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Abstract. Diffusion weighted MRI has become ubiquitous in many areas of medicine, including cancer diagnosis
and treatment response monitoring. Reproducibility of diffusion metrics is essential for their acceptance as
quantitative biomarkers in these areas. We examined the variability in the apparent diffusion coefficient
(ADC) obtained from both postprocessing software implementations utilized by the NCI Quantitative Imaging
Network and online scan time-generated ADC maps. Phantom and in vivo breast studies were evaluated
for two (ADC2) and four (ADC4) b-value diffusion metrics. Concordance of the majority of implementations
was excellent for both phantom ADC measures and in vivo ADC2, with relative biases <0.1% (ADC2) and
<0.5% (phantom ADC4) but with higher deviations in ADC at the lowest phantom ADC values. In vivo ADC4
concordance was good, with typical biases of �2% to 3% but higher for online maps. Multiple b-value ADC
implementations were separated into two groups determined by the fitting algorithm. Intergroup mean ADC
differences ranged from negligible for phantom data to 2.8% for ADC4 in vivo data. Some higher deviations
were found for individual implementations and online parametric maps. Despite generally good concordance,
implementation biases in ADCmeasures are sometimes significant and may be large enough to be of concern in
multisite studies. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of

this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JMI.5.1.011003]

Keywords: apparent diffusion coefficient; reproducibility; breast MRI.
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1 Introduction
The controlled sensitivity of nuclear magnetic resonance, and
thus of MRI, to water diffusion provides medical researchers
and clinicians a unique tool for measuring microscopic proper-
ties of tissue. In the realm of cancer in particular, quantitative

diffusion-weighted MRI (DWI) is playing an ever-increasing
role in both diagnosis and treatment response monitoring. In
addition to providing information about tissue cellularity and
microstructure, DWI has the advantages of not requiring the
administration of an exogenous contrast agent and of requiring
reasonably short acquisition times using standard echo-planar
imaging techniques.

The simplest and most commonly used model for describing
the MRI sensitive diffusion process is a monoexponential MRI
signal decay as a function of the diffusion weighting (“b-value”)
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typically achieved with a pair of field gradient pulses as
described by Stejskal and Tanner1 in 1965. This model assumes
Gaussian diffusion behavior in isotropic tissue regions, charac-
terized by an apparent diffusion coefficient (ADC) exponential
decay constant. Despite the simplicity of this physical model, its
practical implementation requires several choices that could
affect the ADC measurements. These include masking of voxels
for low signal-to-noise ratio (SNR) or poorness of fit; correction
for nonideal imaging factors, such as low SNR effects, scanner
nonlinearities, or diffusion weighting inaccuracies; and, for
multi-b-value analysis, the choice of fitting algorithm may
also be a source of variability.

For validation, reproduction of results, meta-analyses in
multicenter studies, and consistency across multiple exams in
longitudinal studies, it is essential that different analysis imple-
mentations (AIs) produce concordant results. Numerous studies
have been published addressing repeatability and reproducibility
of ADC measurements, mostly addressing the important
aspects of acquisition repeatability2,3 and intra- and interreader
reproducibility.4,5 For this work, the Image Analysis and
Performance Metrics Working Group of the NCI Quantitative
Imaging Network (QIN)6 undertook the ADC Mapping
Collaborative Project (ADC-CP) to determine the effects of soft-
ware platform and algorithm choices on ADC measurement
through the analysis of common datasets by multiple institu-
tions. The overall goal of the project is to quantify the cross-plat-
form concordance of DWI parametric mapping software
implementations. In this study, we present the results for ADC
analyses performed on phantom and in vivo breast DWI, along
with evaluation of the feasibility of centralized analysis of multi-
center generated DWI parametric maps.

2 Materials and Methods
Overview: The ADC-CP was initiated and coordinated by the
Breast Imaging Research Program (BIRP) at the University
of California San Francisco (UCSF). Participants performed a
prescribed set of DWI analyses on a common set of in vivo
and phantom MRI datasets, generating derived parametric
maps. These were submitted to the BIRP for centralized region-
of-interest (ROI) and statistical analysis. Where available,

parametric maps generated at scan time by on-scanner, manu-
facturer-provided software (“online” maps) were included in
the central analysis.

