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De Novo Atomistic Discovery of Disordered Mechanical
Metamaterials by Machine Learning

Han Liu,* Liantang Li, Zhenhua Wei, Morten M. Smedskjaer, Xiaoyu Rayne Zheng,
and Mathieu Bauchy*

Architected materials design across orders of magnitude length scale
intrigues exceptional mechanical responses nonexistent in their natural bulk
state. However, the so-termed mechanical metamaterials, when scaling
bottom down to the atomistic or microparticle level, remain largely unexplored
and conventionally fall out of their coarse-resolution, ordered-pattern design
space. Here, combining high-throughput molecular dynamics (MD)
simulations and machine learning (ML) strategies, some intriguing atomistic
families of disordered mechanical metamaterials are discovered, as fabricated
by melt quenching and exemplified herein by lightweight-yet-stiff cellular
materials featuring a theoretical limit of linear stiffness–density scaling,
whose structural disorder—rather than order—is key to reduce the scaling
exponent and is simply controlled by the bonding interactions and their
directionality that enable flexible tunability experimentally. Importantly, a
systematic navigation in the forcefield landscape reveals that, in-between
directional and non-directional bonding such as covalent and ionic bonds,
modest bond directionality is most likely to promotes disordered packing of
polyhedral, stretching-dominated structures responsible for the formation of
metamaterials. This work pioneers a bottom-down atomistic scheme to
design mechanical metamaterials formatted disorderly, unlocking a largely
untapped field in leveraging structural disorder in devising metamaterials
atomistically and, potentially, generic to conventional upscaled designs.
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1. Introduction

Architected materials, an emerging fam-
ily of structural materials, are constructed
through the spatial combination of building
blocks ranging in scale from (sub)microns
to meters.[1–3] This family constitutes a vast
and flexible design space of mechanical
properties that, by chance, exhibit benefi-
cially unusual characteristics compared to
their constitutive bulk elements.[4–6] This
phenomenon has led to the discovery of
“mechanical metamaterials”, a term coined
to differentiate them from their pristine
bulk state and to highlight their impres-
sive and distinctive mechanics.[7] Despite
their infinite architected tunability,[4,8]

conventional metastructures are generally
designed as ordered patterns to balance
the structural simplicity and practical
applicability.[9,10] In that regard, leveraging
structural disorder in devising metamate-
rials would fully unlock their mechanical
tunability, wherein, however, little is known
about the role played by disordered meta-
materials (if any).[11]

Unlike conventional ordered meta-
materials, the architecture of disordered

metamaterials requires more sophisticated and delicate fabrica-
tion rules for formatting structural disorder.[6,8,12–15] This area
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Figure 1. Diversifying structural disorder across forcefield landscape. A) Schematic of forcefield landscape, wherein the structural disorder exhibits
a complex dependence on the forcefield features that dominate the formation of melt-quenched structures. B) Distribution of the level of structural
disorder in an initial dataset, which consists of 120 melt-quenched structures prepared at different forcefield features. The level of disorder is quantified
by two-body excess entropy S2 (see Equation 1).

remains largely unexplored across the complexity spectrum of
geometric disorder, considering both local irregularity and global
non-periodicity and hierarchy.[15–17] While structural disorder can
be induced through deliberate fabrication rules, finding a rule
that allows systematic, flexible access to a wide spectrum of ge-
ometric disorder presents a grand challenge.[8] In that regard,
when scaling metastructures conceptually down to the atomistic
or microparticle scale, the atomistic world inspires us with abun-
dant disorder formats across different material families, micro-
scopic interactions, and scales.[18–20] Impressively, recent study
inspires us with automatic design of topology-accessible molecu-
lar assembly by devising its constitutive building blocks.[21] How-
ever, built upon spatial arrangement of particle-level blocks, such
particle systems such as glasses are traditionally stereotyped as
the pristine bulk elements of architected materials—rather than
the architected material itself.[22,23] rendering it elusive whether
mechanical metamaterials can be feasible at atomistic or mi-
croparticle level,[6,24] let alone the atomistic lesson of structural
disorder in devising metamaterials.

Here, through the integration of molecular dynamics (MD)
simulations and machine learning (ML), we systematically in-
vestigate the role of structural disorder in architecting mechan-
ical metamaterials at the atomistic scale. This approach leads to
the atomistic discovery of disordered metamaterials, fabricated
through melt-quenching, as exemplified herein by lightweight-
yet-stiff cellular materials featuring a theoretical limit of linear
stiffness–density scaling.[24,25] Instead of directly manipulating
structural modifications, we control structural disorder through
the underlying forcefields that govern architected fabrications
during melt quenching. This structural dependance on forcefield
features creates a high-dimensional forcefield landscape, as il-
lustrated in Figure 1. This allows for a machine learning-based
scan of the entire forcefield landscape (see Figure 1), inducing
a diverse range of complexities in structural disorder to identify
the optimal disordered state for forming metamaterials. Interest-
ingly, contrary to conventional ordered metamaterials,[9,10] we ob-
serve that stiffness–density scaling tends to linearize with struc-
tural disorder at the atomistic scale, rendering it mechanically
more robust to voids. A systematic exploration of the forcefield
landscape reveals that, between directional and non-directional
bonding such as covalent and ionic bonds, modest bond di-

rectionality is most likely to promote the formation of disor-
dered metamaterials. This is characterized by disordered poly-
hedral packing, which, upon loading, generically resembles con-
ventional ordered metamaterials due to their bond stretching-
dominated nature.[2] We expect these atomistic lessons would
leverage structural disorder in devising metamaterials atomisti-
cally and, potentially, generic to conventional upscaled designs.

