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Original Article
Single-cell chromatin accessibility of developing
murine pancreas identifies cell state-specific
gene regulatory programs
Sean de la O 1,2,3,4, Xinkai Yao 1,2,3,4, Sean Chang 1,2,3,4, Zhe Liu 1,2,3,4,
Julie B. Sneddon 1,2,3,4,*
ABSTRACT

Numerous studies have characterized the existence of cell subtypes, along with their corresponding transcriptional profiles, within the developing
mouse pancreas. The upstream mechanisms that initiate and maintain gene expression programs across cell states, however, remain largely
unknown. Here, we generate single-nucleus ATAC-Sequencing data of developing murine pancreas and perform an integrated, multi-omic
analysis of both chromatin accessibility and RNA expression to describe the chromatin landscape of the developing pancreas at both E14.5
and E17.5 at single-cell resolution. We identify candidate transcription factors regulating cell fate and construct gene regulatory networks of
active transcription factor binding to regulatory regions of downstream target genes. This work serves as a valuable resource for the field of
pancreatic biology in general and contributes to our understanding of lineage plasticity among endocrine cell types. In addition, these data identify
which epigenetic states should be represented in the differentiation of stem cells to the pancreatic beta cell fate to best recapitulate in vitro the
gene regulatory networks that are critical for progression along the beta cell lineage in vivo.

� 2023 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords Pancreatic development; Chromatin accessibility; Endocrine differentiation; Gene regulatory networks; Multi-omic analysis; Single-
cell RNA-Sequencing; Single-cell ATAC-Sequencing
1. INTRODUCTION

Development of the mammalian pancreas requires the coordination of
multiple cell lineages over time, culminating in the generation of a highly
branched, mature organ consisting of both an exocrine and endocrine
compartment. Specification of the murine pancreas begins at embryonic
day (E) 8.5 with the expression of the transcription factor (TF) pancreatic
and duodenal homeobox 1 (Pdx1) in a focal region of the endoderm-
derived primitive foregut [1,2]. These Pdx1(þ) cells give rise to all of
the epithelial lineages of the pancreas (duct, endocrine, and acinar) [3]
and by E9 evaginate into the surrounding mesenchyme and begin to
form a stratified epithelium. As branching morphogenesis progresses,
regionalization of the epithelium results in the formation of both trunk
and tip domains by E12.5. Cells located at the tip, marked by the
expression of Cpa1, serve as multipotent progenitors that give rise to all
three epithelial cell types until E13.5, at which point they undergo fate
restriction to only give rise to acinar cells [3e5]. Epithelial cells located
in the trunk give rise to either ductal or endocrine lineages, a fate choice
dependent on levels of Notch signaling [5].
Endocrine progenitor (EP) cells derive from a subset of ductal epithelial
cells that experience lower levels of Notch and then activate expression
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of the TF neurogenin3 (Neurog3) [5]. Neurog3 expression marks early
EP cells, which give rise to the main hormone-producing endocrine
cells in the pancreas: alpha, beta, delta, and gamma [3,6]. Gene
knockout studies in mice revealed that the expression of a number of
TFs that are critical for differentiation and maintenance of pancreatic
endocrine lineages, such as paired box gene 4 (Pax4) and 6 (Pax6),
neurogenic differentiation 1 (Neurod1), and LIM-homeodomain protein
Islet 1 (Isl1), is dependent on Neurog3 [6].
Endocrine cell identity is specified and maintained by a complex
network of TFs, many of which play dynamic roles throughout devel-
opmental time [7]. For instance, early in development Pdx1 is required
for specification of pancreatic progenitors, but later in development it is
also important for the generation of beta cells and for the maintenance
of beta cell identity [8,9]. Along with Pdx1 and Pax4, the TFs NK2
homeobox 2 (Nkx2-2) and NK6 homeobox 1 (Nkx6-1) are critical
factors for beta cell differentiation, while aristaless related homeobox
(Arx) is essential for alpha cell differentiation. Arx and Pax4 play
mutually opposing roles in the differentiation of alpha and beta cells,
with Arx promoting the generation of alpha at the expense of beta and
delta cells [10] and Pax4 regulating the decision towards beta and
delta at the expense of alpha and epsilon cell fate [10e12]. When both
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Arx and Pax4 are lost, delta cells persist but both alpha and beta cells
are lost [11]. Expression of Nkx2-2 and Nkx6-1 follows that of Pdx1 in
early pancreatic progenitors, then becomes progressively restricted to
endocrine cells [13,14]. Deletion of Nkx2-2 results in a significant
reduction of the four major endocrine cell types and an increase in
ghrelin-producing epsilon cells [12,14]. Nkx6-1 functions downstream
of Nkx2-2 and is necessary for beta cell neogenesis through the
maintenance and/or expansion of beta cell precursors following Neu-
rog3 expression but prior to the production of insulin, while later it is
lost from developing alpha cells [13,15].
Extrinsic signals derived from non-epithelial cells are also important in
guiding pancreatic organogenesis. Early pioneering work using
pancreatic explants ex vivo showed that when E11 epithelial buds were
cultured without their surrounding mesenchymal tissue, epithelial
growth and differentiation were arrested [16]. More recently, genetic
ablation studies have demonstrated the requirement for pancreatic
mesenchyme for expansion of the pool of early pancreatic progenitor
cells early in development and for proliferation of differentiated cells
later in development [17,18]. Although the pancreatic mesenchyme is
broadly appreciated as playing an important role in pancreatic
organogenesis, however, it is still not well understood whether there
exist biologically relevant sub-populations of mesenchyme with
distinct lineages and/or functional roles.
Recent single-cell RNA-Sequencing (scRNA-Seq) studies have high-
lighted previously unappreciated levels of cellular heterogeneity among
the epithelial cells of the developing murine pancreas, particularly
within the endocrine compartment [19e23]. Although relatively less
attention has been given to elucidating potential cellular heterogeneity
within the mesenchymal compartment, evidence from scRNA-Seq and
classical genetic lineage tracing experiments suggests that tran-
scriptionally distinct mesenchymal cell types also exist during devel-
opment [19,20,24]. As a result of this body of work, we now have a
greater understanding of the transcriptomic cues governing cell states
across pancreatic development, but we still lack an understanding of
the upstream epigenetic features that regulate cell fate decisions. In
particular, integration of gene expression data and chromatin acces-
sibility data would permit identification of active transcription factor
binding to accessible chromatin within a given cell type.
In recent years, Assay for Transposase-Accessible Chromatin followed
by Sequencing (ATAC-Seq) has been developed to profile genome-
wide chromatin accessibility for epigenetic analysis in a given cell
type or tissue [25]. This technique has been applied to sorted pop-
ulations of endocrine cells from the murine pancreas to investigate the
chromatin landscape of developing EP cells [20,26]. These studies,
however, lacked single-cell resolution to capture the chromatin states
of the various subpopulations of developing endocrine cells that have
been described [19e23]. More recently, single-nucleus ATAC-Seq
(snATAC-Seq) has emerged as a technology to provide insights into
chromatin accessibility at single-cell resolution [27,28]. snATAC-Seq
has been used to profile the chromatin landscape of many devel-
oping tissue types and has revealed cell-type specific cis- and trans-
regulatory elements governing gene expression and cell fate decisions
[29e33]. Furthermore, integration of scRNA- and snATAC-Seq data for
multi-omic analysis permits refinement of expressed TFs to a further
parsed subset that are not only expressed but are also likely binding TF
motifs in open regions of chromatin and actively regulating expression
of downstream target genes.
Here, we generate snATAC-Seq data of developing murine pancreas
and perform an integrated multi-omic analysis of both chromatin
accessibility and RNA expression. We describe at single-cell resolution
the chromatin landscape of the developing epithelium at E14.5 and
2 MOLECULAR METABOLISM 73 (2023) 101735 � 2023 The Author(s). Published by Elsevier GmbH. T
E17.5, stages at which the dynamic processes of expansion, differ-
entiation, and morphogenesis are actively underway. We identify
candidate TFs regulating transitions across the endocrine lineages and
construct gene regulatory networks (GRNs) of active TFs binding to
regulatory regions of downstream target genes. Additionally, we
generate a snATAC-Seq dataset of developing pancreatic mesenchyme
at E14.5, which to our knowledge represents the first ATAC-Seq
dataset (bulk or single-nucleus) of this cell type. We believe that
these datasets and analyses will serve as a valuable resource for the
field of pancreatic biology in general, and will contribute to our un-
derstanding of lineage plasticity among endocrine cell types. In addi-
tion, these data will serve as a reference as to which epigenetic states
should be represented in the differentiation of stem cells to the
pancreatic beta cell fate to best recapitulate in vitro the gene regulatory
networks that are critical for progression along the beta cell lineage
in vivo.

2. METHODS

2.1. Animal studies
All mouse procedures were approved by the University of California,
San Francisco (UCSF) Institutional Animal Care and Use Committee
(IACUC). Mice were housed in a 12-hour lightedark cycle in a
controlled temperature climate. Noon of the day of a vaginal plug was
considered embryonic day (E) 0.5.
eFev-EYFP (ePet1-EYFP) mice were kindly donated by Dr. Evan
Deneris, and have been previously described [34,35]. Mice were
maintained on a C57BL/6J background. Wildtype C57BL/6J mice used
for breeding and for the whole pancreas samples were obtained from
the Jackson Laboratory. Genotyping of eFev-EYFP mice was conducted
on tail DNA, with forward primer TGCGATGGGAAGATAAGAGGGG and
reverse primer GAAGTTCACCTTGATGCCGTTC.

2.2. Histology, immunofluorescence, and imaging
E14.5 pancreata were dissected in ice cold 1x PBS, then fixed in 4%
paraformaldehyde (PFA) overnight at 4 C. After washing three times in
1x PBS, tissues were preserved in 30% sucrose in PBS at 4 C overnight
and then embedded in Optimal Cutting Temperature (O.C.T.) com-
pound (Tissue-Tek) and flash frozen prior to sectioning at 10 mm
thickness.
For immunofluorescence staining, cryosections were washed 3 times
in 1x PBS, permeabilized in 0.5% triton X-100 in PBS (PBT) for 10 min
at room temperature (RT), and then blocked with 5% normal donkey
serum (NDS) in 0.1% PBT for 1 h. Sections were stained overnight at
4 C using primary antibodies against GFP (1:500, Abcam Cat.
ab13970), Chga (1:250, Abcam Cat. ab15160), or E-cadherin (1:100,
BD Transduction Laboratories Cat. 610182). The next day, sections
were washed three times in 1x PBS and then incubated with species-
specific Alexa 488-, 555-, or 647-conjugated secondary antibodies
and DAPI in 5% NDS in 0.1% PBT for 1 h at RT. Sections were washed
three times in 1x PBS and covered in Fluoromount-G mounting solution
(SouthernBiotech, Cat. 0100e01).
Images were captured with an SP8 Leica confocal laser scanning
microscope. Maximum intensity Z-projections were then prepared
using Image J software [36].

