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Abstract
Systems glycobiology aims to provide models and analysis tools that account for the biosynthesis, regulation, and interactions with
glycoconjugates. To facilitate these methods, there is a need for a clear glycan representation accessible to both computers and
humans. Linear Code, a linearized and readily parsable glycan structure representation, is such a language. For this reason, Linear
Code was adapted to represent reaction rules, but the syntax has drifted from its original description to accommodate new and origi-
nally unforeseen challenges. Here, we delineate the consensuses and inconsistencies that have arisen through this adaptation. We
recommend options for a consensus-based extension of Linear Code that can be used for reaction rule specification going forward.
Through this extension and specification of Linear Code to reaction rules, we aim to minimize inconsistent symbology thereby
making glycan database queries easier. With a clear guide for generating reaction rule descriptions, glycan synthesis models will be
more interoperable and reproducible thereby moving glycoinformatics closer to compliance with FAIR standards. Here, we present
Linear Code for Reaction Rules (LiCoRR), version 1.0, an unambiguous representation for describing glycosylation reactions in
both literature and code.
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Introduction
Glycans are predominantly synthesized through the serial addi-
tion of monosaccharides to form large polysaccharides. To
build computational models of glycan synthesis, the biochem-

ical reactions involved must be defined and described mathe-
matically in a form that can be interpreted by computers [1-3].
Several groups have created such models using a variety of

https://www.beilstein-journals.org/bjoc/about/openAccess.htm
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Table 1: The reaction rule Ab3GNb → Ab3(Fa4)GNb represented in Symbol Nomenclature for Glycans [18], Linear Code, IUPAC, GlycoCT, and
WURCS separately. Linear Code provides the most straightforward and succinct representation.

Reactant Product

Structure plot
(with link info)

Linear Code Ab3GNb Ab3(Fa4)GNb
IUPAC-extended β-ᴅ-Galp-(1-3)-β-ᴅ-Glcp2NAc β-ᴅ-Galp-(1-3)-[α-ʟ-Fucp-(1-4)]β-ᴅ-Glcp2NAc
IUPAC-condensed Gal(β1-3)GlcNAc(β1- Gal(β1-3)[Fuc(α1-4)]GlcNAc(β1-
glycoCT RES

1b:b-dglc-HEX-1:5
2s:n-acetyl
3b:b-dgal-HEX-1:5
LIN
1:1d(2+1)2n
2:1o(3+1)3d

RES
1b:b-dglc-HEX-1:5
2s:n-acetyl
3b:b-dgal-HEX-1:5
4b:a-lgal-HEX-1:5|6:d
LIN
1:1d(2+1)2n
2:1o(3+1)3d
3:1o(4+1)4d

WURCS WURCS=2.0/2,2,1/[a2122h-1b_1-5_2*NCC/3=O]
[a2112h-1b_1-5]/1-2/a3-b1

WURCS=2.0/3,3,2/[a2122h-1b_1-5_2*NCC/3=O]
[a2112h-1b_1-5][a1221m-1a_1-5]/1-2-3/a4-c1_a3-b1

strategies, including mechanistic and nonlinear [4-12], linear
probabilistic [13,14], machine learning [15], formal-grammar
[16], and substructural [17]. Unfortunately, most of these ap-
proaches use slightly different expressions of the building
blocks, the reaction rules, therefore, model comparison is more
challenging than it needs to be, with certain inconsistencies
remaining to be resolved.

In the past few decades, substantial efforts made in the con-
struction of these models of glycan synthesis were mostly
focused on defining reaction rules that benefit from an unam-
biguous representation with human readability. For example,
graphical denotation is one of the most human-understandable
representations to describe reaction rules [18-20]. While graphi-
cal representations are intuitive and extremely accessible to a
human reader, they are not computationally accessible due to
ambiguities in their representations. There are already efforts to
create computationally transmissible rule sets in XML-type
representations like BioPAX [21], CellML [22], and SBML
[7,8] which are readily interoperable and reusable. However,
the XML-type model representations are not designed to be
human-readable or included in the main text of a manuscript
confining many design details to the supplement of a publica-
tion. As systems glycobiology develops, there is a need to
develop a standard nomenclature for unambiguous and
readable reaction rules to facilitate development, exchange,
extension, and validation of glycosylation models and analysis
tools.

Here we bring explicit attention to the concerns we raise above,
we provide a focused, text-based representation of reaction
rules that have been introduced for the purpose of formalizing
these communications. GlycoCT [23] and WURCS [24,25] are
two popular glycan nomenclatures in use today. GlycoCT was
designed to maximize the descriptive specificity of the experi-
mentally derived glycan structures data. WURCS, on the other
hand, focuses on the uniqueness of a linear representation which
promises efficient lookup in database queries. Both GlycoCT
and WURCS produce unambiguous representations and are
thereby invaluable for many applications, ranging from systems
biology analyses [17] to an international glycan structure repos-
itory [26-29]. GlycoCT and WURCS provide a high degree of
unambiguous detail; however, they are limited in their human-
readability. The glycan extension to IUPAC, on the other hand,
is more human-readable [30]. It specifies the linkage and branch
information in an intuitive and linear manner. In the hopes of
mitigating the inconsistent application of IUPAC and inconve-
nient illustrations, Linear Code described a simplified version
of IUPAC nomenclature [31]. Specifically, Linear Code is a
syntax for representing glycoconjugates and their associated
molecules in a simple linear fashion. While keeping the linkage
and branch information, Linear Code removes the hyphens be-
tween monosaccharides and abbreviates the glycan symbols,
thereby simplifying the representation without limiting flexi-
bility. Given its readability and parsability, Linear Code has
become a popular choice for representing reaction rules in
computational models of glycan synthesis (Table 1). However,
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Figure 1: Common terminology and anatomy of a theoretical glycan, (KJ(IH)GF(D(E)(C)B)A. In this figure, we demonstrate some key terminology as
well as the three primary uncertainty operators: branch (orange), continuation (blue), and ligand (green). The structures matching these terms are
shown in matching colors, those matching both the continuation and ligand are shown in purple. A ligand can typically be removed with one cut. A
continuation is a connection from a node to a root that can “continue” or “bypasses” other branch points. The paths from I to G or K to G represent
one continuation; to represent both paths, a continuation is necessary because traversing from I to G requires the syntactic “bypass” of the KJ branch.

with the rise of Linear Code adaptations to represent reaction
rules, we have seen increasing diversity in the syntax, including
branch constraints, duplicate monosaccharides omission, logical
operators, etc.

Here we critically review reaction rule nomenclature. In doing
so, we seek to promote the development of a standardized and
unambiguous, readable, and computable reaction rule represen-
tation. First, we examine the original usage of Linear Code for
reaction rule representation by discussing six major categories
of syntax rules. Second, we discuss the various adaptations that
have been introduced in the current usage of Linear Code to
represent reaction rules. Third, we further discuss the apparent
nomenclature ambiguity emerging in the adaptation of Linear
Code to systems glycobiology. Finally, we demonstrate the
depth of the nomenclature crisis through the minimal overlap in
presumably similar networks. While many solutions to this
nomenclature might be offered, we focus on six major recom-
mendations to provide a unified representation of reaction rules
that are likely to have a broad impact on minimizing change to
the current adaptations.

