
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Robust Indoor Pedestrian Backtracking Using Magnetic Signatures and Inertial Data

Permalink
https://escholarship.org/uc/item/5dj1359d

Authors
Hsuan Tsai, Chia
Manduchi, Roberto

Publication Date
2024-10-14

Copyright Information
This work is made available under the terms of a Creative Commons Attribution
License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5dj1359d
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Robust Indoor Pedestrian Backtracking Using
Magnetic Signatures and Inertial Data

Chia Hsuan Tsai
Department of Computer Science & Engineering

University of California, Santa Cruz

Santa Cruz, USA
ctsai24@ucsc.edu

Roberto Manduchi
Department of Computer Science & Engineering

University of California, Santa Cruz

Santa Cruz, USA
manduchi@ucsc.edu

Abstract—Navigating unfamiliar environments can be

challenging for visually impaired individuals due to difficulties

in recognizing distant landmarks or visual cues. This work

focuses on a particular form of wayfinding, specifically

backtracking a previously taken path, which can be useful for

blind pedestrians. We propose a hands-free indoor navigation

solution using a smartphone without relying on pre-existing

maps or external infrastructure. Our hybrid matching method

integrates machine learning to enhance positioning accuracy,

addressing real-life challenges such as odometry errors or

deviations from the correct path. Testing with datasets from

visually impaired individuals demonstrates the potential of our

approach in providing reliable backtracking assistance.

Keywords—indoor navigation, accessibility technology,

dynamic programming, machine learning,

I. INTRODUCTION

For visually impaired individuals, traveling in unfamiliar
environments can be difficult and potentially unsafe due to
challenges in recognizing distant landmarks or other visual
cues. Path integration is a common mechanism used by
visually impaired individuals to traverse routes [1]. While
some can develop precise spatial awareness, others may only
build limited one-dimensional route information [2]. Systems
designed to aid in wayfinding can significantly enhance their
opportunities for learning, employment, independent living,
and social engagement.

A widely used localization technology, GPS, is highly
accurate but impractical for indoor navigation due to signal
blockages inside buildings. Various studies have explored
reliable indoor wayfinding methods for visually impaired
individuals, including BLE beacons, RFID, and Wi-Fi-based
navigation. These techniques require external infrastructure
and/or environment fingerprinting, which can be labor-
intensive, time-consuming, and costly [3], [4], [5].
Navigation apps built on Apple’s ARKit leverage visual
sensors and powerful AI systems to provide real-time
positional data and information [6]. However, the
requirement for users to carry and orient the smartphone in a
specific manner can be impractical for blind travelers. In
addition, most applications (except [6]) also require access to
indoor maps, which are not always available. These
challenges hinder the widespread adoption of indoor
navigation systems for visually impaired individuals.

This work focuses on a solution that provides hands-free
indoor navigation using a smartphone without relying on pre-
existing maps or external infrastructure. Fig. 1 illustrates this
concept using a simple example. A blind patient is guided by
a receptionist from a waiting room to a doctor's office (way-
in path). After the appointment, the patient may need to walk
back to the waiting room independently if assistance is

unavailable. This return path (from point B to A) can be
facilitated by our backtracking system, which is designed to
help users retrace their path to return to the starting point.
Similar concepts have been proposed for this application [6],
[7], [8], [9]. However, real-life challenges such as odometry
errors, mis-detected steps or turns, and deviations from the
correct path complicate backtracking. We propose a new
hybrid-matching method integrated with machine learning to
enhance positioning accuracy, mitigating these challenges
and guiding users back on track.

Fig. 1. A hypothetical path of a blind patient for a doctor’s appointment. The
patient began in the waiting room (A) and was guided by the receptionist to
the doctor’s office (B). The path from A to B is the way-in path. After the
appointment, the patient retraces the route back to the waiting room (from B
to A), which is the return path.

In this article, we begin by introducing the basic path-
matching algorithm, which utilizes magnetic field data and
steps/turns information to backtrack users' positions. We then
discuss the challenges associated with backtracking for
visually impaired individuals. Subsequently, we propose a
new hybrid matching method integrated with machine
learning to enhance the system's performance and achieve
more robust results.

