## UC Irvine

## ICS Technical Reports

## Title

The undecidability of the modified edit distance

## Permalink

https://escholarship.org/uc/item/5dg6d3pd

## Author

Leung, Vitus J.

## Publication Date

1994-11-11
Peer reviewed

# THE UNDECIDABILITY OF THE MODIFIED EDIT DISTANCE 

Vitus J. Leung<br>Department of Information and Computer Science<br>University of California, Irvine

Technical Report 94-45
November 11, 1994

# Notice: This Material may be protected by Copyright Law (Title 17 U.S.C.) 


#### Abstract

Given two strings, $X$ and $Y$, over a finite alphabet $\Sigma$, the modified edit distance between $X$ and $Y$ is the minimal cost of an edit sequence that changes $X$ into $Y$, where the cost of substituting a character in $Y$ for a character in $X$ is context free, and the cost of deleting a substring from $X$ or inserting a substring from $Y$ into $X$ is somewhat context sensitive. The modified edit distance does not require that the minimum cost over all edit sequences where the cost of substituting a character in $\Sigma$ for a character in a string is context free, the cost of deleting a substring from a string is somewhat context sensitive, and the cost of inserting a string $Z$ into $X$ to obtain a string $X^{\prime}$ is equivalent to the cost of deleting $Z$ from $X^{\prime}$ to obtain $X$ again. We show that if the minimum cost over all edit sequences must be obtained, the modified edit distance becomes undecidable.


Isimstoll aint groitoh
bsoutora 04 vam
ws If stomequo va
(.2.8.0 11 dm )

# THE UNDECIDABILITY OF THE MODIFIED EDIT DISTANCE 

Vitus J. LEUNG<br>Department of Information and Computer Science, University of California, Irvine, CA 92717, U.S.A.

ABSTRACT

Given two strings, $X$ and $Y$, over a finite alphabet $\Sigma$, the modified edit distance between $X$ and $Y$ is the minimal cost of an edit sequence that changes $X$ into $Y$, where the cost of substituting a character in $Y$ for a character in $X$ is context free, and the cost of deleting a substring from $X$ or inserting a substring from $Y$ into $X$ is somewhat context sensitive. The modified edit distance does not require that the minimum cost over all edit sequences where the cost of substituting a character in $\Sigma$ for a character in a string is context free, the cost of deleting a substring from a string is somewhat context sensitive, and the cost of inserting a string $Z$ into $X$ to obtain a string $X^{\prime}$ is equivalent to the cost of deleting $Z$ from $X^{\prime}$ to obtain $X$ again. We show that if the minimum cost over all edit sequences must be obtained, the modified edit distance becomes undecidable.

## 1. Introduction

Galil and Giancarlo [1] [2] define the modified edit distance as follows. Given two strings over a finite alphabet $\Sigma, X=x_{1} x_{2} \cdots x_{m}$ and $Y=y_{1} y_{2} \cdots y_{n}$, the modified edit distance between $X$ and $Y$ is the minimal cost of an edit sequence that changes $X$ into $Y$, where the cost of substituting a character in $Y$ for a character in $X$ is context free, and the cost of deleting a substring from $X$ or inserting a substring from $Y$ into $X$ is somewhat context sensitive. Formally, the cost of deleting $x_{k+1} x_{k+2} \cdots x_{i}$ from $X$ is $w_{X}(k, i)=f_{1}\left(x_{k}, x_{k+1}\right)+f_{2}\left(x_{i}, x_{i+1}\right)+g(i-k)$, where $1 \leq k<i<m$.

This cost consists of charges for breaking $X$ between $x_{k}$ and $x_{k+1}$ and between $x_{i}$ and $x_{i+1}$ plus an additional charge that depends on the length of the substring from $x_{k+1}$ to $x_{i}$. The cost of inserting $y_{k+1} y_{k+2} \cdots y_{j}$ into $X$ is equivalent to the cost of deleting $y_{k+1} y_{k+2} \cdots y_{j}$ from $Y$, where $1 \leq k<j<n$. The cost of substituting $y_{j}$ for $x_{i}$ is $s\left(x_{i}, y_{j}\right)$, where $1 \leq i \leq m$ and $1 \leq j \leq n$. The cost of an edit sequence is the total cost of all its operations.