Common lore at universities describes architects who, rather
than “prescribe” ideal paths for students through the mall,

waited to see where students would walk. They built their paths
over the trampled grass of the “descriptive” paths chosen by the
students. Similarly, we intend to extend the thoughtful
“prescription” of Linear Code to “descriptive” extensions that
will comfortably accommodate those currently working in
systems glycobiology. We also provide some key definitions for
ease of reading (Figure 1, Table 2).

Syntax Rules of the Original Linear
Code
Linear Code rules can be separated into six categories of syntax
rules (Table 3): Stereospecificity and ring structure rules (SRS),
modification rules (MR), branch rules (BR), repetition rules
(RR), glycoconjugate rules (GR), and uncertainty rules (UR).
The saccharide unit (SU) refers to a structure with four ele-
ments: anomericity, position number, modifications, and mono-
saccharide (MS).

Stereospecificity and ring structure rules are set to differen-
tiate the stereoisomers or distinct ring structures. A change from
primary to secondary stereospecificity is denoted by “ ’ ”, while
a change to secondary ring structure is denoted “ ^ ”. A change
to both secondary ring and stereospecificity is denoted “ ~ ”.
For example, “ G ” represents glucopyranose, the pyranose con-
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Table 2: Glossary of essential terms.

Term Definition

saccharide unit (SU) composed of a monosaccharide name, modifications (if any), anomericity (α or β
configurations of the glycosidic bond), and the position it is bonded to a given SU.

monosaccharide (MS) a sugar monomer.
lowest-carbon-index chain the lowest carbon index branch corresponding to the non-reducing sugar connected

to the lowest reducing-end carbon.
branch any right branch, pictorially “right” of the reducing MS (Figure 1), where a

non-reducing sugar is not connected to the lowest reducing-end carbon.
reducing and non-reducing ends these are the MSs that appear “first” (closest to the glycoconjugate or first added in

the synthesis) and “last” (leaves or terminal MS, those farthest from the “first” MS
within a branch and have no linkage to a non-reducing MS). Typically, there is one
reducing end and there are often multiple non-reducing ends.

reducing MS closer to the first MS or the “reducing-end”.
non-reducing MS farther from the first MS and closer to a non-reducing end.

Table 3: Original Linear Code rules (Banin et al. [31]).a

Rule description Example

saccharide unit (SU) 1. see one-letter MS names in Table 4.
2. the anomer, where an α conformation is denoted as
“a,” and β as “b,” follows the one-letter MS name.

Ga, Gb

3. the carbon number by which the SU is attached follows
the anomer.

Ga3, Gb2

4. modifications. see modification rules for details, which
follow after the carbon number.

see modification rules examples.

open form (OF) 1. open form notation. If a carbon is in its open-chain
form, an “o” is attached to the end.

AbGo,
AbG[P]o

stereospecificity and
ring structures (SRS)

1. the less common stereoisomer (ᴅ or ʟ) of an MS is
indicated with apostrophes (‘).

D-Glcp: G
L-Glcp: G’

2. MSs with uncommon ring structures (e.g., furanose,
pyranose) are indicated with a caret (^).

D-Glcp: G
D-Glcf: G^

3. MS that differ in both common stereospecificity and
ring structure are indicated with a tilde (~).

D-Glcp: G
L-Glcf: G~

modification rules
(MR)

1. the modifications are represented by adding square
brackets that include the connecting position of the
modification to the SU, followed by the modification
symbol (Table 5) in the form: [<number><symbol>]
Exceptions include certain monosaccharides with
common modifications (ᴅ-GalpNAc is AN instead of
A[2N]).
Anomericity (α or β) is expressed immediately after the
modification.

β-D-Galp(2P)-(1-3)-β-D-Glcp: A[2P]b3Gb

branch rules (BR) 1. when the non-reducing MSs are identical, the MS
linked to the higher index carbon will branch (appear first
in the written representation when read right to left,
reducing to non-reducing end).

GNb2Ma3(NNa3Ab3GNb2Ma6)Mb4GNb

2. when the non-reducing MSs are different, the less
frequent non-reducing MS will branch (MS frequency
Table 4).

Ab3ANb4(NNa3)Ab4Gb

repetition rules (RR) 1. repeating units are expressed inside parentheses, with
an ‘n’ representing the number of repeats.

cellulose, which is a polymer of ᴅ-glucose
residues joined by β-1,4 linkages are
represented as {nGb4}

2. if not the non-reducing end, the head of a repeated
motif is expressed two dashes “ - - ”

{nGa6Ga4(-Ab3-)Ub2Ha3Ha3Ha3}

3. if not the reducing end, the tail of a cyclic motif is
expressed using the letter “c”.

nGa6Ga4(-Ab3-)Ub2Ha3Hca3Ha3



Beilstein J. Org. Chem. 2020, 16, 2645–2662.

2649

Table 3: Original Linear Code rules (Banin et al. [31]).a (continued)

glycoconjugate rules
(GR)

1. amino acid sequences are written after ‘;’. Lipid
moieties are written after ‘:’. Other glycosides are written
after ‘#’.

Ga;NY-S-C.
Gb:C
GNb3Ab#4-Trifluoroacetamidophenol

uncertainty rules (UR) 1. α or β linkage unknown, or connection position
unknown: ?

AN?3G

2. both linkage and connection position unknown: ?? AN??G
3. an entire SU unknown: *
* could match any whole SU.

ANb3*A

4. when two possibilities are given for the identity of an
SU element, use “/”

ANb3/4

5. when two options are given for the identity of a
complete SU, use “//”

Ab4//Ga2Aa3 represents Ab4Aa3 or Ga2Aa3

6. for glycan fragments, use an index number + ‘%’ as a
variable for the fragment, and a ‘|’ to separate the
fragment from the core.

NNa6=1%|1%Ab4GNb2Ma3(1%Ab4GNb2Ma
6)Mb4Gb denotes that
Ab4GNb2Ma3(Ab4GNb2Ma6)Mb4Gb is the
core, and that the linkage of the fragment
NNa6 to the core is uncertain. % means
uncertain, 1 is the index referring to the
uncertain MS.

a“(#)” - Rules deprecated in LiCoRR.

formation of glucose, with ᴅ stereospecificity. Glucopyranose
with ʟ stereospecificity is written as “ G’ ” (SRS1). Glucofura-
nose with ᴅ stereospecificity is written as “ G^ ” (SRS2), and
glucofuranose with ʟ specificity is written as “ G~ ” (SRS3).
Similarly, galactofuranose, a common fungal monosaccharide,
would be written “A^”

Open form rule indicates that if the MS at the reducing end is
open – a linear rather than cyclic MS, then the final character to
the right of the string should be "o". For example, lactose,
galactose β-linked to glucose would be written as AbG if the
reducing end glucose is closed and AbGo if the glucose is open;
the open "o" takes the place of the linkage in this context. If the
glucose is phosphorylated, this structure would be written
AbG[P]o.

Modification rules specify a modification of a MS at certain
positions (MR1). MS + “ [ ” + modification + “ ] ” is used to
denote the modification. For example, “G[2S]” describes sulfa-
tion on the second carbon of a ᴅ-glucopyranose. The
anomericity is expressed to the right of the modification (i.e.,
“G[2S]a”). Multiple modifications to the same MS are ordered
based on the position number inside the same brackets;
ascending order from left to right. For some common modifica-
tions like N-acetylgalactosamine, instead of “A[2N],” Linear
Code uses “AN” directly. Table 4 includes syntaxes of MS in
Linear Code and common modified MSs. Common modifica-
tion names can be found in Table 5. Given multiple modifica-
tions, carbon numbers are written in ascending alphanumeric
order. Therefore, dideoxy galactose, or abequose, is written

“A[2,6D]” while N-aceytlfucosamine could be written
“A[6D,2N]”.