2.3. In situ hybridization
Multiplexed in situ hybridization/immunofluorescence was performed
with RNAscope technology using probes purchased from Advanced
Cell Diagnostics, Inc. Probes against mouse Fev (Cat. 413241), Neu-
rog3 (Cat. 422401), Mlxipl (Cat. 558141), Etv1 (Cat. 557891), Nhlh1
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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(Cat. 585751), Spp1 (Cat. 435191), and Rest (Cat. 316251) were used
according to the manufacturer’s instructions for the RNAscope multi-
plex fluorescent detection V2 kit (Advanced Cell Diagnostics, Inc., Cat.
323110). 10 mm thick cryosections were brought to RT, washed with
PBS to remove O.C.T., and treated with hydrogen peroxide and pro-
teinase III. Tissue was hybridized with the probe mixture for 2 h at
40 C. Hybridization signals were amplified via sequential hybridization
of amplifier AMP1, AMP2, and AMP3 and label probes Opal 570
(1:1500, PerkinElmer, Cat. FP1488001KT), Opal 650 (1:1500, Perki-
nElmer, Cat. FP1496001KT), and Opal 690 (1:1500, PerkinElmer, Cat.
FP1497001KT).
Following signal amplification of the target probes, sections were
incubated in 1x blocking buffer for 1 h at RT, followed by staining with
primary antibodies against GFP (1:500, Abcam Cat. ab13970), Epcam
(1:100, BD Biosciences, Cat. 552370), Ins (1:100, Abcam Cat. ab7842),
or Gcg (1:250, Cell Signaling Technology Cat. 2760S). The next day,
sections were washed three times with 1x PBS and then incubated with
species-specific Alexa 488- or Alexa 555-secondary antibodies and
DAPI in 5% NDS in 0.1% PBT for 1 h at RT. Sections were then washed
three times in 1x PBS, mounted with ProLong Gold Antifade Mountant
(Invitrogen, Cat. P36930), and stored at 4 C prior to imaging. Optical
sectioning images were taken with a Leica confocal laser scanning SP8
microscope equipped with white light sources. 10 steps X 1 mm
thickness Z-sections were captured for each imaging area.

2.4. Dissociation and sorting of murine pancreas tissue for
quantitative RT-PCR
E14.5 pancreata were dissected from embryos of pregnant eFev-EYFP
dams and kept in separate wells of a 96-well plate. EYFP fluorescence
was assessed under a microscope to confirm the genotype of each
pancreas. Pancreata with EYFP fluorescence (EYFP(þ)) were then
pooled together and transferred to a 1.5 ml microcentrifuge tube, then
dissociated into single cells by incubating with 250 ul of TrypLE Ex-
press dissociation reagent (Gibco, Cat. 12604013)) at 37 C for 20 min,
with pipet trituration at 5 min intervals. Dissociation was neutralized
with FACS buffer (10% FBS þ 2 mM EDTA in phenol-red free HBSS),
and the single-cell suspensions were passed through 30 mm cell
strainers.
Cells were stained with SYTOX Blue dead cell stain (Invitrogen, Cat.
S34857) to remove dead cells, then with a PE-conjugated antibody
against mesenchymal marker CD140a (1:50; eBioscience Cat. 12-
1401-81) and an APC-conjugated antibody against epithelial marker
CD326/Epcam (1:50; eBioscience Cat. 17-5791-82) at 4 C for 30 min.
Stained cells were washed twice in FACS buffer and sorted using a BD
FACSAria II cell sorter (BD Biosciences). After size selection to remove
debris and doublets and sorting on SYTOX Blue negative (live) events,
cells were further subgated on CD140a(�)/CD326(þ) (epithelial) cells
and then on EYFP fluorescence.
RNA was extracted from EYFP(�), EYFP-low, and EYFP-high sorted
cells with the RNeasy Mini Kit (Qiagen, Cat. 74106). Reverse tran-
scription was performed with the PrimeScript High Fidelity RT-PCR Kit
(Takara, Cat. R022A). RT-PCR was run on a 7900HT Fast RT-PCR
instrument (Applied Biosystems) with Taqman probes for Fev (assay
ID: Mm00462220_m1, Cat. 4331182) and GAPDH (assay ID:
Mm99999915_g1, Cat. 4331182) in triplicate. Data were normalized
to GAPDH. Error bars represent standard error of the mean (SEM).

2.5. Dissociation and sorting of murine pancreas tissue for
snATAC-Seq
For the whole pancreas samples, C57BL/6J embryonic pancreata
(n¼ 10 from 3 litters for E14.5 replicate 1 and n¼ 16 from 3 litters for
MOLECULAR METABOLISM 73 (2023) 101735 � 2023 The Author(s). Published by Elsevier GmbH. This is an open
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E14.5 replicate 2; n ¼ 7 from 1 litter for E17.5 replicate 1 and n ¼ 3
from 1 litter for E17.5 replicate 2) were pooled into a single 1.5 ml
microcentrifuge tube per replicate, per timepoint. Biological replicate
experiments for each timepoint were performed on different days. For
the eFev-EYFP sample, E14.5 pancreata (n ¼ 15) were dissected from
embryos of two pregnant eFev-EYFP dams, and each pancreas was
kept in a separate well of a 96-well plate. EYFP fluorescence was
assessed under a microscope to confirm the genotype of each
pancreas. E14.5 pancreata with EYFP fluorescence (EYFP(þ)) (n ¼ 5)
were then pooled together, pancreata without EYFP fluorescence
(EYFP(�)) (n ¼ 10) were pooled together as a negative control, and
each sample was transferred to a separate 1.5 ml microcentrifuge
tube.
The E14.5 whole pancreas, E17.5 whole pancreas, E14.5 EYFP(þ),
and E14.5 EYFP(�) samples were dissociated into single cells by
incubating with 250e350 ul per sample of TrypLE Express dissociation
reagent (Gibco, Cat. 12604013)) at 37 C for 20 min, with pipet tritu-
ration at 5 min intervals. Dissociation was neutralized with FACS buffer
(10% FBS þ 2 mM EDTA in phenol-red free HBSS) and the single-cell
suspensions were passed through 37 mm cell strainers.
All samples were stained with SYTOX Blue dead cell stain (Invitrogen,
Cat. S34857) to remove dead cells. Cells were washed twice with
FACS buffer and sorted using a BD FACSAria II cell sorter (BD Bio-
sciences). After size selection to remove debris and doublets, all cells
were sorted on SYTOX Blue negative (live) events, and the E14.5
EYFP(þ) and EYFP(�) samples were further subgated on EYFP fluo-
rescence. Live cells from whole pancreas and live EYFP(þ) cells from
the EYFP(þ) sample were collected into separate tubes containing 1x
FACS buffer and immediately subjected to extraction of nuclei as
described below.

2.6. Extraction of nuclei
All buffers (e.g., 0.1x lysis buffer, lysis dilution buffer, and wash buffer)
were freshly prepared according to the 10x Genomics Demonstrated
protocol (CG000212 RevC) and maintained at 4 C. Nuclei were isolated
from whole pancreas (25,000 cells for E14.5 replicate 1 and 50,000
cells for E14.5 replicate 2; 1,000,000 cells for E17.5 replicate 1 and
500,000 cells for E17.5 replicate 2) or from Fev-high (EYFP(þ)) cells
(25,000 cells for E14.5) using the demonstrated protocol. Sorted cells
were added to a 2 ml microcentrifuge tube and centrifuged at 500 rcf
for 5 min at 4 C. All supernatant was removed without disrupting the
cell pellet. 100 ul chilled 0.1x lysis buffer was then added and pipetted
5 times to fully mix the buffer with the cells, then incubated for 3 min
on ice to achieve full cell lysis. 1 ml chilled wash buffer was added to
the lysed cells to terminate the lysis. Lysed cells were centrifuged at
500 rcf for 5 min at 4 C, and supernatant was gently removed. Nuclei
were resuspended in 50 ul wash buffer, transferred to a 200 ul tube,
and spun down and resuspended in 10 ul 1x Nuclei buffer (10x Ge-
nomics, Part Number 2000153). 2 ul of the suspension was loaded
onto a hemacytometer to determine the concentration of nuclei and
simultaneously assess nucleus quality. High-quality nuclei from the
whole pancreas and eFev-EYFP samples were then used for down-
stream library construction and sequencing.

2.7. snATAC-seq capture, library construction, and sequencing
Input nuclei were subjected to transposition, partitioning, and library
construction using 10x Genomics Chromium Next GEM Single Cell
ATAC Reagent Kit v1.1 Chemistry, according to the manufacturer’s
instructions. An Agilent Fragment Analyzer was used for assessing the
fragment distribution of both the whole pancreas and eFev-EYFP li-
braries, which were run on the Illumina NovaSeq 6000 platform.
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 3
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2.8. Clustering of murine scRNA-Seq data
For clustering of murine scRNA-Seq data for integration with our
snATAC-Seq data, we applied the clustering algorithm CellFindR [37] to
our previously published scRNA-Seq dataset of developing murine
pancreas tissue [19]. 10x Genomics outputs of E14.5 and E17.5
pancreata were downloaded from the Gene Expression Omnibus (GEO)
(GSE101099; samples GSM3140916, GSM3140919, GSM3140920,
GSM2699157, GSM3140917, and GSM3140918), and analyzed with
Seurat v3.2.3. Seurat objects were created from each 10x output with
Read10x() and CreateSeuratObject() and filtered to retain high quality
cells (nFeature_RNA >1250 and percent.mt < 7 for GSM3140916;
nFeature_RNA >1500 and percent.mt < 5 for GSM3140919 and
GSM3140920; nFeature_RNA >500 and <3000 and percent.mt < 5
for GSM2699157; nFeature_RNA >500 and <5000 and
percent.mt < 5 for GSM3140917 and GSM3140918). The datasets
were then normalized and variable features calculated with Normal-
izeData() and FindVariableFeatures(), respectively. The samples were
then integrated using Seurat’s standard batch correction method [38]
with SelectIntegrationFeatures(), FindIntegrationAnchors(), and Inte-
grateData(). The integrated object was then scaled with ScaleData()
and principal component analysis (PCA) performed with RunPCA().
UMAP dimensional reduction was calculated with RunUMAP() with
dims ¼ 1:30. Neighbors were found in the dataset with FindNeighbors
with dims ¼ 1:30 and clustering performed with FindClusters(),
resolution ¼ 0.2 for E14.5 and 0.4 for E17.5. Next, broad cell types
were manually annotated based on expression of known marker genes
(i.e. Col3a1 for mesenchyme) and used for subsequent iterative sub-
clustering.
For iterative subclustering with CellFindR, each broad cell type
(Mesenchyme, Mesothelium, Exocrine, and Endocrine) was subsetted
individually. PCA, Neighbors, and UMAP were recalculated as
described above (Mesenchyme: dims 1:15; Mesothelium: dims 1:15
for E14.5 and 1:10 for E17.5; Exocrine: dims 1:10 for E14.5 and 1:15
for E17.5; and Endocrine: dims 1:10) and the first clustering resolution
calculated with find_res() from CellFindR. Iterative subclustering was
then performed with sub_clustering(). Subclusters that displayed
characteristics of doublets (expressing markers of more than one
broad group e.g., Col3a1(þ)/Cpa1(þ) acinar cells) or low quality (e.g.
clustering based on high mitochondrial gene content) were manually
removed.

