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Abstract

Summary: Brain Predictability toolbox (BPt) represents a unified framework of machine learning (ML) tools designed
to work with both tabulated data (e.g. brain derived, psychiatric, behavioral and physiological variables) and neuroi-
maging specific data (e.g. brain volumes and surfaces). This package is suitable for investigating a wide range of dif-
ferent neuroimaging-based ML questions, in particular, those queried from large human datasets.

Availability and implementation: BPt has been developed as an open-source Python 3.6þ package hosted at https://
github.com/sahahn/BPt under MIT License, with documentation provided at https://bpt.readthedocs.io/en/latest/,
and continues to be actively developed. The project can be downloaded through the github link provided. A web
GUI interface based on the same code is currently under development and can be set up through docker with
instructions at https://github.com/sahahn/BPt_app.

Contact: sahahn@uvm.edu

1 Introduction

Large datasets in all domains are becoming increasingly prevalent as
data from smaller existing studies are pooled and larger studies are
funded. This increase in available data offers an unprecedented op-
portunity for researchers interested in applying machine learning
(ML) based methodologies, especially those working in domains
such as neuroimaging where data collection is quite expensive. This
article considers neuroimaging-based ML (analyses of brain data) as
an example domain in which the toolbox can be applied.

While there are a number of existing libraries for performing
general ML based workflows within Python and other languages,
the Brain Predictability toolbox (BPt) offers a high level user inter-
face with specific consideration made toward neuroimaging based
ML. BPt is designed to supplement the experience currently offered
by similar popular libraries such as scikit-learn (Pedregosa et al.,
2011) and nilearn (Abraham et al., 2014), rather than replace. BPt
leverages existing ML libraries along with new functionality in order
to provide a resource suitable for guiding users through the full re-
search ML workflow; from loading data to interpreting results.

2 Description

2.1 Usability
BPt offers both a python based api and a web interface application,
each with overlapping utility and distinct strengths and weaknesses.

In this way, BPt seeks to balance ‘user friendliness’ and expressive-
ness, with the goal of creating a framework suitable for both begin-
ners, and one with enough flexibility to be used by advanced ML
practitioners. That said, this library is not explicitly designed as a tu-
torial for new users. Some baseline knowledge of machine learning
is required as well as some background Python knowledge, though
the web interface version of the project (BPt_app) seeks to eliminate
the latter prerequisite. A comprehensive documentation is provided
along with several detailed examples for the Python api. Examples,
found at https://github.com/sahahn/BPt/tree/master/Examples, are
provided as jupyter notebooks and explore a range of problem types
on real world data.

2.2 Best practices
The underlying structure of the library guides users to follow best
practices in regard to cross validation, namely; perform a global
train-test split, using the training set for model pipeline exploration
and ultimately evaluating on the testing set. Performance from each
step is easily reported over multiple user-defined metrics. The gen-
eral structure of both the library and web application further guides
users through a recommended workflow.

2.3 Data loading
BPt allows a user to easily load, manipulate and interactively view
input neuroimaging datasets. Loading functions are equipped to
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help perform outlier detection, handling of missing data, loading of
specific variables and detection of duplicate variables among a num-
ber of other utilities. Data visualization tools are implemented in
order to facilitate active data exploration.

2.4 ML pipelines
Diverse and complex ML pipelines can easily be created with a num-
ber of predefined choices across a range of state-of-the-art ML tech-
niques. BPt strives to include as broad and as recent a selection of
different ML algorithms as possible, as well as to directly integrate
these choices with custom and preset hyperparameter distributions.
Users can further express the choice between one or more algorithms
or pipeline steps as hyperparams, allowing for the easy inclusion of
model selection as properly nested within cross-validation.

2.5 Problem type support
All common ML problem types are supported (regression, binary
and categorical), with low level implementation issues abstracted
away, and new wrapper functions written to provide extended prob-
lem type support.

2.6 Covariates and feature importance
Properly handling covariates within neuroimaging-based machine
learning is rarely straightforward. BPt supports a range of techni-
ques for estimating the influence of covariates, including: feature im-
portance, leave-out group CV (e.g. leave-out site for multi-site
neuroimaging data), experiments on one group (e.g. sex-specific
classifier), post-stratifying raw predictions (e.g. by race) and others.
Feature importance in particular is supported by extracting base
measures (e.g. beta weights from linear models), in addition to cal-
culating SHapley Additive exPlanations (Lundberg and Lee, 2017)
and permutation-derived feature importances (Altmann et al.,
2010).

2.7 Reproducibility
By conducting loading, preprocessing and modeling within the same
script, analyses can be easily reproduced and shared. Automatic logs
are generated within the python workflow and similarly within the
web app projects can be easily created and saved. These tools allow
previous analyses to be easily retrievable.

2.8 Convenience
Most researchers working on neuroimaging-based ML applications,
or other applied academic ML, have little background in software
engineering, which means that writing code for loading data and
building ML models can often take longer than expected or intro-
duce unexpected bugs. Instead, by leveraging BPt, researchers can
quickly move from ideas to experimentation and, importantly,
results.

2.9 Backend libraries
BPt makes use of a few other libraries within the scientific Python
community, which without their contribution this project would not
be possible, most notably: Numpy (Oliphant, 2006), pandas

(McKinney, 2010) and scikit-learn (Pedregosa et al., 2011). Plotting
functionality makes use of the matplotlib library (Hunter, 2007).
Extra classifiers and pipeline objects beyond those included with
scikit-learn are used from python libraries: lightgbm (Ke et al.,
2017), xgboost (Chen and Guestrin, 2016), imbalanced-learn
(Lemaı̂tre et al., 2017) and DESlib (Cruz et al., 2018).
Hyperparameter optimizers are implemented through FaceBook’s
Nevergrad library, and additional feature importance support is
added with the Shap library (Lundberg and Lee, 2017).
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