Branch rules specify which non-reducing saccharide unit (SU)
should be in the branch and which SU should continue the
lowest-carbon-index chain; branching is determined by the
identity of the first MS in a chain. When the non-reducing MSs
are identical, the MS and its substituent chain, linked to the
higher carbon of the reducing MS, will branch while the MS
and substituent chain, linked to the lower carbon position of the
same reducing MS, remains in the lowest-carbon-index chain
(BR1). Otherwise, if the non-reducing MSs are different, the
chain with a less frequent non-reducing MS (lower rank in
Table 4) is considered the branch (BR2). The MS frequency is
specified in Table 4, decreasing from top to bottom. When there
are more than two non-reducing MSs linked to the same
reducing MS, they are ranked, first by frequency, then by
linkage index. The highest frequency MS is ranked higher,
further to the left when the expression is written. Any MSs with
equal rank after the frequency rank – those that are the same
MS – are ranked by their linkage index, the lowest linkage
indexes are ranked higher. A higher rank means these MSs, and
their associated chains, will remain on the lowest-carbon-index
chain, while the lower rank MSs will branch.

Repetition rules specify the contraction syntax for succinctly
describing repeating MS units. The repetition structure is
denoted by curly brackets, with a prefix of repetition times
inside the brackets. For example, cellulose, which is a polymer
of ᴅ-glucose residues joined by β-1,4 linkages, is represented as
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Table 4: Common monosaccharides and their Linear Codes (adapted
from [31]). We have added NG as it has become a clearly important
monosaccharide excluded from the original list. Full monosaccharide
descriptions are recorded in IUPAC [18]; all terms can be found at
https://www.qmul.ac.uk/sbcs/iupac/2carb/38.html.

Monosaccharidesa Linear Code IUPAC

ᴅ-glucose G Glc
ᴅ-galactose A Gal
N-acetylglucosamine GN GlcNAc
N-acetylgalactosamine AN GalNAc
ᴅ-mannose M Man
N-acetylneuraminic acid NN Neu5Ac
*N-glycolylneuraminic acidb NG Neu5Gc
neuraminic acid N Neu
2-keto-3-deoxynononic acid K KDNc

3-deoxy-ᴅ-manno-2
octulopyranosylonic acid

W Kdo

ᴅ-galacturonic acid L GalA
ʟ-iduronic acid I ᴅ-IdoA
ʟ-rhamnose H Rha
ʟ-fucose F Fuc
ᴅ-xylose X Xyl
ᴅ-ribose B Rib
ʟ-arabinofuranose R Araf
ᴅ-glucuronic acid U GlcA
ᴅ-allose O All
ᴅ-apiose P ᴅ-Api
ᴅ-fructofuranose E Fruf
*ascaryloseb C Asc
*ribitolb T Rib-ol (Rbo)

aAll the monosaccharides are in their pyranose form unless otherwise
noted. bAsterisk (“*”) represents an update from the original table.
cKDN: 3-deoxy-ᴅ-glycero-ᴅ-galacto-nonulosonic acid. Kdn: 3-deoxy-ᴅ-
glycero-ᴅ-galacto-nonulosonic acid.

“{nGb4}” (RR1). If a ring structure is repeated and the
repeating unit is not connected “head to tail,” the MS where the
repeating units are connected is marked between 2 dashes “ - - ”
(RR2). An example is {nGa6Ga4(-Ab3-)Ub2Ha3Ha3Ha3}. Ad-
ditionally, Banin et al. specify that a cyclic motif, a
form of repetition, is expressed using the letter “c” [31].
While specification was limited in the original publication,
we interpret "c" as denoting the "tail." (-X-) denotes the head
if it is not the left end and "c" denotes the tail if it is not the
right end of the string. For example, in the molecule
nGa6Ga4(-Ab3-)Ub2Ha3Ha3Ha3, Ab3 connects to the
reducing end, Ha3. But if Ab3 was connected to the second Ha3
from right instead, we can specify the point of the cycle using a
“c,” nGa6Ga4(-Ab3-)Ub2Ha3Hca3Ha3.

Glycoconjugate rules describe when a reducing end of a SU is
connected to non-carbohydrate moieties, Glycoconjugate rules

Table 5: Common modifications and their Linear Code (from [31]).

Modification type Linear Code IUPAC

deacetylated N-acetyl Q N
phosphoethanolamine PE Pe
inositol IN In
methyl ME Me
N-acetyl N NAc
O-acetyl T Ac
phosphate P P
phosphocholine PC Pc
pyruvate PYR Pyr
sulfate S S
sulfide SH Sh
aminoethylphosphonate EP Ep
*deoxya D d
*carboxylic acida CA -oic
*aminea A -amine
*amidea AO -amide
*ketonea K -one

aAsterisk (“*”) represents an update from the original table.

regulate that amino acid sequences are written after “ ; ”, lipid
moieties are written after “ : ”, and other glycosides are written
after “ # ” (GR1). For example, a glucose β-linked to a
Ceramide is written as “Gb:C.”

Uncertainty rules describe syntax for when certain features of
the SU are unknown or have more than one possibility.
If the anomericity of certain bonds is unknown, Linear
Code uses “ ? ” (i.e., AN?3G) (UR1). If both linkage
anomericity and position are unknown, Linear Code uses “ ?? ”
(i.e., AN??G) (UR2). If an entire SU is unknown, “ * ” can be
used instead. ANb3*A represents a three SU glycan, where the
second SU is unknown (UR3). When two monosaccharides are
possible for a given SU, Linear Code uses the forward slash to
separate them. When SU ambiguity refers to anomericity,
position number, modifications, or MS, a single “ / ” is used
(i.e., ANb3/4) (UR4). Given two complete possible SUs,
Linear Code uses “ // ” to separate them (i.e., Ab4//Ga2Aa3
represents Ab4Aa3 or Ga2Aa3) (UR5). When analyzing
fragmented glycans, an “< index number>%” is used to store
fragmented s tructures  as  a  variable .  For  example,
NNa6=1%|1%Ab4GNb2Ma3(1%Ab4GNb2Ma6)Mb4Gb is a
glycan containing a terminal α-2,6-linked sialic acid (NNa6)
whose linkage position is unknown. Here, the “ | ” is used to
separate the fragment(s) and core structure components (UR6).