2.9. snATAC-Seq analysis
FASTQ files were generated from raw sequencing reads using the
bcl2fastq function from Illumina. BAM files and single-cell accessibility
counts were generated using the cellranger-atac count function from
Cell Ranger software (version 1.0.1 for the E14.5 datasets, version
2.1.0 for the E17.5 datasets). Reference genome used was Mus
musculus assembly mm10, annotation gencode.vM17.basic. Files
processed with Cell Ranger ATAC were then analyzed using ArchR
(version 1.0.1) [39].
Unless otherwise noted, parameters and function calls were kept the
same between the E14.5 and E17.5 datasets. First, ArchR Arrow files
were created with the ArrowFiles() function with default settings. For
14.5, an ArchR project was then created using both whole pancreas
and EYFP(þ) sorted cells with ArchRProject(), resulting in an initial
dataset consisting of 46,453 nuclei. For E17.5, an ArchR project was
created using the whole pancreas sample, resulting in an initial dataset
of 113,071 nuclei. Each project was then filtered for high quality nuclei
(TSS enrichment � 10 and number of fragments � 3,000) (39,845
nuclei retained in E14.5; 102,644 retained in E17.5), and doublets
removed with addDoubletScores() and filterDoublets() (35,823 nuclei
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retained in E14.5; 94,175 retained in E17.5). Next, iterative LSI was
performed on both E14.5 and E17.5 datasets with the addIterativeLSI()
function, with clustering parameters of resolution ¼ 0.2,
sampleCells ¼ 10,000, n. start ¼ 10, varFeatures ¼ 25,000. Clus-
tering was performed with addClusters() with resolution ¼ 0.1 and
method ¼ “Seurat”. UMAP dimensional reduction was performed with
addUMAP(), with minDist ¼ 0.5. Clusters were manually annotated
based on the Gene Score of known marker genes with addImpute-
Weights() and then visualized by UMAP. For E14.5, cluster 9 was
removed as no discernible markers for the known pancreatic cell types
were detected, resulting in a final dataset consisting of 33,206 total
cells with a median number of 14,756 fragments per cell and a median
TSS enrichment score of 14.914. For E17.5, each Broad Group was
subsetted and re-clustered at higher resolution to separate out po-
tential doublet clusters or empty droplets that were not removed with
the doublet filtering detailed above. Doublet/empty droplet clusters
were removed from the Mesenchymal, Epithelial, and Endothelial
Broad Groups, resulting in a final dataset consisting of 78,669 nuclei
with a median number of 15,965 fragments per cell and a median TSS
enrichment score of 21.037.
For epithelial analysis, epithelial (exocrine and endocrine) nuclei were
subsetted based on accessibility of known marker genes (Cpa1, Spp1,
Chga). Iterative LSI was recalculated with iterations ¼ 4 for E14.5
and ¼ 2 for E17.5, resolutions ¼ 0.1, 0.2, 0.4, and 0.5 for E14.5
and ¼ 0.5 for E17.5, sampleCells ¼ 5,000 for E14.5 and 10,000 for
E17.5, n. start ¼ 10, and varFeatures ¼ 15,000 for E14.5 and 25,000
for E17.5. Clustering was performed with resolution ¼ 0.9 for E14.5
and ¼ 1.2 for E17.5, and UMAP recalculated with minDist ¼ 0.5.
Clustered epithelial cells from the scRNA-Seq data described above
were used for unconstrained integration with addGeneIntegrationMa-
trix(). Chromatin accessibility peaks were then called with Macs2 via
ArchR with addGroupCoverage(), addReproduciblePeakSet() and add-
PeakMatrix(). Marker peaks within the epithelial compartment were
calculated with getMarkerFeatures using the “PeakMatrix”. For motif
analysis within marker peaks, motif annotations were added with
addMotifAnnotations() with the “cisbp” motif set and then calculated
with peakAnnoEnrichment(). ChromVAR [40] analysis was performed
with addBgdPeaks() and addDeviationsMatrix(). Correlated transcrip-
tion factors were correlated between the “GeneIntegrationMatrix” (RNA
expression from the unconstrained integration) and “MotifMatrix”
(ChromVAR motif deviations) with correlateMatrices(), keeping TFs with
a correlation >0.5, padj <0.01 and max delta greater than 0.5 of the
upper quartile.
For pseudotime lineage calculations, we manually imputed the cell
states for each cell lineage (Alpha and Beta for E14.5; Alpha, Beta, and
Delta for E17.5) and computed the pseudotime values with
addTrajectory().
To compare peaks across the E14.5 whole pancreas and EYFP(þ)
sorted samples, we first subsetted the epithelial dataset to retain all
cell types that had sufficient cell numbers to call peaks after being split
by sample. This included the following clusters: Neurog3(þ), Fev(þ)/
Chgb(þ), Pdx1(þ)/Mafb(þ), Alpha, and Beta cells. We then split this
subsetted dataset according to the sample from which they were
derived and then re-called peaks with addGroupCoverages(), addRe-
produciblePeakSet() and addPeakMatrix(). We extracted these peaks
with getPeakset() for each sample and assessed overlap with findO-
verlaps() from the R package IRanges (https://github.com/
Bioconductor/IRanges).
For mesenchymal and mesothelial analysis in the E14.5 datasets, nuclei
were subsetted based on accessibility of known marker genes (Col3a1,
Wt1). Iterative LSI was recalculated with iterations ¼ 2,
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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resolution ¼ 0.5, sampleCells ¼ 10,000, n.start ¼ 10, and
varFeatures¼ 25,000. Clustering was performed with resolution¼ 0.3,
and UMAP recalculated with minDist ¼ 1.5. Clustered mesenchymal
and mesothelial cells from the scRNA-Seq data described above were
used for unconstrained integration. Peak calling, marker peak identifi-
cation, motif analysis, ChromVAR analysis, and transcription factor
correlation were performed as described above.

2.10. Gene regulatory network analysis
Gene regulatory networks (GRNs) were constructed as described by Lyu
et al., 2021 [31] (https://github.com/Pinlyu3/IReNA-v2). Candidate
cluster-enriched genes were calculated with the scRNA-Seq dataset of
epithelial or mesenchymal cells with Seurat’s FindAllMarkers() with
min.pct ¼ 0.1 and logfc.threshold ¼ 0.25. DEGs were retained with an
average logFC>0 and padj<0.01. DEGs were then mapped to specific
cell types with the IReNA v2 function Process_DEGs_to_Celltypes().
Peak-to-gene linkage was performed with ArchRs addPeak2Gene-
Links() function for both epithelium and mesenchyme using the
“GeneIntegrationMatrix” (integrated RNA-Seq counts). Peak-to-gene
links were then extracted with the IReNA v2 function Get_p2g_fun().
To identify potential cis-regulatory elements for each candidate gene,
called correlated accessible regions (CARs), we separated the peak-to-
gene links into three categories: TSS (when the peak lies within the
transcription start site (TSS) for the gene), gene body (when the dis-
tance between peak and TSS is less than 100 kb, and the peak-to-
gene score calculated above is significant), or distal (when the peak
is 100 kb upstream or downstream of the TSS of correlated gene, and
the peak-to-gene score is significant). These peak-to-gene links were
then filtered to only include genes in the DEG list calculated above with
Selection_peaks_to_one().
Next, we predicted the cell-type specific transcription factors binding in
these CARs. We first took the snATAC fragments for each dataset (whole
pancreas and Fev-high) and then extracted the fragments for each cell
type. We converted these fragment lists to .BAM files and corrected the
Tn5 insertion bias with TOBIAS [41] ATACorrect with default parameters
except –read_shift 0 0. We then converted the TOBIAS output bigwig
files to GRanges with the IReNA v2 function Check_normalized_Signal().
Next, we calculated TF binding motifs in our peaks with motifmatcher
(https://github.com/GreenleafLab/motifmatchr), filtering calculated TFs
out from the motif analysis if they were not enriched in each cell type by
the DEG analysis. We calculated the NC (average bias-corrected Tn5
signal in the center of the motif), NL and NR (average bias-corrected Tn5
signal in the left and right flanking regions of the motif) scores with
Calculate_footprint_celltypes() and filtered TFs with a score of
NC < �0.1 and NL > 0.1 and NR > 0.1.
Next, we used MAGIC (Mining Algorithm for GenetIc Controllers) [42] to
compute correlation between TF and target gene gene expression. We
retained the top and bottom 2.5% of correlations for our downstream
analysis.
Lastly, we constructed the cell-type specific GRNs. We combined the
peak-target links from our third step with the cell-type specific TF-
peak links from our fourth step with Reg_one_cells_RPC_MG(). We
then classified these interactions as either activating or repressing with
our TF-target gene interactions calculated above with Add_Cor_-
to_GRN_network_and_Filter(). We then identified feedback TFeTF
pairs in our constructed GRN with FoundFeedBackPairs_new() and
Process_the_Feedback_res().

2.11. Confirmation of Fev GRN peaks and targets
Peaks from Fev ChIP-Seq data detected in E12.5-E15.5 hindbrain were
obtained from GEO (accession number GSE74315), from the
MOLECULAR METABOLISM 73 (2023) 101735 � 2023 The Author(s). Published by Elsevier GmbH. This is an open
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supplementary file labeled “GSE74315_mycPet-1_ChIP_-
peaks.mm10. bed.gz.” Fev-occupied CARs from the Fev(þ)/Chgb(þ)
GRN were taken from Supplementary Table 3 and written in .bed
format. These peaks were then intersected using the bedtools software
(https://github.com/arq5x/bedtools2) with default settings. Differen-
tially expressed genes between Fev wildtype and knockout E15.5
hindbrains were downloaded from GEO (accession number GSE74315)
under the supplementary file labeled “GSE74315_WT_vs_Pet1KO_5-
HT_neuron_E15.5C_Clontech_cuffdiff.txt.gz.”