2.1 Common DWI Datasets

Three groups of DWI datasets were analyzed in the ADC-CP:
two b-value in vivo breast scans (Br2b), four b-value in vivo
breast scans (Br4b), and four b-value phantom scans (Ph4b).
Analysis metrics and MRI diffusion protocol details for all data
are summarized in Table 1. All in vivo datasets were from
the IRB approved American College of Radiology Imaging
Network (ACRIN) 6698 trial7 and were used with the permis-
sion of ACRIN. In vivo image files were deidentified as per
the requirements of the Health Insurance Portability and
Accountability Act [Digital Imaging and Communication in
Medicine (DICOM) standard, supplement 142], while preserv-
ing private metadata attributes necessary for DWI processing.
DICOM images were curated and shared via the Cancer
Imaging Archive.8 Each protocol group included scans from
three MRI scanner manufacturers: Siemens Medical (SM),
Philips Medical (PM), and General Electric Healthcare (GEHC).
In vivo scans were multislice axial acquisitions with full biaxial
breast coverage using standard two-dimensional (2-D) single-
shot echo-planar imaging sequences. Group Br2b consisted of
three studies: ID101 (GEHC, Signa HDxt, 3.0 T), ID102 (PM,
Intera, 3.0 T), and ID103 (SM, Avanto, 1.5 T). Group Br4b con-
sisted of four studies: ID201 (GEHC, Signa HDxt, 3.0 T), ID203
(GEHC, Signa HDxt, 1.5 T), ID205 (PM, Achieva, 1.5 T),
and ID207 (SM, Avanto, 1.5 T). For all in vivo scans, a single
b ¼ 0 image was acquired and non-0 b-value images were
acquired with three orthogonal diffusion encoding directions.
For all cases except ID203, standard on-scanner processing
was used, resulting in trace images for each non-0 b-value
and online generated ADC maps, and only the trace images
were available for analysis. For ID203, the full set of directional
DWI images was preserved, and no trace images or online ADC
map were calculated.

The Ph4b datasets were of a diffusion phantom designed
and constructed by the National Institute of Standards and
Technology (NIST) and High Precision Devices (HPD Inc.,

Table 1 Dataset information for the ADC Mapping CP.

Group
label Description N studies b-values (s∕mm2) Scanner manufacturersa

Output
parametersb Analysis ROIs

Br2b Two b-value, three direction
bilateral axial breast

3 0, 800 GEHC, SM, PM ADC2 Multislice tumor

Br4b Four b-value, three direction
bilateral axial breast

4c 0, 100, 600, 800 GEHC, SM, PM ADC4 Multislice tumor

ADCslow

PerfFrac

Ph4b Four b-value, three direction
diffusion phantom

3 0, 500, 900, 2000 GEHC, SM, PM ADC4 1-cm-diameter
circles, 13 vials

ADChi-low

aManufacturers: General Electric Healthcare (GEHC), Siemens Medical (SM), Philips Medical (PM).
bOutput parameters: ADChni: monoexponential ADC using all hni b-values; ADChi-low: monoexponential ADC using only highest and lowest
b-values; ADCslow: monoexponential ADC using three highest b-values; and PerfFrac: fraction of b ¼ 0 signal attributed to fast-decaying
perfusion component.

cAn additional GEHC study with all directional DWI images but no trace images was included in Br4b.

Journal of Medical Imaging 011003-2 Jan–Mar 2018 • Vol. 5(1)

Newitt et al.: Multisite concordance of apparent diffusion coefficient measurements across. . .