In the interest of demonstrating the reach of single letter LC
monosaccharides (Table 4), we provide a monosaccharide

https://www.qmul.ac.uk/sbcs/iupac/2carb/38.html
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Figure 2: Monosaccharide reachability analysis. (A) Clusters contain monosaccharides with highly similar stereochemistry (>80%). (B) The maximum
common substructure (MCS) associated with each cluster. (C) An example to illustrate the modifications needed to reach one monosaccharide to
another, as identified by the complete monosaccharide reachability network (Table S6, Supporting Information File 1). (D) The monosaccharides
reachability network, showing only connectivity for the least number of modifications needed, differentiated by color as stated in the legend, between
monosaccharides (circle) and clusters (diamond). Additionally, the node size denotes the number of different possible paths taken for them to be
reached. Please note that each edge is not a predicted or proposed feasible reaction. Edges denote functional groups that can be added or removed
from one monosaccharide to represent another.

network suggesting demonstrating non-trivial functional-group
(Table 5) relations between monosaccharides (Figure 2). We
used RDKit, an open-source cheminformatics toolkit, to iden-
tify chiral centers and further determine stereochemical equiva-
lence classes. Monosaccharides were clustered with an 80%
stereo-similarity threshold (Figure 2A), and the maximum
common substructure (MCS) of each cluster was obtained
(Figure 2B). These MCS equivalence classes were used to
group monosaccharides explicitly listed in Table 4 and connect
them through addition or subtraction of functional groups in
Table 5 (Figure 2C) to every major monosaccharide listed by
SNFG (Figure 2D). Figure 2D shows some of these non-trivial
paths (e.g., beyond GlcNac; G → GN or G[2N]) from Table 4

monosaccharides, to all listed SFNG monosaccharides via mod-
ifications from Table 5. We further provide a full network
(Table S6, Supporting Information File 1) to facilitate the
discovery of any monosaccharide–monosaccharide relation. For
example, the fucose-galactose relation can be found in row
1479 of Table S6 (Supporting Information File 1). They differ
by one hydroxy group therefore fucose could be represented as
“A[6D]”. Similarly, abequose, a dideoxy galactose, could be
represented as “A[2,6D]” or “F[3D]”. Through simple lookup
in Table S6 of Supporting Information File 1, many noncanon-
ical monosaccharides can be described thus mitigating
the limitations of the single-letter monosaccharide representa-
tion.
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Current Usage of Linear Code to
Represent Reaction Rules
Linear Code was first used to represent reaction rules in 2009.
A reaction network, specifying glycans with condensed IUPAC
and Linear Code, was trained on mass spectrometry abundance
to learn biosynthetic enzyme activities [10]. Their reaction rules
table contained four features: enzyme, reactant, product, and
constraint. For their implementation, not all original Linear
Code rules are adopted. Krambeck et al. [10] maintained the
linkage information (Table 3: SU2), one-letter MS abbreviation
(Table 4), and branch rules (Table 3: BR), which are the neces-
sary conditions to denote a glycan with branches [10]. On the
other hand, symbols “ ~ ”, “ * ”, “ | ” were defined with new
meanings, though they already had their meanings in the orig-
inal Linear Code rules (Table 3: SRS3, UR3, UR6,
respectively). Instead, Krambeck et al. introduced several new
symbols to convey logical relationships (“ & ”, “ ~ ”, “or”) and
structural ambiguity (“ ... ”, “ _ ”, “ | ”, “ * ”), all of which were
used to specify constraints. For example, a constraint “Ma6 &
Ma3” means the reaction will happen only if both Ma6 and Ma3
appear in the glycan; as an N-glycan, these are the terminal
mannoses capping the chitobiose core. The “Ma6 or Ma3”
constraint promotes the reaction if either Ma6 or Ma3 exists.
“~Ma6” means the reaction will not happen if Ma6 is present in
the glycan. The structure denotations are indicators of certain
parts of the glycan. The entry “ ... ” can be replaced with either
nothing or any polysaccharide with matched parenthesis. The
entry “ _ ”, in Krambeck et al., can be replaced with either
nothing or any polysaccharide where each left parenthesis is
matched to a right parenthesis but where right parentheses are
not necessarily matched. Entry “ | ” represents a possible
branch. We expand on the distinctions between “ … ”, “ _ ” and
“ | ” in a later section “Substring uncertainty operators”
(Table 4). The asterisk “ * ” stands for the reaction site, which
is the position where the new MS will be added or an MS is re-
moved. Krambeck et al. also uses “ # ” to describe constraints
around the number of MS that may appear in a glycan. For ex-
ample, the constraint “#A = 0” means the reaction will happen
only if there is no galactose. The Krambeck et al. adaptation is
the most common adaptation of Linear Code to represent reac-
tion rules [7,13,15,32].

Based on the Linear Code reaction rules framework Krambeck
et al. created, later researchers introduced new attributions that
specify and simplify the description of reactions. Bennun et al.
and Spahn et al. include the amino acid at the end of the Linear
Code attached by a semicolon “ ; ”. This suffix is exactly the
syntax from the original Linear Code rules (Table 3: GR1). The
reaction rules table generated by Spahn et al. also provided lo-
calization information, which is either cis, trans, or medial to
denote the Golgi compartment where the reactions happen

[13,14]. The subcellular localization of a reaction, in the endo-
plasmic reticulum, Golgi, cytoplasm (bacteria and archaea), or
lysosome (degradation, Man-6-P dephosphorylation and lyso-
somal glycoprotein biosynthesis [33,34] or paucimannose recy-
cling [35]), are important constraints on glycosylation [36],
therefore, the addition of this information to the Linear Code
reaction rules provides insights into the glycosylation types.

Some models of glycan synthesis generated reaction rule tables
with an additional column Enzyme Commission number (EC
number) [7,16,37]. The EC number system is a numerical clas-
sification scheme for enzyme-catalyzed reactions that provides
an unambiguous accession to a cataloged reaction [38]. The
inclusion of an EC number in the reaction rules table, therefore,
promotes the clarity, interoperability, and reproducibility of the
generated reaction model.

A common syntax used by most studies is the leftmost “ ( ” to
represent the terminal, non-reducing end of the glycan chain. It
specifies whether the leftmost MS is the terminal MS both visu-
ally and computationally. For example, the reaction rule (GN →
(Ab3GN applies to all reactions which add one galactose to a
terminal N-acetylglucosamine. On the other hand, the reaction
rule GN → Ab3GN applies to all reactions which add a galac-
tose to an N-acetylglucosamine, but not necessarily the termi-
nal one. The leftmost “ ( ”, therefore, can easily vary the glycan
substrate substantially.

Though Linear Code was developed with parsability in mind,
some have found it useful to make a specific computational
implementation of the reaction rules to accommodate the
syntactic constraint of programming languages. A human milk
oligosaccharide metaglycome was constructed using a combina-
tion of linear code, glycan structures represented in XML and
XPath queries [39]. Separately, Akune et al. generated a theo-
retical N-glycan database called UniCorn, based upon a Perl
implementation of reactions on glycans represented in Linear
Code [37]. Though Linear Code is computer-parsable, there is
still substantial work necessary to implement that parsing
because there is no standard representation for handling the
wide variety of reactions possible, nor open-source software
available to implement the parsing of such rules.

Representing reaction rules in Linear Code is not easy because
of a few ambiguous cases not completely described in the initial
Linear Code paper. Subsequent studies, therefore, have de-
veloped their own ways to idealize reaction rule implementa-
tions based on Linear Code. Using the framework Krambeck et
al. built [10], new information like Golgi localization and
EC numbers are added to specify and simplify the reaction
rules.
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Table 6: The difference between “ _ ”, “ … ” and “ | ” with illustrations. These symbols were proposed by Krambeck et al. [10]. The initial names are
ligand (“ ... ”), continuation (“ _ ”), and possible branch (“ | ”). Each uncertainty operator in the last four example columns can be replaced by the
substring in red to achieve the behavior described in the column header. For a more comprehensive look at the usage of these uncertainty operators,
see Supporting Information File 1, Table S1 for a manual collection of matches, and Table S4 (Supporting Information File 1) for an automated collec-
tion of matches.a

Add a
whole new
branch

Initiating
branch

Extending
lowest-carbon-
index chain

Initiating
nested branch

B(C)A B(C)A BCA E(D(C)B)A

Symbols Syntax Meaning

_ any string where
every ‘(‘ has a
matching ‘)’. Includes
the empty string.

chain bypassing a branch to
reach a reducing MS; A
continuation cannot
necessarily be removed by
splitting one linkage (can
contain branches)

B_A B(C_A B_A E(D_A

... any string with all
matching
parentheses.
Includes the empty
string.

chain to a reducing MS; A
ligand can typically be
removed by splitting one
linkage (can contain
branches)

B...A B...A

+
(formerly “|”)

‘)’ or ‘(...)’ or ‘)(...)’.
Or an empty string.

possible branch point. B+A B(C+A

aA, B, C, D, E are abstract monosaccharides.