2. Results and Discussion

2.1. Diversifying Structural Disorder Across Forcefield Landscape

To establish our conclusions, we first fabricate atomistic net-
works in disordered patterns by globally manipulating the melt-
quenched structural disorder through their local forcefield. As
part of their structural disorder, the architected networks exhibit
some porous state whose porosity is tuned by their melt-state
packing density. Starting from a melt-state packing density, the
forcefield dominates the formation of a melt-quenched structure
and can be modified to tune its structural disorder.[26] Figure 1A
shows a schematic of forcefield landscape, wherein the struc-
tural disorder exhibits a complex dependence on the forcefield
features. Here, we adopt an angular three-body forcefield formu-
lated by Stillinger–Weber (SW) potential to solely tune the bond
directionality,[27] including bonding angle and angular constraint
strength. More forcefield details can be found in the Experimen-
tal Section.

Sampling from this forcefield landscape, we build an initial
dataset consisting of 120 melt-quenched structures at different
forcefields. As the initial dataset incorporates all key features of
different forcefield types (see Section S1, Supporting Informa-
tion), the initial dataset can modestly represent the topography
of the forcefield landscape (see Section S2, Supporting Infor-
mation). Taking the example of one melt-state packing density
at 20%, Figure 1B shows the distribution of the level of struc-
tural disorder in the initial dataset, where the level of disorder
is quantified by two-body excess entropy S2, as described in the
following:[28,29]

S2 =
kB𝜌

2
∫
[
g (r) −

(
g (r) − 1

)]
dr (1)
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Figure 2. Illustration of architecting disordered metamaterials at atomistic scale. A) Fabrication of a porous crystalline network in analogy to conventional
ordered metamaterials. The ordered topology is locally equilibrated by its forcefield, and the pores are randomly introduced into the network to mimic
the formation of imperfect crystal.[24,30] B) Fabrication of a porous disordered network in analogy to its crystalline counterpart by melt quenching. The
structural disorder including the porous state is globally governed by its local forcefield.

where 𝜌 is the particle number density, kB = 1 is the Boltzmann
constant in reduced unit, g(r) is the pair distribution function,
and the cutoff is set as 2.2 herein to cover the first two or three
coordination shells. Notably, by tuning bond directionality, the re-
sultant disordered networks exhibit a wide spectrum of disorder
level, ranging from S2 = −0.2 to −0.7, where S2 = 0 refers to the
maximum disordered limit, and a crystalline network generally
lies around S2 ≈ −1. Overall, these results demonstrate the exten-
sive capacity of the forcefield approach in diversifying structural
disorder.

Figure 2 illustrates the architected fabrication of disordered
networks by melt quenching, in analogy to conventional upscaled
architected materials built upon spatial combination of building
blocks,[3] which is generally formatted as ordered patterns to sim-
plify their structural complexity and, by scaling bottom down,
their atomistic counterparts, i.e., the crystalline networks (see
Figure 2A)—are also fabricated to compare with their disordered
analogy, where the porous state is randomly introduced to mimic
the formation of imperfect crystals.[24,30] Note that both the or-
dered and disordered networks are structurally controlled by their
forcefield landscape in terms of both the local topology and the
global metastability.[26,31,32] More details of the forcefield and the
fabrication of porous networks are described in the Experimental
Section.

2.2. Linearizing Stiffness–Density Scaling by Structural Disorder

We now investigate the stiffness–density scaling of porous net-
works in both the crystalline and disordered formats. Figure 3

shows the comparison of Young’s modulus E as a function of
packing density Φ between crystalline and disordered state in
the same forcefield landscape of Face-Centered Cubic (FCC)-type,
diamond-type, and Hexagonal Closest Packed (HCP)-type, re-
spectively (see Table 1 for forcefield parameters). Indeed, we find
that, as commonly known in cellular materials,[33–35] the Young’s
modulus E exhibits a power law dependance on the packing den-
sity Φ, that is,

E
Eref

=
(

𝜙

𝜙ref

)n

(2)

where n is the stiffness–density scaling exponent, and the sub-
script “ref” refers to a reference state that is herein selected as the
extrapolated state at Φ = 50% for the crystalline and disordered
networks, respectively, so as to normalize the stiffness–density
scaling and to highlight the comparison of stiffness–density slope
n between crystalline and disordered networks in logarithmic
scale.

Obviously, the scaling exponent n is a structure-dominant pa-
rameter, and smaller n leads to less stiffness loss upon density
decreasing, potentially beneficial to make lightweight-yet-stiff
metamaterials.[36–38] It is interesting that, unlike conventional up-
scaled metamaterials whose magnitude of n is controlled by their
structural order of building blocks,[39,40] the structural disorder
tends to linearize the stiffness–density scaling in the atomistic
world more than their crystalline counterparts in a generic and
undemanding fashion (see Figure 3). This result highlights the
largely untapped opportunity of leveraging structural disorder
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Figure 3. Linearizing stiffness–density scaling by structural disorder. The scaling exponent n is compared between disordered porous networks and
their crystalline counterparts, including A) FCC-type, B) diamond-type, and C) HCP-type, where the energy-favored bond angle 𝜃0 = 90°, 109.5°, and 60°,
respectively, and the Young’s modulus E is normalized by their extrapolated value E50 at the packing density Φ = 50% to highlight the stiffness–density
slope comparison in logarithmic scale.

