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Abstract: Vitamin D is known to modulate human immune responses, and vitamin D deficiency is
associated with increased susceptibility to infection. However, what constitutes sufficient levels or
whether vitamin D is useful as an adjuvant therapeutic is debated, much in part because of inadequate
elucidation of mechanisms underlying vitamin D’s immune modulatory function. Cathelicidin
antimicrobial peptide (CAMP) has potent broad-spectrum activity, and the CAMP gene is regulated in
human innate immune cells by active 1,25(OH)2D3, a product of hydroxylation of inactive 25(OH)D3

by CYP27B1-hydroxylase. We developed a CRISPR/Cas9-edited human monocyte-macrophage cell
line containing the mCherry fluorescent reporter gene at the 3′ end of the endogenous CAMP gene.
The High Throughput CAMP Assay (HiTCA) developed here is a novel tool for evaluating CAMP
expression in a stable cell line that is scalable for a high-throughput workflow. Application of HiTCA
to serum samples from a small number of human donors (n = 10) showed individual differences in
CAMP induction that were not fully accounted for by the serum vitamin D metabolite status of the
host. As such, HiTCA may be a useful tool that can advance our understanding of the human vitamin
D-dependent antimicrobial response, which is being increasingly appreciated for its complexity.

Keywords: cathelicidin; CAMP; LL-37; vitamin D; calcitriol; antimicrobial; immunity; innate immunity

1. Introduction

Cathelicidins are cationic antimicrobial peptides with potent broad-spectrum activity
targeting gram-positive and gram-negative bacteria (e.g., Escherichia coli, Mycobacterium leprae,
Mycobacterium tuberculosis, and Staphylococcus aureus), fungi (e.g., Candida albicans and
Aspergillus spp.), and viral pathogens (e.g., HIV-1 and SARS-CoV-2) [1,2]. The mechanisms
by which cathelicidins act on microbes are diverse, including microbial cell membrane
disruption [3,4], inhibition of microbial replication [5], and recruitment and regulation of
the host’s innate and adaptive immune system [6]. The human cathelicidin antimicrobial
peptide gene (CAMP), which is highly expressed by innate immune cells such as monocytes,
macrophages, dendritic cells, and neutrophils encountering microbial products, encodes
the CAMP precursor protein that undergoes proteolytic cleavage to produce the single
antimicrobial peptide, LL-37 [7]. The expression of antimicrobial peptides is regulated
by various macro- (e.g., branched-chain amino acids, short-chain fatty acids, and lactose)
and micro-nutrients (e.g., vitamin D, vitamin A, and zinc) [8]. Among these, vitamin D
is critical for CAMP expression. Owing to the insertion of a retrotransposon bearing a
consensus vitamin D response element (VDRE) in the proximal CAMP promoter, CAMP is
transcriptionally responsive to the active vitamin D metabolite, 1,25-dihydroxyvitamin D
(either in the form of 1,25(OH)2D3 or 1,25(OH)2D2) bound to the vitamin D receptor (VDR)
in humans and higher non-human primates [9]. Insufficient provision of prohormone
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25-hydroxyvitamin D (either in the form of 25(OH)D3 or 25(OH)D2) and/or inadequate
intracellular conversion of substrate 25(OH)D to product 1,25(OH)2D by the CYP27B1-
hydroxylase in microbe-activated monocyte-macrophages can lead to a deficiency in CAMP
production and secretion [10].

The ability of vitamin D metabolites to modulate CAMP expression may explain the
role of vitamin D in innate and adaptive immunity [11–13]. Deficient vitamin D status of the
human host, manifested by low circulating levels of 25(OH)D, has historically been associ-
ated with increased rates of influenza [14], viral upper respiratory tract infection [15], pneu-
monia [16], bacterial vaginosis [17], HIV [18,19], and active Mycobacterium tuberculosis [20],
among other microbial infections and disease states [21]. More recently, vitamin D de-
ficiency has been associated with increased SARS-CoV-2 infection risk [22,23], greater
COVID-19 severity [24], and delayed COVID-19 recovery [25] though some studies did
not find an association [26,27], leaving the role of vitamin D as an immune modulator in
COVID-19 debated.