To compute the modified edit distance, Galil and Giancarlo consider the recurrence relation $D_{X Y}$ given in Figure 1. Note, however, that $D_{X Y}$ will find the minimal cost of an edit sequence where substrings are deleted from $X$ first, then characters in $Y$ are substituted for characters in $X$ next, and finally substrings from $Y$ are inserted into $X$ last. Furthermore, the modified edit distance does not require that the minimum cost over all edit sequences where the cost of substituting a character in $\Sigma$ for a character in a string is context free, the cost of deleting a substring from a string is somewhat context sensitive, and the cost of inserting a string $Z$ into $X$ to obtain a string $X^{\prime}$ is equivalent to the cost of deleting $Z$ from $X^{\prime}$ to obtain $X$ again. As with the classical edit distance problem [5] [7] [8] [9], a slight change in the definition of the modified edit distance can remove it from the class of problems solvable in polynomial time. We show that if the minimum cost over all edit sequences must be obtained, the modified edit distance becomes undecidable. A problem of Thue [3] [4] [6] proved to be undecidable by Post [6] can be reduced to such a modified edit distance. From this point onward, such a modified edit distance shall simply be referred to as the modified edit distance.

Thue's problem is specified in Section 2. Section 3 shows that Thue's problem can be reduced to the modified edit distance, establishing that the modified edit distance is undecidable. Finally, a related open problem is given in Section 4.

## 2. Thue's Problem

Post defines Thue's problem as follows. A Thue system is $T=\left(\Sigma_{1}, P\right)$, where $\Sigma_{1}$ is a finite alphabet and $P \subseteq\left\{\left(A_{i}, B_{i}\right): A_{i}, B_{i} \in \Sigma_{1}{ }^{*}, 1 \leq i \leq n,\left|A_{i}\right| \leq\left|B_{i}\right|\right\}$. Two strings $\alpha, \beta \in \Sigma_{1}{ }^{*}$ are said to be

| $D_{X Y}$ |  |
| :--- | :--- |
| $D_{X Y}[m, n]=D_{X Y}[m-1, n-1]+s\left(x_{m}, y_{n}\right)$ |  |
| $D_{X Y}[i, j]=\min \left\{D_{X Y}[i-1, j-1]+s\left(x_{i}, y_{j}\right)\right.$, |  |
| $\min _{1 \leq k<i} D_{X Y}[k, j]+w_{X}(k, i)$, |  |
| $\left.\min _{1 \leq k<j} D_{X Y}[i, k]+w_{Y}(k, j)\right\}$ | $1<i<m$ and $1<j<n$ |
| $D_{X Y}[i, 1]=D_{X Y}[1,1]+w_{X}(1, i)$ |  |
| $D_{X Y}[1, j]=D_{X Y}[1,1]+w_{Y}(1, j)$ |  |
| $D_{X Y}[1,1]=s\left(x_{1}, y_{1}\right)$ |  |

Figure 1
similar in $T$ if $\beta$ can be obtained from $\alpha$ by replacing a substring $A_{i}$ or $B_{i}$ of $\alpha$ by its corresponding $B_{i}$ or $A_{i}$, respectively, in $P$. Clearly, if $\alpha$ and $\beta$ are similar in $T, \beta$ and $\alpha$ are similar in $T$. Finally, $\alpha$ and $\beta$ are said to be equivalent in $T$ if there is a finite sequence $\gamma_{1}, \gamma_{2}, \cdots, \gamma_{m} \in \Sigma_{1}{ }^{*}$ such that $\alpha$ and $\gamma_{1}, \gamma_{j}$ and $\gamma_{j+1}, 1 \leq j<m$, and $\gamma_{m}$ and $\beta$ are each similar in $T$. Thue's problem is determining whether or not $\alpha$ and $\beta$ are equivalent in $T$. Post proved that Thue's problem is undecidable.

## 3. The Reduction

Let $T=\left(\Sigma_{1}, P\right)$ be a Thue system. The reduction consists of constructing cost functions $f_{1}, f_{2}$, $g$, and $s$ that simulate $T$; the details are given below. Now, let $\alpha, \beta \in \Sigma_{1}{ }^{*}$. Since a prefix or suffix $A_{i}$ or $B_{i}$ of $\alpha$ may need to be replaced by its corresponding $B_{i}$ or $A_{i}$, respectively, in $P$, let $\not \subset$ and $\$$ be left and right end markers, respectively, not in $\Sigma_{1}$. Our construction will be such that if $\alpha$
and $\beta$ are equivalent in $T$, the modified edit distance between the two strings $₫ \alpha \$$ and $₫ \beta \$$ will be zero. Otherwise, the modified edit distance between $₫ \alpha \$$ and $₫ \beta \$$ will be positive.