Table 1. Parameter sets of all forcefields labeled in this work. Two-body forcefield parameters are fixed based on ref. [27] while three-body forcefield
parameters are variable. Reduced unit is used for all quantities.

Forcefield labels Two-body parameters Three-body parameters Scaling exponent n

𝜖 𝜎 a A B p q 𝜆/A 𝛾 𝜃0 [°]

FCC 1.0 1.0 1.8 7.0495 0.6022 4.0 0.0 4.000 1.250 90.0 3.90 (Crystalline)

2.07 (Disordered)

Diamond/Silicon 3.000 1.200 109.5 5.44 (Crystalline)

1.52 (Disordered)

HCP 1.000 1.250 60.0 3.90 (Crystalline)

1.74 (Disordered)

Disordered
graphene

3.000 0.800 120.0 2.86

Disordered
nanowire

3.000 1.200 180.0 2.93

Global minimum 2.094 1.206 109.7 1.09

Covalent 4.0 1.206 109.7 1.63

Ionic 0.0 1.206 109.7 1.22

Competitive
minimum 1

3.645 1.383 89.1 1.22

Competitive
minimum 2

3.246 1.588 118.0 1.23

Competitive
minimum 3

2.100 1.604 179.3 1.22

to fabricate disordered metamaterials, which are likely mechani-
cally more robust to voids than their crystalline counterparts.

To unveil the correlation between structural disorder and the
linearized scaling, Figure 4A provides a chain of reasoning from
forcefield landscape to the resultant stiffness–density scaling,

wherein local forcefield determines the scaling exponent through
i) manipulating interparticle interaction and ii) dominating the
melt-quenched structure. Upon axial loading, the force experi-
enced by each particle is controlled by the local spatial arrange-
ment of neighbor particles. As the force drives particle dynamics
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Figure 4. Correlation between structural disorder and stiffness–density-scaling exponent. A) Chain of reasoning from local forcefield to scaling exponent.
B) Fraction of fluctuating particle as a function of normal strain for diamond-type disordered versus crystalline network upon tensile deformation. The
fluctuating particle is detected by TimeSOAP approach.[41,42] C) Distribution density of scaling exponent n as a function of the level of structural disorder
S2 in the initial dataset. The shadow region delineates a trend to guide the eyes, where the S2 values of crystalline networks are located ≈−1.3.

iteratively, the system evolves to exhibit strain and stress for stiff-
ness computation.[20] Finally, the structure and stiffness pairs are
built to assess the stiffness–density scaling exponent. When trac-
ing back this reasoning chain, local forcefield is the sole origin to
trigger the chain activation and responsible for its resultant scal-
ing exponent n. As such, the scaling exponent can be minimized
by solely optimizing its prior forcefield.

According to the reasoning chain (see Figure 4A), the different
exponent between disordered and crystalline network can be as-
cribed to a significant difference of local deviatoric stress respon-
sible for highly fluctuating particles (see Section S3, Supporting
Information), thus leading to distinct local dynamics. Figure 4B
shows the fraction of fluctuating particle as a function of normal
strain for disordered versus crystalline porous networks upon
tensile deformation, where the fluctuating particle is detected by
TimeSOAP approach,[41,42] that is, a new method exceling at de-
tecting highly fluctuating particles from a time series of config-
uration evolution (see Section S4, Supporting Information). In-
terestingly, by reducing packing density, disordered network is
mechanically robust to voids and remains a low level of <5%
fluctuating defects contributing to the stiffness loss. In contrast,
by introducing voids to crystalline network, the onset of fluctu-
ating defects occurs early and quickly surges to a high fraction
level of >10%, thus dramatically lowering the stiffness. Overall,
these results demonstrate that structural disorder has a tendency
to linearize stiffness–density scaling through i) suppressing the
fraction surge of fluctuating particles upon elastic deformation
and ii) restricting the total fraction of fluctuating particles upon
decreasing packing density.

Finally, Figure 4C provides the distribution density of scaling
exponent n as a function of the level of structural disorder S2 in

the initial dataset. It is interesting to see a U-shape trend of expo-
nent n with respect to the disorder level S2. Note that crystalline
networks have a lower-bound S2 ≈ −1 but exhibit large scaling
exponent n. When approaching the upper-bound limit S2 = 0,
disordered networks exhibit a large variation in scaling exponent
n, wherein the high exponent n is likely ascribed to the high-S2
structures formed by loose packing (see Section S2, Supporting
Information). Therefore, it is the region in-between the lower
and upper S2 bound most likely to offer a minimal exponent
n. These results necessitate machine learning exploration to
optimize the structural disorder toward minimum scaling
exponent.