The earliest attempt to reduce the incidence and/or severity of microbial infection with
vitamin D dates to the early twentieth century when sunlight exposure was used to treat
patients with M. tuberculosis [28]. Despite these early findings, the administration of vitamin
D and its metabolites in randomized controlled trials of patients with infectious and/or
inflammatory diseases was not pursued until almost a century later. The results of these
more recent trials have been mixed, although some trials with “negative” results failed to
give an adequate dose of vitamin D to significantly raise serum levels of 25(OH)D [29]. The
strongest evidence of a vitamin D antimicrobial effect arose from effective supplementation
studies in the context of influenza [30] and upper respiratory tract infections [31,32]. Again,
since the onset of the COVID-19 pandemic, vitamin D has become a topic of debate, as
some supplementation studies, although variable, have shown a reduced requirement for
ICU treatment among patients hospitalized with COVID-19 [33] and accelerated recovery
from pulmonary symptoms in non-hospitalized SARS-CoV-2-infected patients [34,35].

Our laboratory has previously developed an ex vivo CAMP expression assay, whereby
primary cultures of VDR-expressing, single donor monocyte-macrophages are conditioned
with heterologous donor serum before measuring CAMP expression by qPCR [36]. The
assay has proved valuable for (i) screening of donor serum to alter ex vivo CAMP expression
based on the concentration of 25(OH)D in the conditioning serum [37], (ii) identifying
demographic differences in the ability of human serum to induce CAMP expression [10],
(iii) elucidating a mechanism by which Mycobacterium leprae evades the host immune
response [38], and (iv) observing greater CAMP induction by serum from young adults
with HIV after intervention with oral vitamin D3 [39].

This ex vivo CAMP assay has been an essential tool to study the vitamin D-mediated
immune response in activated primary cultures of human monocyte-macrophages. How-
ever, the assay suffers from a few key weaknesses. (1) Donor variability. The ex vivo assay
requires both a variable source of monocyte-macrophages and heterologous human serum.
Because the monocyte-macrophages come from a single donation, there is a limit to the num-
ber of cells that can be acquired, and long-term storage of primary monocyte-macrophages
is not feasible. Therefore, every experiment, although internally consistent, has variability
between itself and other experiments, which use cultured monocyte-macrophages from a
different donor. Because single donor primary monocyte-macrophages are used in each ex-
periment, the traditional assay is not ideal for many applications, such as in a setting where
the readout of the assay might be compared to a standard cohort. (2) Low throughput. The
ex vivo assay requires extensive sample handling to prepare peripheral blood mononuclear
cells (PBMCs) from whole blood, select for plastic-adherent cells, incubate with vitamin
D metabolites in serum-conditioned media, extract RNA, synthesize cDNA by reverse
transcription, and perform qPCR. The sample handling time makes the assay difficult
to scale beyond a single 96-well plate and introduces opportunities for user error and
sample degradation. (3) Contamination. Using plastic adherence as a method to purify
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monocytes leads to contamination with a small number of neutrophils, lymphocytes, or
other CAMP-expressing, plastic-adherent cells that may interfere with the assay [40,41].

We circumvented these three problems by creating a CRISPR/Cas9-directed knock-in
of a cDNA containing the mCherry fluorescent reporter gene at the 3′ end of the endogenous
CAMP gene in the human CYP27B1- and VDR-expressing SC monocytic cell line (ATCC,
CRL9855). This High Throughput CAMP Assay (HiTCA) immortalized cell line can be
propagated indefinitely to yield consistent results in a scalable high-throughput workflow.
It requires minimal sample handling, and it uses a homogenous source of target monocyte-
macrophages with no contamination by other immune cells found in plastic-adherent
monocyte-macrophages preparations (Figure 1).
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Figure 1. HiTCA enables high-throughput, scalable, and reliable bioassay of CAMP. A workflow
comparison between (A) the ex vivo CAMP assay, which employs 1 million (1 M) PBMC, and (B) the
High Throughput CAMP Assay (HiTCA), which employs 100,000 (0.1 M) HiTCA cells. Difficulties
of the ex vivo assay are written in red text. The means by which HiTCA addresses these issues are
written in green text.