3. RESULTS

3.1. Single-nucleus ATAC-Sequencing of the developing murine
pancreas
To investigate chromatin accessibility in the developing pancreas, we
aimed to capture a broad range of cell types, including both epithelial
and non-epithelial populations. In addition, we were specifically
interested in profiling EP cells, but given their rare numbers we
searched for a method to achieve enrichment of this population. We
utilized ePet1-EYFP mice (referred to hereafter as eFev-EYFP, as the
gene Pet1 is also known as Fev), where EYFP expression is driven by a
Fev enhancer [34,35]. In previous work, we had identified Fev as a
marker of an intermediate murine EP population downstream of the
better-characterized Neurog3(þ) population and upstream of differ-
entiated, hormone-expressing endocrine cells [19].
As lineage reconstruction of scRNA-Seq data had revealed that this
Fev-expressing EP population is likely the state at which endocrine
lineage allocation occurs, we chose to focus on enrichment of Fev(þ)
cells. Although previous work with this eFev-EYFP mouse line had
validated that EYFP expression faithfully reflected Fev expression in
brain tissue, similar confirmation had not yet been performed in the
pancreas [34]. We performed dual in situ hybridization (ISH)/immu-
nofluorescence (IF) staining of E14.5 eFev-EYFP pancreas tissue to
evaluate the architecture of EYFP expression with respect to the
expression of Neurog3 and Fev transcripts, as well as Chromogranin A
(Chga) protein, a marker of differentiated hormone-producing endo-
crine cells. Expression of Neurog3 and Fev transcripts was mutually
exclusive (Figure 1A), as expected from our previous work demon-
strating by genetic lineage tracing and scRNA-Seq that Fev-expressing
cells are downstream of a Neurog3(þ) state [19]. Also as expected,
EYFP expression was only found in epithelial (E-cadherin(þ)) cells, and
mostly localized to ductal-like structures (Fig. S1A). A significant
fraction, but not all, of EYFP(þ) cells were actively expressing Fev
transcript (Figure 1A). In addition, we observed EYFP(þ) cells also
expressing Chga (Fig. S1A). These data are consistent with a model of
Fev expression in pancreatic EP cells in eFev-EYFP mice in which Fev
transcript first begins to be expressed as Neurog3 expression wanes,
then expression of EYFP (under the control of the Fev enhancer) follows
(Figure 1B). Persistence of EYFP in cells that no longer express Fev
transcript likely reflects longer perdurance of EYFP fluorescent protein
compared to Fev mRNA in these cells, similar to what has been
observed for Neurog3-tdTomato [43], Neurog3-YFP [44], and Neu-
rog3-EGFP transgenic mice [45].
We further validated the eFev-EYFP mouse line using fluorescence-
activated cell sorting (FACS) and quantitative real-time polymerase
chain reaction (qRT-PCR). Consistent with our IF staining, we observed
little to no EYFP signal in cells that were negative for the epithelial
marker Epcam (Fig. S1B). Within the population of cells positive for
Epcam and negative for the mesenchymal marker CD140a, a bimodal
distribution of EYFP signal was detected (Fig. S1B). TaqMan qRT-PCR
analysis revealed that the EYFP-low population had higher expression
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Figure 1: Single-nucleus ATAC-Seq of developing murine pancreas. (A) Multiplexed immunofluorescence and in situ hybridization staining of E14.5 pancreas from eFev-EYFP
transgenic mouse embryos. Neurog3 (Ngn3) transcript is shown in red and marks early endocrine progenitors (EPs), Fev transcript is shown in cyan and marks intermediate EPs,
and EYFP protein is shown in green. DAPI marks nuclei in white. Five selected regions of interest (ROIs) are outlined by dashed white rectangles on the merged image and shown at
higher magnification to the right. These ROIs highlight examples of cells that are 1) Ngn3(þ)/Fev(�)/EYFP(�); 2) Ngn3(þ)/Fev(þ)/EYFP(�); 3) Ngn3(�)/Fev(þ)/EYFP(�); 4)
Ngn3(�)/Fev(þ)/EYFP(þ); and 5) Ngn3(�)/Fev(�)/EYFP(þ). Scale bar is 20 mm. (B) Model of Fev and EYFP expression in EPs undergoing differentiation to a hormone-producing,
Chromogranin A (Chga)-expressing state in eFev-EYFP reporter mice. Each circle represents a cell state across endocrine differentiation. (C) Overview of experimental approach for
generating single-nucleus ATAC-Seq (snATAC-Seq) data. To enrich for Fev-high EPs, E14.5 eFev-EYFP murine pancreas was dissociated, and the resulting single cell suspension
was subjected to FACS to enrich for EYFP(þ) epithelial cells (“EYFPþ Cells”). In parallel, E14.5 pancreata from control (C57BL/6J) embryos were dissociated and subjected to FACS
to isolate all live cells (“Whole Pancreas”) to profile a broad spectrum of cell types, including non-epithelial cells. After subjecting samples to snATAC-Seq, data were then
integrated with previously-published single-cell RNA-Sequencing (scRNA-Seq) datasets of E14.5 murine pancreas previously published by our laboratory [19]. (D) Uniform Manifold
Approximation and Projection (UMAP) visualization of merged snATAC-Seq datasets from both Whole Pancreas (biological replicates 1 and 2) and EYFP(þ) samples, comprising a
total of 33,206 nuclei. Each dot represents a single cell, and each cell is colored according to cell type. Contribution of each sample (Whole Pancreas and eFev-EYFP(þ)) to the total
dataset is depicted in the inset, with the eFev-EYFP(þ) sample contributing only to the endocrine cluster, as expected. (E) Feature plots depicting the Gene Scores (accessibility of
the gene promoter plus the gene body) for some of the marker genes used to annotate the cell types in panel D. Inset for Sox10 shows Sox10-expressing neuronal cells at higher
magnification.
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of Fev mRNA compared to EYFP-high cells (Fig. S1C). The EYFP-low
population thus likely corresponds to a stage in which EYFP expres-
sion is on the rise and Fev expression is still present, whereas the
EYFP-high population likely represents a stage where EYFP has
reached higher expression but Fev itself has begun to wane
(Figure 1B). Thus, we selected this EYFP-low population, enriched for
Fev(þ) cells, for snATAC-Seq using the 10x Genomics platform
(Figure 1C, Fig. S1D). We included an additional two samples, bio-
logical replicates of whole pancreas tissue, to capture a broad range of
cell types (Figure 1C).
Single cells were lysed to isolate nuclei, and chromatin was then
subjected to the 10x Genomics pipeline and sequenced. The resulting
dataset was analyzed with the computational package ArchR [39].
First, the datasets were filtered to retain high-quality nuclei by
thresholding on the number of unique nuclear fragments, as well as
the transcription start site (TSS) enrichment score (see Methods). This
step provides enrichment of cells displaying a high fraction of frag-
ments that map to the TSS versus other locations in the genome. Next,
the datasets were subjected to doublet discrimination, resulting in a
final dataset consisting of a combined total of 33,206 high-quality
nuclei across the three samples. The data were then dimensionally
reduced, clustered, and visualized in a 2D Uniform Manifold Approxi-
mation and Projection (UMAP) embedding (Figure 1D). The UMAP
projection revealed that cells from both replicates of the whole
pancreas contributed to each of the clusters within the dataset. As
expected, cells from the eFev-EYFP(þ) sample clustered only with
endocrine cells from the two Whole Pancreas samples (Figure 1D,
inset), reflecting successful enrichment of endocrine cells from the
eFev-EYFP mouse line and effective integration of the three datasets.
Each cluster was annotated as corresponding to a specific cell type
found within the developing pancreas based on the gene score
(accessibility of the gene promoter plus the gene body) of the following
marker genes: Col3a1 to mark mesenchymal cells,Wt1 for mesothelial
cells, Cpa1 and Spp1 for exocrine cells, Chga for endocrine cells,
Pecam1 for endothelial cells, Rac2 for immune cells, and Sox10 for
neuronal cells (Figure 1E, Supplementary Table 1).

3.2. Integration of single-cell transcriptional and chromatin
accessibility data identifies epithelial heterogeneity in the developing
murine pancreas
To reliably identify the heterogeneity of chromatin states within the
epithelial cell types of the developing pancreas, we performed un-
constrained integration of our snATAC-Seq data from all epithelial cells
with E14.5 scRNA-Seq data previously published by our laboratory
[19]. First, we computationally isolated the epithelial cells from the
scRNA-Seq dataset (13,093 epithelial cells total) and performed iter-
ative sub-clustering with the computational package CellFindR [37] to
identify biologically relevant cell types. Next, we correlated the gene
expression profiles of each of the cells within this scRNA-Seq dataset
with the gene scores of each of the cells within our snATAC-Seq
dataset. After identifying correlated cell pairs between the two data-
sets, cells in the snATAC-Seq dataset were assigned the cell type label,
as well as the gene expression profile, of the cognate cell from the
scRNA-Seq data.
This integration resulted in a final epithelial snATAC-Seq dataset
comprised of 16,250 nuclei representing 10 distinct cell types,
including Acinar, Ductal, Spp1(þ)/Neurog3(þ) double positive EPs,
Neurog3(þ) single positive EPs, Fev(þ)/Chgb(þ) intermediate pro-
genitors, and Pdx1(þ)/Mafb(þ) beta cell precursors, as well as Alpha,
Beta, Delta, and Epsilon cells (Figure 2A). As expected, the sorted
EYFP(þ) cells contributed highly to the endocrine but not the acinar or
MOLECULAR METABOLISM 73 (2023) 101735 � 2023 The Author(s). Published by Elsevier GmbH. This is an open
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ductal compartments of the overall dataset (Figure 2A, inset). The
relative proportions of these annotated cell types in the snATAC-Seq
dataset roughly matched the proportions of the epithelial cells in the
scRNA-Seq dataset (Figure 2B). Integration scores, a reflection of
confidence in the assignment of cell identity, were highest among
terminally differentiated cell types (e.g., exocrine and hormone-
expressing endocrine cells) (Fig. S2A), indicating less ambiguity in
chromatin accessibility once cell fate is determined. Even in the
absence of integration with scRNA-Seq data, all cell types were
identified when clustering on chromatin accessibility alone (Fig. S2B).
Next, we confirmed the cell type annotations by assessing chromatin
accessibility (gene score), as well as the transferred RNA expression
from the integration (gene expression). We observed high concordance
between chromatin accessibility and RNA expression for the marker
genes defining our cell types (Figure 2C). Additionally, we observed
cell-type specific chromatin accessibility of each marker gene locus
(Fig. S2C). To assess the reproducibility of called peaks across both
biological samples, we subsetted the dataset by sample and re-called
peaks on a subset of endocrine cells (see Methods). We detected
83,055 total peaks in the final endocrine peakset for the whole
pancreas sample replicate 1, 119,809 total peaks for whole pancreas
replicate 2, and 106,301 total peaks in the eFev-EYFP(þ) sorted
sample (Fig. S2D). We observed an overlap of 71,169 peaks between
the two whole pancreas peaksets (representing an 86% overlap for
whole pancreas sample 1 and a 59% overlap for whole pancreas
sample 2). The number of peaks common to all three samples was
64,082, which represents an overlap of 77% for whole pancreas 1,
53% for whole pancreas 2, and 60% for the the EYFP(þ) sample
(Fig. S2D). When assaying differentially-accessible or -expressed
genes, we observed far fewer significantly differentially accessible
genes (n ¼ 1,066) compared to differentially expressed (n ¼ 4,567)
(Figure 2D, Supplementary Table 1). Among these differentially-
accessible genes were top markers of each cluster identified by dif-
ferential gene expression analysis of our scRNA-Seq dataset
(Supplementary Table 1). Taken together, these data confirm the ex-
istence of heterogeneous epithelial populations initially identified by
scRNA-Seq, here by an orthogonal method.

3.3. Identification of candidate regulators of epithelial cell fate
To identify regulators of cell fate decisions in the developing pancreatic
epithelium, we applied the peak calling algorithm MACS2 [46] to our
dataset. We identified 232,056 peaks across all epithelial clusters,
with 63,097 peaks exhibiting differential accessibility across cell types
(Figure 3A, Supplementary Table 2). Next, we assayed for TF motif
enrichment in these differential peaks, identifying 404 enriched motifs.
A number of TFs in the same family were deemed enriched due to the
similarities in DNA binding motifs. For instance, TFs with enriched
motifs included known regulators of pancreatic epithelial development,
such as Sox family members (Sox2, Sox4, Sox9; Ductal), Hox family
members (Hoxb4, Hoxc4, Hoxa4; Beta) and members of the Rfx family
(Rxf3 through Rfx7; Fev(þ)/Chgb(þ) and Pdx(þ)/Mafb (þ))
(Supplementary Table 2). To distinguish among TFs with similar DNA
motifs identified in a given cell type, we next identified significant TF
motif deviations (calculated as deviation of motif enrichment in
accessible peaks from the expected distribution based on the average
across all cells) of each cell type using ChromVAR [40]. The TFs from
ChromVAR were then correlated with their gene expression profiles
from the integrated RNA expression matrix, thereby identifying so-
called “correlated TFs” that are both expressed and have significant
motif deviation (Figure 3B, Supplementary Table 3). By breaking this
down further on a per-cluster basis, we then were able to observe the
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Figure 2: Integration of single-cell transcriptional and chromatin accessibility data identifies epithelial heterogeneity in the developing murine pancreas. (A) UMAP
plots enabling visualization of scRNA-Seq (left) and snATAC-Seq (right) data for all epithelial cells in the E14.5 pancreas. Numbers of cells or nuclei are depicted on the right, along
with cell type annotations. The scRNA-Seq dataset was previously published by our group [19]. (B) Bar graph depicting the proportion of all each cell type as a fraction of all
epithelial cells in the scRNA-Seq and snATAC-Seq datasets. Colors match the cell types in (A). (C) Feature plots showing chromatin accessibility (Gene Score; left) or Gene
Expression (right) of genes that mark each epithelial cell type. Cpa1, Spp1, Chga, Neurog3, Fev, Ins1, Gcg, Sst, and Ghrl mark acinar, ductal, pan-differentiated endocrine, early
endocrine progenitor (EP), intermediate EP, beta, alpha, delta, and epsilon cells, respectively. (D) Heatmaps depicting genes that are differentially accessible (gene score; top
heatmap; 1,066 genes) or differentially expressed (gene integration matrix; bottom heatmap; 4,567 genes) across the epithelial clusters. Genes listed were selected from the set of
genes determined to be differentially expressed among scRNA-Seq clusters in panel (A).
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Figure 3: Identification of candidate correlated transcription factors governing pancreatic epithelial cell fate. (A) Heatmaps depicting enriched marker peaks (left;
n ¼ 63,097) and transcription factor (TF) motifs enriched in marker peaks (right; n ¼ 404) for each epithelial cell type. (B) Dot plot shows so-called “correlated” TFs (those with
high correlation between motif deviation score and gene expression) in all epithelial cells. (C) Heatmaps revealing cell type-specific motif deviation scores (top) and gene expression
values (bottom) of positive TFs identified in (B). (D) Feature plots displaying motif deviation (top) and gene expression (bottom) of selected positively correlated TFs at single-cell
resolution. (E) Pseudotemporal ordering of epithelial cells along the Alpha and Beta lineages based on chromatin accessibility. (F) Heatmaps depicting positively correlated TFs
across pseudotime (from left to right) for the Alpha lineage (left heatmaps; n ¼ 34 correlated TFs) and Beta lineage (right heatmaps; n ¼ 27 correlated TFs).
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cell type-specific motif deviations and gene expression of the corre-
lated TFs, narrowing the number of TFs with enriched motifs from 404
(Figure 3A) to 50 correlated TFs (Figure 3B,C). Correlated TFs included
multiple members of the Fox family (Foxk2 and Foxo1, Beta; Foxp1,
Fev; Foxa2, Delta), as well as the Sox family (Sox4, Spp1(þ)/Ngn3(þ);
Sox9, Ductal) (Figure 3C). The relationship between motif deviation and
gene expression is further shown at single-cell resolution for several
endocrine genes in Figure 3D. Interestingly, by observing not only motif
deviation but also gene expression, we were able to determine that
although both Ductal cells and Spp1(þ)/Neurog3(þ) EPs showed high
motif deviation of Sox4, expression was significantly higher in the latter
population (Figure 3D). This is in line with previously published work
that shows that Sox4 works with Neurog3 to induce endocrine dif-
ferentiation in the developing murine pancreas [47].
We next sought to understand the correlated TFs across the Alpha and
Beta cell lineages. We first calculated the pseudotime values of cells
along both trajectories (Figure 3E) and then applied the same motif
deviation and gene expression correlation analysis for the genes and
enriched motifs along these lineages (Figure 3F, Supplementary
Table 3). Across the Alpha lineage (including Ductal, Spp1(þ)/Neu-
rog3(þ), Neurog3(þ), Fev(þ)/Chgb(þ), and Alpha cells) we identified
34 correlated TFs. This included TFs in Ductal cells (Nr4a1, Sox9),
progenitor cells (Neurog3, Neurod2), and Alpha cells (Foxp1, Isl1,
Mafb, Mafg). For the Beta lineage, we identified 27 correlated TFs,
including Mnx1, Mafb, Mafg, Pdx1, and Foxo1. In summary, the multi-
layered approach taken here has further distilled the subset of TFs that
likely play an important role in governing fate selection during
endocrinogenesis.