The overall strategy of the construction is to use zero cost context sensitive insertions and deletions to "pack" a substring in $\Sigma_{1}^{*}$ into a supercharacter, a zero cost context free substitution to replace a supercharacter representing $A_{i}$ or $B_{i}$ by a supercharacter representing its corresponding $B_{i}$ or $A_{i}$, respectively, in $P$, and zero cost context sensitive insertions and deletions to "unpack" a supercharacter. For $U, W \in \Sigma_{1}{ }^{*}, a, b \in \Sigma_{1}, f_{1}$ and $f_{2}$ as given in Figure 2, and $g(1)=0$, an example of how zero cost context sensitive insertions and deletions can be used to pack a substring in $\Sigma_{1}^{*}$ into a supercharacter is summarized in Figure 3. Note, however, that $f_{1}$ and $f_{2}$ as given in Figure 2 enable zero cost context free insertions and deletions of any character in $\Sigma_{1}$ into and from, respectively, any position of any string in $\Sigma_{1}{ }^{*}$. To remedy this situation, let $\lambda$ and $\rho$ be local left and right end markers, respectively, not in $\Sigma_{1}$ and the functions $v, \iota, \pi$, and $\sigma$, which can be thought of as limited union, intersection, prefix, and suffix operations be as given in Figures 4, 5, 6, and 7, respectively. Now, let $\Sigma$ be the union of all the characters, end markers, and supercharacters used thus far and $f_{1}$ and $f_{2}$ be as given in Figure 8. Then, the example summarized in Figure 3 can be replaced by the example summarized in Figure 9. The zero cost context sensitive insertions and deletions alternately insert and delete the union and intersection of characters, with boundary conditions handled by local left and right end markers.

| $f_{1}$ and $f_{2}$ |  |  |
| :---: | :---: | :---: |
| $f_{1}(a,[a, b])=0$ | $f_{2}([a, b], b)=0$ | $a, b \in \Sigma, c \in \Sigma$ |
| $f_{1}(c, a)=0$ | $f_{2}(a,[a, b])=0$ | $d \in \Sigma_{1} \bigcup\{\$\}$ |
| $f_{1}([a, b], b)=0$ | $f_{2}(b, d)=0$ |  |

Figure 2
$₫ U a[a, b] b W \$$
$\Phi U[a, b] W \$$
Figure 3

| $v$ |  |
| :---: | :---: |
| $v(a, b)=[a, b]$ |  |
| $v(\lambda, a)=[\lambda, a]$ |  |
| $v(b, \rho)=[b, \rho]$ | $a, b \in \Sigma_{1}$ |
| $v([\lambda, a],[a, b])=[\lambda, a, b]$ |  |
| $v([a, b],[b, \rho])=[a, b, \rho]$ |  |
| $v([\lambda, a, b],[a, b, \rho])=[\lambda, a, b, \rho]$ |  |

Figure 4

| $\iota$ |  |
| :---: | :---: |
| $\iota([\lambda, a],[a, b])=a$ | $a, b \in \Sigma_{1}$ |
| $\iota([a, b],[b, \rho])=b$ |  |
| $\iota([\lambda, a, b],[a, b, \rho])=[a, b]$ |  |

Figure 5


Figure 6

| $\sigma$ |  |
| :--- | :--- |
| $\sigma([a, b, \rho])=[b, \rho]$ | $a, b \in \Sigma_{1}$ |
|  |  |
| $\sigma([\lambda, a, b, \rho])=[a, b, \rho]$ |  |

Figure 7

Finally, supercharacters can be packed from left to right one character at a time, for up to $l=\max \left\{\left|B_{i}\right|:\left(A_{i}, B_{i}\right) \in P\right\}$ characters in $\Sigma_{1}{ }^{*}$, and zero cost context free substitutions can replace one version of a character with another version of the same character to reduce the number of cases in one of the proofs below. Formally, let $\Sigma_{k}=\left(\{\lambda\} \times \Sigma_{k-1} \times \Sigma_{1} \times\{\rho\}\right), 1<k \leq l$, and

$$
\begin{aligned}
\Sigma= & \bigcup_{k=1}^{l} \Sigma_{k} \cup\{\varnothing, \$, \lambda, \rho\} \cup \bigcup_{k=1}^{l-1}\left(\Sigma_{k} \times \Sigma_{1}\right) \cup \bigcup_{k=1}^{l-1}\left(\{\lambda\} \times \Sigma_{k}\right) \cup\left(\Sigma_{1} \times\{\rho\}\right) \cup \\
& \bigcup_{k=1}^{l-1}\left(\{\lambda\} \times \Sigma_{k} \times \Sigma_{1}\right) \cup \bigcup_{k=1}^{l-1}\left(\Sigma_{k} \times \Sigma_{1} \times\{\rho\}\right) \bigcup \bigcup_{k=1}^{l-1}\left(\Sigma_{k} \times\{1\}\right) \bigcup\left(\Sigma_{1} \times\{2\}\right) \cup \\
& \bigcup_{k=1}^{l-1}\left(\Sigma_{k} \times \Sigma_{1} \times\{1\}\right) \bigcup \bigcup_{k=1}^{l-1}\left(\lambda \times \Sigma_{k} \times \Sigma_{1} \times\{1\}\right) \bigcup \bigcup_{k=1}^{l-1}\left(\Sigma_{k} \times \Sigma_{1} \times\{\rho\} \times\{1\}\right) .
\end{aligned}
$$