2. Materials and Methods
2.1. Insertion of mCherry at 3′ End of CAMP Gene in Human SC Cells

CRISPR/Cas9-mediated knock-in of mCherry (~711 bp) at the 3′ end of the CAMP gene
(Ensembl Gene ID: ENSG00000164047; Ensembl Transcript ID: ENST00000296435; NCBI
Ref: NM_004345) in the human monocyte-macrophage SC cell line (ATCC, CRL9855) was
performed by Synthego Corporation (Redwood City, CA, USA). To generate homozygous
CAMPmCherry human SC cell clones, ribonucleoproteins containing the Cas9 protein and
a synthetic chemically modified sgRNA (CACACACTAGGACTCTGTCC) targeting the
3′ end of the human CAMP gene (chr3: CAMP-48225414) were produced at Synthego. In
addition, donor plasmids containing mCherry flanked by homologous arms to the target
region were produced at Synthego.

Together, Cas9-sgRNA complexes and donor plasmids were electroporated into SC
cells using Synthego’s optimized protocol. Editing efficiency was assessed upon recovery
48 h following electroporation. Genomic DNA was extracted from a portion of the cells,
PCR amplified and sequenced using Sanger sequencing. The sequencing results were
processed using Synthego Inference of CRISPR Edits software (ICE, ice.synthego.com).
Edited cell pools identified by ICE were seeded at <1 cell/well using a single-cell printer into
96- or 384-well plates to create monoclonal cell populations. All wells were imaged every
3 days to ensure expansion from a single-cell clone. Ultimately, a monoclonal population
of homozygous CAMPmCherry human SC cells (referred to hereafter as HiTCA cells) was
identified and confirmed by PCR genotyping (Figure 2). The primers used for PCR genotype
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analysis were as follows: primer 1, 5′-AAGGTGAGTGGGCTGTTCTG-3′; primer 2, 5′-
ATTGGGTGTAGGGATTCAATCACA-3′; primer 3, 5′-AAGCGCATGAACTCCTTGAT-3′,
primer 4, 5′-GAGTAGAGCTCCTTAATTCCCCAC-3′.
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Figure 2. Design and validation of homozygous CAMPmCherry human SC cell line. (A) Schematic
representation of mCherry insertion at the 3′ end of the CAMP gene in the human SC cell line using
CRISPR/Cas9. Successful knock-in of mCherry in HiTCA cells but not in wild type (WT) SC cells was
confirmed by PCR genotype analysis of (B) full-length insert (PCR product of primer 2 (forward) and
primer 4 (reverse); expected size of 1348 bp in HiTCA cells and 529 bp in WT) and (C) insert junction
(PCR product of primer 1 (forward) and primer 3 (reverse); expected size of 851 bp in HiTCA cells
and 0 bp in WT).

2.2. Cell Culture and Maintenance

For maintenance, HiTCA and non-gene edited wild type (WT) SC cells were cultured
in media composed of 88% Gibco RPMI (Thermo Fisher Scientific, Waltham, MA, USA),
10% FBS, 1% Sodium Pyruvate (100 mM), and 1% Pen-Strep antibiotic. The cell cultures
were propagated in 25 cm2 canted neck cell flasks with vented caps at a density between
2.0 × 106 and 2.0 × 107 cells/mL. The flasks were incubated at 37 ◦C and 5% CO2. While
maintaining the number of cells in culture, they were passaged every 2–3 days by decanting
half of the culture media and adding an equal volume of fresh culture media. Cells were
tested periodically for viability with trypan blue and counted with a Bio-Rad TC20 Cell
Counter (Bio-Rad Laboratories, Hercules, CA, USA) to ensure viability over 90%.