II. PRELIMINARIES AND RELATED WORK

A. Pedestrian Dead Reckoning (PDR)

PDR tracks users’ positions based on their steps and azimuth,
which is obtained by integrating sensor data from gyros and
accelerometers [10]. However, PDR error accumulates over
time due to sensor noise. A two-stage system with a “straight-
walking” detector and a Mixture Kalman Filter (MKF) has
been used to track orientation drift [11]. Step count
information can be obtained using an LSTM recurrent
network [12]. Following the approach in [7], we consider that
in structured buildings, a path can often be described as a
sequence of straight segments and turns with discrete turning
angles (multiples of 90º or 45º), known as turns/steps
representation. This robust turns/steps detector effectively

reduces accumulated PDR error, and is robust to phone
placement on one’s body [11].

B. Backtracking System for Blind Individuals

The backtracking system for blind individuals was introduced
by Flores and Manduchi [7] for navigation in buildings
without maps. It uses inertial data to track steps and detect
turns as users traverse a path. When retracing steps, the
system compares the current position against the recorded
path, providing directions based on remaining turns and steps.
However, large errors can occur if steps or turns are mis-
detected. FollowUs [8] by Microsoft uses magnetic
signatures and inertial data to retrace a user’s path, but it is
designed for sighted users who can manage system errors.
Clew [6], based on visual odometry and Apple's ARKit, helps
visually impaired users retrace routes but requires a clear
camera view, which may be inconvenient for some users.

C. Magnetic Signature

Magnetic fields are increasingly used for indoor navigation
due to their unique characteristics within indoor
environments [8], [13], [14], [15]. This method relies on the
Earth’s magnetic field and ferromagnetic objects, creating
distinct magnetic signatures. However, the magnetic field can
be temporarily affected by other factors (e.g., a running
elevator), which may lead to inaccurate positioning.
Smartphones with magnetometers provide an affordable and
infrastructure-free platform for magnetic-based navigation.
From the measured 3D magnetic field vector and from
knowledge of the gravity direction (from the phone’s
accelerometers), one may derive a 2D vector that is invariant
to the phone orientation [16], [17]. The equations below
describe this 2D vector:

�� � ����⃑ ,��⃑

�|��⃑ |� , �
 � ������⃑ ��� � ����⃑ ,��⃑
�

�|��⃑ |�� �
�.�

where ���⃑ is the 3D magnetic field in the device’s reference
frame, and �⃑ is the gravity vector. �� is the magnetic field
in the gravity direction, and �
 is the magnitude of the
magnetic field’s projection on the horizontal plane.

III. METHOD

Our system's input data includes step counts, detected 90° or
45° turns, and 2D magnetic field data recorded along the path.
The system operates in two phases: way-in and return. During
the way-in phase, PDR reconstructs the user’s trajectory as a
polyline from the step count and the detected turns (see Fig.
2). In the return phase, the user starts from the endpoint of the
way-in path and walks in the reverse direction. The objective
of our system is to identify the location on the way-in path
that best matches the user’s current location during the return.
This information can be used to provide appropriate guidance
to the walker.

A straightforward solution would be to use PDR to create
a polyline for the return path and compare it against the way-
in polyline to find the best match to the user’s current
position. In theory, if accurate odometry data is acquired, all
that is needed is to find the closest position in the way-in path
to the current location in the return. This is shown in Fig. 2
(a), where positions for the way-in and return paths that are

matched in this way are depicted by blue and red dots,
respectively.

However, this method faces real-life challenges, such as
different step lengths between way-in and return journeys,
resulting in different step counts in the paths (see Fig. 2 (b))
or missed/falsely detected turns (see Fig. 2 (c)). These
challenges highlight the need for sequence alignment
algorithms to improve performance. Our approach is based
on a graph-based path-matching algorithm, described below.

(a) (b)

(c)

Fig. 2. Real-life challenges in matching the way-in and return paths. Red and
blue lines represent return and way-in trajectories reconstructed by PDR. The
start and end points for the way-in path are indicated by a square and a star.
Blue and red dots show matched positions based on the closest distance.
Green dots in (b) and (c) represent the correct positions of the red dots
relative to the way-in path. Each segment's length is proportional to the
number of steps in that segment. (a) Ideal situation with easily matched
positions. (b) Shorter steps during the return result in more steps taken for
the same segment length and thus, longer segment lengths in the return
polyline, leading to incorrect matches. (c) The first turn in the return path
went undetected.