3.4. Gene regulatory networks controlling epithelial cell fate
Our analyses thus far identified accessible chromatin and correlated
TFs within the epithelial compartment of the developing endocrine
pancreas. How and where these TFs bind and affect downstream
target genes to govern cell fate decisions is not as well understood,
however. To address this gap in knowledge, we next sought to
construct a gene regulatory network (GRN) for Acinar, Ductal, and
endocrine cells of the Alpha and Beta lineages (Figure 4A). We utilized
the computational pipeline Integrated Regulatory Network Analysis
(IReNA) v2 [48] (Figure 4B, Fig. S3A), which combines both scRNA-Seq
and snATAC-Seq data to predict TF binding of downstream target
genes in a cell type-specific manner. First, we performed differential
gene expression analysis on our scRNA-Seq dataset to identify genes
enriched in each cell type (Fig. S3B, Supplementary Table 4). We then
performed peak-to-gene linkage analysis in our integrated scRNA- and
snATAC-Seq datasets, identifying accessible regions of chromatin
(peaks) that are either positively or negatively significantly correlated
with gene expression (genes) (Fig. S3C). These peak-to-gene peaks
were then further filtered and annotated as correlated accessible re-
gions (CARs) belonging to one of three categories: TSS (when the peak
lies in the transcription start site (TSS) for the gene), gene body (when
the distance between peak and TSS is less than 100 kb, and the peak-
to-gene score calculated above is significant), or distal (when the peak
is 100 kb upstream or downstream of the TSS of a correlated gene,
and the peak-to-gene score is significant). We observed varying pro-
portions of CAR categories among the cell types, with TSS representing
the highest proportion, followed by roughly equivalent proportions of
positive and negative CARs (Fig. S3D). We next predicted the cell-type
specific TF binding in these CARs by searching for TF DNA binding
motifs in the CARs. Once identified, we then filtered the TFs by
calculating their TF footprint score, retaining TFs with a score deemed
significant by IReNA.
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We observed the highest number of GRN TFs in the Fev(þ)/Chgb(þ)
population (39 TFs), followed by Neurog3(þ) (33 TFs) and Ductal
(28 TFs) cells (Fig. S3E, Supplementary Table 5). Among our network
of TFs and target gene-associated CARs, we binned these interactions
as either activating or repressing by correlating the expression of each
TF-target gene pair. Genes with a positive TF-target gene correlation
were annotated as being activated by their given TF, while those with a
negative TF-target gene correlation were annotated as being
repressed. The Ductal and the Fev(þ)/Chgb(þ) populations had the
highest number of regulations, followed by Pdx1(þ)/Mafb(þ) and
Neurog3(þ) (Fig. S3F). The regulations among all the populations
examined were relatively evenly split between activating and repres-
sing. Lastly, from the GRN constructed above, we identified pairs of
TFs that regulated one another; for each TF, we identified target genes
that are also TFs and mapped these pairs as either activating or
repressing depending on the correlation of gene expression of the
target TF in the given cell type. This analysis permitted us to identify
TFs that regulate the expression of other TFs in given cell types
(Fig. S3G, Supplementary Table 6).
To examine the TFs comprising this epithelial GRN in more depth, we
first focused on the hormone(þ) populations within our dataset. We
found that genes enriched in the Beta cell population were largely
repressed in the Acinar, Ductal, and Spp1(þ)/Neurog3(þ) GRNs, then
gradually became activated as endocrine differentiation proceeded
(Figure 4C). Within the Alpha cell population, Beta cell enriched genes
were almost exclusively activated, consistent with previous studies
investigating gene expression of individual TFs revealing that beta and
alpha cells share common expression of genes needed for proper
development and function [7]. We then inquired within all of the GRNs
defined for epithelial cell types, which TFs either activate or repress
genes enriched in the Beta cell population. Among the top activating
TFs were known regulators of Beta cell development, such as Mafb,
Neurod1, and Pdx1 (Figure 4D). Targets of these activating TFs
identified by our GRN analysis included numerous genes, both known
and novel (Supplementary Table 5). Repressors of Beta cell enriched
genes were largely contained within the Ductal GRN and included TFs
such as Tcf3, Tead2, Sox4, and Rest (Figure 4E). As in Beta cell
enriched genes, Alpha enriched genes followed a similar pattern of
activation and repression across the epithelial GRN (Fig. S4A). TFs
activating Alpha cell enriched genes included Beta cell activating TFs
such as Mafb and Neurod1 (Figure 4F). TFs repressing Alpha cell
enriched genes also included Tcf3, Tead2, Sox4, and Rest (Figure 4G),
suggesting that these TFs repress global hormone(þ) cell gene sig-
natures. The six TFs that overlapped between the Alpha (18 TFs) and
Beta (13 TFs) GRNs comprised known endocrine regulators Pax6,
Mafb, Neurod1, and Isl1, as well as TFs less well studied in pancreas,
Zfp516 and Meis2 (Figure 4H). TFs unique to the Beta GRN included
known regulators of beta cell fate, such as Nkx6-1, Pdx1, and Foxo1,
while those less well characterized included Mlxipl. We performed
multiplexed immunofluorescence and in situ hybridization on sections
of wildtype E14.5 pancreas tissue and validated the enrichment of
Mlxipl expression in Ins1(þ) Beta cells (Fig. S4B). Examples of TFs
unique to the Alpha GRN were Irx2 and Arx, known regulators of Alpha
cell fate. Less well characterized TFs included Pbx1, which is required
for proper pancreas development [49], Bbx, Peg3, and Etv1. We also
confirmed high enrichment of Etv1 expression in Gcg(þ) Alpha cells,
as well as some expression in Fev(þ) cells (Fig. S4C).
Among the top activating TFs of Alpha cell enriched genes was Etv1
(Figure 4F), reported to be a direct or indirect target of Nkx2-2 [50].
Within beta cells, failure to properly degrade Etv1, Etv4, and Etv5 re-
sults in impaired insulin secretion [51]. We took a closer look at the
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Figure 4: Mapping the gene regulatory networks active in the Alpha and Beta cell populations. (A) Cell populations used as input for IReNA. Arrows denote known lineage
relationships. (B) Schematic depicting application of the Integrated Regulatory Network Analysis (IReNA) v2 pipeline to identify gene regulatory networks (GRNs) within specific cell
types. The GRN refers to active, cell type-specific transcription factors (TFs) and their target genes. (C) Bar graph indicating the number of downstream target genes for TFs
enriched in the Beta cell type. Activating (red bars) and repressing (blue bars) refers to positive or negative correlation between gene expression levels of the TF and the target
gene. (D-E) Bar graphs showing the top 10 TFs with the highest number of activating (D) or repressing (E) regulations of target genes enriched in the Beta cell type. (F-G) Bar
graphs showing the top 10 TFs with the highest number of activating (F) or repressing (G) regulations of target genes enriched in the Alpha cell type. (H) Venn diagram depicting the
overlap between Alpha and Beta GRN TFs. (I) Bar graph depicting top most significantly (p-value <0.01) enriched pathways of genes activated (red bars) or repressed (blue bars) by
the TF Etv1 in the Alpha cell GRN. (J) Network diagram representing regulations between Etv1 and interacting TFs. Each TF is represented by a circle (node) that is colored by the
cell type in which that TF is active in the GRN. Activating regulations are depicted by red lines, while repressing are depicted by blue lines.
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downstream targets of Etv1 in the Alpha cell GRN and found that Etv1
was predicted to activate 150 genes and repress 130 genes in the
Alpha GRN (Supplementary Table 5). When performing pathway
analysis on these genes, we observed that Etv1 activated pathways
related to vesicle mediated transport, synaptic vesicles, and mem-
brane trafficking (Figure 4I). Other targets of Etv1 included Alpha-cell
related genes such as Mafb and Irx2, as well as endocrine hor-
mones such as Pyy (Supplementary Table 5). Pathways repressed by
Etv1 included those related to translation initiation, cytoplasmic ribo-
somal proteins, and cap-dependent translation initiation. When
examining TFeTF interactions, we found that Etv1 is repressed by
Sox9 and Egr2 in the Ductal population, and activated by Stat3 in the
Pdx1(þ)/Mafb(þ) population and by Usf2 and Vdr in the Fev(þ)/
Chgb(þ) population (Figure 4J).
In summary, the computational analyses described in this section have
permitted the construction of a gene regulatory network of the acinar,
ductal, and major endocrine lineages in the developing mouse
pancreas. This workflow, which is dependent on integration of both
chromatin accessibility and transcriptional data, has identified regu-
lators of alpha and beta cell fate that can serve as the subjects of
further experimental study.

