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Abstract

Genomes computationally inferred from large metagenomic data sets are often
incomplete and may be missing functionally important content and strain variation.
We introduce an information retrieval system for large metagenomic data sets that
exploits the sparsity of DNA assembly graphs to efficiently extract subgraphs
surrounding an inferred genome. We apply this system to recover missing content
from genome bins and show that substantial genomic sequence variation is present in
a real metagenome. Our software implementation is available at https://github.com/
spacegraphcats/spacegraphcats under the 3-Clause BSD License.

Keywords: Metagenomics, Sequence assembly, Strain variation, Bounded expansion,
Dominating set

Metagenomics is the analysis of microbial communities through shotgun DNA sequenc-
ing, which randomly samples many subsequences (reads) from the genomic DNA of each
microbe present in the community [1].
A common problem in metagenomics is the reconstruction of individual microbial

genomes from the mixture. Typically, this is done by first running an assembly algorithm
that reconstructs longer linear regions based on a graph of the sampled subsequences [2],
and then binning assembled contigs together using compositional features and gene con-
tent [3, 4]. These “metagenome-assembled genomes” are then analyzed for phylogenetic
markers and metabolic function. In recent years, nearly 200,000 metagenome-assembled
genomes have been published, dramatically expanding our view of microbial life [5–10].
Information present in shotgun metagenomes is often omitted from the binned

genomes due to either a failure to assemble [11, 12] or a failure to bin. The under-
lying technical reasons for these failures include low coverage, high sequencing error,
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high strain variation, and/or sequences with insufficient compositional or coding
signal. Recent work has particularly focused on the problem of strain confusion, in
which high strain variation results in considerable fragmentation of assembled content
in mock or synthetic communities [11, 12]; the extent and impact of strain confusion in
real metagenomes is still unknown but potentially significant—metagenome-assembled
genomes may be missing 20–40% of true content [13–15].
Associating unbinned metagenomic sequence to inferred bins or known genomes

is technically challenging. Some approaches use mapping or k-mer baiting, in which
assembled sequences are used to extract reads or contigs from a metagenome or graph
[16–20]. These methods fail to recover genomic content that does not directly overlap
with the query, such as large indels or novel genomic islands. Moreover, most assembly
graphs undergo substantial heuristic error pruning and may not contain relevant content
[11, 12]. Graph queries have shown promise for recovering sequence from regions that
do not assemble well but are graph-proximal to the query [21, 22]. However, many graph
query algorithms are NP-hard and hence computationally intractable in the general case;
compounding the computational challenge, metagenome assembly graphs are frequently
large, with millions of nodes, and require 10s to 100s of gigabytes of RAM for storage.
In this paper, we develop and implement a scalable graph query framework for extract-

ing unbinned sequence from metagenome assembly graphs with millions of nodes.
Crucially, we exploit the structural sparsity of compact De Bruijn assembly graphs in
order to compute a succinct index data structure in linear time. Our initial investiga-
tions presented here focus on using this index to perform neighborhood queries in large
assembly graphs to investigate genome binning and content recovery. This enables us to
extract the genome of a novel bacterial species, recover missing sequence variation in
amino acid sequences for genome bins, and identify missing content for metagenome-
assembled genomes. Our querymethods are assembly-free and avoid techniques thatmay
discard strain information such as error correction. These algorithms are available in an
open-source Python software package, spacegraphcats [23].

Results
Dominating sets enable efficient neighborhood queries in large assembly graphs