2.3. Optimizing Structural Disorder in Their Forcefield Landscape
by Machine Learning

Although the stiffness–density scaling exponent n is largely re-
duced by its structural disorder, it remains unknown what types
of structural disorder is optimal in reducing n and architecting
the disordered metamaterials thereof. Here, based on machine
learning (ML), we explore the entire forcefield landscape that
governs the structural disorder ranging over an extensive design
space, so as to identify the optimal structural disorder minimiz-
ing the scaling exponent n. Figure 5A illustrates the tunable space
of an archetypal forcefield formulated by three-body interaction
that imposes angular constraints to the central atom,[27] where
the radial two-body interaction is fixed in reduced units to pro-
vide a generic reference for the role played by angular three-body
constraints, which is herein tuned by the energy-favored angle
𝜃0, angular penalty intensity 𝜆/A, and radial penalty parameter 𝛾.
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Figure 5. Searching the forcefield featuring linear stiffness–density scaling by machine learning (ML). (A) Illustration of the forcefield parameter space.
The three-body interaction in reduced units is tuned by energy-favored angle 𝜃0, angular penalty intensity 𝜆/A, and radial penalty parameter 𝛾. (B) ML
searching scheme using Gaussian process regression (GPR) and Bayesian optimization (BO).[43,44] Based on an initial dataset (square points), GPR
model offers the prediction (red line) of scaling exponent n and its uncertainty (grey area) as a function of the forcefield parameters.[45] Utilizing the GPR
prediction and its uncertainty, the BO model predicts the next forcefield candidate that offers the highest expected improvement (EI) best balancing the
exploitation of GPR prediction and the exploration of its uncertainty area.[46] (C) ML-identified competitive minima of stiffness–density scaling exponent
n in the forcefield parameter space, with their stiffness–density slope approaching the theoretical limit of linear scaling in logarithmic scale.[25,47]

More details of the forcefield are described in the Experimental
Section.

Figure 5B shows the ML strategy in searching the forcefield
featuring minimum scaling exponent n by integrating Gaussian
process regression (GPR) and Bayesian optimization (BO).[43,44]

Starting from an initial dataset of forcefield-and-exponent pairs,
the GPR model offers not only a prediction but also its uncer-
tainty for the entire forcefield parameter space.[45] Utilizing the
GPR prediction and its uncertainty, the BO model predicts the
next forcefield candidate that offers the highest expected im-
provement (EI),[46] which provides a best balance between the ex-
ploitation of GPR prediction and the exploration of its uncertainty
area—considering that the minimum is most likely located in ei-
ther the minimum regions of GPR prediction or the maximum
regions of GPR uncertainty. By iteratively updating the dataset
of forcefield-and-exponent pairs via high-throughput MD simu-
lations, the integration strategy of GPR and BO holds the promise
to identify the optimal forcefield featuring minimum n in the
forcefield parameter space. More details of the ML strategy can
be found in the Experimental Section. Based on the optimization
scheme that systematically explores the forcefield landscape, sev-
eral forcefields (see Table 1 for forcefield parameters) have been
discovered to induce structural disorder patterns that are featured
by the competitive minima n, as illustrated in Figure 5C, which
approach the theoretical minimum of linear stiffness–density

scaling,[25,47] i.e., n ≈ 1, promising to fabricate lightweight-yet-
ultrastiff disordered metamaterials.

Note that, although the melt-quenching simulation is reduced
to 0 K to filter out the kinetic energy contribution from stiffness
computation, the melt-quenched structures have reached their
metastable state by energy minimization and remain valid at fi-
nite temperature. If the system temperature is elevated to finite
temperature, the particle dynamics would be gradually activated
by increasing temperature. Although these structures are des-
tined to lose stability at extremely high finite temperature, they
generally exhibit low or modest relaxation behavior below the
temperature away from their glass transition temperature or fic-
tive temperature Tf.

[48] Herein, Tf is generally above 0.03 in re-
duced unit, which is equivalent to 755 K in the silicon energy
scale of SW potential[27] (see Section S5, Supporting Informa-
tion).

Despite the structural stability present herein, we must pay at-
tention to different molecular design rules that may significantly
affect the stability of their final structures, such as a molecu-
lar design strategy proposed recently to explore the energy-stable
molecular topology by tuning bond angles of building blocks and
assembling the building blocks into different types of topolog-
ical cages.[21] Theoretically, it is true that some configurations
are more unstable than others and occupy higher energy state
in their potential energy landscape (PEL).[26,31] From the PEL
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viewpoint, the structural stability of our melt-quenched struc-
tures is likely originated from the fact that, by tuning forcefield
parameters, the topography of PEL varies accordingly but our
melt-quenching rule enables each structure to fully relax in its
own PEL with no confinement, so as to reach a deep local mini-
mum. As such, this approach can offer structural design exhibit-
ing satisfactory stability and is translatable for different types of
molecular design.

Besides the structural stability, it is worth pointing out differ-
ent forcefield characteristics are likely to influence the stiffness-
to-density scaling, including short- versus long-range interaction,
three- versus many-body interaction, bond directionality, asym-
metry, etc. Although this work focuses on the influence of short-
range bonding directionality on stiffness-to-density scaling, it de-
serves deliberate investigation of the other forcefield characteris-
tics that influence the scaling behavior. Note that the SW potential
is a simplified version of interatomic forcefield dedicated to de-
scribing covalent system or angular three-body interactions. This
simplification is both a strength and weakness: it facilitates more
efficient optimization of forcefield parameters but, as a compro-
mise, the simulation accuracy may not be guaranteed.[27,49] We
have demonstrated that SW potential can accurately simulate dis-
ordered covalent systems consisting of short-range radial and an-
gular interactions (see Section S7, Supporting Information).

Moreover, instead of blindly unlocking the variability of all pa-
rameters in SW potential, we intentionally select the key param-
eters that tune bond directionality, i.e., angle value and angle
strength. This allows us to filter out and keep away from any un-
realistic regions of SW potential, considering that both the an-
gular value and strength parameters show no dependance or im-
pose no influence on any other parameters of SW potential. In
other words, the SW potential excels at tuning bond directional-
ity in terms of angular value and strength, which are two gen-
eral basic attributes widely existing in covalent-bonding systems
or angular-constrained systems, regardless of strong or weak an-
gular interaction. Therefore, by tuning bond directionality in SW
potential, the structural phenomena found in this work reveal the
general basic attributes of any realistic covalent-bonding systems
or angular-constrained systems.