A. Path-Matching Algorithm

Instead of matching spatial locations, we use a path-matching
algorithm to match time sequences based on an appropriately
defined graph ℊ and dynamic programming to find the
minimum cost path. This method, originally introduced by
[18], was later developed in [9], [19]. We mainly consider the
magnetic field vectors and detected turns to define the node
cost and edge cost in the graph ℊ. Step detection is considered
implicitly: the sequences of time indices are defined such that
there are three regularly spaced time intervals between two
consecutive detected steps. A primary source of node cost is
the 2D magnetic discrepancies between matched way-in and
return samples, while edge costs are based on orientation
discrepancies associated with detected turns. This algorithm
can handle variations in step length and mis-detected turns.
(For details on this algorithm, please see[9], [19].)

Fig. 3 shows a simple graph ℊ, where j samples of the
return have been recorded in this case. The sequence of
matched way-in and return samples is determined by the
minimum cost path ���� in the graph computed using
dynamic programming. ���� is formed by the pairs of
matched indices terminating in ��� , � . Note that the minimum
cost sequence is computed from all way-in samples and the
available return samples (up to j). When a new return sample
is available, the minimum cost path is recomputed. It is
important to note that the new minimum cost sequence ��� !
1� may or may not contain the previous sequence ����. In
particular, the last pair of matches ���#$, � ! 1 in ��� ! 1�
may, in some circumstances, be largely different from ��� , � .

Research reported in this publication was supported by the National Eye
Institute of the National Institutes of Health under award number
R01EY029260-01. The content is solely the responsibility of the authors
and does not necessarily represent the official views of the National
Institutes of Health.

This is relevant because the last matches in a minimum cost
sequence represent the system’s knowledge about the
walker’s current position, which is used to provide guidance.
An abrupt change in the estimated position may lead to
inconsistent guidance. As an example, consider the situation
shown in Fig. 4. In this figure, horizontal and vertical lines
represent left or right turns detected during the way-in and
return, respectively. During the return phase, the sequence of
matched indices shifted significantly between return sample
indices #150 and #180. The walker did not change their
orientation during this period. While utilizing this
information for navigation, at return sample index #150, the
system might instruct the user to make a left turn at the next
junction, but at return sample index #180, it may change to
instruction of a right turn. These contradictory guidance
instructions are clearly undesirable.

Fig. 3. Calculated global path (black line) in the graph ℊ for return samples
up to index �. The end of global path ���� is the red dot at ��� , � , indicating
the mapped position for return sample index � relative to the way-in path.

B. Hybrid-Matching Algorithm Integrated with Machine

Learning

In order to reduce the likelihood of inconsistent directions,
we propose a hybrid-matching algorithm that combines the
path-matching and PDR approaches. As mentioned earlier,
path-matching offers higher resilience than PDR to variable
step length and incorrect turn detection but is liable to provide
inconsistent direction when the minimum cost path changes
abruptly upon receiving new return samples. We introduce a
new measure of reliability for the current minimum cost path,
where reliability measures the likelihood that the last match
��� , � of the current sequence ���� will be preserved in future
sequences ��%�, % & �. If the latest minimum cost path is
deemed unreliable, we switch to the PDR algorithm, which,
as explained earlier, generates a sequence of user positions
based on the minimum distance matching of the reconstructed
path. In this case, the reconstructed return sequence starts
from the last reliable position (LPR), that is, the position in
the reconstructed way-in path corresponding to the last
endpoint ��� , � of the latest minimum cost sequence in the
graph that was found to be reliable. As soon as a minimum
cost path is found to be reliable, the system switches back to
the path-matching algorithm. In the following, we describe
two approaches to estimate the reliability of a minimum cost
path.