2.3. HiTCA Protocol

For high-throughput analyses, HiTCA cells were added to 50 mL conical tubes and
centrifuged at 300× g for 10 min. The media was removed, and the pellet was resuspended
in an equal volume of RPMI. Cells were then plated in a 96-well plate at a concentration
of 100,000 cells/well. Depending on the specifics of the experimental conditions, human
serum along with treatment substrates (e.g., ethanol and vitamin D metabolites) were
added to each well such that the total volume/well was 300 uL. Each sample was assayed
in triplicate. The cells were then incubated for 24 h at 37 ◦C. While present in the culture
media used for cell maintenance, FBS, sodium pyruvate, and Penstrep antibiotic were all
absent from culture media used for incubation and analysis. After the 24 h incubation
period, high-throughput flow cytometry analysis was performed on an Invitrogen Attune
NxT (Thermo Fisher Scientific). The samples were read with a yellow–green 561 nm laser
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with a 620/15 bandpass filter. All cells were gated to exclude non-viable cells and doublets.
WT cells acted as negative controls for CAMPmCherry gating, with gating parameters set
such that WT cells were 1% CAMPmCherry positive. Ultimately, 10,000 live cells in single-cell
suspension were included for data collection using Invitrogen Attune NxT built-in software
(Thermo Fisher Scientific) and analysis using FlowJo. GraphPad Prism 8 was used for
statistical analyses and figure production. This protocol is summarized in Figure 3.
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2.4. Induction of CAMPmCherry in Human SC Cell Clones by 25(OH)D3 and 1,25(OH)2D3

We evaluated responsiveness of HiTCA cells to 25(OH)D3 via endogenous CYP27B1-
hydroxylase catalysis of inactive precursor 25(OH)D3 to active 1,25(OH)2D3. HiTCA
protocol was followed as described in Figure 3. During the incubation phase, HiTCA cells
were incubated with escalating concentrations of 25(OH)D3 (1 nM, 10 nM, 100 nM). EtOH
and 10 nM 1,25(OH)2D3 treatments were included as negative and positive controls.

2.5. Application of Pooled Human Serum to HiTCA

We assessed the influence of human serum on the CAMP response using HiTCA.
We followed HiTCA protocol as described in Figure 3 and maintained the incubation
conditions described in Section 2.4 while also incorporating increasing concentrations (0%,
0.3%, 3%, 10%) of pooled human serum obtained from Omega Scientific (Westlake Village,
CA, USA).

2.6. Application of Donor-Specific Serum to HiTCA

We tested HiTCA with a small number of single human donor serum samples. Specifi-
cally, we conducted a pilot experiment with serum from 5 White males and 5 Black males
obtained from Innovative Research (Novi, MI, USA). The whole blood was collected from
donors in an FDA-approved collection center. Each unit was tested for the standard FDA-
required viral markers, and found negative for HBsAg, HCV, HIV-1, HIV-2, HIV-1Ag or
HIV-1 NAT, ALT, and syphilis using FDA-approved methods. Demographic information
provided by Innovative Research for each donor (race, sex, and age) is summarized in Ta-
ble 1. Human serum samples were measured for 25(OH)D and 1,25(OH)2D by LC-MS/MS
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(Waters, Manchester, UK) in the laboratory of Martin Hewison (Institute of Metabolism and
Systems Research, the University of Birmingham, Birmingham B15 2TT, UK) using methods
described in [42] using guidelines established by the US Food and Drug Administration
guidelines for analysis of vitamin D metabolites [43].

Table 1. Demographic and vitamin D metabolite data of donor specific serum.

Sample Race Sex Age 25(OH)D (ng/mL) 1,25D (pg/mL)

BM01 Black Male 26 18.45 35.66

BM02 Black Male 38 21.05 35.66

BM03 Black Male 38 18.68 40.09

BM04 Black Male 37 14.38 24.96

BM05 Black Male 26 13.13 17.39

WM01 White Male 29 31.92 76.75

WM02 White Male 24 29.15 67.58

WM03 White Male 38 34.29 107.15

WM04 White Male 39 36.24 80.32

WM05 White Male 27 32.02 28.02

HiTCA protocol was followed as described in Figure 3. During the incubation phase,
HiTCA cells were incubated with donor specific serum (n = 10) at variable serum con-
centrations (0.3%, 10%) and exogenous vitamin D metabolite treatments (EtOH, 100 nM
25(OH)D3, 10 nM 1,25(OH)2D3).