Boulder, Colorado).9,10 This phantom consisted of an array of
13 20-mL vials in a spherical vessel filled with an ice–water
mixture to maintain a controlled temperature of 0°C. Three
vials were filled with water and ten vials were filled with sol-
utions of the polymer polyvinylpyrrolidone (PVP) in deionized
water,11 with two vials each at PVP mass fractions of 10%,
20%, 30%, 40%, and 50%. ADC values ranged from ∼1.1 to
0.12 × 10−3 mm2∕s. Scans were multislice coronal acquisitions
at 3.0 T, using standard 2-D single-shot echo-planar imaging
sequences. Diffusion encoding was applied on three orthogonal
axes, with reconstruction of standard trace images at each
b-value. Only the trace images were provided for analysis. Three
datasets were provided: ID401 (GEHC, Discovery MR750,
Memorial Sloan-Kettering Cancer Center, New York, New York),
ID402 (SM, Trio, University of Colorado, Boulder, Colorado),
and ID403 (PM, Ingenia, University of Michigan, Ann
Arbor, Michigan). All phantom images used in this study
were obtained by the DWI task force of the Quantitative
Imagining Biomarker Alliance (QIBA) of the Radiological
Society of North America (RSNA).

2.2 ADC-CP Participants

Participants in the ADC Mapping CP included 11 QIN sites and
one non-QIN commercial group. A total of 15 DWI AIs were
used (Table 2). Eight platforms were on-site developed private
analysis packages programmed in MATLAB® (The MathWorks
Inc., Natick, Massachusetts; six implementations “AI-MAT1”
to “AI-MAT6”), IDL® (Exelis Visual Information Solutions,

Boulder, Colorado; “AI-IDL”), or C++ (“AI-C++”). Five imple-
mentations utilized free, publicly available analysis packages:
3D Slicer DWModeling module of the SlicerProstate
extension19 (Brigham and Womens Hospital; two implementa-
tions “AI-3DSl1” and “AI-3DSl2”), AFNI (University of
California, San Diego, Analysis of Functional Neuro Images;
“AI-AFNI”), OsiriX ADCMap plugin (Stanford; “AI-OsX1”),
and QIBAPhan (RSNA/University of Michigan; “AI-QIBA”).
Two implementations were commercially available analysis
packages: Aegis™ (Hologic Inc., Sunnyvale, California; “AI-
Aegis”) and OsiriX plugin IB Diffusion™ (Imaging Biome-
trics, Elm Grove, Wisconsin; “AI-OsX2”). Source websites
for the publicly available software packages are included in
the references in Table 2.

2.3 ADC-CP Parametric Maps

For the purpose of the ADC-CP, the basic monoexponential
decay model for the MRI signal intensity from an isotropic
tissue region was assumed

EQ-TARGET;temp:intralink-;e001;326;535SðbÞ ¼ S0 × e−b×ADC; (1)

where SðbÞ is the signal intensity at a diffusion weighting b, S0
is the true signal for no diffusion weighting, and ADC is the
apparent diffusion coefficient. For practical considerations,
methods for the derivation of the estimated ADC from a DWI
acquisition can be separated into two cases: two b-value analy-
ses wherein the ADC is solved explicitly via the following
equation:

Table 2 DWI quantitative AIs included in the ADC Mapping CP.

AI ID Data groups Base language or platform AI publicly available Parametric map format Multi-b fit (function)b

AI-IDL All IDL® No DICOM NLS-GX (curvefit)

AI-MAT1 Br2b, Br4b MATLAB® No MATLAB® NLS-TRF (lsqcurvefit)

AI-MAT2 All MATLAB® No MATLAB® Log-linear

AI-3DSl1 Alla 3D Slicer DWI Module12,13 Yes DICOM NLS-LM

AI-MAT3 Br2b, Br4b MATLAB® No MATLAB® Log-linear (lscov)

AI-QIBA Ph4b QibaPhan1.314 Yes DICOM Log-linear (lscov)

AI-OsX1 Alla OsiriX-ADCMap15 Yes DICOM Log-linear

AI-MAT4 Br2b, Br4b MATLAB® No ANALYZE Log-linear

AI-CPP All C++ No DICOM Log-linear

AI-AFNI Br2b, Ph4b AFNI16 Yes NIfTI NA

AI-MAT5 Br4b, Ph4b MATLAB® No NIfTI Log-linear

AI-OsX2 All OsiriX-IB Diffusion17 Yes DICOM Log-linear

AI-MAT6 All MATLAB® No MATLAB® Log-linear (polyfit)