2.4. Unveiling the Structural and Forcefield Features in
Disordered Metamaterials

We now take a closer inspection into the structural and force-
field features in the ML-identified disordered metamaterials ex-
hibiting a nearly linear stiffness–density scaling, denoted by
“minimum” network. Figure 6A provides a comparison of lo-
cal structures between the minimum network and other typi-
cal disordered networks, including “silicon”-, “graphene”-, and
“nanowire”-type networks (see Table 1 for forcefield parame-
ters). These archetypal structures are prepared by the same melt-
quenching simulation protocol as the minimum network but
imposing different forcefields listed in Table 1, respectively, in
agreement with their distinct bond directionality features. De-
tails of the simulation protocol are described in the Experimen-
tal Section. Notably, the four types of networks are architected
by random packing of polyhedrons, tetrahedrons, hexagons, and
lines, respectively, where the 3D polyhedral or tetrahedral blocks

lead to disordered packings featuring relatively small stiffness–
density scaling exponent and, in contrast, much larger exponents
are obtained by spatial packing of 2D hexagonal or 1D linear
blocks, in agreement with the previous finding of 3D graphene-
assembly.[50] Indeed, compared to lower-dimensional building
blocks, 3D blocks are more likely resistant to deformation upon
loading (see below), in agreement with the previous finding
of nanoporous self-assembled silicas.[51] These results highlight
polyhedral packing as a pivotal structural feature to fabricate dis-
ordered metamaterials with mechanically robust 3D networks.

Besides the structural features, we further investigate the
forcefield features in disordered metamaterials by a systematic
navigation of stiffness–density scaling in the forcefield land-
scape. Figure 6B shows the topography of the scaling exponent
n in two anatomized planes of the forcefield parameter space,
i.e., the 𝛾 = 1.2 plane and 𝜃0 = 150° plane, where the disor-
dered “silicon”-type network and a competitive “minimum” net-
work are located, respectively. On the one hand, by increasing
the angular and radial penalty in the angular constraints, the local
forcefield exhibits high bond directionality similar to the covalent
bonding,[27] leading to relatively high scaling exponent n that is
likely ascribed to the enhanced barrier of spatial polyhedral pack-
ing by highly directional bonding. On the other hand, the local
forcefield with little angular constraints results in non-directional
bonding, as exemplified by ionic or metallic bond,[20,26] which
is beneficial to the formation of polyhedral networks but tends
to be susceptible to deformation via structural reorganization
upon loading without bond directionality.[52–54] As such, we find
that, in-between directional and non-directional bonding, modest
bond directionality (e.g., ionocovalent bond[32]) is most likely to
minimize the scaling exponent n by forming mechanically robust
polyhedral networks resistant to deformation when subjected to
loads. Overall, these results reveal the key role of polyhedral net-
works with modest bond directionality in fabricating disordered
metamaterials.

Next, based on the chain of reasoning (see Figure 4A), we
investigate the influence of bonding types on the scaling expo-
nent from their bond directionality and local structure formation.
Figure 7A shows the maximum-likelihood coordination num-
ber (CN) in a disordered network as a function of forcefield pa-
rameter. As expected, by tuning the angular strength, the nondi-
rectional ionic-like bonding and directional covalent-like bond-
ing lead to close and loose packing, respectively. Moreover, when
the bonding angle exceeds 120°, the local structure tends to be-
come loose-packed open structure. Notably, these low- and high-
CN regions largely overlap with, respectively, the high- and low-
exponent regions in the forcefield space (see Figure 6B). This re-
sult echoes the fact that compared to high-CN structure, the low-
CN structure is more likely to promote deviatoric deformation
and facilitate the onset of fluctuating particles, resulting in more
pronounced stiffness loss. However, the packing structure is not
solely responsible for the scaling exponent. Upon closer inspec-
tion, there exists some mismatch between the CN and exponent
topography, wherein some low-CN regions such as disordered
silicon can exhibit local minimum exponent than its surround-
ing higher-CN regions. This mismatch indicates somehow the
contribution of certain “compensating” interparticle interactions
that govern particle dynamics, if tracing back the reasoning chain
(see Figure 4A).
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Figure 6. Structural and forcefield features in disordered metamaterials exhibiting linear stiffness–density scaling. A) Comparison of the local structures
between the metamaterial (“minimum” network) and other typical disordered networks, including “silicon”-type, “graphene”-type, and “nanowire”-type,
where the four networks are architected by random packing of polyhedrons, tetrahedrons, hexagons, and lines, respectively. Their stiffness–density slopes
in logarithmic scale are also provided for comparison. B) Topography of the stiffness–density scaling exponent n in some selected sections of forcefield
parameter space, where the two selected planes are 𝛾 = 1.2 and 𝜃0 = 150°, respectively, and the disordered “silicon” network (square point) is located
in the 𝛾 = 1.2 plane. The red marker indicates the minimum position.