3. Results
3.1. Endogenous 25(OH)D3-to-1,25(OH)2D3 Activation in HiTCA Cells

HiTCA cells demonstrated a dose-dependent response to 25(OH)D3 (Figure 4), as EtOH-
treated and 1 nM 25(OH)D3-treated cells exhibited baseline expression (10% CAMPmCherry

positive) that increased to 50% in response to 10 nM 25(OH)D3 and nearly 100% in the
presence of 100 nM 25(OH)D3, comparable to levels observed in 10 nM 1,25(OH)2D3-treated
cells. These results strongly suggest that this CAMPmCherry human SC cell line is capable of
converting 25(OH)D3 to its transcriptionally active form, 1,25(OH)2D3, via endogenously
expressed CYP27B1-hydroxylase.

3.2. Higher Human Serum Concentration Attenuates the HiTCA Response

Coincubation of HiTCA cells with pooled human serum resulted in a dose-dependent
attenuation of CAMPmCherry expression as the pooled human serum concentration was
increased from 0% to 10% (Figure 5). The response of HiTCA cells to serum was consistent
across all vitamin D metabolite treatment conditions.

3.3. Donor Specific Serum Yielded Variable Responses

We then tested HiTCA with a small number of single human donor serum samples.
Specifically, we conducted a pilot experiment with serum from five White males and
five Black males (Figure 6, Table 1). Based on the results of our pooled human serum
experiments (Figure 5), we decided to compare 0.3% (Figure 6A) and 10% (Figure 6B)
human donor serum to determine whether differential CAMP expression could be observed
across individual donors. In both serum settings (Figure 6A,B), we identified statistically
significant differences (p < 0.001) in CAMPmCherry expression across individual donors
when vehicle incubated (EtOH; gray bars) and when co-incubated with exogenous 100 nM
25(OH)D3 (light red bars) or 10 nM 1,25(OH)2D3 (dark red bars). Consistent with our
previous result (Figure 5), we observed attenuation of the HiTCA CAMPmCherry 25(OH)D3
response in the presence of high serum concentrations (10%; Figure 6B) as compared to
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low serum concentration (0.3%; Figure 6A). In 0.3% serum, CAMPmCherry response was
elevated (5 to 7-fold, p < 0.001) above EtOH controls when co-incubated with 100 nM
25(OH)D3 and 10 nM 1,25(OH)2D3 (Figure 6C, left). In 10% serum, differences between
EtOH and 100 nM 25(OH)D3 were not significant, while CAMPmCherry response was
elevated (10 to 54-fold, p < 0.01) above EtOH controls when co-incubated with 10 nM
1,25(OH)2D3 (Figure 6C, right). In the six conditions where White and Black samples
could be compared, only in two conditions (10% serum, EtOH and 100 nM 25(OH)D3
added) was the CAMPmCherry response statistically different between Black and White
samples (Figure 6C). Unexpectedly, the Black samples had higher CAMPmCherry responses
in those conditions (4-fold higher in 10% serum EtOH, p < 0.05; 3.5-fold higher in 10%
serum 100 nM 25(OH)D3, p < 0.05) compared to White samples. This is surprising given
that the serum from Black samples was lower than White samples in both their mean
25(OH)D (17.14 ng/mL, SD = 2.93 vs. 32.72 ng/mL, SD = 2.40; p < 0.001) and 1,25(OH)2D
(30.74 pg/mL, SD = 8.34 vs. 71.97 pg/mL, SD = 25.62; p < 0.05) levels (Figure 6D).
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HiTCA cells and their EtOH-treated equivalent.
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Figure 5. Pooled human serum dose-dependent attenuation of HiTCA CAMPmCherry response.
HiTCA cells were incubated in RPMI, EtOH (equal volume as vitamin D metabolite solvent), vitamin
D metabolites (1 nM 25(OH)D3, 10 nM 25(OH)D3, 100 nM 25(OH)D3, 10 nM 1,25(OH)2D3), and
pooled human serum (pHS; 0%, 0.3%, 3%, 10%) at 37 ◦C for 24 h prior to flow cytometry analysis.
EtOH-treated WT cells were gated to be 1% CAMPmCherry positive. Therefore, all non-WT columns
represent the percentage of 10,000 live-gated single-cells that express CAMPmCherry above the WT
control levels. Each column represents n = 3 biological replicates ± SD. Black asterisks represent
significant differences (* p < 0.05, ** p < 0.01, *** p < 0.001) between vitamin D metabolite-treated
HiTCA cells and their EtOH equivalent with the same pHS exposure. Colored asterisks represent
significant differences (* p < 0.05, ** p < 0.01, *** p < 0.001) between 0% pHS-treated HiTCA cells and
non-zero pHS-treated HiTCA cells of the same vitamin D metabolite treatment group.
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Figure 6. HiTCA response to varying human donor serum concentrations. HiTCA cells were
treated with either EtOH (equal volume as vitamin D metabolite solvent), 100 nM 25(OH)D3, or
10 nM 1,25(OH)2D3 and one of the following serum treatments: serum-free (SF: no exogenous
serum added), pooled human serum (pHS), or individual donor serum. Individual donor serum
concentration and culture media conditions were varied as follows: (A) 0.3% serum in RPMI and
(B) 10% serum in RPMI. Data represent the percentage of 10,000 live-gated single-cells that express
CAMPmCherry with gate of EtOH-treated WT cells set to 1% positive. Each column represents
n = 3 biological replicates ± SEM. Columns representing the three vitamin D metabolite treatments
are superimposed according to serum treatment. Vitamin D metabolite treatments are color-coded
according to the figure legend. Statistical significance p < 0.001 was attained between individual
donors in all treatment conditions by ANOVA. (C) Data from panels A and B are displayed as
comparisons of average percentage CAMPmCherry signals from the Black (n = 5) and White (n = 5)
samples in the various indicated test conditions (y-axis, 0.3% serum on left and 10% serum on right)
and above the column graphs (EtOH, 100 nM 25(OH)D3, or 10 nM 1,25(OH)2D3). Differences between
Black and White samples were observed in only two conditions, * p < 0.05. Differences between EtOH
and 100 nM 25(OH)D3, and EtOH and 10 nM 1,25(OH)2D3 within corresponding Black/White groups
were all significant (p < 0.01) with the exception of two indicated non-significant (ns) comparisons.
(D) Measured serum 25(OH)D (left axis) and 1,25(OH)2D (right axis) mean concentrations of the
Black and White samples used in study. * p < 0.05 and ** p < 0.001 was observed comparing Black
with White samples.