Now, let the functions $v, \iota, \pi$, and $\sigma$ be as given in Figures 10, 11, 12, and 13, respectively, and $f_{1}$ and $f_{2}$ be as given in Figure 14, with all undefined values of $f_{1}, f_{2}$, and $g$ positive. Let the functions $\xi$ and $s$ be as given in Figure 15 and Figure 16, respectively, with all undefined values

| $f_{1}$ and $f_{2}$ |  |  |
| :---: | :---: | :---: |
| $f_{1}(a, \lambda)=0$ | $f_{2}(\lambda, b)=0$ | $\begin{aligned} & a \in \Sigma_{1} \bigcup\{屯\}, b \in \Sigma_{1}, \\ & c \in \Sigma_{1} \bigcup\{\$\}, \text { and } x, y \in \Sigma \end{aligned}$ |
| $f_{1}(b, \rho)=0$ | $f_{2}(\rho, c)=0$ |  |
| $f_{1}(x, v(x, y))=0$ | $f_{2}(v(x, y), y)=0$ |  |
| $f_{1}(x, \iota(x, y))=0$ | $f_{2}(\iota(x, y), y)=0$ |  |
| $f_{1}(\lambda, \pi(x))=0$ | $f_{2}(\pi(x), x)=0$ |  |
| $f_{1}(y, \sigma(y))=0$ | $f_{2}(\sigma(y), \rho)=0$ |  |

Figure 8

## ¢UabWS

$₫ U \lambda a[a, b] b \rho W \$$
$\notin U \lambda[\lambda, a] a[a, b] b[b, \rho] \rho W \$$
$\notin U \lambda[\lambda, a][a, b][b, \rho] \rho W \$$
$₫ U \lambda[\lambda, a][\lambda, a, b][a, b][a, b, \rho][b, \rho] \rho W \$$
$\notin U \lambda[\lambda, a, b][a, b, \rho] \rho W \$$
$థ U \lambda[\lambda, a, b][\lambda, a, b, \rho][a, b, \rho] \rho W \$$
$\notin U \lambda[\lambda, a, b, \rho] \rho W \$$

Figure 9
of $s$ positive.

| $v$ |  |
| :---: | :---: |
| $v(a, b)=[a, b]$ | $a \in \bigcup_{k=1}^{l-1} \Sigma_{k} \text { and } b \in \Sigma_{1}$ |
| $v(\lambda, a)=[\lambda, a]$ |  |
| $v(b, \rho)=[b, \rho]$ |  |
| $v([\lambda, a],[a, b])=[\lambda, a, b]$ |  |
| $v([a, b],[b, \rho])=[a, b, \rho]$ |  |
| $v([\lambda, a, b],[a, b, \rho])=[\lambda, a, b, \rho]$ |  |

Figure 10

| $\iota$ |  |
| :--- | :--- |
| $\iota([\lambda, a],[a, b])=[a, 1]$ |  |
| $a \in \bigcup_{k=1}^{l-1} \Sigma_{k}$ and $b \in \Sigma_{1}$ |  |
|  |  |
|  |  |
| $\iota([\lambda, a, b],[a, b, \rho])=[a, b, 1]$ |  |

Figure 11

Lemma 1. For $U, W \in \Sigma_{1}{ }^{*}, a \in \Sigma_{k}, 1 \leq k<l$, and $b \in \Sigma_{1}$, the modified edit distance between $₫ U \lambda a b W S$ and $\not \subset U \lambda[\lambda, a, b, \rho] W \$$ is zero.

Proof. A zero cost edit sequence from $\not \subset U \lambda a b W \$$ to $\not \subset U \lambda[\lambda, a, b, \rho] W \$$ is summarized in Figure 17. Therefore, the modified edit distance between $₫ U \lambda a b W \$$ and $\llbracket U \lambda[\lambda, a, b, \rho] W \$$ is zero. $\square$

| $\pi$ |  |
| :--- | :--- |
| $\pi([\lambda, a, b])=[\lambda, a]$ | $a \in \bigcup_{k=1}^{l-1} \Sigma_{k}$ and $b \in \Sigma_{1}$ |
| $\pi([\lambda, a, b, \rho])=[\lambda, a, b, 1]$ |  |

Figure 12


Figure 13

Lemma 2. For $U, W \in \Sigma_{1}^{*}$ and $a_{1}, a_{2}, \cdots, a_{k} \in \Sigma_{1}, 0 \leq k \leq l$, the modified edit distance between the two strings $₫ U \lambda a_{1} a_{2} \cdots a_{k} W \$$ and $₫ U \lambda \xi\left(a_{1} a_{2} \cdots a_{k}\right) W \$$ is zero.