Figure 7. Compensation effect between local packing density and bond directionality. A) Topography of maximum-likelihood coordination number (CN)
as a function of forcefield parameter at the 𝛾 = 1.2 plane. B) Comparison of stiffness–density scaling for the “minimum,” “covalent,” and “ionic” network,
where the “ionic” and “covalent” structures are relaxed from the “minimum” network.
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To reveal this compensating forcefield effect, we generate both
an “ionic” and a “covalent” structure relaxed from the “mini-
mum” network, with the angular penalty intensity 𝜆/A = 0.0
and 4.0, respectively (see Table 1). The simulation details are
described in the Experimental Section. Figure 7B shows the
stiffness–density scaling for the three structures, wherein the
structures have been relaxed to their metastable state but exhibit
very different local packing structure, with CN = 7, 14, 4 for min-
imum, ionic, and covalent network, respectively. Interestingly,
compared to the minimum network, the ionic network is highly
close-packed structure with twice CN to resist deviatoric deforma-
tion and, despite its competitive small exponent n, the absence of
angular constraints makes the local structure prone to reorganize
under deviatoric stress, leading to a slightly larger exponent n.
Similarly, compared to the ionic network, the covalent network is
a very loose-packed structure susceptible to deviatoric deforma-
tion but, as compensation, the strong angular constraints con-
tribute to prevent local shear and the onset of fluctuating par-
ticles. Overall, these results demonstrate a compensation effect
between local packing density and bond directionality in deter-
mining stiffness–density scaling of melt-quenched structures.

2.5. Bridging Disordered to Ordered Metamaterials by Bond
Stretching-Dominated Nature

Finally, we investigate the bond stretching versus bending re-
sponse in the disordered metamaterials when subjected to loads,
in comparison with conventional ordered metamaterials built on
bond stretching-dominated structures.[2,14,55] To characterize the
bond stretching versus bending response, we compute, respec-
tively, the shift of normal and shear stress per atom with respect
to zero strain upon loading,[56] where the normal and shear stress
per atom are thermodynamically ill-defined without the concept
of ensemble statistics but, from a practical perspective, enable the
quantification of bond-stretching and bond-bending responses,
respectively.[18] The computation methodology of stress shift per
atom is described in the Experimental Section. This local stress
state influences exponent n in two ways: First, the normal stress
shift per atom directly promotes the normal stress and stiffness
thereof, while the shear stress shift per atom has very limited
contribution. Second, the shear stress shift per atom promotes
local deviatoric deformation that causes the onset of fluctuat-
ing particles and the stiffness loss thereof[18,48,54] (see Section S3,
Supporting Information). From this perspective, structure disor-
der can linearize stiffness–density scaling through i) more bond-
stretching response that promote normal stress shift per atom
and ii) less bond-bending response that harmfully facilitate shear
stress shift per atom.

Figure 8A shows the normal and shear stress shift per atom
as a function of the normal strain of “minimum” network when
subjected to uniaxial deformation, and the result of disordered
“silicon,” “graphene,” and “nanowire” are added for comparison.
Indeed, we find that, compared to the graphene-type or nanowire-
type network, the minimum or silicon-type network exhibits
more pronounced bond-stretching response but relatively neg-
ligible bond-bending behavior, as illustrated in Figure 8B, while
the hexagonal blocks of graphene network are more susceptible
to bond bending upon loading. Regarding the 3D structure com-

parison between minimum and silicon network, we find that the
minimum network offers both higher normal and shear stress
shift per atom. Although shear stress shift may harmfully cause
the onset of fluctuating particle, the higher coordination number
of minimum network makes it more resilient to local deviatoric
deformation upon shear, thus compensating the risk of fluctu-
ating particles. These results confirm the stretching-dominated
nature of disordered metastructures, in the same spirit of conven-
tional ordered metamaterials,[2,14] thus unifying the ordered and
disordered metamaterials within a universal architected princi-
ple, that is, small and large stiffness-density scaling exponent n
are governed by stretching- and bending-dominated structures,
respectively.

3. Conclusion

Together, this work conceptually translates the architected mate-
rials to atomistic scale and discovers some atomistic families of
disordered mechanical metamaterials, as exemplified by lineariz-
ing the stiffness–density scaling. Unlike conventional upscaled
metamaterials built on ordered patterns, the disordered metama-
terials leverage structural disorder in devising architected mate-
rials that are potentially mechanically more robust to voids. Im-
portantly, inspired by the abundant disorder formats of atomistic
systems, the melt-quenched fabrication rule of formatting struc-
tural disorder is delivered to enable a flexible tunability across a
wide spectrum of geometric disorder, by systematically scanning
the entire forcefield landscape that governs the abundant formats
of structural disorder. Interestingly, we find that, in-between di-
rectional and non-directional bonding such as covalent and ionic
bonds, modest bond directionality is most likely to induce poly-
hedral, stretching-dominated structures that are beneficial to the
formation of disordered metamaterials. We envision that these
atomistic lessons would unlock new opportunities of leveraging
structural disorder in devising mechanical metamaterials atom-
istically and, potentially, generic to conventional upscaled de-
signs.