4. Discussion

Investigations of the vitamin D-dependent antimicrobial response require time-consuming
methods for characterizing CAMP and/or CAMP expression, including the ex vivo CAMP
assay [36]. The ex vivo CAMP assay designed previously was limited by potentially con-
founding issues of donor variability in primary cultures of human monocyte-macrophages,
variability in the expression of CYP27B1-hydroxalase and VDR in that cell, low-throughput
capacity, contamination with other CAMP-expressing cells, and readout at the level of
mRNA not protein. The High Throughput CAMP Assay (HiTCA) addresses each of the
limitations of the ex vivo CAMP assay by employing a homogenous source of CAMPmCherry

monocyte-macrophages expressing fluorescently-labeled CAMP protein in a fully scalable,
high-throughput workflow that requires minimal manual sample handling.

CAMPmCherry response was strongly induced as expected when exogenous 25(OH)D3
and 1,25(OH)2D3 were added to HiTCA cultured without serum (Figure 4). However, the
addition of human serum to HiTCA strongly and consistently attenuated CAMPmCherry

response. Specifically, HiTCA showed CAMPmCherry response to 100 nM 25(OH)D3 and
10 nM 1,25(OH)2D3 in 0.3% serum-supplemented media (Figures 5 and 6), while only 10 nM
1,25(OH)2D3 induced CAMPmCherry in 10% serum-supplemented media (Figures 5 and 6).
These differences are likely due to vitamin D binding protein (DBP) that has a very high
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affinity for 25(OH)D3 and much lower affinity for 1,25(OH)2D3, resulting in the squelched
response to 25(OH)D3 in the 10% serum setting.

Potentially interesting are the differences seen among individual donor human serums
and the difference in response of pooled human serum compared to the individual donor
serums. Large volumes of pooled human serum prepared by commercial vendors may
have significantly different sample handling procedures that may yield differences when
compared against small-volume individual donor serum preparations commonly found
in studies analyzing clinical samples or purchased from vendors. Perhaps, commercial
high-volume serum preparation differentially alters some serum components that sup-
port/suppress the CAMPmCherry response.