Original Prescriptions for Substring
Uncertainty Operators
In its original conception [10], the adaptation of Linear Code to
represent reaction rules aimed to describe how glycosylation en-
zymes change the structure of glycans in terms of how the
Linear Code character string descriptions of the glycans are
changed (Figure 1). In the simplest case, we can specify a
substring of the substrate code to be replaced by a new
substring to form the product code. In addition, there can be
constraint and adjustment substrings whose presence or absence
within the substrate string either restricts which glycans can be
substrates of a particular enzyme or modifies the reaction rate
parameters. Uncertainty operators have been developed to facil-
itate searching substrings for specific structural features of a
glycan implied by the substrings.

The substring specifications for the substrate, product and
adjustments can include any combination of characters included
in the glycan codes in addition to uncertainty operators inserted
within the directly specified characters. Each uncertainty oper-
ator is represented by one or more characters, such as “…” or
“_” (Table 6). To perform substring matching of a glycan to a
substring with uncertainty operators, we first identify the char-
acters of the specified string immediately before and after the
uncertainty operator. If found, we then test the substring of the

glycan string between these two matched character strings and
check for the appropriate uncertainty operator properties. In
parsing the glycan code, an initial left parenthesis is always
added to the complete glycan code so that the terminal end of
every branch of the glycan is always a left parenthesis. Below,
in defining the properties of substrings corresponding to an
uncertainty operator, we use the symbol X to represent some
monosaccharide with its connection, such as Ma3, GNb4, etc.

There are three types of uncertainty operators. The ligand “ ... ”,
the continuation “ _ ”, and the branch “ | ”. Each has a specific
syntactic match, but intuitively, the ligand is a chain that can
contain branches, the continuation is a chain that can include
branches terminated outside of the continuation, and the branch
is either a complete branch or nothing. Functionally, “ ... ” indi-
cates the “leftward” extension along the lowest-carbon-index
chain, “ | ” indicates the “rightward” extension along the
highest-carbon-index chain, and “ _ ” indicates an extension
along either the left or right chain (Figure 1).

More specifically, (1) the ligand uncertainty operator indicates a
chain of MSs that can include attached branches completely
contained in the substring, (2) the continuation uncertainty
operator indicates a chain of MSs that can include attached
branches that may not be wholly contained in the substring, and
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(3) the possible branch uncertainty operator indicates where a
branch may be included in the substring. Due to the nuances of
representing a glycan linearly, these are not complete defini-
tions.

Ligand “…” – A ligand is a fragment of a larger molecule
connected to the rest of the molecule at one point. Glycans are
themselves ligands, as they are pieces of larger molecules. A
substring is a valid “ligand” if each parenthesis in that substring
is uniquely and appropriately matched; each left parenthesis
must be followed by a corresponding right parenthesis and each
right parenthesis must be preceded by a corresponding left
parenthesis: “)(“ are not matched parentheses. Any substring
with all left and right parentheses matched, including an empty
string, is considered a ligand. If we select a substring of the
code representing a glycan it may or may not represent a ligand.
For example, XXX)X, XX(XX, X)(XX are not valid ligands,
while XX(XXX)XX is valid.

Functionally, ligands can serve as connectors between the left
and right portions of a glycan a user would like to specify. A
ligand is simply a chain of monosaccharides which may contain
nested branches; the nested branches must also be ligands.
However, there can be many chains or paths through a ligand,
starting from one of the terminal monosaccharides and culmi-
nating at the root end; there are many ligands within most
ligands. Any of these ligands can serve as a connector from the
root (reducing) end of one ligand to a terminal (non-reducing)
end of another. The key property of a ligand substring is that all
the included branches of the ligand are completely contained in
the substring.

Continuation “_” – As we parse from left to right through a
substring, we may find left parenthesis (entering into a branch)
and right parenthesis (exiting a branch). A ligand, with matched
parentheses, indicates an equal number of branch initiations and
completions. On the other hand, a substring with an unmatched
right parenthesis, for example, XXX)XX or X)(XX)XX, indi-
cates a net termination of branching; each right parenthesis indi-
cates moving out of a branch towards a root. As long as all the
left parentheses encountered are followed by right parentheses,
we are following a path along a connected chain of the glycan
structure. A substring where every left parenthesis can be
matched with a following right parenthesis, but not necessarily
vice versa, is a “continuation.” Again, we include the empty
string in this class of substrings. Note that any ligand is also a
continuation.

The continuation uncertainty operator can be very useful in
formulating rules that apply to specific monosaccharides
connected by a chain of monosaccharides to a particular

reducing monosaccharide of the glycan structure. For example,
the iGnT enzyme adds a Gnb3 group to a terminal galactose
group and has a preference for the two branches that are
connected to the Ma6 of the root Ma3(Ma6)Mb4 structure. This
leads  to  an  ad jus tment  ru le  based  on  the  s t r ing
Ma3|(*_Ma6)Mb4. Here the “|” uncertainty operator is used to
allow for the possible presence of a bisecting GlcNAc on the
root mannose: Ma3(GNb4)(…Ma6)Mb4. The “*” indicates the
site of the enzyme action.

Possible branch “|” – As discussed, parsing a linear glycan
from left to right, we can encounter matched parentheses indica-
tive of a ligand or unmatched right parentheses indicative of a
closing branch. We can leverage the branch closer offered by
these symbols to mandate a possible branch. The definition of
the “possible branch” is one of either: “ ) ”, “ (...) ”, “ )(…) ” or
an empty string. This uncertainty operator can be replaced with
either a branch, the start of a branch or nothing. It allows the
same specification string to work whether an additional branch
is present at the position of the uncertainty operator or not, as in
the above example.

Divergence in Current Implementations
of Reaction Rules from Original Linear
Code
Linear Code is a useful notation to succinctly describe glycan
structures. It is thus useful to represent substrates and products.
However, constraints on the glycan acceptor class where a new
monosaccharide is added, was beyond the scope of the original
Linear Code rules. Therefore, different adaptations are intro-
duced throughout the literature.

We have identified four symbols that are prescribed with differ-
ent meanings than they were originally assigned in the Linear
Code rules:

Ambiguous symbol 1 – Originally, “ ~ ” following an MS
name was used to denote the MS with different stereospecifici-
ty and ring structure from the common form (Table 3: SRS3).
For example, while “ G ” represents ᴅ-glucopyranose, “ G~ ”
represents ʟ-glucofuranose, which is rarely seen. To represent
reaction rules, “ ~ ” was used, instead, to convey logical nega-
tion [7,10,13,32]. For example, a constraint “~Ab” means the
reaction will not happen if a β-galactose is present.