4. Experimental Section
Description of Three-Body Interaction by Stillinger–Weber Potential: The

forcefield is formulated as a three-body interaction to regulate the bond
directionality and is described by Stillinger–Weber potential that is well-
established for tetrahedral silicon network,[27] i.e., a combination of (i)
radial two-body interaction U2 and (ii) angular three-body interaction U3
to compute the interatomic potential energy U between a central atom i
and its two neighbor atoms j and k:

U
(

rij, rik, 𝜃ijk

)
=
∑

i

∑
j>i

U2

(
rij

)
+
∑

i

∑
j≠i

∑
k>j

U3

(
rij, rik, 𝜃ijk

)
(3)

where U is a function of the interatomic distance rij, rik, and the bond angle
𝜃ijk between the vectors rij and rik. The explicit formulations of U2 and U3
are provided in the following:[27]

U2

(
rij

)
= Aij 𝜖ij

[
Bij

(
𝜎ij

rij

)pij

−

(
𝜎ij

rij

)qij
]

exp

(
𝜎ij

rij − aij𝜎ij

)
(4)
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Figure 8. Bond stretching versus bending response in disordered metamaterials upon loading. A) Evolution of the normal (left panel) versus shear
(right panel) stress shift per atom in the metamaterial (“minimum” network), with respect to its normal strain when subjected to uniaxial deformation,
and the result of disordered “silicon,” “graphene,” and “nanowire” are added for comparison. B) Illustration of the bond stretching-dominated versus
relatively bending-dominated response in, respectively, the “minimum” and “graphene” network when subjected to loading.

U3

(
rij, rik, 𝜃ijk

)
= 𝜆ijk 𝜖ijk

(
cos 𝜃ijk − cos 𝜃0ijk

)2
exp

(
𝛾ij𝜎ij

rij − aij𝜎ij

)

exp
(

𝛾ik𝜎ik

rik − aik𝜎ik

)
(5)

where 𝜖 and 𝜎 defines the bond energy and length scale, respectively, 𝜆/A
yields the relative angular penalty intensity with respect to its two-body in-
teraction magnitude, 𝜃0 is the energy-favored angle, 𝛾 is a radial penalty pa-
rameter in the angular term, the forcefield cutoff is set as a𝜎, and all other
parameters in the two-body term were determined based on ref. [27] to
keep the minimum bond energy equal to 𝜖 at the equilibrium bond length
(i.e., 1.12𝜎 for silicon[27]). Here, the parameters were kept in two-body en-
ergy term U2 fixed to investigate the effect of angular three-body constraint
term U3, and all quantities adopt reduced units to make this study generic
across different materials families and scales. Table 1 provides the param-
eter sets of all forcefields labeled in this work.

Fabrication of Porous Networks by MD Simulations: The porous disor-
dered networks were prepared by melt quenching MD simulations. The
initial configure was prepared by randomly placing atoms into a cubic box
of side length L = 40 with periodic boundary condition, and an energy
minimization step was applied to prevent atomic overlaps.[57] The initial
packing density was set as 20%, 26%, and 40% to tune the final porosity,
where the packing density was computed as the atomic volume fraction

with an effective atomic diameter equal to the equilibrium bond length
1.12𝜎.[18,27] All simulations were conducted under NPT ensemble using
LAMMPS package,[58] and the timestep was fixed as 0.01. Starting from
the initial configuration, the system first undergoes a melt simulation at
high temperature T = 0.3 for a duration of 100,[59] where the system pres-
sure was gradually reduced to zero from its initial pressure if positive or
half of its initial pressure if negative—note that the positive and nega-
tive sign of pressure indicate system under compression and tension in
LAMMPS convention, respectively,[56,58] and the barostat pressure was a
key parameter to tune the final porosity. Then the system temperature was
subsequently decreased from 0.3 to 0 temperature to freeze the structural
disorder within duration of 100, where the pressure is kept zero. Finally, an
energy minimization step is applied to mimic the annealing process that
removes the internal stress.[57]

In the same spirit, the porous crystalline network was prepared by first
creating a crystalline lattice of 10 × 10 × 10 unit cells using the equilibrium
bond length 1.12𝜎,[27] with periodic boundary condition applied to the box.
Then, mimicking the formation of imperfect crystals,[24,30] the atoms were
randomly removed in the box to a prescribed porosity (e.g., removing 5%,
10%, 15%, 20% of all atoms), followed by an energy minimization step
to stabilize the configuration.[57] Starting from the initial configuration, all
remaining simulations were the same as that for porous disordered net-
works, except that the initial melt simulation was replaced by a relaxation
simulation at a relatively modest temperature T = 0.03 to promote atom
mobility without being melt.[59] Note that, at low porosity of removing
<20% atoms, the stabilized configurations remain crystalline state, while
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much higher porosity would lead to disordered configurations. Finally, a
relaxation simulation of the “minimum” network was conducted to gen-
erate the “ionic” and “covalent” network. Using the “minimum” network
as initial configuration, the same relaxation protocol was adopted as that
for crystalline networks, so that the structures were fully relaxed to their
metastable state under the “ionic” and “covalent” forcefield (see Table 1),
respectively.

Assessment of Stiffness–Density Scaling Exponent at Each Forcefield: Af-
ter fabricating a set of porous networks with various packing density un-
der the same forcefield, the stiffness tensor was then computed for each
configuration by subjecting the simulation box to a series of axial and
shear plane deformations along each Cartesian axis,[18] where each de-
formation increment is set as 0.05%, followed by an energy minimization
step,[57] and the maximum strain for each deformation was restricted to
±0.5%. The corresponding changes in the system’s potential energy ∂Us
and strain ∂e𝛼 defines six stress components s𝛼 :[18]

s𝛼 = 1
V

𝜕Us

𝜕e𝛼
(6)

and 36 elastic constants C𝛼𝛽:[18]

C𝛼𝛽 = 1
V

𝜕2Us

𝜕e𝛼𝜕e𝛽
(7)

where 𝛼 and 𝛽 are the Cartesian direction indexes. All configurations were
found to be nearly fully isotropic. The Young’s modulus E was then calcu-
lated from the stiffness tensor.[60] Finally, the stiffness–density scaling ex-
ponent n was obtained by a linear fit between Young’s modulus and pack-
ing density in logarithmic scale following Equation (2).