AI-3DSl2 Alla 3D Slicer DWI Module12,13 Yes NRRD NLS-LM

AI-Aegis Alla Aegis (C++)18 Yes DICOM Log-linear

aNo perfusion-fraction (Pf ) analysis performed on Br4b.
bMulti-b fitting methods: NLS-GX ¼ nonlinear least squares using gradient expansion, NLS-TRF ¼ NLS using trust-region-reflective, NLS-LM ¼
NLS using Levenberg–Marquardt, and log-linear ¼ linear fit or regression of logðSÞ. Base software package function name is given where known.
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EQ-TARGET;temp:intralink-;e002;63;752ADC ¼ flog½Sðb1Þ� − log½Sðb2Þ�g∕ðb2 − b1Þ; (2)

and multi-b-value analyses where fitting of the data to Eq. (1)
must be done to determine the ADC. The choice of algorithm for
fitting multi-b-value data, as well as the choice of any masking
parameters, was left to the participating sites.

Site analysis consisted of generating a set of parametric maps
from pixel-by-pixel analysis of each DWI dataset. Analyses per-
formed for each data group are listed in Table 1. For all cases, a
monoexponential ADC map utilizing all images was computed:
ADC2 for Br2b, and ADC4 for Br4b and Ph4b groups. In addi-
tion, for the Br4b group, a perfusion minimized analysis was
performed.20 For this analysis, the three nonzero b-values were
used to estimate the “slow” or tissue diffusion signal using
Eq. (1) for b ≥ 100 s∕mm2, giving S0slow and ADCslow as the
fitted parameters characterizing the slow signal decay. The
fraction of the signal attributable to a fast-decaying perfusion
component was then calculated as

EQ-TARGET;temp:intralink-;e003;63;554Pf ¼ ½Sð0Þ − S0slow�∕Sð0Þ; (3)

and parametric maps were generated for ADCslow and Pf. For
the Ph4b group, a two b-value decay coefficient, ADChi-low, was
also calculated using only the b ¼ 0 and 2000 s∕mm2 images.

In addition to the parametric maps provided by the analysis
sites, scanner manufacturers’ software (“online”) ADC maps
were evaluated when they were provided with the original DWI
data. This included the ADC2 for the Br2b group, ADC4 for the
Br4b datasets with trace images (three of four studies), and
ADC4 for the Ph4b group.

2.4 Centralized ROI Analysis

All parametric maps were submitted to UCSF through a secure
box system. No restrictions were placed on the choice of
file format, and formats included DICOM (N ¼ 7), Neuro-
imaging Informatics Technology Initiative (NIfTI; N ¼ 2),21

Nearly Raw Raster Data (NRRD; N ¼ 1),22 Analyze (Mayo

Clinic; N ¼ 1),23 and MATLAB® (N ¼ 4). Prior to concordance
analysis, all maps were converted to a UCSF in-house modified
multiframe DICOM format allowing integer or floating point
data, along with storage of an analysis mask. Slice order was
detected automatically for file formats that do not include ori-
entation information and was reversed if necessary to match the
slice order of the source images. ADC scaling was detected
automatically by comparison with a reference UCSFADC map,
and scaling factors were set in the metadata (DICOM rescale
slope attribute) to produce ADC maps in common units of
10−6 mm2∕s. No manipulation of the actual map pixel data
was done except for floating point formats (MATLAB® imple-
mentations) in which pixels with a “not-a-number” value were
reassigned to 0.0 and masked out for analysis.

ROI analysis was performed using standardized ROIs across
all parametric maps (Fig. 1). For the in vivo breast cancer scans,
a multislice, whole-tumor region defined for use in the primary
study was used. For the phantom scans, ROIs were defined on
the middle slice of each scan using 1-cm-diameter circular
regions on each of the 13 sample vials. ROIs were applied to
the parametric maps yielding mean values of the diffusion
metrics for each analysis platform. All centralized analysis was
done using software developed by the UCSF lab in IDL®.