Ambiguous symbol 2 – “ | ”. For reaction rules, “ | ” is widely
used to represent a potential branched structure in a substrate
[7,10,13,32]. For example, “(GNb2|Ma3” represents a glycan
structure with a potential branch on the mannose. However, “ | ”
was originally designed to separate the certain and uncertain
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parts in a fragmented glycan, where there is a possibility of dif-
ferent structures (UR6).

Ambiguous symbol 3 – “ # ”. Originally, “ # ” was designated
to signify the starting point of glycosides that are not amino
acids or lipid moieties (Table 3: GR1). For example,
“GNb3Ab” connected to a “4-trifluoroacetamidophenol” is
written as “GNb3Ab#4-Trifluoroacetamidophenol.”

Ambiguous symbol 4 – “ * ”. Another ambiguous symbol is
the asterisk “ * ”. In the original Linear Code context, “ * ” is
used when an entire saccharide unit in the complex carbo-
hydrate is unknown. In reaction rules representation, “ * ”
marks the “reaction site”, the position of the first difference be-
tween product and substrate strings in Linear Code form
[7,10,13,32]. Note that the “reaction site” does not necessarily
refer to the exact place that the reaction happens. For example,
given the reaction “(...Ab4GNb → (Fa3(...Ab4)GNb,” the
constraint “ (*Ab4 or (*Fa2Ab4” means that the reaction will
happen if and only if the “ … ” in the reactant represents either
nothing or “Fa2.” In this case, “ * ” on the left of “Ab4”
indicates where the reactant and the product differ from
left to right in the Linear Code expression. However,
the real reaction takes place at the “GNb,” not “Ab4.”
Demonstrating the left-to-right specificity of “ * ”, consider the
rule, (Ma2Ma → (Ma with constraint ~*2Ma3(…Ma6)Ma6.
This constraint rules out removing the Ma2 on the middle
b ranch  (unde r l i ned )  o f  t he  o r ig ina l  M9  g lycan ,
Ma2Ma2Ma3(Ma2Ma3(Ma2Ma6)Ma6)Mb4GNb4GN;Asn. If
parsed from right to left ,  the constraint  would be
~*Ma3(. . .Ma6)Ma6.

Linear Code is primarily a representation of glycan structure,
and the formulation of reaction rules from Linear Code emerged
as it was adapted for use with systems biology reaction
networks. Specifically, when researchers aimed to define rules
for reactions when building the networks, additional symbols
were needed and, therefore, proposed. However, these now
differ between studies.

In the first study, building reaction networks from Linear Code,
Krambeck et al. defined “ … ”, “ _ ”, and “ | ” as uncertainty
operators to indicate specific combinations or balanced or
unbalanced (complete or incomplete) branches [7,10,32]. Spahn
et al. used only two of the three symbols; “ | ” to indicate
branching and “ … ” to represent continuation [13]. In this
section, we will only focus on Krambeck et al. syntax. Syntacti-
cally, each of these symbols specifies whether or not the mono-
saccharides following the symbol, the first monosaccharide
within the uncertainty operator replacement, appear within
parentheses. If the monosaccharides appear within parentheses,

it is “branching” off the lowest-carbon-index chain; otherwise,
it is a “continuation” along the lowest-carbon-index chain. Each
uncertainty operator describes a branching and/or continuation.
Additionally, an uncertainty operator can require a complete
phrase, with matched parentheses, or not. Finally, some uncer-
tainty operators can be replaced with nothing (the empty string).

In the original Krambeck et al. implementation, multiple
disjunctive constraints are connected by the logical disjunction
“or.” An example is “(*Ab4 or (*NNa3Ab4” (Table 7). In the
Liang et al. adaptation, however, the “or” relationship is delin-
eated by writing each reaction rule on separate lines. For exam-
ple, the two constraints for the reaction rule “(...Ab4GNb →
(Fa3(...Ab4)GNb” would simply be written on two lines
(Table 8).

Table 7: The reaction rule (GN → (Ab4GN with four constraints written
in the same cell.

Enzyme Reactant Product Constraint

b4GalT (GN (Ab4GN

*...GNb2|Ma3 or
*...GNb4|Ma3 or
*...GNb2|Ma6 or
*...GNb6|Ma6

Table 8: The reaction rule (GN → (Ab4GN with four constraints written
on separate lines.

Enzyme Reactant Product Constraint

b4GalT (GN (Ab4GN *...GNb2|Ma3
b4GalT (GN (Ab4GN *...GNb4|Ma3
b4GalT (GN (Ab4GN *...GNb2|Ma6
b4GalT (GN (Ab4GN *...GNb6|Ma6

Most adaptations of reaction rule implementations are more or
less related to the earliest Krambeck et al. adaptation. Some
symbols are only seen in the Krambeck et al. adaptation.
Besides the “ # ” as the number symbol, Krambeck et al. also
uses “Gnbis” to refer to the specific structure of bisecting GN,
which is “Ma3(GNb4)(...Ma6)Mb4.”

Several reaction rules for N-glycan biosynthesis are presented
for direct comparison (Table 9, Table S5 in Supporting Infor-
mation File 1). While there were several apparent divergences
in the usage of terms, the rules are predominantly similar. The
intent of this paper is to ensure the consistency of these rulesets
going forward.
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Table 9: Reaction rules from multiple N-glycan biosynthesis models in LiCoRR representation. This table describes select rules from Krambeck et al.
[10] in LiCoRR and LiCoRRICE representation. Representations across multiple manuscripts can be found in Linear Code, LiCoRR and LiCoRRICE
in Table S5 (Supporting Information File 1).

Enz. Substrate Product Constraints (LiCoRR) Constraints (LiCoRRICE)

ManI (Ma2Ma (Ma !@2Ma3(…Ma6)Ma6 &
!Ga3

nMan(a1-?)>4 & nMan(a1-?)<8
& !Man(a1-2)Man(a1-3)...
Man(a1-6) & !Glc(a1-3)

ManI (Ma3(Ma2Ma3(Ma6)Ma6) (Ma3(Ma3(Ma6)Ma6) !Ga3 !Glc(a1-3)

ManII (Ma3(Ma6)Ma6 (Ma6Ma6 (GNb2+Ma3 & !Gnbis !Gal(b1-?) &
!GlcNAc(b1-4)...Man(b1-4) &
GlcNAc(b1-2)Man(a1-3)ManII (Ma6Ma6 (Ma6 (GNb2+Ma3 & !Gnbis

a6FucT GNb4GN GNb4(Fa6)GN GNb2+Ma3 & #A=0 &
!Gnbis

GlcNAc(b1-2)Man(a1-3)...
Man(b1-4) &
!GlcNAc(b1-4)...Man(b1-4) &
!Fuc(a1-3)

GnTI (Ma3(Ma3(Ma6)Ma6)Mb4 (GNb2Ma3(Ma3(Ma6)Ma6)Mb4 nMan(a1-?)=4

GnTII (GNb2+Ma3(Ma6)Mb4 (GNb2+Ma3(GNb2Ma6)Mb4 nMan(a1-?)=2 &
!GlcNAc(b1-4)...Man(b1-4) &
!Fuc(a1-3) & !Gal(b1-?)

GnTIII GNb2+Ma3 GNb2+Ma3(GNb4) !Ab & !Gnbis GlcNAc(b1-2)Man(a1-3)...
Man(b1-4) & !Gal(b1-?)