We designed and implemented [23] a set of algorithms for efficiently finding content in a
metagenome that is close to a query asmeasured by distance in a compact De Bruijn graph
(cDBG) representation of the sequencing data (Fig. 1). To accomplish this, we organize
the cDBG into pieces around a set of dominators that are collectively close to all vertices.
In this context, the neighborhood of a query is the union of all pieces it overlaps; to enable
efficient search, we build an invertible index of the pieces.
We compute dominators so that the minimum distance from every vertex in the

cDBG to some dominator is at most r (an r-dominating set) using Algorithm 1, which
is based on the linear-time approximation algorithm given by Dvořák and Reidl [24].
Although finding a minimum r-dominating set is NP-hard [25–27] and an approximation
factor below log n is probably impossible [26] in general graphs, our approach guaran-
tees constant-factor approximations in linear running time by exploiting the fact that
(compact) De Bruijn graphs have bounded expansion, a special type of sparsity [28].
Algorithm 1 first annotates the graph to determine the distances between all pairs of
vertices at distance at most r (lines 1–3) and then uses these distances to ensure each
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Fig. 1 Starting from a collection of genomic sequences (a), we form an assembly graph where nodes
represent distinct linear subsequences (b). In this assembly graph, known as a compact De Bruijn graph [4],
nodes may represent many k-mers. The original genomic sequences correspond to walks in the graph, and
shared nodes between the walks represent shared subsequences. cWe then identify a subset of nodes D
called a dominating set so that every node in the assembly graph is at distance at most one from some
member of D (marked pink). We further partition the graph into pieces by assigning every node to exactly one
of the closest members of D (beige regions in c and d). For a genomic query Q, the neighborhood of Q in this
graph is the union of all pieces which share at least one k-mer with the query. The colorful subsets of the
pieces in d correspond to the neighborhoods of the queries Q1,Q2

vertex is close to a dominator. The core of the efficient distance computation is based on
distance-truncated transitive fraternal (dtf ) augmentations [24] which produce a directed
graph

−→
G r in which each arc uv is labeled with ω(uv), the distance from u to v in the

original cDBG G.
Importantly, our implementation enhances the algorithm in [24] by computing only r−1

rounds of dtf augmentations instead of 2r−1. Since augmentation is the computationally
most expensive part of the pipeline and the running time depends non-linearly on the
number of rounds, this vastly improves this algorithm’s scalability. To maintain approxi-
mation guarantees on the dominating set size with fewer augmentations, we introduce a
threshold parameter domThreshold(r) which affects the constant factor in our worst-
case bound. We selected a threshold (see Additional file 1) that produces r-dominating
sets of comparable size to those computed by the algorithm in [24]. Additionally, we
found that processing vertices using a minimum in-degree ordering (line 6) was superior
to other common orders (e.g., arbitrary, min/max total degree, max in-degree).
After computing an r-dominating set D of G with Algorithm 1, Algorithm 2 partitions

the vertices of G into pieces so that each piece P[ v] contains a connected set of vertices
for which v is a closest member of D (Fig. 1). Finally, we use minimal perfect hashing
(mphfIndex) [29] to compute an invertible index1 between pieces and their sequence
content in the metagenome.
One feature of this approach is that the dominating set and index only need to be

computed once for a givenmetagenome, independent of the number and content of antic-
ipated queries. Queries can then be performed using Algorithm 3 in time that scales
linearly with the size of their neighborhood—all genomic content assigned to pieces that
contain part of the query.
Our implementations of these algorithms in spacegraphcats can be run on metage-

nomic data with millions of cDBG nodes (Table 1); indexing takes under an hour, enabling
queries to complete in seconds to minutes (Table 2). See Additional file 1, Appendix D
for full benchmarking (including cDBG construction). This provides us with a tool to
systematically investigate assembly graph neighborhoods.

1An invertible function that defines both an index and the corresponding inverted index
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Algorithm 1 rdomset(G, r)
Input: Graph G, radius r
Output: r-dominating set D of G
1: �G1 ← orient(G)

2: for i ∈ 2, . . . , r do
3: �Gi ← dtfAugmentation( �Gi−1)

4: Initialize d[ v]← ∞ and c[ v]← 0 for all v ∈ G
5: D ← ∅
6: for all v ∈ �Gr sorted by ascending in-degree do
7: for all u ∈ N−(v) do
8: d[ v]← min (d[ v] , d[u]+ω(uv))
9: if d[ v]> r then

10: D ← D ∪ {v} and d[ v]← 0
11: for all u ∈ N−(v) do
12: d[u]← min (d[u] ,ω(uv))
13: c[u]← c[u]+1
14: if c[u]> domThreshold(r) then
15: D ← D ∪ {u} and d[u]← 0
16: for all w ∈ N−(u) do
17: d[w]← min (d[w] ,ω(wu))

