shells, the required space amounts to about 

250,000 intermediate integrals. A second drawback is that the 

algorithms devised for the combination of the intermediate integrals 

to form the second derivatives may waste considerable computation 

time locating the various intermediates and may not be as efficient 

as the method to be outlined here. 

Because of these considerations we have elected to calculate 

directly the first- and second-derivative integrals without 

forming intermediate integrals. This approach is not in its~lf 

4 novel..-..:it is the approach used in Pople's method, for instance. 

The idea is to form "derivative" two .... dimensional integrals which 

when combined as in Eq. (33) give the appropriate derivative 

integrals. These are not strictly the derivatives of the two-

dimensional integrals since for convenience certain terms arising 

from the derivatives of exponentials will be added to the true 

derivatives of the two-dimensional integrals. The undifferentiated 

integral is given by: 

1 

( ij jkl) = J~ 
0 

I I f exp(-G) exp(-Xt)
2
dt 

.X y z . 

The quadrature of this integral leads to Eq, (33), Now if we 

differentiate (34) with respect to say x., we have~ 
1 

(34) 
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c.n z'VE r·~ 
7T t ax. 

]. 

(35) 

I 
Defining a modified derivative two-dimensional integral I as 

X 

I 

I 
X 

a I 
X (1.!._ 

ax. - ax. 
]. ]. 

t? + .!.£.) I ax. X 
]. 

and using the quadrature method employed before, we have 

a 
ax. 

]. 

(ij lkl) = 
ml 

[ 
a=l 

zVF I 
1
I I w 

7T x y z a 

(36) 

(37) 

where the number of quadrature points needed may be one greater 

than in Eq. (33). For each two-dimensional integral, we need 

only derivatives with respect to three centers since the 

derivatives with respect to the fourth can be generated using 

translational invariance. Therefore to compute all derivatives 

for a block of integrals we need the original three sets of two-

dimensional integrals in (33) and no more than nine sets of modified 

derivatives. These are combined as in Eq. (37) using different 

modified derivative two-dimensional integrals for each different 

derivative. When we need the second-derivative integrals, these 

modified first-derivative two-dimensional integrals are used in 

27 of the 45 cases; the remaining 18 are constructed tro.m .modified 

second..:derivative two-dimensional integrals. For example, the 
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two-dimensional integral needed for the second derivative with 

respect to x. is: 
1. 

a2
I 
·x 

I"=~-
X ax. 

1. 

a I ax 2 ac x ax 2 
2(-t +-'"'-) -..,-+ (-'"1-t. a oX ox

1
. oX xi i i 

This algorithm is quite efficient since all 9 first and 45 second 

derivatives are evaluated in exactly the same way, using the same 

array indices, etc. 

There are several ways to evaluate the two-dnnensional 

(38) 

integrals needed; the approach outlined here is perhaps conceptually 

the simplest though not necessarily themost efficient algorithm. 

The undifferentiated ones are found. using the recursion and transfer 

34 
equations of Dupuis, et al. Since the two-dimensional integrals 

are essentially polynomials the easiest way to obtain the 

derivatives is to differentiate the polynomials--or equivalently 

to differentiate the recursion and ·transfer equations. This leads 

to true derivatives, to wh-ich the extra terms in (35) and (38) 

can be added to yield the necessary modified derivatives. Again, 

this algorithm leads to the parallel evaluation of sets of 9 and 

18 equations, which can be efficiently implemented on most types 

of coinput.ers. 

In order to calculate the SCF second derivatives, there is 

no theoretical need to store the first- and second-derivative 

. ... 

integrals. If sufficient central memory is available, they can be directly 

summed into the Fock-like matrices Ta of Eq. (8) (Fock matrices 

constructed with derivative AO integrals) and second-derivative 
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expression respectively. We currently take this approach, although 

other methods must b~ devised for larger cases and also for the 

second-order coupled perturbed Hartree-Fock (CPHF) procedure that 

is required for configuration interaction (CI) second derivatives. 

In our implementation, the first-derivative integrals over the 

contracted basis functions are actually constructed a block at a 

time and then used to form the Fock-like matrices. The second-

derivatives over contracted gaussian functions are never formed; 

rather, each second-derivative integral over primitives is summed 

into the final second derivative expression as it is formed. 

Molecular symmetry for D
2

h and its subgroups is handled by 

the formalism of Dupuis as implemented in HONDo. 34 Indeed we 

gratefully thank M. Dupuis for allowing us to use several subroutines 

from HONDO and for .guiding us in their use. Skeleton first- and 

second-derivative matrix contributions are formed from the petite 

list of integrals and then symmetrized to yield the correct 

contributions. The Fock-like matrices are handled in the same fashjon. 