2.5 Statistical Analysis

For each metric, pairwise within-subject coefficient of variation
(wCV) was calculated between all implementation pairs to
establish groups of implementations with similar results (intra-
group wCV < 0.1% between all AI pairs). As no ground truth
values could be established for the in vivo assessed DWI
metrics, individual implementation concordance could only be
evaluated from the percent difference of each ROI measurement
from a consensus reference value for that measurement. This
method was also used for the phantom scans even though
reference ADC values were available, both for consistency of
presentation and to avoid complications from scanner- and
position-dependent ADC effects. A full analysis of the phantom

Fig. 1 Typical ROI placements for (a) breast studies and (b) phantom studies, shown on ADC4 maps.
(a) A single representative slice from amultislice breast tumor ROI. The ROIs were drawn referencing the
high b-value DWI and an accompanying DCE subtraction image. Calculated mean ADC was taken over
the full multislice ROI. Phantom ROIs shown in (b) are single-slice, 1-cm-diameter circles labeled with
the PVP concentration (0% to 50%) and a position subscript: C ¼ center, I ¼ inner, and O ¼ outer.
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ADC data relative to the ground truth reference values is pre-
sented by Malyarenko et al.24 Reference value calculation for
each of the metrics is described in Sec. 3. The two-tailed
student’s T-test was used to test for significant differences
among different implementations.

3 Results

3.1 Practicalities

From the 12 participating institutions, monoexponential ADC
maps for the Br2b and Br4b groups and perfusion minimized
ADCslow values for Br4b were provided for 13 analysis plat-
forms. Nine platforms from eight institutions also provided per-
fusion-fraction maps for the Br4b group. The Ph4b data group
was analyzed on 11 platforms, 10 generating both ADC4 and
ADChi-low parametric maps while one provided only ADC4.
All sites were able to process DICOM image sets from all
three vendors, but interpretation of the no trace, full directional
data (Br4b, ID203) was challenging for several sites due to unfa-
miliarity with this format. After specification of the image

storage order for this case, all sites were able to program
their implementations to process this data, though in some
cases we noted discrepancies in the results as shown in Sec. 3.2.

3.2 Breast Scans

For the Br2b ADC2 metric, a majority of the AI (11 of 13) gave
essentially identical results (maximum wCV < 0.003%). For
each dataset, the median ADC value from all offline results
was used for the reference value for concordance. Figure 2
shows the percent difference from these reference values for
each AI’s mean ROI ADC2 measure for each of the three
Br2b scans. AI-MAT3 had a consistent 0.12% positive bias
relative to the median, while AI-Aegis varied from −0.04% to
−0.06%. The GEHC and PM online maps were within 0.05%
of the respective median values, but the SM map had a −1.4%
bias.

More variations were observed among platforms in the Br4b
analyses. Figure 3(a) shows graphically the pattern of agreement
among platforms given by the pairwise wCV measures. A
majority of implementations (9 of 13) fell into two groups
when using a threshold of wCV < 0.1% among all group mem-
bers. Group A consisted of three AI (AI-IDL, AI-3DSl1, and
AI-3DSl2) with wCV < 0.01%, while group B consisted of
six AI (AI-MAT2, AI-MAT3, AI-MAT5, AI-OsX1, AI-C++,
and AI-Aegis) with wCV < 0.1%. For each dataset, a reference
value was calculated as the average of the mean value for group
A and the mean value for group B. Figure 3(b) shows the percent
difference from these reference values for ADC4 from each
implementation for the Br4b datasets. ADC4 values differed sig-
nificantly between groups A and B [2.8%� 0.2% (mean� SD),
p < 0.003], and up to 5% between nongrouped sites. Two of the
four nongrouped implementations, AI-MAT4 and AI-MAT6,
had only small variations (wCV < 0.13%) from the group B
values, while AI-MAT1 and AI-OsX2 showed more variability
both between scans from different vendors and from the refer-
ence values. Two implementations, AI-MAT1 and AI-MAT4,
had slightly anomalous results for ID203 (GEHC), believed
to be due to different handling of the full directional diffusion
data. Scanner-generatedADC4 maps were available for the three
datasets with trace images. GEHC and SM maps gave mean
ROI ADC values of þ3.6% and −3.3%, respectively, from
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Fig. 2 Concordance of two b-value in vivo ADC measurements
across 13 offline AIs and online scanner-generated maps. Plotted
is the percent difference for each ROI mean value from the median
value for that measurement for all offline AI. Eleven offline AI had
essentially identical results (wCV < 0.003%) and thus show no offsets
on the plot. The SM online ADC had a −1.4% bias relative to the con-
sensus median value.