18: return D

Algorithm 2 indexPieces(M, r)
Input: MetagenomeM, radius r
Output: Invertible index I : M → P ; P is a set of pieces
1: G ← cDBG(M)

2: D ← rdomset(G, r)
3: Initialize δ[ v]← v for all v ∈ D
4: U ← V (G) \ D
5: while U 	= ∅ do
6: for v ∈ V (G) \ U do
7: for u ∈ N(v) ∩ U do
8: δ[u]← δ[ v]
9: U ← U \ {u}

10: P[ v]← {u : δ[u]= v}
11: return mphfIndex(M,P)

Algorithm 3 search(IM,Q)

Input: Index IM, Query Q
Output: The query neighborhoodNQ
1: NQ ← ⋃

k∈Q I−1
M (IM(k))

2: returnNQ
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Table 1 Number of cDBG nodes |V|, edge density of cDBG |E|/|V|, size of 1-dominating set |D|,
average query size (k-mers) |Q|, and average number of pieces in query neighborhood |P ∩ NQ|
Data set |V| |E|/|V| |D| |Q| |P ∩ NQ|
podarV 916,041 2.2 542,350 1,475,892 4106

HuSB1 13,852,950 2.6 6,724,505 1,112,516 106,091

Queries are the 51 genomes and 23 genome bins fully present in podarV and HuSB1, respectively

Neighborhood queries enable recovery of relevant unknown genomic content

We first measured how well an inexact query can recover a target genome from a
metagenome. For a benchmark data set, we used the podarV data set [30]. This is
a “mock” metagenome containing genomes from 65 strains and species of bacteria
and archaea, each grown independently and rendered into DNA, then combined and
sequenced as a metagenome. This metagenome is a commonly used benchmark for
assembly [12, 31–33].
To evaluate the effectiveness of neighborhood query at recovering strain variants, we

chose three target genomes from podarV—Porphyromonas gingivalis ATCC 33277, Tre-
ponema denticola ATCC 35405, and Bacteroides thetaiotaomicron VPI-5482—that have
many taxonomically close relatives in GenBank.We then used these relatives to query the
podarV mixture and measure the recovery of the target genome. The results, in Fig. 2a,
show that graph neighborhood query can recover 35% or more of some target genomes
starting from a relative with Jaccard similarity as low as 1%: even a small number of shared
k-mers sufficed to define a much larger neighborhood that contains related genomes.
We next applied neighborhood query to retrieve an unknown genome from podarV.

Several papers have noted the presence of unexpected sequence in the assemblies of this
data, and Awad et al. identify at least two species that differ from the intended mock
metagenome contents [12, 31]. One species variant has partial matches to several different
Fusobacterium nucleatum genomes, while the other incompletelymatches to three strains
of Proteiniclasticum ruminis.
The complete genomes of these two variants are not in public databases and, for the

Proteiniclasticum variant, cannot be entirely recovered with existing approaches: when
we assemble the reads that share k-mers with the available genomes, a marker-based
analysis with CheckM estimates that 98.8% of the Fusobacterium variant is recovered,
while only 72.96% of the Proteiniclasticum variant is recovered. We therefore tried using
neighborhood queries to expand our knowledge of the Proteiniclasticum variant.

Table 2 Time and memory usage of spacegraphcats for Algorithms 1–3 on representative
metagenome data