GnTIV (GNb2Ma3 (GNb2(GNb4)Ma3 !Gnbis !Gal(b1-?) &
!GlcNAc(b1-4)...Man(b1-4)

GnTV (GNb2Ma6 (GNb2(GNb6)Ma6 !Gnbis !Gal(b1-?) &
!GlcNAc(b1-4)...Man(b1-4)

iGnT (Ab4GN (GNb3Ab4GN !@_Ma3+Mb4

b4GalT (GN (Ab4GN !@GNb4)(...Ma6)Mb4 !Gal(b1-3)GlcNAc(b1-?) &
!@GlcNAc(b1-4)...Man(b1-4)

b3GalT (GN (Ab3GN !@GNb4)(...Ma6)Mb4 !Gal(b1-4)GlcNAc(b1-?) &
!@GlcNAc(b1-4)...Man(b1-4)

Recommendations to Unify Descriptive
Usages of Linear Code for Reaction
Rules (LiCoRR)
Linear Code has shown its utility for the compact description of
glycans and compatibility with efforts to define glycan reaction
rules for systems biology models. A few ambiguities have
emerged through different interpretations and implementations.
Here we propose possible solutions as described by the original
prescription for Linear Code, the consensus of the community,
and our recommendation following this survey.

We have demonstrated the LiCoRR representation of all
N-glycosylation reaction rules discussed in this paper in

Table 9. Table 9 also includes an instance of these reaction rules
written with IUPAC monosaccharides and linkages from
GlycoEnzDB. Due to incomplete adoption and flexibility
of Linear Code monosaccharides, we encourage users to
accommodate both Linear Code and IUPAC monosaccharides
when possible to facilitate interoperability; Linear Code
monosaccharides may not be sufficient for every project
while IUPAC-extended nomenclature [18] is actively
maintained to ensure complete coverage of known sugars.
If a user wants to specify that they are using LiCoRR with
IUPAC monosaccharides, they can specify it as “LiCoRRICE”
the LiCoRR-IUPAC Complement Expression. We also provide
the matched constraints in Table 9 as Original Linear Code
(Table S5 in Supporting Information File 1). It should be noted
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that IUPAC uses square brackets, “[]”, rather than parentheses,
“()”, to delineate branching. Therefore, the wildcards should
recognize square brackets rather than parentheses. Additionally,
IUPAC does not use deterministic branching. Therefore, speci-
fying branch direction is not meaningful and the three branch-
specific LiCoRR wildcards can be reduced to one, “...”, in
LiCoRRICE. With these small changes, LiCoRR can be
extended to LiCoRRICE and, as such, gain access to its
carefully curated and growing list of MS units and modifica-
tions.

The original Linear Code syntax contains eighteen specific
regulations across seven categories, among which only five
regulations are seen in reaction rule implementations. In fact,
the five regulations include three SU elements (MS name,
linkage-type, position number), denotations (Table 3: SU) and
one branch rule (Table 3: BR1). BR1 dictates that when two
branching MSs are identical, the MS linked to the higher index
carbon will have its chain on the branch (Table 3: BR1). If we
extend the condition for BR1 from identical MSs to all MSs,
written glycan structures will still maintain their uniqueness
since each position on the MS can only connect to a single MS.
BR2 dictates that the least frequent MS of the pair will branch
(Table 3: BR2). BR2 solves the case when there are more than
two non-reducing MSs linked to the same reducing MS. How-
ever, if we applied the expanded BR1 and ordered the chains
based on decreasing position numbers from right to left in
multi-chain cases, BR2 would be redundant. For example,
Ab4(GNb4GNb3)(GNb6)Ab4Gb wil l  be  wri t ten as
GNb4GNb3(Ab4)(GNb6)Ab4Gb.

Among the logical relationships required for constraint specifi-
cation, only “or” is seen in the original Linear Code rules. “ / ”
was designed to separate two possibilities within an SU
(Table 3: UR4) and “ // ” was used to separate two possible
complete SU options (Table 3: UR5). It would cause unneces-
sary confusion if “ / ” and “ // ” are used to denote the “or” rela-
tionship between constraints. Therefore, the task to convey
Boolean logic among constraints was left to emerge organically
in its application to reaction rules.

Recommendation 1 – “Logical negation.” The field chose to
use the “ ~ ” to indicate logical negation (Table 10: a). Unfortu-
nately, this choice conflicts with the ability to express un-
common stereospecificity, as prescribed in the original Linear
Code (Table 3: SRS3). Though this is a rare necessity, and the
original Linear Code tilde appears on the right of the monosac-
charide, usage of a “ ! ” - as used in many common program-
ming languages – to indicate logical negation would preserve
the original meaning of the tilde in case it becomes necessary in
a future notation.

Recommendation 2 – “And.” Similarly, the field chose “ & ”
to represent the conjunction relationship between constraints.
We recommended preserving this symbol use since it is human
and computer-readable and does not overlap with any notation
in the original Linear Code.

Recommendation 3 – “Number.” “ # ” was defined to com-
bine glycans with glycosides other than amino acids and lipids
(Table 3: GR1). Krambeck et al. use it to represent the number
of times a certain MS appears, a common use of “ # ”. In
LiCoRR, we deprecate the use of “ # ”, “ ; ”, and “ : ” to specify
the glycoconjugate class. The number sigh “ # ” can be used to
separate a glycan (on the left) from any conjugate (on the right).
Colon and semicolon can therefore be reserved for other future
uses. To specify a glycopeptide, users may also inscribe them
directly in the peptide using the existing branching rules:
“PEP(AG(LY)CAN)TIDE” would describe a biantennary
glycan bound to the threonine of a peptide. Because the number
sign is used to indicate a glycoconjugate, we recommend using
“n.” For example, “#A = 5” will then be written as “nA=5”
(Table 10: i).

Recommendation 4 – “Splitting & ‘or’.” In addition to having
several constraints split by “or,” we can rewrite the rules several
times with a single constraint for each rule, as done for the reac-
tion rule b4GalT in [14]. Splitting disjunctions over multiple
lines is similar to atomization, the first normal form of database
normalization requiring the domain of each attribute to contain
an indivisible element. In addition, the separate rules have the
advantage that they can have different reaction rate parameters.
This advantage can eliminate the need for separate adjustment
rules for various cases. Depending on the circumstances, split-
ting disjunctions across multiple lines may be necessary, though
it is often more succinct to condense them, separated by an “or”
within a single rule.

Recommendation 5 – “Branch point.” Many studies using
Linear Code to define glycan synthesis networks assigned “ | ”
as a possible branch point [7,10,13]. Our recommendation,
however, is to use “ + ” instead of “ | ” as the branch point
because “ | ” is already assigned within the original Linear
Code. Additionally, we think “ + ” is more morphologically
close to a branch.

Recommendation 6 – “Omission.” Though “ * ” has been
widely used by the systems glycobiology field to represent the
reaction site, the original Linear Code rules actually specify
“ * ” to stand for the omission of an entire saccharide unit
(Table 3: UR3). We wish to minimize this inconsistency with
the original statement of Linear Code [31]. Therefore, for “ * ”,
we recommend preserving the meaning of the omission of one
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Table 10: Symbols previously used by systems glycobiologists and our recommendations. Rows a–i are the functions implemented by published
papers. Rows j–m are the functions prescribed in the original Linear Code rules. (A) Symbols to represent reaction rules across publications utilizing
Linear Code. (B) Consensus and recommendation for reaction rule representation going forward.