3.5. Gene regulatory networks governing the initiation of endocrine
differentiation
During mammalian pancreatic development, a subset of cells within
the branching ductal epithelium activate the expression of the master
regulator of endocrine differentiation, Neurog3. These rare Neurog3(þ)
cells represent the earliest known EP population, and considerable
attention has been devoted to understanding this ductal to EP transi-
tion. In addition to Neurog3, which is required for mouse endocrine
differentiation [6], numerous other TFs have been identified that are
also important for endocrinogenesis. Investigation of NEUROG3 binding
across the genome in human pluripotent stem cell (hPSC)-derived EP
cells revealed widespread regulation of 138 TFs, some with known
roles in endocrine development and others with unknown function
[52]. Further studies in human cells used inducible and knockout
models in hPSC-derived endocrine cells to identify predicted targets of
multiple endocrine TFs, including NEUROG3, PDX1, and RFX6 [53].
Generation of an Neurog3-timer fluorescent reporter mouse line that
permitted the specific isolation of early Neurog3-expressing cells
identified numerous putative direct targets of Neurog3 in mouse EPs
[54]. These studies have highlighted the need for a broad, integrated
analysis of all TFs and downstream targets that control the initiation of
endocrine differentiation.
Towards this end, we began by investigating the GRN regulating the
transition from a ductal to EP cell state. TFs in the Ductal GRN pro-
moting the expression of Spp1(þ)/Neurog3(þ) EP genes included
known regulators of endocrine cell fate, such as Sox4 [47,55]
(Figure 5A). Also identified was Sox9, which induces the expression of
Neurog3 and thus positively regulates the endocrine lineage before
then being turned off during differentiation [5,55]. Interestingly, Tead2
and Tcf3 activated the most genes enriched in the Spp1(þ)/Neu-
rog3(þ) and Neurog3(þ) EP populations (Figure 5B), indicating that
these TFs are important initiators of an endocrine cell fate. The Yap/
Tead signaling complex has previously been shown to activate mul-
tipotent progenitor cell enhancers and regulate epithelial outgrowth
during human pancreatic development [56]. Tcf3, also known as E47,
has been shown in a human cell line to dimerize with NEUROG3 to bind
to the promoter region of the INSM1 gene [57], which is required in
mice to maintain mature beta cell function [58]. TFs involved in the
transition from a Spp1(þ)/Neurog3(þ) to a Neurog3(þ) EP cell state
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include well known regulators of endocrine differentiation, such as
Nkx2-2, Pax4, and Neurod2 (Figure 5A). Other TFs with no known
endocrine function included Nhlh1, whose expression was enriched in
Neurog3(þ) cells by E14.5 scRNA-Seq and confirmed in vivo
(Fig. S5A). Major repressors of EP enriched genes in the Ductal GRN
included TFs such as Rest and Hes1 (Figure 5C). The classification of
Hes1 as repressing is consistent with what is known about the role of
Notch signaling in the initiation of EP cell fate [5,59]. Rest is a master
regulator of neurogenesis and has been previously described to inhibit
direct reprogramming of pancreatic exocrine to endocrine cells by
inhibiting the binding of Pdx1 to key endocrine differentiation-related
genes [60]. In addition, loss of Rest results in increased generation
of pancreatic endocrine cells during development [61,62]. Consistent
with previous studies, we confirmed expression of Rest in Spp1-
expressing Ductal cells by in vivo staining of E14.5 pancreas and by
scRNA-Seq (Fig. S5B). Among TFeTF pairs identified in Ductal,
Spp1(þ)/Neurog3(þ), and Neurog3(þ) cells, most were classified as
activating, with the exception of Nfib (Ductal) (Fig. S5C). Taken
together, our GRN analysis has identified novel candidate regulators,
such as Tcf3 and Tead2, of the ductal to EP cell state transition. These
results expand upon our knowledge of this key developmental tran-
sition and serve as a resource for future studies.
We next focused on Fev(þ)/Chgb(þ) cells, as our previous work
indicated that this cell state represents the bifurcation point at which
the Alpha or Beta lineage is established (Figure 4A) [19]. As expected,
we observed that the Acinar and Ductal cell types largely repress
genes that are enriched in the Fev(þ)/Chgb(þ) population (Figure 5D).
These genes begin to be activated as an endocrine cell fate is
established (Spp1(þ)/Neurog3(þ) and Neurog3(þ) cell types) and are
fully activated by the Fev(þ)/Chgb(þ) cell stage. Curiously, the Fev(þ)/
Chgb(þ) enriched genes are not repressed in the Alpha and Beta cell
types, suggesting that Alpha/Beta cell fate is due more to activation of
key Alpha/Beta genes as opposed to the repression of progenitor-
associated genes. Among the top TF activators of Fev(þ)/Chgb(þ)
enriched genes (Supplementary Table 5), we observed that known
regulators of endocrine cell fate such as Neurod1, Mafb, and Pax6
activated the most genes (Figure 5E). Activators also included less well
described TFs, such as Rad21 and Peg3, as well as Foxo1 and Etv1
(Figure 5E; Supplementary Table 5). Conversely, TF repressors of
Fev(þ)/Chgb(þ) enriched genes included the TFs Tead2, Tcf3, Rest,
Sox4, and Nfib, among others (Figure 5F). Next, we constructed a
network diagram of TF pairs that either activate or repress TFs
enriched in the Fev(þ)/Chgb(þ) population (Figure 5G). Consistent
with our observations in Figure 5D, TFeTF regulations were entirely
repressive in the Acinar and Ductal cell states, and a mix of activating
and repressing in the Spp1(þ)/Neurog3(þ) and Neurog3(þ) cell states
(Figure 5G; Supplementary Table 6). In contrast, TFeTF regulations in
the Alpha, Beta, and Pdx1(þ)/Mafb(þ) states were exclusively acti-
vating (Figure 5G; Supplementary Table 6).
When comparing the GRNs among all progenitors and precursors, we
identified 18 TFs unique to the Fev(þ)/Chgb(þ) population (Fig. S5D,
Supplementary Table 6). Among these TFs identified within the Fev(þ)/
Chgb(þ) GRN, Rad 21 and Mafb were among the top activators of the
transition from Fev(þ)/Chgb(þ) to either Pdx1(þ)/Mafb(þ), Alpha, or
Beta cell states (Figs. S5EeG). Among the top 10 TFs with the highest
number of activating regulations across the transition from Fev(þ)/
Chgb(þ) to Alpha cells was Vitamin D receptor (Vdr), whose expression
has been linked to beta cell function and diabetes (Fig. S5F) [63e65].
As expected from Figure 4F, Etv1 had a higher number of activating
regulations for Alpha cell-enriched genes compared to Pdx1(þ)/
Mafb(þ) or Beta populations (Figs. S5EeG).
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Figure 5: Mapping the gene regulatory networks active in the Fev-expressing pancreatic endocrine population. (A) Cartoon depicting the number of activating (red) and
repressing (blue) regulations between transcription factors (TFs) in Ductal, Spp1(þ)/Neurog3(þ), and Neurog3(þ) populations, with representative TFs indicated. (BeC) Bar graphs
depicting the top 10 TFs in the Ductal GRN with the highest number of activating (B) or repressing (C) regulations of target genes that are enriched in the Spp1(þ)/Neurog3(þ) and
Neurog3(þ) cell types. (D) Bar graph depicting the number of TF regulations of target genes enriched in the Fev(þ)/Chgb(þ) cell type. Activating (red bars) and repressing (blue
bars) refers to positive or negative correlation, respectively, of gene expression between the TF and target gene. (E-F) Bar graphs depicting the top 10 transcription factors with the
highest number of activating (E) or repressing (F) interactions of target genes enriched in the Fev(þ)/Chgb(þ) cell type. (G) Network diagram depicting all TFeTF regulations
between TFs enriched in the Fev(þ)/Chgb(þ) GRN and all other GRNs. TFs are denoted by each node, which is colored by the cell type in which the TF is found. Each activating
regulation is depicted by a red line, while each repressing regulation is depicted by a blue line. (H) Bar graph depicting top significant (p-value <0.01) pathways of genes activated
(red bars) or repressed (blue bars) by Fev in the GRN analysis. (I) Network diagram depicting the TFs activated (red lines) by Fev in the GRN analysis. Each node (TF) is colored
according to the cell type in which it is expressed.
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The gene Fev was initially described as a prototypical serotonergic
transcription factor in the brain [66], then as a gene expressed in
developing and adult mouse pancreatic islets [67]. More recently, we
found that in the pancreas Fev marks an intermediate progenitor of the
mouse endocrine lineage [19]. Our GRN analysis computed 83 genes
activated and 57 genes repressed by Fev (Supplementary Table 5).
Pathway analysis of activated genes included pathways related to
synaptic vesicle cycle, signaling by NRTKs, and membrane trafficking
(Figure 5H). These data corroborate previous findings in which full body
knockout of Fev resulted in decreased pancreatic insulin content, an
impairment of insulin secretion, and consequently defects in glucose
clearance [67]. Pathway analysis of repressed genes included many
pathways related to translation, such as translation initiation complex
formation, cap-dependent translation initiation, and eukaryotic trans-
lation initiation (Figure 5H). Downstream TF interactions of Fev were all
activating and included the TFs Foxa2, Usf2, and Nfe2l1 (Figure 5I).
Next, we sought to confirm the occupied peaks and downstream
targets of Fev in our GRN analysis. Although Chromatin Immunopre-
cipitation followed by Sequencing (ChIP-Seq) data of Fev binding in the
endocrine pancreas is not available, a previous study published ChIP-
Seq data from Fev-expressing 5-HT (þ) neurons in the E12.5-E15.5
developing hindbrain [35]. Given the documented similarities in tran-
scriptional networks between serotonergic neurons and pancreatic
endocrine cells [67], we asked how much shared overlap there is
between our gene-associated CARs in the pancreatic Fev GRN and
serotonergic neuron ChIP-Seq peaks. When intersecting these peak
sets, we observed that 90 of the 270 (33%) Fev GRN CARs overlapped
with peaks from the ChIP-Seq dataset (Fig. S6A). Target genes of these
gene-associated CARs included Myo6, Mef2a, and Tmem30a (deemed
activated by Fev in our GRN analysis), as well as Rrs1, Rpl41, and
Cxadr (deemed repressed by Fev in our GRN analysis). Non-
overlapping activated gene-associated CARs included Vamp3, Chga,
Foxa2, and Klf7. Repressed gene-associated CARs included Notch2,
Nr5ac, and Apex1. The overlap of Fev GRN CAR and ChIP-Seq peak for
Mef2a was visualized at the Mef2a gene locus in the Fev(þ)/Chgb(þ)
and Pdx1(þ)/Mafb(þ) clusters (Fig. S6B). Next, to confirm the potential
gene targets of Fev in our GRN analysis, we interrogated published
RNA-Seq data from wildtype and Fev knockout 5-HT (þ) serotonergic
neurons from E15.5 mouse hindbrains. We intersected the target
genes of Fev in our GRN analysis with differentially expressed genes
between Fev wildtype and knockout mice (Fig. S6C) [35]. We found
that 38 of the targets of Fev in the embryonic pancreas were differ-
entially expressed between the Fev wildtype and knockout embryonic
serotonergic neurons, including genes such as Celf1, Pcsk1, Mcm6,
Chga, Dctn3, and Fabp5.
Taken together, our data identify both known and novel regulators of
pro-Alpha and pro-Beta cell fates that are active in the Fev(þ)/Chgb(þ)
stage, the cell state that represents the bifurcation point in the
endocrine differentiation trajectory. Our analyses also yield a
comprehensive view of potential targets of Fev, as well as insights
regarding its function in regulating the machinery required for the
production of endocrine hormone-containing vesicles. Lastly, our
analysis has identified conserved Fev-occupied peaks and target
genes between serotonergic neurons and Fev(þ) EPs, as well as
potential tissue-specific regions of Fev-mediated regulation.