Data set Algorithm Time (s) Memory (MB)

podarV

rdomset 78.1 4304

indexPieces 359.9 14,108

search 14.9 3463

HuSB1

rdomset 1181.1 60,238

indexPieces 859.3 40,713

search 67.9 15,228

The times for Algorithm 3 are averaged over all queries (see Table 1). Statistics reported for Algorithm 2 exclude lines 1–2 of
pseudocode. Times are rounded to the nearest tenth of a second; memory is rounded to the nearest megabyte
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Fig. 2 Neighborhood queries enable recovery of relevant genomic content. a Left panel: recovery of each of
three target genomes from podarV using queries at a variety of Jaccard distances from the target. Recovery
is calculated as containment of target genome in query neighborhood. The solid lines represent logarithmic
best-fit curves to the points. b Right panel: recovery of novel Proteiniclasticum content from podarV.
Nucleotide k-mers from two of the three known P. ruminis genomes overlapped approximately a megabase
of sequence in the query neighborhood, which also contained approximately 2.3 Mbp of unknown
sequence; the third known genome, P. ruminis CGMCC, was omitted from the figure as it is 99.7% similar to P.
ruminis DSM. Numbers are in thousands of k-mers, estimated via sourmash

We performed a neighborhood query into podarV with all three known Proteiniclas-
ticum genomes from GenBank. We then extracted the reads overlapping this neighbor-
hood and assembled them with MEGAHIT. The retrieved genome neighborhood for
Proteiniclasticum contains 2264K novel k-mers (Fig. 2b). The reads from the query neigh-
borhood assembled into a 3.1-Mbp genome bin. The assembly is estimated by CheckM to
be 100% complete, with 10.3% contamination. The mean amino acid identity between P.
ruminis ML2 and the neighborhood assembly is above 95%, suggesting that this is indeed
the genome of the Proteiniclasticum variant and that neighborhood query retrieves a full
draft genome sequence (see Additional file 1, Appendix G).

Query neighborhoods in a real metagenome do not always assemble well

Real metagenomes may differ substantially from mock metagenomes in size, complexity,
and content. In particular, real metagenomes may contain a complex mixture of species
and strain variants [34] and the performance of assembly and binning algorithms on
these data sets is challenging to evaluate in the absence of ground truth. One recent
comparison of single-cell genomes and metagenome-assembled genomes in an ocean
environment found that up to 40% of single-cell genome content may be missing in
metagenome-assembled genomes [15].
We first ask whether genome query neighborhood sizes in a real metagenome differ

frommock metagenomes. We examined genomes inferred from the SB1 sample from the
Hu et al. study, in which 6 metagenomic samples taken from various types of oil reser-
voirs were sequenced, assembled, binned, and computationally analyzed for biochemical
function [35]. Examining the 23 binned genomes in GenBank originating from the SB1
sample, we compared the HuSB1 neighborhood size distribution with the podarV data
set (Fig. 3a). We saw that more genome bins in HuSB1 have 1.5× or larger query neigh-
borhoods than do the genomes in podarV. This suggests the presence of considerably
more local neighborhood content in the real metagenome than in the mock metagenome.
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Fig. 3 Query neighborhoods in HuSB1metagenome are large and contain additional marker genes. a Left
panel: neighborhood sizes are larger in HuSB1 than in podarV. Here, we queried podarV and HuSB1
using each of 51 and 23 genomes fully present in the respective data sets and measured the relative size of its
neighborhood—a size of 1 indicates that no additional sequence is present in the neighborhood, while a size
of 2 indicates that the retrieved neighborhood is twice the size of the query genome. b Right panel: query
neighborhoods are estimated to be more complete than the original genome bins. We queried HuSB1
using each of 23 genomes binned from SB1 and assembled the resulting neighborhoods using MEGAHIT
and Plass. The blue points represent completeness estimates of MEGAHIT-assembled neighborhoods, while
green and pink bars represent the additional or missing content in the Plass assemblies, respectively

We next investigated metagenomic content in the query neighborhoods. As with the
unknown variants in podarV, we used CheckM to estimate genome bin completeness.
The estimated bin completeness for many of the query genomes is low (Additional file 1,
Appendix I). To see if the query neighborhoods contain missing marker genes, we assem-
bled reads from the query neighborhoods using MEGAHIT and found this improved the
completion metrics (Fig. 3b).
Investigating further, we found that the query neighborhood assemblies contain only

between 4 and 56% of the neighborhood k-mer content (Additional file 1, Appendix J),
suggesting thatMEGAHIT is not includingmany of the reads in the assembly of the query
neighborhoods. This could result from high error rates and/or high strain variation in the
underlying reads [11, 12].
To attempt the recovery of more gene content from the assemblies, we turned to the