This approach to symmetry. is ideqlly su~ted to th_e present .a,pplica,t~on 

because a minimum number of integrals·. is calculated and then at the 

very end of the calculation of the derivative integ:ra,ls, the -yarious: 

sets of matrices are synnnetrized. Thus all compueation associated 

with symmetry is removed from ins·ide the loe~ps over bas·is funct;lons 

and contractions, and requires a negl:f::gib.le a:Il)Ount of t;ilpe to complete, 

To our knowledge, the only second derivative integral methods 

4 34 presently implemented are those of Pople and Dupuis. The method 

reported here has in common with these earlier developments the 
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exploitation of the Rys polynomial concept. The principal differences 

4 between the present method and that of Pople are the approach to 

symmetry and to the evaluation of the modified derivative two-

dimensional integrals. The use of recursion and transfer equations 

to generate these derivative integrals is unique to the present 

program. Pople·' s algorithm first generates the regular two-dimensional 

integrals using a scheme similar to the recursion and transfer 

equations, and then forms the modified derivative two-dimensional 

integrals from the regular ones. This step is computationally 

equivalent to our implementation, but is rather more complex and 

perhaps somewhat obscure. The program written by Dupuis, et a1. 34 

is radically different since the strategy employed is the formation 

of derivative two-electron integrals as combinations of undifferentiated 

integrals. This approach does not appear to offer any significant 

advantages and has a possible drawback in the amount of central 

storage needed to store the intermediate integrals. 
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Practical OVerview 

In light of the number of equations in the section above 

entitled "General Theory", it may be helpful.to set out in plain 

terms the steps required to obtain analytic second derivatives for 

open-shell RHF wavefunctions. They are: 

(1) Evaluate integrals over atomic orbitals (AO's), i.e., 

contracted gaussian basis functions. 

(2) Obtain molecular orbitals (MO's) via standard open-shell 

28 restricted SCF procedures. 

(3) Evaluate the first and second derivatives of the AO 

integrals. 

(4) Simultaneously, evaluate contributions of integral second 

derivatives to the different cartesian force constants 

via Eq. (29). 

(5) Transform the AO integrals to the MO basis, via a 

standard four index transformation of two~electron 

integrals. 

(6) Similarly transform the first derivac:.i.ve overlap {Eq. 

(13)] and Fock matrices [Eq. (26);]. to 

the MO basis for use in the solution of the coupled 

perturbed Hartree-Fock (CPHF) equations. 

(7) Obtain the elements of the A and B0 matrices necessary 

23 for the CPHF equations • 

(8) Solve the simultaneous equations iteratively to obtain 

a the MO changes U . 

(9) Determine the electronic contribution to the second 

derivatives using Eq. (29). 
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Preliminary Applications 

As a test case, we first considered the ethylene example 

reported by Pople, Krishnan~ Schlegel, and Binkley (PKSB)
4 

in 

their pioneering paper of three years ago. Their example involved 

the 6-31 c* basis set, which may be labeled C(lOs 4p ld/3s 2p ld), 

H(4s/2s) in standard notation. This means that for ethylene there 

are 72 primitive gaussian functions and 38 contracted functions 

in the Pople basis set. PKSB reported timings for this test case 

on the Digital Equipment Corporation VAX-11/780 minicomputer.with 

floating point accelerator. 

Here the PKSB ethylene test case was repeated for a nearby 

(but not precisely the same) geometry on the Harris Corporation 

Series 800 minicomputer, estimated to be between 1.5 and 2.0 times 

the speed of the VAX in varying applications. A summary of the 

timing comparisons is given in Table I. Thus the two methods are 

seen to be roughly comparable. In the present work the ratio 

SCF plus first derivatives = 
SCF energy ·orily · 

while the further ratio 

2.45 

SCF plus first artd second derivatives 
SCF plus first derivatives 

(39) 

= 3,34 (40) 

Both ratios are seen to strongly endorse the us.e of analytical 

derivative methods in molecular electronic structure theory. 