C. Hybrid-Matching Algorithm Integrated with Machine

Learning

In order to reduce the likelihood of inconsistent directions,
we propose a hybrid-matching algorithm that combines the
path-matching and PDR approaches. As mentioned earlier,
path-matching offers higher resilience than PDR to variable
step length and incorrect turn detection but is liable to provide
inconsistent direction when the minimum cost path changes
abruptly upon receiving new return samples. We introduce a
new measure of reliability for the current minimum cost path,
where reliability measures the likelihood that the last match
��� , � of the current sequence ���� will be preserved in future
sequences ��%�, % & �. If the latest minimum cost path is
deemed unreliable, we switch to the PDR algorithm, which,
as explained earlier, generates a sequence of user positions
based on the minimum distance matching of the reconstructed
path. In this case, the reconstructed return sequence starts
from the last reliable position (LPR), that is, the position in
the reconstructed way-in path corresponding to the last
endpoint ��� , � of the latest minimum cost sequence in the
graph that was found to be reliable. As soon as a minimum
cost path is found to be reliable, the system switches back to
the path-matching algorithm. In the following, we describe
two approaches to estimating the reliability of a minimum
cost path.

Fig. 4. Examples of paths in the graph ℊ. The thick gray line shows the global
path ��� � 'ℎ))*+ ,- .)'/.* 01'ℎ� after all return data is available. The
black line and dashed black line are global paths computed from return data
up to sample indices #180 and #150, respectively. Solid red and hollow
circles at the end of global paths indicate the current match observed for
different return sample indices. Red and blue lines represent times at which
a left turn and right turn were detected during the way-in (horizontal lines)
and return (vertical lines).

Linearly Defined LRP
A simple method to find the LRP (i.e., to determine whether
a minimum cost path is reliable) was originally proposed in
[9], and briefly summarized here. This algorithm measures
the local properties of the current minimum cost path in the
graph. In practice, we examine the last 2 matches (2=21,
corresponding to samples recorded in the last 7 steps) in the
path and assume that the path is reliable if these matches form
a line in the graph with a unitary slope. In practice, this means
that consecutive time instants during return are matched one
by one with consecutive time instants during way in. We
found empirically that when this is the case, the path is
normally reliable. The LRP thus found is denoted as
34567896 .

LRP Defined Through Machine Learning
The linearly defined LRP method described above is rather
simplistic, and in addition, it does not consider information
about the magnetic field that could be useful for reliability
determination. We thus introduce a new method based on
machine learning to incorporate more information in
identifying the LRP. For time instant : during the return, we
consider the following information: (1) the terminal part (last
2 samples) of the current minimum cost path ��:�; (2) the 2D
magnetic field measured in the return and way-in paths for
these matches; (3) the matched pairs ��� , �) that are the
endpoint of the last 2 global paths ���� for : � 2 ; � < :.
This data is fed to a neural network tasked with determining
whether the current minimum cost path is reliable (see Fig.
5.) The LRP thus found is denoted as 345==.

Fig. 5. Neural network architecture for determining the last reliable position
(345==).

To train the neural network, we need to collect a
representative data set, where each minimum cost path is
correctly labeled as reliable or not reliable. This ground truth
data is denoted as 345�> . We recorded datasets from seven
blind individuals in a user study on a prior version of the
system [9] (user study dataset), along with another dataset
collected by members of our team walking in a university
building (E2 dataset, from the name of the building). The
user study dataset (4392 data samples) contains 12 paired
paths with 4 to 5 turns in each path, for distances ranging from
72m to 123m. The E2 dataset (42313 data samples) from
controlled experiments with intentional path variations in the
return paths, includes 63 paired paths with 2-8 turns in each
path, and distances ranging from 67m to 220m. Both datasets
include recordings of magnetic data, steps, and turns.

Determination of reliability of any minimum cost path
���� at any return time is obtained by evaluating whether the
endpoint ��� , � of the path is contained in the global
minimum cost path, that is the minimum cost path from all
samples in the recorded return. If this is the case, ���� is
deemed to be reliable. In practice, we relax this criterion by
allowing ��� , � to be within a maximum distance from the
global minimum cost path. Specifically, this maximum
distance is approximately 7.5 sample units or 2.5 steps, given
that there are three samples taken between each step. This
number was determined through trial and error in our initial
experiments.

We tested five different types of networks to determine
the last reliable position 345== : Fully-Connected Network
(FCN), Long Short-Term Memory (LSTM), 1D
Convolutional Network (CONV), Graph Neural Network
(GCN) [20] and Graph Attention Network (GAT) [21]. Each
network has a similar number of parameters, including one

input layer, one output layer, and one hidden layer, totaling
around 7K parameters. In the case of FCN, the input data
were flattened and fed into the network. For GAT and GCN,
we used a graph representation of the data, dividing it into
two groups of nodes: way-in nodes and return nodes. Each
group contains the following features: two-dimensional
magnetic field data, matched indices pair ��� , �) for : � 2 ;
� < :, and the current global path ��:�.