Plass amino acid assembler [36]. Plass implements an overlap-based amino acid assembly
approach that is considerably more sensitive than nucleotide assemblers and could be
more robust to errors and strain variation [37].
When we applied Plass to the reads from the query neighborhoods, we saw a further

increase in neighborhood completeness (Fig. 3b). This suggests that the genome bin query
neighborhoods contain real genes that are accessible to the Plass amino acid assembler.
We note that these are unlikely to be false positives, since CheckM uses a highly specific
Hidden Markov Model (HMM)-based approach to detecting marker genes [38].

Some query neighborhoods contain substantial strain variation

If strain variation is contributing to poor nucleotide assembly of marker genes in the
query neigborhoods, then Plass should assemble these variants into similar amino acid
sequences. Strain variation for unknown genes can be difficult to study due to lack of
ground truth, but highly conserved proteins should be readily identifiable.
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The gyrA gene encodes an essential DNA topoisomerase that participates in DNA
supercoiling and was used by [35] as a phylogenetic marker. In the GenBank bins, we
found that 15 of the 23 bins contain at least one gyrA sequence (with 18 gyrA genes
total). We therefore used gyrA for an initial analysis of the Plass-assembled neighbor-
hood content for all 23 bins. To avoid confounding effects of random sequencing error
in the analysis and increase specificity at the cost of sensitivity, we focused only on high-
abundance data: we truncated all reads in the query neighborhoods at any k-mer that
appears fewer than five times, and ran Plass on these abundance-trimmed reads from each
neighborhood.We then searched the gene assemblies with a gyrA-derived HMM, aligned
all high-scoring matches, and calculated a pairwise similarity matrix from the resulting
alignment.
When we examine all of the high-scoring gyrA protein matches in the hard-trimmed

data, we see considerable sequence variation in some query neighborhoods (Fig. 4a).
Much of this variation is present in fragmented Plass assemblies; when the underlying
nucleotide sequences are retrieved and used to construct a compact De Bruijn graph,
the variation is visible as spurs off of a few longer paths (insets in Fig. 4a). When we
count the number of well-supported amino acid variants in isolated positions (i.e., ignor-
ing linkage between variants), we see that ten of the 23 neighborhoods have an increased
number of gyrA genes, with four neighborhoods gaining a gyrA where none exists in
the bin (Additional file 1, Appendix L; see lowest inset in Fig. 4a for one example). Only
one neighborhood, M. bacterium, loses its gyrA genes due to the stringent k-mer abun-
dance trimming. Collectively, the use of the Plass assembler on genome neighborhoods
substantially increases the number of gyrA sequences associated with bins.
We see this same pattern for many genes, including alaS, gyrB, rpb2 domain 6, recA,

rplB, and rpsC (Additional file 1, Appendix M). This shows that multiple variants of those

Fig. 4 Query neighborhoods in HuSB1 contain sequence variants and new genes. a Left panel: gyrA has
substantial minor sequence variation in several query neighborhoods. In this multidimensional scaling plot,
each point represents a distinct gyrA sequence from the Plass assemblies of four representative query
neighborhoods, colored by query binned genome. The triangles represent gyrA sequences originating from
the query binned genome, if any are present. The inlays are visualizations of assembly graphs of reads that
contain gyrA sequence in each neighborhood. Unitigs are colored by their cluster of origin; matches to gyrA
sequences from the bin are highlighted using color from relevant triangle. b Right panel: genome
neighborhoods re-associate annotated functionality to binned genomes. For each of 23 genome bins
originating from HuSB1, we found the unbinned content by removing all orthologs found in the binned
genomes in [39] and by counting distinct ortholog annotations once. Functional content is distributed
throughout pathways present in the binned genomes and increases functionality associated with binned
genomes by approximately 13%
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proteins are present within at least some of the neighborhoods and implies the presence
of underlying nucleotide strain variation. This strain variation may be one reason that
nucleotide assembly performs poorly: on average, only 19.6% of Plass-assembled proteins
are found within the nucleotide assemblies.