The above timings beg the question ''How long would it take 

to determine the force constants of ethylene via finite differences 

of analytic first derivatives?" Here of course a three-fold 

... _ 

• 
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reduction in effort is achieved by realizing that the cartesian 

force constants of this six~atomic molecule may be related to 

differences of first derivatives obtained for the unique atoms only, 

i.e., one carbon and one hydrogen atom, Thus only nine first 

derivative calculations (central differences of first derivatives 

are necessary for accuracy in such cases) are actually required to 

obtain the cartesian force con~tant matrix. However, of these nine 

c2H4 calculations, none 1nay be carried out in point group Dzh· 

Specifically eight derivative calculations are carried out in point 

group Cs and one gradient must be determined in point group c
1 

(no 

elements of symmetry except the identity). This is a significant point 

because calculations in n2h symmetry are significantly less time 

consuming than those in the lower point groups. There are far more 

unique nonzero integrals in the lower point·groups and these require 

not only computation but additional processing time in the SCF procedure. 

Thus the finite difference determination of the force constant-matrix 

requires not nine times· the effort to determine the forces hut a 

significantly large·r multiplicative factor,. perhaps 15. In this light 

the factor of 3.34 obtained with the analytical second derivative 

method is seen to represent a very significant advance. 

The geometrical structures and vibrational trequencies of excited 

electronic states of molecules are funda:mentally important quantities 

which are of difficult to determine experimentally, 35 Therefore it 

was decided to consider two such cases, the two lowest triplet states 

of formaldehyde, for preliminary application of the new open-shell 

second derivative procedure. Ground state formaldehyde was previously 



-24-

treated in art equivalent manner, but using only analytic first 

derivative methods. 36 

In c2v symmetry, the ground state electron configuration of 

(41) 

* while the lowest triplet state (traditionally designated n+rr ) 

arises from37 the single excitation 2b2+2b1 

(42) 

The second excited triplet state is usually labeled * ·and emanates 1T-+'Ir 

h·om the lbl+2bl single excitation 

3A 2 2 2 2 
lb 2 2 2b 2 

lbl 2bl (43) 
1 la1 

2a
1 

3a
1 

4a1 2 5a1 2 

38. . 
It has long been known that the first excited state of 

formaldehyde does not have a c2 equilibrium geometry but rather a v . 

pyramidal (about carbon) Cs structure with the CH2 plane making an 

angle of ~ 38° with the CO internuclear axis. Thus the . 

electron configuration for triplet formaldehyde is 

' 
la' 2 2a

12 
3a' 2 4a' 2 5a 12 la"2 6a

1 

2a
11 

(44) 

* We show here that the TT-+11' triplet state of H2co has a comparable 

.«, 



... 

-25-

structure, arising from the C electron configuration 
s 

3 I 
A la' 2 2a' 2 3a' 2 4a' 2 sa' 2 6a' 2 la

11 

2a
11 

(45) 

Standard Huzinaga-Dunning double z.eta (DZ) and double zeta plus 

polarization (DZ+P) basis sets39 were used here, the complete 

specification of the latter being C,0(9s Sp ld/4s 2p ld), H(4s lp/ 

2s lp). Polarization function orbital exponents were ad(C) = 

0.80, ad(O) = 0.8, ap(H) = 1.0. Using analytic first and second 

3 II 
energy derivatives, the geometrical structures of the lowest A 

3 I 
and A electronic states of formaldehyde were quickly determined. 

Then a single second derivative calculation yielded all 78 cartesian 

force constants and hence. the harmonic vibrational frequencies. 

These results are sunnnarized in Table II. Note that the geometrical 

40 structures reported here are very silnilar to those of Bell, and 

the reader is referred to Bell's paper for a discussion of the 

(relatively minor) differences between theory and experi~ent. 

For the a' CH stretching frequency of the 
3

A" statet the 

predicted DZ and DZ+P SCF harmonic frequencies are 115.3 and 113,7%, 

respectiyely,of the tentative experi~ental yalue, 2871 cm~1 , For 

comparison, the analogous ground state f.o:rmaldehyde frequency predicted 

at the same two levels of theory is 115.9% and 113,2% of. the observed 

9 fundamental. Thus (for this CH stre~ching fr~oency), the lowest triplet 

state of formaldehyde displays the same relationship between theory and 

experiment as does the closed-shell ground state. 
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The predicted DZ+P SCF CO stretching frequency for the n~* 

.... 1 
triplet of formaldehyde is 1267 em ~ in very close agreement with 

the experimental values, which fall in the range 1240~1250 cm~1 . 

This is in contrast to the ground state comparison, where the 

DZ+P SCF prediction (1656 cm.,...1 ) is 10.4% higher than the experimental 

C=O stretching frequency. Thus it ~ay be that excited state 

theoretical· predictions of vibrational frequencies are in less 

consistent agreement with experiment than is the case for closed-shell 

ground states. 