IV. RESULTS

As mentioned earlier, we have collected two datasets to train
the neural network. The user study dataset serves primarily
for testing purposes because it is the actual dataset collected
from seven visually impaired participants and all the datasets,
including the user study dataset and E2 dataset, were both
used for training. We ran experiments using the leave-one-
person-out modality: during testing, the model was tested on
the “left-out” participant in the user study dataset while being
trained by the combination of the rest of the data in the user
study dataset and the E2 dataset.

A. Error Metrics

The error is calculated based on the reconstructed return path
trajectory generated by different methods and compared
against the trajectory generated by the ground truth LRP
(345�>). The average error per sample is given by :

?�> � ∑ ||�ABC,DBC�E�AFG,C,DFG,C ||HCIJ
� ,

where �K�>,L , M�>,L� are the ground truth coordinates, and
�KBL , MBL� are the calculated coordinates based on the proposed
methods.

Table I shows the errors ?�> (in meters) of the
reconstructed trajectory based on different methods of
predicting LRP. It is important to note that in the last row of
the table, the “Baseline” method refers to the basic path-
matching algorithm. The last two columns show the mean and
standard deviation for each method. Additionally, since no
training is involved for the “Linearly defined LRP” and
“Baseline” methods, the results for each participant column
represent the corresponding test outcomes directly generated
by the methods.

The lowest error is obtained based on the neural network,
specifically FCN, while several neural networks outperform
the "Linearly defined LRP" and “Baseline” methods, as
shown in the gray-highlighted cells in Table I. This
demonstrates the potential of using the hybrid-matching
algorithm integrated with machine learning to reconstruct the
user’s position for backtracking.

Fig. 6 illustrates examples of reconstructed trajectories
using different methods: the basic path-matching algorithm
(a) hybrid matching (b) and traditional PDR (c). In Figure
Fig. 6 (a), the trajectory reconstructed using PDR shows a
shorter return path than the way-in path, likely due to the
walker taking larger steps during the return, resulting in fewer
steps detected. This discrepancy makes it challenging and
error-prone to match the current user location with the way-
in path. Fig. 6 (b) demonstrates that the hybrid matching
method successfully matches the user's position to the
destination, even without any reliable match near the end of
the route due to a significant magnetic field discrepancy, as
illustrated by the white horizontal line in the magnetic
discrepancy plot in Fig. 6 (d). In contrast, Fig. 6 (c) shows
that the basic path-matching algorithm fails to provide an
accurate match near the destination.

Table I.
ERROR METRIC (METERS) COMPUTER BASED ON DIFFERENT

METHODS

 Left-out participant

 P1 P2 P3 P4 P5 P6 P7 Mean Std

345==

GAT 0.56 1.60 0.90 0.93 0.74 0.95 0.35 0.86 0.39

GCN 0.90 3.13 1.07 3.21 0.85 1.09 5.38 2.23 1.73

FCN 0.53 1.05 0.68 0.51 0.62 0.24 0.22 0.55 0.28

LSTM 1.15 3.12 0.62 1.12 1.50 1.21 2.65 1.62 0.91

CONV 0.67 1.66 0.91 1.52 1.09 0.70 0.76 1.04 0.40

34567896
(Linearly defined LRP)

1.63 2.68 0.94 0.85 1.12 0.90 2.63 1.54 0.81

Baseline 0.82 3.20 1.52 3.64 1.98 1.6 3.62 2.34 1.13

(a) (b)

(c) (d)

Fig. 6. Examples of reconstructed return paths and the magnetic discrepancy
(a) PDR using step and turn information. (b) Hybrid matching with machine
learning. (c) Basic path-matching algorithm. (d) Magnetic discrepancy plot
for all possible pairs ��� , �� of samples from way-in (vertical axis) and return
(horizontal axis). Lighter gray indicates larger discrepancies. The way-in
path is a thick purple line ending at the black square. The gray line is the
approximate return path of the participant. Reconstructed return paths are
shown in black lines, with reliable matches in (b) indicated by yellow circles.