Query neighborhoods assembled with Plass contain additional functional content

In addition to capturing variants close to sequences in the bins, we identify many novel
genes in the query neighborhoods. We used KEGG to annotate the Plass-assembled
amino acid sequences and then removed any annotations already present for genes in the
genome bin. We also ignored homolog abundance such that each homolog is counted
only once per neighborhood.
Novel functional content is distributed throughout pathways present in the genome

bins and increases functionality associated with binned genomes by approximately 13%
(Fig. 4b). This includes orthologs in biologically relevant pathways such as methane
metabolism, which are important for biogeochemical cycling in oil reservoirs [35].
Genes in these neighborhoods contain important metabolic functionality expanding

the pathways already identified in [35]. We find 40 unique orthologs involved in nitro-
gen fixation across eight neighborhoods, four of which had no ortholog in the bin.
Importantly, we find the ratio of observed orthologs approximately matches that noted
in [35], where two thirds of nitrogen fixation functionality is attributable to archaea
(29 of 40 orthologs). This is in contrast to most ecological systems where bacteria are the
dominant nitrogen fixers [35].

Discussion
Efficient graph algorithms provide novel tools for investigating graph neighborhoods

Recent work has shown that incorporating the structure of the assembly graph into
the analysis of metagenome data can provide a more complete picture of gene content
[21, 22]. While this has provided evidence that it is useful to analyze sequences that have
small graph distance from a query (are in a “neighborhood”), this approach has not been
widely adopted. Naïvely, local expansion aroundmany queries in the assembly graph does
not scale to these types of analyses due to the overhead associated with searching in a
massive graph. The neighborhood index structure described in this work overcomes this
computational obstacle and enables rapid exploration of sequence data that is local to a
query.
Because a partition into pieces provides an implicit data reduction (the cDBG edge rela-

tionships are subsumed by piecemembership), the query-independent nature of the index
allows many queries to be processed quickly without loading the entire graph into mem-
ory. Our approach consequently provides a data exploration framework not otherwise
available.
Exploiting the structural sparsity of cDBGs is a crucial component of our algorithms.

First, it is necessary to use graph structure to obtain a guarantee that Algorithm 2 finds a
small number of pieces since the size of a minimum r-dominating set cannot be approx-
imated better than a factor of log n in general graphs2 unless NP ⊆ DTIME(nO(log log n))

[26]. Without such a guarantee, we cannot be sure that we are achieving significant data

2That is, graphs about which we make no structural assumptions.
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reduction by grouping cDBG vertices into pieces. Being able to do this in linear time also
ensures that indexing and querying can scale to very large data sets. Furthermore, because
we utilize a broad structural characterization (bounded expansion) of cDBGs rather
than a highly specialized aspect, our methods enable neighborhood-based information
retrieval in any domain whose graphs exhibit bounded expansion structure; examples
include some infrastructure, social, and communication networks [24, 40, 41].

Neighborhood queries extend genome bins

In both the podarV and HuSB1 metagenomes, neighborhood queries were able to
identify additional content likely belonging to query genomes. In the podarV mock
metagenome, we retrieved a potentially complete genome for an unknown strain based
on partial matches to known genomes. In the HuSB1 metagenome, we increased the
estimated completeness of most genome bins—in some cases substantially, e.g., in the
case of P_bacterium 34_609, we added an estimated 20.9% to the genome bin. In both
cases, we rely solely on the structure of the assembly graph to expand the genome
bins. We do not make use of sequence composition, contig abundance, or phylogenetic
marker genes in our search. Thus graph proximity provides an orthogonal set of informa-
tion for genome-resolved metagenomics that could be used to improve current binning
techniques.