(A) (B)
Symbol used OLC [31] Kra [10] Spa [13] Lia [14] Hou [7] Consensus

adaptation of
OLC to reaction
rules

LiCoRR Examples

a logical negation ~ ~ ~ ~ ~ ! !Ma
b and & & & & !Ma & Ab3
c or or or or separate rules,

or
!Ma or Ab3

d continuation (left
parenthesis
matched to right
parenthesis. )

_ ... ... _ ... or _ _ see
Table 6

e ligand (all
parenthesis
matched)

... ... ... ... see
Table 6

f possible branch
point

| | | | | + see
Table 6

g reaction site (Code
change site)

* * * * * @ !@…Ma2

h possible
modification

$ $ A$GN

i number # # n nA=0 nA>2
j divide certainty and

uncertainty
(Table 2: UR6)

| nothing nothing

k omission of an
entire SU (Table 2:
UR3)

* nothing * ANb3*N

l glycosides (Table 2:
GR1)

;, :, # ; nothing ; for amino acid,
: for lipid moieties,

# for other
glycosides

Ga;NY-S-C
Gb:C

m MS with uncommon
stereospecificity
and ring structure
(Table 2: SRS3)

~ nothing ~ L-Glcf: G~

Abbreviations: OLC (Original Linear Code [31]), Kra (Krambeck et al. [10]), Spa (Spahn [13]), Lia (Liang et al. [14]), Hou (Hou et al. [7]).

entire SU. In theory, according to Banin’s definition, a saccha-
ride unit can be specified as “ ??? ”. Using “ * ” to indicate a
complete SU, would avoid using an unmanageable number of
question marks to represent an ambiguous glycan. Question
marks should still be used to indicate unknown elements of an
SU (e.g., “Ab4Gb” without knowledge of “b4G” could be
written as “A???b”), but there should never be four adjacent
question marks. We propose a substitute for the reaction site in
Recommendation 7.

Recommendation 7 – “Reaction site.” The reaction site is the
location of the first change to the glycan expression. Because
“ * “ is already defined within Linear Code to indicate “omis-

sion,” we choose “ @ ” to indicate the reaction site. The reac-
tion site, in previous reaction rules as “ * “ and going forward as
“ @ “, is the position of the first difference between product and
substrate strings in the Linear Code form.

Recommendation 8 – “Modification.” As specified in the orig-
inal Linear Code, we recommend using “ [] ” to represent
known modifications (Table 3: MR1). For example, “A[2P]”
represents a galactose with its second position modified by a
phosphate. However, this specific modification may not always
be known. Therefore, in addition to “ [] ” as exact modifica-
tions, we recommended using the “ $ ” sign to represent a
possible modification site. For example, “A$GN” represents a
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GlcNAc connected to a galactose that might be modified.
The modification can be specified (e.g., phosphorylation on
the 2nd carbon) in the typical way, with square brackets
“A$[2P]GN”.

Recommendation 9 – “Branching index.” In LiCoRR we have
deprecated the original linear code branching rules due to
redundancy and default to a version of BR1: Regardless of
whether the MSs are equivalent, the MS linked to the higher
index carbon will branch (appear first in the written representa-
tion when read right to left, reducing to non-reducing end). This
rule can be extended to glycopeptides providing a means of
representing glycans directly embedded in a glycopeptide.
“PEP(Gal[3S]b3(GNb6)AN)TIDE” would describe a trisaccha-
ride O-glycan bound to the threonine of an eponymously named
glycoprotein.

Overall, the consensus in these representations centers around
the foundational work of the original Linear Code paper [31]
and Krambeck et al. [10]. We have simply highlighted gaps in
clarity that have resulted in colloquially small but computation-
ally important divergences throughout the literature.

Conclusion
The field of systems glycobiology is poised to tackle increas-
ingly complex glycan synthesis problems owing to the advent
of a number of enabling computational modeling technologies.
Linear Code is used to represent reaction rules of glycan synthe-
sis thereby bringing both human-readability and computer-
parsability to the glycoinformatics space. The utility of Linear
Code in glycoinformatics has been extended by the inclusion of
new symbols, relations, and attributes that accommodate the
challenge of specifying reaction rules. Yet various implementa-
tions conflict with each other and the original Linear Code.
Here, we have delineated the various adaptations made to
accommodate reaction rule representation, the discordance be-
tween various implementations, and proposed a consensus for
future representations called LiCoRR.

The adoption of a common reaction rule representation would
increase FAIR (Findable, Accessible, Interoperable, Reusable)
standards [40] compliance in glycoinformatics which will have
far-reaching implications. As demonstrated by WURCS, a
deterministic exemplar of glycan representation that can be used
as a database key, “findability” can be improved by unifying
data with metadata. While not fully deterministic, LiCoRR is a
predictable representation for reaction rules thereby findability
search through data-metadata unification. Towards improving
the findability of glycans through data-metadata unification, we
provide a parser (gRegex, see Supporting Information File 1)
and a context-free grammar which should facilitate integration

into several formal-language compatible glycoinformatics tools
including glycologue [41], glypy [42], glycome-db [43]; adop-
tion LiCoRR or these wildcards in other glycan representations
could shift glycan-database search from monosaccharide count
to substructure class specification. While computational tools
exist to compare XML-type models directly [44], the verbosity
of the models can challenge comprehension. While less descrip-
tive, succinct human-readable and understandable LiCoRR
expressions provide an opportunity for a human observer to
manually compare and consider two related models. Ideally,
succinct, readable, and comprehensible reaction rules sets will
be sufficiently standardized, like XML-type representations, so
that they will be “interoperable” across multiple modeling soft-
ware so that models can be “reused,” reproduced, validated, and
extended across labs. Toward encouraging the reuse of
LiCoRR, we would like to acknowledge the trademark held by
a former company, Glycominds Ltd. As our work is an exten-
sion and consolidation of novel development throughout the
public domain, and we have no intent to exploit the trademark
for financial gain, it is our understanding that we may publish
freely and dedicate LiCoRR to the public domain under a
CC-BY free-use with attribution license. Increased readability
and FAIRness through clarifying the nomenclature will help
advance glycoinformatics technologies by making possible
cross-platform and multi-omics integration and interpretation;
interoperability may be enhanced through a community-
endorsed vocabulary.

We further hope that the symbols described in this work, specif-
ically the wildcards, will be used in other glycan representa-
tions and applications beyond biosynthesis modeling. The defi-
nition of glycan classes can be useful for efficiently and unam-
biguously describing the key elements of large complex glycans
while only communicating the central information. Adoption of
these symbols, now well-defined symbols, by more popular
representations, such as IUPAC, could increase both the flexi-
bility and succinctness of those representations. We believe the
utility of these wild-cards extends beyond biosynthesis
modeling (Table 9) and may be useful in the description of
glycan-chemosynthetic procedures, lectin identification of
glycan motifs, and any other purpose where a group of glycans
(rather than an individual glycan) is being discussed or de-
scribed. We hope to encourage that adoption through our
LiCoRRICE examples.

Increased FAIRness will facilitate the validation and distribu-
tion of developing glycoinformatics toolkits. Easy-to-use
glycoinformatics toolkits, made possible by the fluency of
interoperability across tools, are one mechanism by which
glycobiology can be shared with the broader community of
biology.
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