Not surprising is the fact that the ca
2 

pyramidalization 

frequency (924 em -l DZ+P SCF) is predicted to be about twice th.e 

f d d 41 4 8 ..-.1 un amen tal frequency observed by Jones an . Coon, namely 52. em . · 

The theoretical prediction refers .to the harmonic frequency while 

. 41 
the experimental frequency reflects the widely-discussed 

anhannonicity associated with the n'-+1T* double minimum potential. 
3 ,, 

The remaining three vibrational frequencies of the A state 

3 I 
and all six frequencies of A formaldehyde have not been determined 

in the laboratory. However, except for the highly anharmonic CH2 

3 ' wag (or pyramidalization motion) of the A state, all the DZ+P 

results are expected to be from zero to 12% greater than the true 

(unobserved) anharmonic frequencies. 
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Concluding Remarks 

The formalism for the analytic determination of energy 

second derivatives from simple open-shell restricted Hartree-Fock 

wavefunctions has been spelled out in detail. The practical 

usefulness of these new techniques has been proven in a number 

of test cases. Specifically the comparison between theory and 

* experiment for the vibrational frequencies of the .lowest n+rr 

triplet state of formaldehyde suggests that these methods will 

be very helpful is unraveling the properties of excited molecular 

electronic states. 

One final advantage of analytic sec9nd derivatives is the 

precision afforded. An obvious test of this is provided by the 

six (five for linear molecules) 

residual frequencies remaining after the diagonalization of the 

3Nx3N matrix of cartesian force constants.. These residual 

frequencies correspond to the translational and rotational degrees 

of freedom of the molecule and should of course be identically zero. 

When the cartesian force constants are carefully calculated as 

finite differences of analytic first derivatives, the largest 

residual frequency is 51.0 cm-l on our Harris Series 800 minicomputer 

(48 bit word length, 11 significant figures) . Assuming that the 

stationary point has been precisely located, a residual of this 

magnitude is due to some combination of roundoff error and inap~ 

propriate central difference step sizes. However, when the 

cartesian force constants are determined analytically, the largest 

-1 residual frequency is reduced to 1.5 em • 
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Table I. Execution times for the SCF derivative programs (minutes) for ethylene using 

* the 6-31G basis set (38 contracted gaussians). Times are for the Harris 800, 

4 with those of PKSB on the VAX 11/780 in parentheses. 

SCF + 
SCF SCF + First and Second 

Section Energy Only First Derivatives Derivatives 

Integral evaluation 3.7 (10) 3.7 (10) 3.7 (10) 

SCF iterations 0.4a (3) 0.4a (3) 0.4a (5) I 
w 
N 
I 

Integral first derivatives -- 5.9 (7) 5.9 (16) 

Two-electron integral -- -- 1.0 (8) 
transformation 

Coupled-perturbed -- -- 2.8 (19) 
Hartree-Fock equations 

Integral second derivatives -- -- 19.3 (31) 

Total 4 (13) 10 (20) 33 (89) 

a Time for 44 SCF iterations with method of R. M. Pitzer, Ohio State ·University. 

+ ... ~ 
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Table II. 
. -1 

Predicted equilibrium geometries and harmonic vibrational frequencies (em ) for the 

two lowest triplet states of formaldehyde. Bond distances are given in angstroms. 

3 A" (n-+n*) 3A' ( n-+n*) 

DZ SCF DZ+P SCF Experiment a DZ SCF DZ+P SCF 

Energy (hartrees) -113.77414 -113.81736 -- -113.74557 -113.78435 

' r (CO) 1.383 1.343 1. 307±0. 003 1.477 1.434 
e 

r (CH) 1.075 1.080 1.096±0.005 1.074 1.077 
e 

8 (HCH) 120.4° 118.5° 118.0 ± 1,0° 121.0° 119.1° e 

Out-of-plane angle 34.5° 39.2° 37.9° 32.0° 34.8° 
I 

liJ 
liJ 
I 

Vibrational frequencies 

a' CH2 symmetric-stretch< 3309 3264 2871a 3320 3288 

a' CH2 scissor 1534 1542 -- 1567 1590 

a' C=O stretch 1170 1267 1240-1250b,c 1086 1176 

a' CH2 wag 812 924 452.8b 774 873 

a" CH2 asymmetric-stretch 3454 3390 -- 3471 3420 

a" CH2 rock 1064 1066 -- 1184 1232 

a D·A. Ramsaycited by A, R. Gregory and K. G. Kidd, Chern. Phys, Lett.~, 385 (1980). 

b 
V. T. Jones and J. B. Coon, J. Mol. Spectry. 31, 137 (1969). 

c 
F. W. Birss, D. A. Ramsay, and S. M. Till, Can. J. Phys. 56, 781 (1978). 
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