Query neighborhoods from real metagenomes contain substantial strain variation that

may block assembly

Previous work suggests that metagenome assembly and binning approaches are frag-
ile to strain variation [11, 12]. This may prevent the characterization of some genomes
from metagenomes. The extent of this problem is unknown, although the majority
of approaches to genome-resolved metagenomics rely on assembly and thus could be
affected.
In this work, we find that some of the sequence missing from genome bins can be

retrieved using neighborhood queries. For HuSB1, some genome bins are missing as
many as 68.5% of marker genes from the original bins, with more than half of the 22
bins missing 20% or more; this accords well with evidence from a recent comparison of
single-cell genomes andmetagenome-assembled genomes [15], in which it was found that
metagenome-assembled genomes were often missing 20 to 40% of single-cell genomic
sequence. Neighborhood query followed by amino acid assembly recovers additional con-
tent for all but two of the genome bins; this is likely an underestimate, since Plass may also
be failing to assemble some content.
When we bioinformatically analyze the function of the expanded genome content from

neighborhood queries, our results are consistent with the previous metabolic analyses by
[35] and extend the set of available genes by 13%. This suggests that current approaches to
genome binning are specific and that the main question is sensitivity, which agrees with a
more direct measurement of lost content [15].

Neighborhood queries enable a genome-targeted workflow to recover strain variation

The spacegraphcats analysis workflow described above starts with genome bins. The
genome bins are used as a query into the metagenome assembly graph, following which
we extract reads from the query neighborhood. We assemble these reads with the Plass
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amino acid assembler and then analyze the assembly for gene content. We show that the
Plass assembly contains strain-level heterogeneity at the amino acid level and that this
heterogeneity is supported by underlying nucleotide diversity. Even with stringent error
trimming on the underlying reads, we identify at least thirteen novel gyrA sequences in
ten genome neighborhoods.
Of note, this workflow explicitly associates the Plass-assembled proteins with spe-

cific genome bins, as opposed to a whole-metagenome Plass assembly which recovers
protein sequence from the entire metagenome but does not link those proteins to spe-
cific genomes. The binning-based workflow connects the increased sensitivity of Plass
assembly to the full suite of tools available for genome-resolved metagenome analysis,
including phylogenomic and metabolic analysis. However, spacegraphcats does not sepa-
rate regions of the graph shared inmultiple query neighborhoods; existing strain recovery
approaches such as DESMAN or MSPminer could be used for this purpose [16, 19].
One future step could be to characterize unbinned genomic content frommetagenomes

by looking at Plass-assembled marker genes in the metagenome that do not belong to any
bin’s query neighborhood. This would provide an estimate of the extent of metagenome
content remaining unbinned.

Conclusions
The neighborhood query approach described in this work provides an alternative win-
dow into metagenome content associated with binned genomes. We extend previous
work showing that assembly-based methods are fragile to strain variation, and provide an
alternative workflow that substantially broadens our ability to characterize metagenome
content. This first investigation focuses on only two data sets, one mock and one real, but
the neighborhood indexing approach is broadly applicable to all shotgun metagenomes.
In this initial investigation of neighborhood indexing, we have focused on using neigh-

borhood queries with a genome bin. We recognize that this approach is of limited use
in regions where no genome bin is available; spacegraphcats is flexible and performant
enough to support alternative approaches such as querying with k-mers belonging to
genes of interest.
Potential applications of spacegraphcats in metagenomics include developing metrics

for genome binning quality, analyzing pangenome neighborhood structure, exploring
r-dominating sets for r > 1, extending analyses to colored De Bruijn graphs, and inves-
tigating de novo extraction of genomes based on neighborhood content. We could also
apply spacegraphcats to analyze the neighborhood structure of assembly graphs over-
layed with physical contact information (from, for example, HiC), which could yield new
applications in both metagenomics and genomics [42, 43].
More generally, the graph indexing approach developed here may be applicable well

beyond metagenomes and sequence analysis. The exploitation of bounded expansion to
efficiently compute r-dominating sets on large graphs makes this technique applicable to
a broad array of problems.