Fig. 3 In vivo four b-value ADC4 ROI analysis results. (a) Pairwise wCV matrix for all implementations,
shown graphically from wCV < 0.1% (white circles) to wCV > 2% (fully black circles), with groups A and B
indicated. (b) Percent difference from the consensus ADC4 values for each of four datasets, for each
implementation and online map. Mean difference in ADC between groups A and B was 2.8%. The 28%
deviation on the PM online ADC was due to a DICOM header corruption problem.
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the reference values, while the PM online map had a 28% offset.
Further investigation revealed that this large deviation was due
to loss of the DICOM rescale slope data employed by PM for
parametric map intensity scaling. This loss appeared to have
occurred during data transfer between the scanner and the im-
aging site’s PACS system.

Results for the perfusion minimized analysis tissue ADC
(ADCslow) were similar to the ADC4 results [Figs. 4(a) and
4(b)]. For wCV < 0.1% grouping, AI-IDL switched from
group A to B, and AI-MAT6 was also now included in
group B. Overall differences were generally smaller than for
ADC4 but still statistically significant: 1.2%� 0.2% (mean� SD,
p < 0.003) difference between groups A and B and maximum
individual differences of any implementation <� 1.3% relative
to the reference value. Perfusion fraction (Pf) was a nonstandard
metric and was implemented on nine platforms. Two groups
were again evident, though with different membership [Fig. 4(c)]:
group A (wCV ¼ 0.04%) composed of AI-IDL and AI-MAT2
and group B (wCV < 0.01%) with MATLAB® implementations
AI-MAT3, AI-MAT5, and AI-MAT6, with a small difference
among the groups [0.29%� 0.10% (mean� SD), p < 0.03].
Figure 4(d) shows the concordance for the Pf metric results.
Pf results from AI-MAT1 showed large deviations (−16% to
−23%) from the consensus reference, indicating possible errors
in the software implementation that was developed on-site for
this CP. AI-C++ had a positive bias of 1.5% to 2.5%, which was
found to be due to implementation of a biexponential decay

model for this calculation. All other measures fell within
�0.25% of the reference values, except for the AI-MAT4 result
for the GEHC directional diffusion dataset with a −0.9%
deviation. No online parametric maps were available for the
perfusion minimized analysis.

3.3 Phantom Scans

Analyses of the three Ph4b phantom datasets, ID401 (GEHC),
ID402 (SM), and ID403 (PM), were submitted from 11 AI for
the four b-value ADC4 metric and 10 AI for the two b-value
ADChi-low. For AI-C++, only the ID402 results were included,
as a problem in the DICOM encoded ADC maps for ID401 and
ID403 resulted in incorrect ROI ADC values in the centralized
analysis. In a separate analysis completed after the encoding bug
was fixed, these results were in concordance with the other
implementations.24 Online maps for ADC4 were available for
all three phantom datasets, but only ID403 (PM) included
an online map for ADChi-low. Results for the two b-value
ADChi-low were practically identical across all implementations.
The maximum pairwise wCVamong postprocessing implemen-
tations using all 39 ROI measurements from the three datasets
was 0.04%. Looking at the percent difference of each ROI
measure from the nine site median values, AI-QIBA showed
a similar clinically insignificant bias (0.05%) to that seen in
the Br2b datasets for AI-MAT2. The results from the online
PM ADChi-low map were very close to the offline reference

Fig. 4 wCV and ROI mean concordance results for the Br4b data group perfusion minimized analysis.
For ADCslow, (a) shows the pairwise wCV matrix with groups with wCV < 0.1% indicated and (b) the
corresponding data for differences in mean ROI ADCslow. Group results showed smaller variations
than for ADC4. For Pf , (c, d) groups were less well defined, except for the three MATLAB® AI indicated,
which were nearly identical (wCV < 0.01%). The small positive biases for AI-C++ were identified as due
to use of a biexponential model.
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median values, yet showed a consistent but clinically insignifi-
cant bias of 0.31� 0.02 × 10−6 mm2∕s across all ADC values.
This gave a maximum percent difference of −0.25% for the
lowest ADC sample.