When there is a mis-detected turn (false-positive turn), or
the user deviates from the correct path, such as missing a turn
and traversing a previously unvisited path, the hybrid
matching integrated with machine learning can accurately
locate the user’s position and provide path-recovery
notifications to guide them back. Fig. 7 illustrates such an
example. In Fig. 7 (a), the reconstructed path based on PDR is
entirely off due to a falsely detected turn near the beginning of
the path, resulting in a misaligned return trajectory.
Consequently, later in the journey, when the user misses a
turn, PDR cannot map the user’s position to the way-in path.
In contrast, the hybrid matching method is able to map the
user’s position despite the mis-detected turn. As shown in the
green highlighted area in Fig. 7 (b), there is a temporary
misplacement of the user for a short period, however, as the
user progresses along the return route, the method successfully
remaps the user to the correct path. Additionally, when the
user takes the wrong path, shown in the orange highlighted
area, the hybrid matching with machine learning can project
the user’s position and guide them back to the correct path.

The basic path-matching algorithm, however, is not capable
of mapping the user’s position when they deviate from the
correct path. As mentioned previously, this method always
calculated a matched position with respect to a position on the
way-in path.

Fig. 8 shows that using 345== determined by FCN can
accurately map the user's position. The linearly defined LRP
(34567896) misplaces the position after the last turn
(highlighted area in Fig. 8). This demonstrates the superior
performance of 345== for hybrid matching, as demonstrated
in the prior Table I.

(a) (b)

Fig. 7. See caption of Fig. 6. Examples of paths with a mis-detected turn
(false-positive) and user deviation. (a) PDR. (b) Hybrid matching with
machine learning. Orange highlights indicate wrong paths taken during
return.

Fig. 8. See caption of Fig. 6. Comparison of return paths using hybrid
matching with different LRP definitions. Black lines represent paths using
hybrid matching with machine learning (345==, determined by FCN). The
green line is the path using hybrid matching with a linearly defined LRP
(34567896).

V. DISCUSSION AND CONCLUSION

Backtracking without a map is challenging, especially with
odometry errors like mis-detected steps and turns. We
developed a hybrid matching algorithm with machine
learning to improve backtracking accuracy. This method uses
step counts, turns, and magnetic signatures, alternating
between the path-matching graph and PDR to perform hybrid
matching. A neural network was adopted to determine the
"last reliable position" (LRP) to assess current mapped
positions. This hybrid approach is particularly helpful when,
due to magnetic field fluctuations, the path-matching graph
method gives inconsistent results (in which case, the system
temporarily resorts to PDR, which is only based on
steps/turns). We tested the system with datasets from seven
visually impaired individuals and another dataset collected in
a university building.

We used various neural networks to test the system.
Results showed that FCN significantly improves path-
matching accuracy. However, further research is needed to
understand why other networks, like LSTM and GCN, did not
perform as well. The limited dataset might have restricted
these networks' ability to learn features during training.

The system assumes indoor environments consist of
networks of corridors intersecting at certain angles (e.g., 90°
or 45°; the dataset only contains turns of 90°). Its
performance degrades with different angles or in open spaces.
Using computer vision to periodically adjust the walker's
position can improve performance but should minimize the
need for the walker to hold the phone constantly.

Despite these limitations, the hybrid matching method
with machine learning shows promising results in
backtracking, especially when the user deviates from the
correct path. Compared to the original path-matching
algorithm, this approach offers enhanced reliability and
accuracy.

REFERENCES

[1] J. M. Loomis, R. L. Klatzky, R. G. Golledge, J. G. Cicinelli, J. W.
Pellegrino, and P. A. Fry, “Nonvisual navigation by blind and
sighted: assessment of path integration ability.,” J Exp Psychol
Gen, vol. 122, no. 1, p. 73, 1993.

[2] R. G. Golledge, “Human wayfinding and cognitive maps,” in The
colonization of unfamiliar landscapes, Routledge, 2003, pp. 49–
54.

[3] S. A. Cheraghi, V. Namboodiri, and L. Walker, “GuideBeacon:
Beacon-based indoor wayfinding for the blind, visually impaired,
and disoriented,” in 2017 IEEE International Conference on
Pervasive Computing and Communications (PerCom), IEEE,
2017, pp. 121–130.