Materials andmethods
Data

We use two data sets: SRR606249 from podarV [44] and SRR1976948 (sample SB1)
from hu [39]. Each data set was first preprocessed to remove low-abundance k-mers
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as in [45], using trim-low-abund.py from khmer v2.1.2 [46] with the parame-
ters -C 3 -Z 18 -M 20e9 -V -k 31. We build compact De Bruijn graphs using
BCALM v2.2.0 [47]. Stringent read trimming at low-abundance k-mers was done with
trim-low-abund.py from khmer, with the parameters -C 5 -M 20e9 -k 31.

Benchmarking

We measured time and memory usage for Algorithms 1–3 by executing the follow-
ing targets in the spacegraphcats conf/Snakefile: catlas.csv for rdomset,
contigs.fa.gz.mphf for indexPieces, and search for search. We report wall
time and maximum resident set size, running under Ubuntu 18.04 on an NSF Jetstream
virtual machine with 10 cores and 30 GB of RAM [48, 49]. To measure maximum resident
set size, we used the memusg script (Jaeho Shin, https://gist.github.com/netj/526585).

Graph denoising

For each data set, we built a compact De Bruijn graph (cDBG) for k = 31 by computing
the set of unitigs with BCALM [50] and removing all vertices of degree one with a mean
k-mer abundance of 1.1 or less. After the removal of these vertices, we then contracted
any newly revealed degree-two paths.

Neighborhood indexing and search

We used spacegraphcats to build an r-dominating set for each denoised cDBG and index
it. We then performed neighborhood queries with spacegraphcats, which produces a set
of cDBG nodes and reads that contributed to them. The full list of query genomes for
the Proteiniclasticum query is available in Additional file 1, Appendix F, and the NCBI
accessions for the P. gingivalis, T. denticola, and B. thetaiotamicron queries are in the
directory pipeline-base of the paper repository, files strain-gingivalis.txt,
strain-denticola.txt, and strain-bacteroides.txt, respectively.

Search results analysis

Query neighborhood size, Jaccard containment, and Jaccard similarity were estimated
using modulo hash signatures with a k-mer size of 31 and a scaled factor of 1000, as
implemented in sourmash v2.0a9 [51].

Assembly and genome bin analysis

We assembled reads using MEGAHIT v1.1.3 [31] and Plass v2-c7e35 [36], treating
the reads as single-ended. Bin completeness was estimated with CheckM 1.0.11, with
the -reduced_tree argument [38]. Amino acid identity between bins and genomes
was calculated using CompareM commit 7cd51276 (https://github.com/dparks1134/
CompareM).

Gene targeted analysis

Analysis of specific genes was done with HMMER v3.2.1 [52]. Plass amino acid assemblies
were queried withHMMER hmmscan using the PFAMdomains listed in Additional file 1,
Table S7, using a threshold score of 100 [53]. Matching sequences were then extracted
from the assemblies for further analysis. To overcome problems associated with com-
paring non-overlapping sequence fragments, only sequences that overlapped 125 of the

https://gist.github.com/netj/526585
https://github.com/dparks1134/CompareM
https://github.com/dparks1134/CompareM
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most-overlapped 200 residues of the PFAM domain were retained (all sequences shared a
minimum overlap of 50 residues with all other sequences). These sequences were aligned
with MAFFT v7.407 with the -auto argument [54]. Pairwise similarities were calculated
using HMMER where the final value represented the number of identical amino acids
in the alignment divided by the number of overlapping residues between the sequences.
Pairwise distances were visualized using a multidimensional scaling calculated in R using
the cmdscale function. To visualize the assembly graph structure underlying these
amino acid assemblies, we used paladin v1.3.1 to map abundance-trimmed reads back to
the Plass amino acid assembly, with -f 125 to set the minimum ORF length accepted
[55]. We extracted the reads that mapped to the gene of interest, created an assembly
graph using BCALM v2.2.0 [50], and visualized the graph using Bandage v0.8.1 [56].
We colored nucleotide sequences originating from the bins using the BLAST feature in
Bandage.

KEGG analysis

We annotated the Plass assemblies using Kyoto Encyclopedia of Genes GhostKOALA
v2.0 [57]. To assign KEGG ortholog function, we used methods implemented at https://
github.com/edgraham/GhostKoalaParser release 1.1.
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