For the ADC4 measures, paired wCV measurements over all
phantom measurements gave similar groups to the Br4b results.
Differences within and between the two postprocessing
implementation groups were smaller than for the breast scans.
The maximum wCV was 0.04% for group A (AI-IDL, AI-Sl1,
AI-Sl2, and AI-MAT6) and 0.01% for group B (AI-MAT2,
Al-QIBA, Al-OsX1, and Al-MAT5), and the between-group
root mean square percent difference in ADC values for all 13
ROIs was 0.29%, 0.30%, and 0.62% for GEHC, SM, and PM
scans, respectively. There was no significant bias among the
ROI mean ADC values from the two groups (p ¼ 0.15, 0.07,
and 0.19 for GEHC, SM, and PM scans, respectively).
Figure 5 shows the differences from reference ADC4 (average
of the mean group A and mean group B results) for the three
Ph4b datasets. While differences are in general very small
(<0.5%), individual excursions were as high as 5.5%, with the
highest differences on the lowest 2 ADC values (ADC < 0.25 ×
10−3 mm2∕s). Only the SM online map showed a statistically
significant deviation from the reference values, with a small
negative bias of −0.31%� 0.25 (mean� SD, p ¼ 0.001). Only
the PM dataset analysis showed a trend with ADC value in the
difference among the analysis groups, with group A tending to
underestimate ADC relative to group B for higher ADC values
and over estimate at lower. A linear regression of the percent
difference between the groups versus the mean ROI ADC
gave a slope of 1% per 1.0 × 10−3 mm2∕s with R2 ¼ 0.35.

4 Summary and Discussion
Overall, the QIN ADC Mapping Collaborative Project demon-
strated good agreement between the majority of postprocessed
(“offline”) and scanner-generated (“online”) ADC implementa-
tions, while revealing several sources of discrepancies among
different platforms. With the exception of isolated outliers,
mostly attributable to metadata errors rather than algorithmic

differences, the largest discrepancies observed were between on-
line and offline parametric maps. The most consistent bias was
for Siemens scanner acquisitions, where the online maps gave
ADC values lower than consensus reference values derived from
the offline maps. These ranged from −0.3% (phantom 4b) to
−1.4% (in vivo 2b) to −3.5% (in vivo 4b). Based on commu-
nication with Siemens, the most likely explanation is the use
by the online ADC algorithm of detailed image sequence infor-
mation to calculate a more accurate b-value than the nominal
value stored in the DICOM metadata, which is used for all off-
line calculations. A higher true b-value, obtained by accounting
for diffusion and imaging gradient cross terms, will result in
a lower calculated ADC value, as we observed. The General
Electric online maps for the in vivo four b-value ADC also
showed a marked discrepancy from the consensus reference
(þ3.5%), though it agreed identically with one of the offline
implementations (AI-OsX2, OsiriX IB Diffusion plugin).

The biases we report for the in vivo breast scans are of com-
parable magnitudes to measures of repeatability and reproduc-
ibility reported in breast ADC studies. Aliu et al.2 reported
a wCV of 11% in a repeatability study on normal volunteers,
while Spick et al.5 and Clauser et al.25 found wCV values
between 5.0% and 8.5% for breast tumor ADC measurements.
In the ACRIN 6698 trial, whole-tumor ADC test–retest repeat-
ability was 4.8%.3 Our results indicate that choices in ADC
analysis algorithm or between online and offline analysis plat-
forms will have nonnegligible effects on breast ADC measures
and should be considered in addition to biases arising from
image acquisition when interpreting findings in breast DWI
studies.