As for the inter-donor variability, significant racial differences in both 25(OH)D and
1,25(OH)2D levels have been described in the past [44]. In our samples, the Black serum
samples were significantly lower in their 25(OH)D and 1,25(OH)2D levels compared to the
White serum samples (Figure 6D). Yet, in two of the assay conditions, 10% serum EtOH
and 10% serum 100 nM 25(OH)D3, the CAMPmCherry response was significantly higher
in the Black samples (Figure 6C). While further investigation is required to support this
claim with certainty, these results suggest that regulation of the CAMPmCherry response
is more complicated than just the measurable serum 25(OH)D or 1,25(OH)2D levels. It is
possible that some serum components that support/suppress the CAMPmCherry response
differ among individuals, especially among individuals of different ethnicities. Some
have proposed that genetic polymorphisms in the serum vitamin D binding protein (DBP)
could account for differences in vitamin D-dependent processes through differences in the
affinity of DBP for vitamin D metabolites among the polymorphisms [45,46]. However,
biochemical studies of DBP affinity and measurements of free 25(OH)D among subjects
with different DBP polymorphisms indicate that affinity differences are small [47–49].
Other proposed regulators of CAMP induction are cytokines (e.g., IL-15, IL-4, and IFN-γ),
which can vary both qualitatively and quantitatively across individual donors and are
known to impact vitamin D responsiveness in cells [50–52]. Further, microRNAs may
act as regulatory molecules, perhaps through factors that stimulate/suppress microRNA
expression in monocyte-macrophages [53] or exosome-delivered microRNAs that affect
vitamin D response [54]. With consideration of the complexity of this process, Calberg
and Haq recently conceptualized the vitamin D response index [55], which suggests that
individual differences in diverse biochemical and clinical parameters, and not vitamin D
status alone, govern response to vitamin D and requirement for vitamin D supplementation.
In addition, there may be vitamin D-independent mechanisms at play, including differences
in serum levels of other macro- (e.g., branched-chain amino acids, short-chain fatty acids,
and lactose) and micro-nutrients (e.g., vitamin D, vitamin A, and zinc) known to regulate
antimicrobial peptide expression [8]. As such, HiTCA is a proof-of-concept of the type of
novel resource needed in the field to facilitate the analysis of large numbers of samples to
explore the intricacies of the CAMP response.

Despite the discovery potential, we are aware of various limitations of our method
and analysis presented in this report. First, our experiments employed a moderate sample
size (n = 10; Figure 6). Second, our experiments were conducted using sera from young (20
to 40-year-old) male subjects (Table 1) and, therefore, did not test a fuller possible range of
individual differences that the inclusion of various ages and genders might provide. Third,
although the race, sex, and age of the donors were known, we had no further knowledge of
the donors’ physical characteristics, such as inflammatory state, past medical history, drug
or supplement use, and serum levels of other CAMP-influencing nutrients. As such, while
our current work serves as a proof-of-concept for the HiTCA assay, in the future, we plan to
apply HiTCA to a larger sample with diverse demographic (race, sex, age, etc.) and physical
characteristics. In addition, we plan to apply HiTCA in the context of various pathologic
perturbations, including exposure to infection and/or inflammatory mediators. Finally,
the somewhat muted response to 25(OH)D in 10% serum settings could indicate that the
cell line has modest CYP27B1 expression, which could be addressed in future iterations
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of HiTCA. However, our observation of individual differences in CAMPmCherry induction
is consistent with the known challenges of dissecting the individualized parameters that
drive immune response.

5. Conclusions

We developed the High Throughput CAMP Assay (HiTCA), a novel tool for evaluating
CAMP expression in a stable, CAMPmCherry-expressing, monocyte-macrophage innate im-
mune cell line. HiTCA is sensitive to individual differences in CAMP induction and yields
consistent results in a fully scalable, high-throughput workflow. This proof-of-principle
study yielded findings consistent with evidence from both the biological and clinical realms
that support individual diversity in the complex vitamin D-dependent antimicrobial pro-
cesses. HiTCA, further refined and tested in a larger number of samples, may prove to
be a valuable means of identifying novel, serum-based factors that impact the immune
regulatory function of vitamin D. With this knowledge, the field may more adequately
assess and apply vitamin D as a sole or adjuvant therapeutic for infectious diseases.
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