Proof. For $0 \leq k \leq 1$, the result follows directly from the definitions for the functions $f_{1}, f_{2}, g$, and $\xi$. For $2 \leq k \leq l$, the result follows from Lemma 1 and a straight forward induction.

Lemma 3. For $\alpha$ and $\beta$ similar in $T$, the modified edit distance between $\not \subset \alpha \$$ and $\not \subset \beta \$$ is zero.

Proof. For some $U, V_{1}, V_{2}, W \in \Sigma_{1}{ }^{*}$, we have $\alpha=U V_{1} W, \beta=U V_{2} W$, and $\left(V_{1}, V_{2}\right) \in P$ or $\left(V_{2}, V_{1}\right) \in P$. Starting from $₫ U V_{1} W \$$, insert $\lambda$ between $U$ and $V_{1}$ to obtain $₫ U \lambda V_{1} W \$$. Then, by Lemma 2, the modified edit distance between $₫ U \lambda V_{1} W$ and $₫ U \lambda \xi\left(V_{1}\right) W \$$ is zero. Then, substitute $\xi\left(V_{2}\right)$ for $\xi\left(V_{1}\right)$ to obtain $₫ U \lambda \xi\left(V_{2}\right) W S$. Then, by Lemma 2, the modified edit distance between $\llbracket U \lambda \xi\left(V_{2}\right) W \$$ and $₫ U \lambda V_{2} W \$$ is zero. Finally, delete $\lambda$ from between $U$ and $V_{2}$ to obtain $₫ U V_{2} W \$$. The cost of this edit sequence is zero. Therefore, the modified edit distance between $\not \subset \alpha \$$ and

| $f_{1}$ and $f_{2}$ |  |  |
| :---: | :---: | :---: |
| $f_{1}(a, \lambda)=0$ | $f_{2}(\lambda, b)=0$ | $\begin{aligned} & a \in \Sigma_{1} \bigcup\{\downarrow\}, b \in \Sigma_{1} \bigcup \\ & c \in \bigcup_{k=1}^{l-1} \Sigma_{k} \bigcup\{\lambda\}, \text { and } \\ & x, y \in \Sigma \end{aligned}$ |
| $f_{1}(c, \rho)=0$ | $f_{2}(\rho, b)=0$ |  |
| $f_{1}(x, v(x, y))=0$ | $f_{2}(v(x, y), y)=0$ |  |
| $f_{1}(x, \iota(x, y))=0$ | $f_{2}(\iota(x, y), y)=0$ |  |
| $f_{1}(\lambda, \pi(x))=0$ | $f_{2}(\pi(x), x)=0$ |  |
| $f_{1}(y, \sigma(y))=0$ | $f_{2}(\sigma(y), \rho)=0$ |  |

Figure 14

| $\xi$ |  |
| :--- | :--- |
| $\xi(\epsilon)=\rho$ |  |
| $\xi(a)=a$ | $a, a_{1}, a_{2}, \cdots, a_{k} \in \Sigma_{1}$ and $1<k \leq l$ |
| $\xi\left(a_{1} a_{2} \cdots a_{k}\right)=\left[\lambda, \xi\left(a_{1} a_{2} \cdots a_{k-1}\right), a_{k}, \rho\right]$ |  |

Figure 15

## $\not \subset \beta \$$ is zero. $\square$

Theorem 1. For $\alpha$ and $\beta$ equivalent in $T$, the modified edit distance between $₫ \alpha \$$ and $\varnothing \beta \$$ is zero.

| $s$ |  |
| :---: | :---: |
| $s(a,[a, 1])=s([a, 1], a)=0$ | $\begin{aligned} & a \in \bigcup_{k=1}^{l-1} \Sigma_{k}, b \in \Sigma_{1} \text { and } \\ & \left(A_{i}, B_{i}\right) \in P \end{aligned}$ |
| $s(b,[b, 2])=s([b, 2], b)=0$ |  |
| $s([a, b],[a, b, 1])=s([a, b, 1],[a, b])=0$ |  |
| $s([\lambda, a, b],[\lambda, a, b, 1])=s([\lambda, a, b, 1],[\lambda, a, b])=0$ |  |
| $s([a, b, \rho],[a, b, \rho, 1])=s([a, b, \rho, 1],[a, b, \rho])=0$ |  |
| $s\left(\xi\left(A_{i}\right), \xi\left(B_{i}\right)\right)=s\left(\xi\left(B_{i}\right), \xi\left(A_{i}\right)\right)=0$ |  |