[4] R. Sammouda and A. Alrjoub, “Mobile blind navigation system
using RFID,” in 2015 Global Summit on Computer & Information
Technology (GSCIT), IEEE, 2015, pp. 1–4.

[5] J. Hurtuk, J. Červeňák, M. Štancel, M. Hulič, and P. Fecil’ak,
“Indoor navigation using IndoorAtlas library,” in 2019 IEEE 17th
International Symposium on Intelligent Systems and Informatics
(SISY), IEEE, 2019, pp. 139–142.

[6] C. Yoon, R. Louie, J. Ryan, M. Vu, H. Bang, W. Derksen and P.
Ruvolo, “Leveraging augmented reality to create apps for people
with visual disabilities: A case study in indoor navigation,” in The
21st International ACM SIGACCESS Conference on Computers
and Accessibility, 2019, pp. 210–221.

[7] G. Flores and R. Manduchi, “Easy return: an app for indoor
backtracking assistance,” in Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems, 2018, pp.
1–12.

[8] Y. Shu, Z. Li, B. Karlsson, Y. Lin, T. Moscibroda, and K. Shin,
“Incrementally-deployable indoor navigation with automatic trace

generation,” in IEEE INFOCOM 2019-IEEE Conference on
Computer Communications, IEEE, 2019, pp. 2395–2403.

[9] C. H. Tsai, F. Elyasi, P. Ren, and R. Manduchi, “All the Way There
and Back: Inertial-Based, Phone-in-Pocket Indoor Wayfinding and
Backtracking Apps for Blind Travelers,” arXiv preprint
arXiv:2401.08021, 2024.

[10] Y. Jin, H.-S. Toh, W.-S. Soh, and W.-C. Wong, “A robust dead-
reckoning pedestrian tracking system with low cost sensors,” in
2011 IEEE International Conference on Pervasive Computing and
Communications (PerCom), IEEE, 2011, pp. 222–230.

[11] P. Ren, F. Elyasi, and R. Manduchi, “Smartphone-based inertial
odometry for blind walkers,” Sensors, vol. 21, no. 12, p. 4033,
2021.

[12] M. Edel and E. Köppe, “An advanced method for pedestrian dead
reckoning using BLSTM-RNNs,” in 2015 International
Conference on Indoor Positioning and Indoor Navigation (IPIN),
IEEE, 2015, pp. 1–6.

[13] B. Li, T. Gallagher, A. G. Dempster, and C. Rizos, “How feasible
is the use of magnetic field alone for indoor positioning?,” in 2012
International Conference on Indoor Positioning and Indoor
Navigation (IPIN), IEEE, 2012, pp. 1–9.

[14] W. Storms, J. Shockley, and J. Raquet, “Magnetic field navigation
in an indoor environment,” in 2010 Ubiquitous Positioning Indoor
Navigation and Location Based Service, IEEE, 2010, pp. 1–10.

[15] J. Kuang, X. Niu, P. Zhang, and X. Chen, “Indoor positioning
based on pedestrian dead reckoning and magnetic field matching
for smartphones,” Sensors, vol. 18, no. 12, p. 4142, 2018.

[16] X. Fan, J. Wu, C. Long, and Y. Zhu, “Accurate and low-cost
mobile indoor localization with 2-D magnetic fingerprints,” in
Proceedings of the First ACM Workshop on Mobile Crowdsensing
Systems and Applications, 2017, pp. 13–18.

[17] Apple, “deviceMotion,” Apple Developer Documentation.
[Online]. https://developer.apple.com/documentation/coremotion

[18] T. H. Riehle et al., “Indoor magnetic navigation for the blind,” in
2012 Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, IEEE, 2012, pp. 1972–1975.

[19] C. H. Tsai, P. Ren, F. Elyasi, and R. Manduchi, “Finding Your
Way Back: Comparing Path Odometry Algorithms for Assisted
Return,” in 2021 IEEE International Conference on Pervasive
Computing and Communications Workshops and other Affiliated
Events (PerCom Workshops), IEEE, 2021, pp. 117–122.

[20] J. Zhou et al., “Graph neural networks: A review of methods and
applications,” AI open, vol. 1, pp. 57–81, 2020.

[21] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” International Conference
on Learning Representations (ICLR), 2018.