Machine Learning Using Gaussian Process Regression and Bayesian Opti-
mization: Finally, by integrating the simulation-based assessment mod-
ule into a machine learning (ML) pipeline, the ML model would accelerate
the navigation in the forcefield landscape toward minimum scaling expo-
nent. Here, the ML strategy combines Gaussian process regression (GPR)
and Bayesian optimization (BO).[43,44] First, to interpolate the forcefield
landscape by GPR, first an initial dataset of forcefield parameter sets was
established, their corresponding scaling exponents were computed by the
simulation-based assessment module. The forcefield parameters of the
initial dataset were selected as an orthogonal array that contains all com-
binations from the energy-favored 𝜃0 = 60°, 90°, 109.5°, 120°, 150°, and
180°, the angular penalty intensity 𝜆/A = 1.0, 2.0, 3.0, and 4.0, and the
radial penalty parameter 𝛾 = 0.4, 0.8, 1.2, 1.6, and 2.0 (see Section S1,
Supporting Information). Based on the initial dataset, the GPR model of-
fers a prediction of scaling exponent and its uncertainty for each point
in the forcefield parameter space, by correlating the point at prediction
with all known points in the space via a multivariate Gaussian distribution
formulation,[45] enabling us to estimate a Gaussian-type probability distri-
bution of the point at prediction. Details about the GPR formulation can
be found in refs. [43, 45].

Then, relying on an acquisition function—i.e., expected improvement
EI(x) herein[43,46]—that utilizes the GPR prediction n(x) and its uncertainty
∆n(x), the BO model acts as a surrogate model to determine the next op-
timal forcefield to try, that is,

EI (x) =
{

[n (xmin) − n (x)] Dc (Z) + Δn (x) Dp (Z) if Δn (x) > 0
0 if Δn (x) = 0

(8)

where x is a point in the forcefield parameter space, n(xmin) denotes the
current minimum scaling exponent n in the dataset, Dc(Z) and Dp(Z) are
the cumulative distribution and probability density function of the stan-
dard normal distribution, respectively. By construction, the value of EI(x)
is high (i) when the expected value n(x) is higher than the n(xmin) or (ii)
when the uncertainty ∆n(x) is high.[43,46] This EI function behavior is bene-
ficial if considering the fact that the global minimum position is most likely
located in (i) either the region near the present minimum position or (ii)
the region with very high uncertainty. Therefore, it is natural to expect that

the EI function keeps tiny value in all areas but reaches a summit at the
position both near present minimum and highly uncertain, and by con-
struction, the EI function is capable of working in this way in an efficient
and accurate fashion. As such, the candidate forcefields with the highest
EI values offer a best balance between (i) the exploitation that minimizes
the scaling exponent n(x) and (ii) the exploration that minimizes the un-
certainty ∆n(x).[43,46] By iteratively updating the dataset with these infor-
mative datapoints, the ML strategy provides an efficient navigation to the
optimal forcefield.

Computation of Normal and Shear Stress Shift Per Atom: Finally, the
bond stretching and bending response of a structure was analyzed upon
loading by computing the normal and shear stress shift per atom. Al-
though stress per atom is thermodynamically ill-defined without the con-
cept of ensemble statistics, this computation expresses the individual con-
tribution of each particle i to the virial of the system, convenient to capture
the local stress state Pi applied to particle i:[18,56]

Pi =
miv

2
i + r⃗i ⋅ F⃗i

3Vi
(9)

where Pi consists of three normal stress components {𝜎x
i , 𝜎y

i , 𝜎z
i } along

x, y, z axis and three shear stress components {𝜏xy
i , 𝜏yz

i , 𝜏xz
i } in xy, yz, and

xz plane, respectively, Vi, mi, vi, and r⃗i are the volume, mass, velocity, and
position of the particle i, respectively, and F⃗i is the resultant of the force
applied on the particle i by all the other particles in the system. Here, the
volume Vi of each particle was defined based on its Voronoi volume. Note
that, although the network as a whole was at zero pressure, some bonds
are under compression while others are under tension, so that they mutu-
ally compensate each other. By convention, a positive normal stress rep-
resents here a state of tension, whereas a negative one represents a state
of compression.

The normal stress per atom 𝜎̄ was computed by averaging the three
normal stress components 𝜎i for atom i and, subsequently, averaging over
all atoms in the system. Similarly, the shear stress per atom 𝜏 is calculated
by computing the von Mises definition of shear stress 𝜏 i for atom i and,
subsequently, averaging over all atoms in the system, as formulated below:
[61]

𝜎̄ = ⟨𝜎i⟩ =

⟨
𝜎x

i + 𝜎
y
i + 𝜎z

i

3

⟩
(10)

𝜏 = ⟨𝜏i⟩ =

⟨ 2
√(

𝜏
xy
i

)2 +
(
𝜏

yz
i

)2 +
(
𝜏xz

i

)2

3

⟩
(11)

where < > is an average operation over all atoms in the system. When the
system was subjected to uniaxial tensile deformation, the {𝜎̄, 𝜏} pair was
recorded at each normal strain and, by taking the zero-strain configuration
as the reference, the normal and shear stress shift was computed per atom
𝛥𝜎 and 𝛥𝜏 from the subtraction between the current state of {𝜎̄, 𝜏} and
its initial state. This approach allows to characterize the tendency of local
volumetric and deviatoric deformation, as linked to bond stretching and
bending response, respectively.
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