Figure 16

Proof. The result follows from Lemma 3 and a straight forward induction.
Now let the diagram of $X \in \Sigma^{*}$ be an ordered tree constructed as follows. $X$ is the root. The children of a supercharacter $x$ are its components in the same order they appear in $x$, with the exception of the components 1 and 2 which are ignored. End markers and characters in $\Sigma_{1}$ are leaves. See Figure 18 for the diagram of $X=\not \subset \lambda[\lambda, a][\lambda, a, b][a, b, \rho][b, \rho] \rho \$, a, b \in \Sigma_{1}$.

When $y$ immediately follows $x$ in $X$, let $y$ or an ordered set of consecutive children of $y$, beginning with its left most child, and $x$ or an ordered set of consecutive children of $x$, ending with its right most child, that are identical be called an overlap of $x$ and $y$. Now, let a proper overlap of $x$ and $y$ be an overlap of $x$ and $y$ that is a proper subset of the children of either $x$ or $y$. Let $\Xi(X)$ be the string of characters in $\Sigma_{1}$ contained in the leaves of the diagram of $X$ in left-to-right order, with the following exception. The leaves of the maximum proper overlap of $x$ and $y$ are ignored in the subtree rooted at $y$.

## $\not \subset U \lambda a b W \$$

## $₫ U \lambda a[a, b] b \rho W S$

$$
\Phi U \lambda[\lambda, a] a[a, b] b[b, \rho] \rho W \$
$$

$$
\begin{aligned}
& థ U \lambda[\lambda, a][a, 1][a, b][b, 2][b, \rho] \rho W \$ \\
& \not \subset U \lambda[\lambda, a][a, b][b, \rho] \rho W S \\
& \not \subset U \lambda[\lambda, a][\lambda, a, b][a, b][a, b, \rho][b, \rho] \rho W \$ \\
& \Phi U \lambda[\lambda, a][\lambda, a, b][a, b, 1][a, b, \rho][b, \rho] \rho W \$ \\
& \Phi U \lambda[\lambda, a, b][a, b, \rho] \rho W \$ \\
& \llbracket U \lambda[\lambda, a, b][\lambda, a, b, \rho][a, b, \rho] \rho W \$ \\
& \llbracket U \lambda[\lambda, a, b, 1][\lambda, a, b, \rho][a, b, \rho, 1] \rho W \$ \\
& \llbracket U \lambda[\lambda, a, b, \rho] \rho W \$ \\
& \Phi U \lambda[\lambda, a, b, \rho] W \$
\end{aligned}
$$

Figure 17


Figure 18

For the example of Figure $18,(\lambda, a)$ is the overlap of $[\lambda, a]$ and $[\lambda, a, b],(a, b)$ is the overlap of $[\lambda, a, b]$ and $[a, b, \rho]$, and $(b, \rho)$ is the overlap of $[a, b, \rho]$ and $[b, \rho]$. Therefore, $\Xi(X)=a b$.

Theorem 2. If $\alpha, \beta \in \Sigma_{1}^{*}$ and the modified edit distance between $\not \subset \alpha \$$ and $\notin \beta \$$ is zero, $\alpha$ and $\beta$ are equivalent in $T$.

Proof. The minimum cost edit sequence that changes $₫ \alpha \$$ into $\varnothing \beta \$$ consists of zero cost edit operations. Since $g(1)=0$ and $g(k)>0, k \neq 1, x$ can be inserted or deleted from between $y$ and $z$ at zero cost if and only if $f_{1}(y, x)=f_{2}(x, z)=0$. For each $x \in \Sigma$, Figures 19 and 20 give the corresponding $y$ and $z$ values such that $f_{1}(y, x)=f_{2}(x, z)=0$. All the possible $y$ and $z$ combinations for each $x$ in Figures 19 and 20 yield the zero cost insertions and deletions given in Figures 21 and 22 , respectively. For $X_{\rightleftarrows} X^{\prime}$ in Figures 21 and $22, \Xi(X)=\Xi\left(X^{\prime}\right)$.