A consistent finding was a grouping of a majority of the
implementations for multi-b ADC estimation into two groups
with very similar results within-group but significant differences
between the two groups. Based on the descriptions of the meth-
ods provided by each site, this appeared to be primarily driven
by the choice between “log-linear” fitting, wherein a linear
least-squares fit is done on the log of the image intensities,
and a nonlinear least-squares fit of the untransformed data to
the exponential diffusion equation. For the in vivo scans, the dif-
ference in implementations resulted in significant differences
(p < 0.003) of 2.8% for ADC4 and 1.2% for the ADCslow in
the perfusion minimized analysis. Our results are comparable
to those reported by Zeilinger et al.26 using different methods.
While the grouping based on pairwise wCV was also apparent
in the four b-value phantom ADC4, no significant difference was
found for the resulting ADC measures (p ¼ 0.22). We speculate
that this may be due to the higher noise level and heterogeneity
within each ROI in the in vivo scans giving a greater sensitivity to
the fitting algorithm selection, but further work is needed to iden-
tify the cause. Finally, given the lack of ground truth values for
the in vivo scans, it is important not to equate discrepancies with
errors in the presented work, except in those cases where specific
error sources could be identified. In particular, while the choice
of reference values for most of our ROI result plots as the average
of the two prominent AI groups allows easy visualization of the
differences between the AIs, it also can lend an appearance of
preference to those AIs over the “nongrouped” results.

The QIN ADC Mapping CP also highlighted some practical
challenges of multicenter ADC analyses and centralized analy-
sis of postprocessed parametric maps. For example, several sites
had to implement code for the ADC-CP to analyze the less
common full directional dataset, which may have resulted in

Fig. 5 Percent difference from reference ADC4 for Ph4b measure-
ments for (a) GEHC, (b) SM, and (c) PM scans. The reference
value for ADC4 for each individual ROI is the average of the groups
A and B mean ADC4 values for that ROI. ROIs are ordered from high-
est ADC (0% PVP) to lowest ADC (50% PVP), left to right, for each AI
or group. Concordance is excellent, except for a few measurements
on the lowest ADC vials (ADC < 0.25 × 10−3 mm2∕s).

Journal of Medical Imaging 011003-7 Jan–Mar 2018 • Vol. 5(1)

Newitt et al.: Multisite concordance of apparent diffusion coefficient measurements across. . .



somewhat higher variability in the results for those scans. While
saving of directional data for DWI is not currently a common
practice in clinical trials, it may become more so in the future
given ongoing work on improving reproducibility of multiplat-
form DWI by gradient nonlinearity correction27–29 and distortion
correction.30 Another lesson learned was the criticality of pres-
ervation of DICOM metadata for quantitative DWI. In particu-
lar, the case of lost scaling information in a Philips scanner-
generated ADC map illustrates that significant errors can result
from metadata corruption. While the nature of this project
resulted in easy recognition of this problem, in a clinical trial
setting, it might have gone unnoticed. Finally, the centralized
analysis of parametric maps for this CP was greatly complicated
by the multitude of file formats currently employed
for the storage of these objects. Adoption of a common format,
such as the parametric map DICOM object,31 would aid meta-
analysis of ADC data obtained from multicenter studies. Use of
DICOM, specifically for ADC map storage, was addressed in
a companion cooperative project.24

A limitation of this study was the restriction to the monoex-
ponential decay model, with the simple extension to a perfusion
minimized ADCslow∕Pf calculation. For in vivo situations
where the simple Gaussian diffusion model breaks down, sev-
eral more complex models are currently employed such as biex-
ponential models,32 including intravoxel incoherent motion,33,34

stretched exponentials,35 and kurtosis.36,37 As model complexity
increases, dependency on AI choices will also increase. An addi-
tional limitation of this study stems from the choice of a single
organ, the breast, for the in vivo datasets. As breast DWI is
challenging, due largely to limitations in SNR, fat suppression
quality, motion, and other artifacts, we consider these datasets
a challenging test of the fitting algorithms’ robustness. However,
the results presented are only indirectly relevant to other appli-
cations, such as neural and abdominal imaging.

In conclusion, we found that while agreement among the
majority of ADC mapping implementations was good, the
biases in in vivo ADC measures both between different offline
implementations and between vendor-generated and offline
maps are significant. Furthermore, these differences may, in
some cases, be large enough to adversely affect the analysis of
multisite diffusion data. For any given longitudinal (e.g., treat-
ment response) or cross-sectional study, we would recommend
that all analyses be performed on a common platform and that
the output parametric map metadata reflect both the DWI data
origin and the details of the applied calculation algorithm.
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