3.6. Characterization of chromatin accessibility and identification of
GRNs within pancreatic mesenchymal cell types
Although proper development of the pancreatic epithelium depends on
signals from the surrounding mesenchyme, the lineage and function of
pancreatic mesenchymal cells remains vastly understudied. In
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previous work, we and others have used scRNA-seq to identify multiple
transcriptionally distinct mesenchymal populations, including meso-
thelium, within the developing murine pancreas [19,20]. Still, the
upstream genetic regulators that maintain these distinct cell states are
not defined. Data from snATAC-Seq of pancreatic mesenchymal cells
would shed light on whether distinct states of chromatin accessibility
correspond to transcriptionally distinct cell subpopulations and would
reveal which TFs and binding sites are actively involved in controlling
mesenchymal cell state.
We integrated the snATAC-Seq data from the mesenchymal pop-
ulations within our merged E14.5 Whole Pancreas dataset (replicates 1
and 2) with the age-matched (E14.5) scRNA-Seq data, using methods
as described above. Clustering of the scRNA-Seq dataset identified six
populations of mesenchymal cells, including one cluster enriched in
the expression of Gap43 (Gap43(þ)), another cluster enriched in
expression of Sfrp2 (Sfrp2(þ)), two clusters expressing chemokines
(Cxcl12(þ) and Cxcl13(þ)), Vascular Smooth Muscle cells (VSM;
Acta2(þ)), and finally Mesothelium (Wt1(þ)) (Figure 6A). Integration
and cell label transfer classified all populations in our snATAC-Seq
dataset (Figure 6A,B). Clustering on chromatin accessibility alone,
without integration with scRNA-Seq data, still resulted in the identifi-
cation of similar clusters as in the integrated dataset (Fig. S7A).
Once the mesenchymal clusters were identified, we next asked
whether there were secreted factors uniquely produced by any of these
mesenchymal subpopulations that may be signaling to any of the
epithelial subpopulations identified above. We performed cellecell
communication analysis using CellChat [68] on the mesenchymal
and epithelial compartments in our E14.5 scRNA-Seq dataset
(Fig. S7B). We found 33 cellecell communication signaling pathways
that were significantly active in the mesenchymal and epithelial
datasets (Supplementary Table 7), including communication based on
ECM signaling (Mk, Ptn, Mpz, Laminin) and secreted factors (Bmp,
Ephb, Ngf, Notch). When focusing on mesenchymal/mesothelial to
epithelial signaling, we found that the ECM pathways Mk, Ptn, and
Collagen showed high relative strength for incoming signaling to Acinar
and Ductal cells (Fig. S7B), with high outgoing strength across multiple
mesenchymal populations. Signaling to Beta cells included Grn, likely
being received by the Cxcl12(þ) mesenchymal population, which
showed the strongest outgoing strength. Jam signaling, which is
important in cell migration, was highest in outgoing signaling from
Mesothelial cells, while highest in incoming signaling in the Acinar,
Ductal, Spp1(þ)/Neurog3(þ), and Neurog3(þ) populations. Taken
together, these data elucidate the potential cellecell communication
between the developing mesenchymal, mesothelial, and epithelial cells
of the embryonic pancreas.
Next, we identified differentially accessible peaks across all of the
mesenchymal populations and found a total of 182,020 peaks, with
59,707 peaks displaying differential accessibility (Supplementary
Table 2). The majority of these differentially accessible peaks were
enriched in the Gap43(þ) and Mesothelial populations, with the
remaining populations showing more modest numbers. Motif enrich-
ment in these differentially accessible peaks identified 217 enriched
motifs (Supplementary Table 2). Correlation of gene expression and
motif deviation scores identified 34 correlated TFs (Figure 6C,D),
including known regulators of mesenchymal cell fate, such as Wt1,
Twist2, and Hand2.
We next assembled the mesenchymal GRN with IReNA v2 as described
above. Among the mesenchymal cell types, the Gap43(þ) and
Mesothelial populations had the highest number of total regulations
(Fig. S7C) as well as the highest numbers of TFs in each of the GRNs
(Fig. S7D). In the TFeTF network, TFs active in the GRN of
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Figure 6: Chromatin accessibility and gene regulatory networks in the developing pancreatic mesenchyme. (A) UMAP plots enable visualization of scRNA-Seq (left) and
snATAC-Seq (right) data for all mesenchymal cells in the E14.5 pancreas. Numbers of cells/nuclei are depicted on the right, along with cell type annotations. The scRNA-Seq
dataset is from our previously published work [19]. (B) Bar graph depicts the proportion of each cell type in the scRNA-Seq and snATAC-Seq datasets. Colors match the cell
types in (A). (C) Dot plot showing correlated transcription factors (as determined by correlation between motif deviation score and gene expression) in mesenchymal and
mesothelial cells. (D) Heatmaps reveal cell type-specific motif deviation scores (top) and gene expression values (bottom) of positive transcription factors identified in (C). (E, F) Bar
graphs depicting the top TFs activating (E) and repressing (F) genes enriched in the mesothelial population. (G) Bar graph depicting top significant (p-value <0.01) pathways of
genes activated (red bars) or repressed (blue bars) by mesothelial cells in the GRN analysis. VSM, vascular smooth muscle.
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Mesothelium largely repressed the expression of Gap43(þ)-associated
TFs, whereas the Gap43(þ) population activated Cxcl12(þ)-associ-
ated TFs (Fig. S7E). We next assessed which GRN TFs were either
exclusive or shared among the mesenchymal populations (Fig. S7F).
The GRN in the Gap43(þ) population contained 18 specific TFs,
including genes involved in epithelialemesenchymal transition (EMT)
such as Snai2, Twist2, and Zeb1, suggesting that cells within the
Gap43(þ) population may be actively undergoing EMT processes
during pancreatic development. Other Gap43(þ) cell type-specific TFs
included Hoxb4 and Prxx1. TFs exclusive to the Cxcl12(þ) population
included members of the nuclear factor 1 (Nfia and Nfic), Ap-1 (Junb
and Jund), and Klf families (Klf6; Klf2 shared with the Gap43þ pop-
ulation). TFs specific to the Sfrp2(þ) GRN included Hoxb5, Meis2, and
Bcl11a, while Pbx1 was shared with the Cxcl12(þ) population, and
Barx1 was shared with the Mesothelial population.
We next focused on mesothelial cells, which consist of a monolayer of
specialized cells that line the pleura and internal organs of adult tissues
and serve numerous functions in the adult, including lubrication of
tissue and immune surveillance [69,70]. In the developing lung, line-
age tracing studies have demonstrated that mesothelium also acts as a
progenitor for certain specialized mesenchymal cell subtypes [71].
Furthermore, previous work in our lab predicted the downstream lin-
eages of mesothelial cells in the developing pancreas based on
pseudotemporal ordering of scRNA-Seq data [19]. Despite this, rela-
tively little is known about how mesothelial cells are formed and
maintained during pancreatic development. Within the snATAC-Seq
dataset, we identified 20 TFs uniquely active within the GRN of the
Mesothelial population (Fig. S7F). Top TFs activating Mesothelial-
enriched genes included Wt1, which has previously been shown to
be a master regulator of mesothelial formation [72], along with Klf13,
whose role in mesothelial cell development and homeostasis is not
well understood and thus warrants further study (Figure 6E). Top
repressing TFs of Mesothelial-enriched genes included Klf2, Ebf1, and
Klf6 (Figure 6F). Pathway analysis of activated and repressed genes in
the Mesothelium GRN identified pathways related to metabolism as
activated, and ECM formation and deposition as repressed (Figure 6G).
Taken together, profiling of the chromatin accessibility within the cells
of the developing mouse pancreatic mesenchyme has determined
differentially accessible peaks among these populations and identified
TFs potentially important in mesenchymal development through the
use of motif enrichment and gene expression correlation analyses.
Lastly, we have constructed a set of mesenchymal GRNs, identifying
active TFs and their downstream target genes. These data will provide
a resource for future work geared towards studying mesenchymal
biology and understanding how this important but understudied non-
epithelial population is maintained.