| $f_{1}(y, x)=f_{2}(x, z)=0, \mathrm{I}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| $x$ | $y$ | $z$ | $\begin{aligned} & a \in \Sigma_{1}, b \in \bigcup_{k=1}^{l-1} \Sigma_{k}, \\ & c \in \Sigma_{1} \bigcup\{\varnothing\}, d \in \Sigma_{1} \bigcup\{\$\}, \\ & \text { and } e \in \bigcup_{k=1}^{l-1} \Sigma_{k} \bigcup\{\lambda\} \end{aligned}$ |
| $a$ |  |  |  |
| $[\lambda, b, a, \rho]$ | $[\lambda, b, a]$ | [ $b, a, \rho$ ] |  |
| $\downarrow$ |  |  |  |
| \$ |  |  |  |
| $\lambda$ | c | d |  |
| $\rho$ | $e$ | ${ }^{\text {d }}$ |  |
| $[b, a]$ | $b$ | $a$ |  |

Figure 19

| $f_{1}(y, x)=f_{2}(x, z)=0, \mathrm{II}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| $x$ | $y$ | $z$ | $a \in \bigcup_{k=1}^{l-1} \Sigma_{k} \text { and } b \in \Sigma_{1}$ |
| [ $\lambda, a]$ | $\lambda$ | $a$ |  |
|  |  | $[\lambda, a, b]$ |  |
| [ $b, \rho$ ] | $b$ | $\rho$ |  |
|  | [ $a, b, p]$ |  |  |
| [ $\lambda, a, b]$ | [ $\lambda, a]$ | [ $a, b$ ] |  |
| [a,b, ${ }^{\text {] }}$ | [ $a, b$ ] | [b, $]$ |  |
| [a,1] | [ $\lambda, a]$ | $[a, b]$ |  |
| $[b, 2]$ | $[a, b]$ | $[b, \rho]$ |  |
| [a,b,1] | $[\lambda, a, b]$ | [ $a, b, \rho]$ |  |
| [ $\lambda, a, b, 1]$ | $\lambda$ | $[\lambda, a, b, \rho]$ |  |
| [a,, , $\rho, 1]$ | $[\lambda, a, b, \rho]$ | $\rho$ |  |

Figure 20

The zero cost substitutions are given in Figure 23. For $X_{-} X^{\prime}$ in Figure 23, $\Xi(X) \neq \Xi\left(X^{\prime}\right)$ if and only if $X=\varnothing U \xi\left(A_{i}\right) W$ and $X^{\prime}=\varnothing U \xi\left(B_{i}\right) W$, where $U, W \in \Sigma^{*}$ and $\left(A_{i}, B_{i}\right) \in P$. If $\xi\left(A_{i}\right)$ and $\xi\left(B_{i}\right)$ do not have proper overlaps of characters in $\Sigma_{1}$ with the last character in $U$ and the first character in $W$, then the change between $\Xi\left(\Phi U \xi\left(A_{i}\right) W \$\right)$ and $\Xi\left(\notin U \xi\left(B_{i}\right) W \$\right)$ replaces the


Figure 21
substring $A_{i}$ by its corresponding $B_{i}$, respectively, in $P$. Otherwise, for each $a \in \Sigma_{k}, 1 \leq k \leq l$, Figure 24 gives the corresponding $x$ and $y$ values such that $\Xi(x a) \neq \Xi(x) \Xi(a)$ and $\Xi(a y) \neq \Xi(a) \Xi(y)$ after insertions, deletions, or substitutions $X_{\leftarrow} X^{\prime}$ such that $\Xi(X)=\Xi\left(X^{\prime}\right)$. For all possible $a, x$, and $y$ combinations in Figure 24, there does not exist

$$
b \in \bigcup_{k=1}^{l} \Sigma_{k} \bigcup\{\rho\} \bigcup \bigcup_{k=1}^{l-1}\left(\Sigma_{k} \times\{1\}\right) \bigcup\left(\Sigma_{1} \times\{2\}\right)
$$

and $z \in \Sigma$ such that $\Xi(b) \neq \Xi(a)$ and $f_{2}(x, b)=0, f_{1}(x, z)=f_{2}(z, b)=0, f_{1}(x, b)=0, f_{2}(b, y)=0$, $f_{1}(b, z)=f_{2}(z, y)=0$, or $f_{1}(b, y)=0$. Therefore, $\alpha$ and $\beta$ are equivalent in T.ロ

By Theorems 1 and $2, \alpha$ and $\beta$ are equivalent in $T$, if and only if the modified edit distance between $\not \subset \alpha \$$ and $₫ \beta \$$ is zero.

## 4. Open Problem

A necessary part of the above reduction is the presence of zero values for $f_{1}, f_{2}, g$, and $s(a, b)$, where $a \neq b$. The complexity of the modified edit distance without zero values for $f_{1}, f_{2}, g$, and

| Zero Cost Insertions and Deletions, II |  |
| :---: | :---: |
| $\Phi U \lambda a W \${ }^{\text {a }}$ ¢ $U \lambda[\lambda, a] a W S$ |  |
| $\mathscr{¢} U \lambda[\lambda, a, b] W$ S $\mathbb{C} U \lambda[\lambda, a][\lambda, a, b] W \$$ |  |
|  |  |
| $\mathscr{C} U[a, b, \rho] \rho W S_{\leftarrow}^{\rightarrow} \Phi U[a, b, \rho][b, \rho] \rho W S$ |  |
| $\Phi U[\lambda, a][a, b] W S_{\sim}^{*} \not \subset U[\lambda, a][\lambda, a, b][a, b] W S$ |  |
|  | and $b \in \Sigma_{1}$ |
| $\Phi U[\lambda, a][a, b] W \$ \square \cup[\lambda, a][a, 1][a, b] W \$$ |  |
| $\mathbb{C} U[a, b][b, \rho] W \$_{\sim}^{\text {a }}$ ¢ $U[a, b][b, 2][b, \rho] W \$$ |  |
| $\mathbb{C} U[\lambda, a, b][a, b, \rho] W W_{\sim}^{\rightarrow} \mathbb{C} U[\lambda, a, b][a, b, 1][a, b, \rho] W \$$ |  |
| $\Phi U \lambda[\lambda, a, b, \rho] W \$ \rightarrow U \lambda[\lambda, a, b, 1][\lambda, a, b, \rho] W \$$ |  |
|  |  |

Figure 22
$s(a, b)$, where $a \neq b$, remains open.







عZ emsit

| $\begin{gathered} d \ni\left({ }^{!} G^{\prime!} V\right) \text { pue 'I} 马 \ni q \\ { }^{\prime} \square \bigcap_{I-1}^{I=y} \neq v^{\prime}: Z \ni M^{\prime} \cap \end{gathered}$ |  |
| :---: | :---: |
|  |  |
|  | $\$ M\left[\tau^{\prime} q^{\prime} v^{\prime} \gamma\right] \cap \overrightarrow{p_{-}} \mathbb{\$ M}\left[q^{\prime} w^{\prime} \gamma\right] \cap D$ |
|  |  |
|  | $\$ M\left[z^{\prime} q\right] \cap \overrightarrow{p_{\sim}} \$ M q \cap p$ |
|  | $\mathbb{M}\left[I^{\prime} D\right] \cap \overrightarrow{D_{\leftarrow} \mathbb{S} M D \cap D}$ |
|  |  |


| $\Xi(x a) \neq \Xi(x) \Xi(a)$ and $\Xi(a y) \neq \Xi(a) \Xi(y)$ |  |  |  |
| :---: | :---: | :---: | :---: |
| $a$ | $x$ | $y$ | $c \in \bigcup_{k=1}^{l-1} \Sigma_{k} \text { and } b, d \in \Sigma_{1}$ |
| $b$ | $[c, b]$ | $[b, d]$ |  |
|  | [ $\lambda, b$ ] | [ $b, \rho$ ] |  |
|  | [c, b, 1] | [ $b, d, 1]$ |  |
| $[\lambda, c, b, \rho]$ | [ $\lambda, c, b]$ | [ $c, b, p]$ |  |
|  | $[\lambda,[\lambda, c, b, \rho]]$ | $[[\lambda, c, b, \rho], d]$ |  |
|  | [ $\lambda, c, b, 1]$ | [c, b, $\rho, 1]$ |  |
|  |  | [ [ $\lambda, c, b, \rho], d, 1]$ |  |

Figure 24
3. H. R. Lewis and C. H. Papadimitriou, Elements of the Theory of Computation, (PrenticeHall, Englewood Cliffs, NJ, 1981).
4. H. R. Lewis and C. H. Papadimitriou, Symmetric space-bounded computation, Theoret. Comput. Sci. 19 (1982), 161-187.
5. D. Maier, The complexity of some problems on subsequences and supersequences, J. ACM 25 (1978), 322-336.
6. E. L. Post, Recursive unsolvability of a problem of Thue, J. Symbolic Logic 12 (1947), 1-11.
7. D. Sankoff, Minimal mutation trees of sequences, SIAM J. Appl. Math. 28 (1975), 35-42.
8. R. A. Wagner and M. J. Fischer, The string-to-string correction problem, J. ACM 21 (1974), 168-173.
9. W. J. Wilbur and D. J. Lipman, The context dependent comparison of biological sequences SIAM J. Appl. Math. 44 (1984), 557-567.