3.7. Mapping the gene regulatory networks of pancreatic
epithelium across developmental time
Previous work from our laboratory [19] used scRNA-Seq to profile the
murine pancreas across three developmental timepoints. Although this
timecourse analysis revealed shifts in endocrine cell differentiation,
proliferation, and gene expression programs across developmental
time, the regulatory elements governing these changes remain poorly
understood. To better characterize how gene regulatory networks
within the pancreatic epithelium shift across developmental time, we
performed snATAC-Seq on two independent samples of whole
pancreas tissue at E17.5, each sample comprising at least n ¼ 3
pancreata. After performing quality control and filtering steps (see
Methods), we generated a merged dataset consisting of 78,669 high-
quality nuclei comprised of the expected broad pancreatic cell types
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(Fig. S8A). Of these broad groups, 8,859 were labeled as endocrine
based on the Gene Score for Chga (Figure 7A, Figs. S8AeB). We then
performed unconstrained integration of our E17.5 snATAC-Seq
epithelial cells with E17.5 scRNA-Seq [19] as described above for
E14.5. This integration resulted in a final epithelial snATAC-Seq
dataset comprised of 8 distinct cell types, including Acinar, Ductal,
Spp1(þ)/Neurog3(þ) double positive EPs, Neurog3(þ) single positive
EPs, Fev(þ)/Chgb(þ) intermediate progenitors, Alpha, Beta, and Delta
cells. (Figure 7A). All epithelial cell populations annotated in the scRNA-
Seq dataset were successfully captured in the snATAC-Seq dataset,
although the relative proportions of some cell types varied, presumably
due to cell isolation and nuclei capture (Figure 7B). We then identified
correlated TFs across the hormone(þ) lineages as detailed above.
Across the Alpha lineage, we identified 39 correlated TFs, including
those in Ductal (Nr5a2, Sox9), progenitor (Elf5, Neurog3, Foxa2), and
Alpha cells (Rfx3, Rfx6, Arx, Isl1, Mafb, Mafg) (Fig. S8C). For the Beta
lineage, we identified 32 correlated TFs, including Arid3a, Pax6, and
Pdx1 (Fig. S8D). For the Delta lineage, we identified 34 correlated TFs,
including Rfx3 and 6, Lhx1, Pou3f4, Pax6, Arx, and Pdx1 (Figure 7C).
Next, we sought to construct GRNs for each of the epithelial cell types
in the E17.5 pancreas utilizing the IReNA v2 pipeline as detailed above
for the E14.5 sample. After constructing the GRN, we observed the
highest number of GRN TFs in the Neurog3(þ) population [57], fol-
lowed by the Fev(þ)/Chgb(þ) [50] and Ductal [44] populations
(Fig. S8E, Supplementary Table 4). As in the E14.5 GRN, the Ductal,
Fev(þ)/Chgb(þ), and Neurog3(þ) populations had the highest number
of regulations (Fig. S8F). We observed that the Acinar population
displayed a marked reduction in the number of regulations at E17.5
compared to E14.5 (Fig. S8F, Fig. S3F). Next, we focused on the
hormone(þ) cell types in our GRN analysis. The E17.5 Alpha cell
population contained 23 total GRN TFs, 19 of which were unique to the
Alpha cell population (Figure 7D). These Alpha GRN TFs included
known regulators such as Irx2, Arx, and Neurod1, as well as unknown
regulators such as Bptf, Thap11, and Nfat5. When comparing Alpha
GRN TFs at E17.5 [23] to those at E14.5 [18], we found that 7 TFs were
unique to E17.5, including Foxa2, Foxp1, and Bptf, while two were
unique to E14.5 (Pbx1 and Fbp1) (Fig. S8G). Alpha GRN TFs common
between E14.5 and E17.5 [16] included key Alpha cell regulators such
as Irx2, Arx, Isl1, and Neurod1, as well as Etv1 and Peg3. The E17.5
Beta GRN contained six total TFs, two of which (Insm1 and Mlxipl) were
not found in the Alpha or Delta GRNs (Figure 7D). While a number of
known regulators of beta cell fate such as Nkx6-1, Mnx1, Mafg, and
Isl1 were unique to the E14.5 Beta GRN, only Banp was unique to the
E17.5 Beta GRN. Shared GRN TFs were Pax6, Pdx1, Mafb, Insm1, and
Mlxipl (Fig. S8H). Lastly, the E17.5 Delta GRN contained six TFs: known
Delta regulator Hhex, along with Pdx1, Zbtb20, Junb, Fos, and Klf7.
(Figure 7D). Top TFs regulating Delta cell-enriched genes included
Mafb, Neurod1, Klf7, Rad21, and Pax6 (Figure 7E), while TFs
repressing Delta cell-enriched genes included Tcf3, Tead2, and Jun
(Figure 7F).
Lastly, we sought to understand how the targets of GRN TFs change
across developmental time. We focused on activated target genes of
Fev in the Fev(þ)/Chgb(þ) GRN and identified 91 targets in the E17.5
GRN compared to 83 in the E14.5 GRN (Figure 7G, Supplementary
Table 3). Targets unique to E14.5 included genes such as Vamp3,
Dctjn3, Mef2a, Klf10, and Ptpm2, while shared genes included
Fam174a, Serinc1, Tmem30a, Chga, and Tmed8. Targets unique to
the E17.5 GRN included genes involved in pancreatic secretion, beta-
catenin independent Wnt signaling, and signaling by NTRK1 (TRKA)
(Figure 7H), such as Pdx1, Itpr3, Rab6a, Gng12, and Pak3. The pre-
dicted TF targets of Fev at E17.5 were Nfix (Spp1 (þ)/Neurog3(þ)),
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 7: Mapping the gene regulatory networks of pancreatic epithelium across developmental time. (A) UMAP plots enable visualization of scRNA-Seq (left) and snATAC-
Seq (right) data for all epithelial cells in the E17.5 mouse pancreas. Numbers of cells or nuclei are depicted to the right, along with cell type annotations. The scATAC-Seq dataset is
comprised of two independent biological replicates (n ¼ 7 pancreata from 1 litter for replicate 1; n ¼ 3 pancreata from 1 litter for replicate 2) of whole pancreas. Contribution of
each sample (replicate 1 and replicate 2) to the merged dataset is depicted in the inset. The scRNA-Seq dataset is from our previously published work [19]. (B) Bar graph depicts
the proportion of each cell type within the scRNA-Seq and snATAC-Seq datasets. Colors match the cell types in (A). (C) Heatmaps depicting positively correlated TFs across
pseudotime (from left to right) for the Delta lineage (Ductal to Spp1(þ)/Neurog3(þ), to Neurog3(þ), to Fev(þ)/Chgb(þ), to Delta). (D) Venn diagram depicting the overlap in TFs
among Alpha, Beta, and Delta GRNs. (E-F) Bar graphs showing the top 10 TFs with the highest number of activating (E) or repressing (F) regulations of target genes enriched in the
Delta cell type. (G) Venn diagram depicting both the common and the timepoint-specific activated target genes of Fev in the E14.5 and E17.5 Fev(þ)/Chgb(þ) GRNs. Selected TFs
within each group are listed in the boxes at the bottom. (H) Bar graph depicting pathways significantly (p-value <0.01) enriched among target genes activated by Fev that are
unique to the E17.5 Fev(þ)/Chgb(þ) GRN. (I) Network diagram representing regulations between Fev and interacting TFs. Each TF is represented by a circle (node) that is colored
by the cell type in which that TF is active in the GRN. Activating regulations are depicted by red lines, while repressing are depicted by blue lines.
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Nfib (Ductal), Pdx1 (Beta), Usf2 (Fev(þ)/Chga(þ)), and Ccnt2 (Fev(þ)/
Chga(þ)) (Figure 7I, Supplementary Table 4). Taken together, these
data have permitted the construction of a gene regulatory network of
E17.5 exocrine and endocrine cells in the developing mouse pancreas
and permitted a direct comparison of the important TFs and target
genes across these two timepoints to yield a more refined under-
standing of the regulatory dynamics of endocrine maturation across
developmental time.

4. DISCUSSION

Numerous studies have used scRNA-Seq to characterize developing
mouse pancreas tissue, providing important insights into cellular
heterogeneity and key transcriptional programs expressed in devel-
oping cell types [19e23]. Still, these datasets lack information about
which of the expressed TFs are active and binding, and about how the
TFs are organized into regulatory networks. Profiling of the chromatin
accessibility landscape at single-cell resolution has emerged as a
powerful approach for generating new insights about regulatory pro-
grams governing development and cell fate decisions across multiple
tissue types [31,32,73,74], and we have now extended this approach
to developing mouse pancreas tissue. Given that we were particularly
interested in interrogating mechanisms underlying endocrine lineage
allocation, we utilized a genetic tool to achieve significant enrichment
of EP cells. Previous work from our laboratory had identified the
transcription factor Fev as a marker of a novel EP state, and lineage
reconstruction analysis indicated that it is at this Fev(þ) state that
lineage allocation is executed [19]. Here, we validated the use of an
eFev-EYFP transgenic mouse line for enriching for Fev-expressing
endocrine cells in the developing pancreas.
We have generated a comprehensive map of chromatin accessibility in
the developing E14.5 and E17.5 murine pancreas, including enriched
endocrine populations as well as non-endocrine cell types. Although
previous studies have investigated chromatin accessibility in the
developing pancreatic epithelium through bulk ATAC-Seq of sorted
populations [20,26], to our knowledge our study represents the first to
examine chromatin accessibility at single-cell resolution. By integrating
both scRNA-Seq and snATAC-Seq data, we successfully generated a
refined list of correlated TFs that are not only expressed, but also likely
binding to open regions of chromatin to control cell fate decisions
across developmental time. The analyses performed in this study
utilized separate, computationally integrated scRNA and snATAC Seq
datasets; in the future, performing multi-omic profiling of the tran-
scriptional and chromatin states within the same cell may lend even
greater confidence in the GRN reconstruction and identification of TFs
governing cell fate.
Here, we have constructed cell-type specific GRNs describing active
TFs and their putative target genes through the binding of cis-regu-
latory regions. Future work could leverage the datasets presented here
to catalog in greater depth the gene-associated CARs to identify
specific cis-regulatory elements operant in specific subtypes of cells
on a gene-by-gene basis in a manner reported in other tissues, such as
the human retina [75]. An advantage of our single cell level data is that
it permits identification of not only cell type-specific, but even cell
subtype-specific differences in active regulatory elements. Our anal-
ysis identified a number of known regulators of endocrine cell fate,
such as TFs Pdx1 and Nkx6-1 in beta cells and Arx in alpha cells, as
well as identified novel candidate TFs, such as Mlxipl in beta cells and
Pbx1 and Peg3 in alpha cells. Furthermore, we identified a number of
potential developmental timepoint-specific GRN TFs that may drive
changes in proliferation and maturation that occur in endocrine cells as
18 MOLECULAR METABOLISM 73 (2023) 101735 � 2023 The Author(s). Published by Elsevier GmbH. T
development progresses [19e21]. Although here our focus within the
epithelial compartment was on the endocrine lineages, our
dataset also provides a rich resource for future interrogation of gene
regulatory networks controlling acinar and ductal cell fates. Identifi-
cation of these networks will inform efforts underway at generating
stem cell-derived exocrine cells in vitro for studies aimed at under-
standing exocrine cell physiology and modeling of diseases such as
cystic fibrosis, pancreatitis, and pancreatic cancer [76,77].
Traditional single-gene studies, along with genomic studies, have led
to the identification of numerous TFs that play a functional role in
regulating pancreatic endocrine differentiation. Although some indi-
vidual TFeTF interaction pairs have been identified through these
methods, the field still lacks an understanding of how these TFs are
broadly arranged in regulatory networks across cell types and devel-
opmental stages. Our analysis permitted the creation of a TFeTF
regulatory network, identifying TFs that control cell fate decisions
through the binding and regulation of other important TFs. The as-
sembly of these networks has identified both known and novel TFeTF
interacting pairs whose associations can be experimentally validated in
future studies using tools such as ChIP-Seq for confirmation of binding
to specific DNA regions. Furthermore, CRISPR-mediated gene editing
can be used to assess the downstream consequences of loss of in-
dividual candidate TFs on cell fate outcomes.
One TF that we focused on in this work is the gene Fev. In a beta cell
line, Fev has been demonstrated to bind not only to serotonergic
genes, reflective of common transcriptional cascades that drive the
differentiation of both serotonergic neurons and of beta cells [78], but
also to a conserved insulin gene regulatory element [67]. To investigate
ubiquitous versus tissue-specific regions bound by Fev, we compared
target peaks of Fev from our GRN analysis to Fev ChIP-Seq data ob-
tained from developing serotonergic neurons and found some overlap
of Fev-occupied chromatin between the two datasets. To probe
downstream targets of Fev, we assessed the intersection of target
genes of Fev in our embryonic pancreatic endocrine GRN with genes
differentially expressed between Fev wildtype and knockout embryonic
serotonergic neurons. This analysis identified candidate genes directly
regulated by Fev in both tissue types. Generation of ChIP-Seq data from
embryonic pancreas will permit further validation of our GRN analysis
in a tissue-specific manner.
In contrast to the pancreatic epithelium, the cellular composition and
transcriptional features of the pancreatic mesenchyme have been less
well described. We and others have applied scRNA-Seq to mesen-
chymal tissue to identify transcriptionally distinct sub-populations
[19,20] and infer lineage relationships among some of these cell
subtypes [19]. In addition, functional heterogeneity among pancreatic
mesenchymal cells has begun to be explored. For instance, one study
reported that expression of Pbx1 in a subset of Nkx2-5þmesenchymal
cells defines an anatomically specialized, pro-endocrine niche [24].
Which genes, including TFs, govern the acquisition of mesenchymal
subpopulation identity, however, is poorly understood. Our work begins
to investigate novel TFs regulating mesenchymal cell fate and will
serve as an important resource for understanding mesenchymal
development and function. Our dataset identifies which gene networks
should be activated in order to generate not only organ-specific
mesenchyme, but even mesenchymal subtypes from pluripotent
stem cell sources [79]. Generation of stem cell-derived mesenchymal
subtypes would then permit their co-culture with stem cell-derived
endocrine cells to recapitulate in vitro the endogenous signaling
events between mesenchyme and endocrine cells during develop-
ment. In addition, the CellChat analysis presented here provides a
complementary set of data by identifying candidate secreted mediators
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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of cellecell signaling between mesenchymal and endocrine sub-
populations.
The map of chromatin accessibility generated here not only provides
deeper understanding of fundamental mechanisms underlying ge-
netic control of developmental programs, but also holds relevance to
the translational goals of beta cell regeneration and cell replacement
therapy. For instance, our comprehensive characterization of chro-
matin state across endocrine development provides insights into the
lineage plasticity observed among endocrine cells [7], and future
work can leverage information about active endocrine cell type-
specific GRNs to improve strategies for trans-differentiation of non-
beta endocrine cells to the beta cell fate. Furthermore, the genera-
tion of functionally mature beta cells from stem cells remains a strong
focus of cell replacement therapeutic strategies for patients with
diabetes, and such in vitro protocols would benefit from an improved
understanding of the dynamics in chromatin accessibility across
endocrine development in vivo. Our dataset identifies which GRNs
should be modulated in vitro to better approximate in vivo develop-
ment. For instance, it will be interesting to benchmark recently
published multi-omic datasets of human pluripotent stem cells un-
dergoing differentiation to a beta cell fate [80,81] against our multi-
omic dataset generated here to evaluate the fidelity of cells generated
in vitro to their in vivo counterparts.
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