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Abstract—Navigating unfamiliar environments can be 

challenging for visually impaired individuals due to difficulties 

in recognizing distant landmarks or visual cues. This work 

focuses on a particular form of wayfinding, specifically 

backtracking a previously taken path, which can be useful for 

blind pedestrians. We propose a hands-free indoor navigation 

solution using a smartphone without relying on pre-existing 

maps or external infrastructure. Our hybrid matching method 

integrates machine learning to enhance positioning accuracy, 

addressing real-life challenges such as odometry errors or 

deviations from the correct path. Testing with datasets from 

visually impaired individuals demonstrates the potential of our 

approach in providing reliable backtracking assistance. 

Keywords—indoor navigation, accessibility technology, 

dynamic programming, machine learning, 

I. INTRODUCTION  

For visually impaired individuals, traveling in unfamiliar 
environments can be difficult and potentially unsafe due to 
challenges in recognizing distant landmarks or other visual 
cues. Path integration is a common mechanism used by 
visually impaired individuals to traverse routes [1]. While 
some can develop precise spatial awareness, others may only 
build limited one-dimensional route information [2]. Systems 
designed to aid in wayfinding can significantly enhance their 
opportunities for learning, employment, independent living, 
and social engagement. 

A widely used localization technology, GPS, is highly 
accurate but impractical for indoor navigation due to signal 
blockages inside buildings. Various studies have explored 
reliable indoor wayfinding methods for visually impaired 
individuals, including BLE beacons, RFID, and Wi-Fi-based 
navigation. These techniques require external infrastructure 
and/or environment fingerprinting, which can be labor-
intensive, time-consuming, and costly [3], [4], [5]. 
Navigation apps built on Apple’s ARKit leverage visual 
sensors and powerful AI systems to provide real-time 
positional data and information [6]. However, the 
requirement for users to carry and orient the smartphone in a 
specific manner can be impractical for blind travelers. In 
addition, most applications (except [6]) also require access to 
indoor maps, which are not always available. These 
challenges hinder the widespread adoption of indoor 
navigation systems for visually impaired individuals. 

This work focuses on a solution that provides hands-free 
indoor navigation using a smartphone without relying on pre-
existing maps or external infrastructure. Fig. 1 illustrates this 
concept using a simple example. A blind patient is guided by 
a receptionist from a waiting room to a doctor's office (way-
in path). After the appointment, the patient may need to walk 
back to the waiting room independently if assistance is 

unavailable. This return path (from point B to A) can be 
facilitated by our backtracking system, which is designed to 
help users retrace their path to return to the starting point. 
Similar concepts have been proposed for this application [6], 
[7], [8], [9]. However, real-life challenges such as odometry 
errors, mis-detected steps or turns, and deviations from the 
correct path complicate backtracking. We propose a new 
hybrid-matching method integrated with machine learning to 
enhance positioning accuracy, mitigating these challenges 
and guiding users back on track. 

 
Fig. 1. A hypothetical path of a blind patient for a doctor’s appointment. The 
patient began in the waiting room (A) and was guided by the receptionist to 
the doctor’s office (B). The path from A to B is the way-in path. After the 
appointment, the patient retraces the route back to the waiting room (from B 
to A), which is the return path. 

In this article, we begin by introducing the basic path-
matching algorithm, which utilizes magnetic field data and 
steps/turns information to backtrack users' positions. We then 
discuss the challenges associated with backtracking for 
visually impaired individuals. Subsequently, we propose a 
new hybrid matching method integrated with machine 
learning to enhance the system's performance and achieve 
more robust results.  

II. PRELIMINARIES AND RELATED WORK 

A. Pedestrian Dead Reckoning (PDR)  

PDR tracks users’ positions based on their steps and azimuth, 
which is obtained by integrating sensor data from gyros and 
accelerometers [10]. However, PDR error accumulates over 
time due to sensor noise. A two-stage system with a “straight-
walking” detector and a Mixture Kalman Filter (MKF) has 
been used to track orientation drift [11]. Step count 
information can be obtained using an LSTM recurrent 
network [12]. Following the approach in [7], we consider that 
in structured buildings, a path can often be described as a 
sequence of straight segments and turns with discrete turning 
angles (multiples of 90º or 45º), known as turns/steps 
representation. This robust turns/steps detector effectively 



reduces accumulated PDR error, and is robust to phone 
placement on one’s body [11].  

B. Backtracking System for Blind Individuals 

The backtracking system for blind individuals was introduced 
by Flores and Manduchi [7] for navigation in buildings 
without maps. It uses inertial data to track steps and detect 
turns as users traverse a path. When retracing steps, the 
system compares the current position against the recorded 
path, providing directions based on remaining turns and steps. 
However, large errors can occur if steps or turns are mis-
detected. FollowUs [8] by Microsoft uses magnetic 
signatures and inertial data to retrace a user’s path, but it is 
designed for sighted users who can manage system errors. 
Clew [6], based on visual odometry and Apple's ARKit, helps 
visually impaired users retrace routes but requires a clear 
camera view, which may be inconvenient for some users. 

C. Magnetic Signature 

Magnetic fields are increasingly used for indoor navigation 
due to their unique characteristics within indoor 
environments [8], [13], [14], [15]. This method relies on the 
Earth’s magnetic field and ferromagnetic objects, creating 
distinct magnetic signatures. However, the magnetic field can 
be temporarily affected by other factors (e.g., a running 
elevator), which may lead to inaccurate positioning. 
Smartphones with magnetometers provide an affordable and 
infrastructure-free platform for magnetic-based navigation. 
From the measured 3D magnetic field vector and from 
knowledge of the gravity direction (from the phone’s 
accelerometers), one may derive a 2D vector that is invariant 
to the phone orientation [16], [17]. The equations below 
describe this 2D vector: 
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where ���⃑   is the 3D magnetic field in the device’s reference 
frame, and �⃑  is the gravity vector. �� is the magnetic field 
in the gravity direction, and �
  is the magnitude of the 
magnetic field’s projection on the horizontal plane. 

III. METHOD 

Our system's input data includes step counts, detected 90° or 
45° turns, and 2D magnetic field data recorded along the path. 
The system operates in two phases: way-in and return. During 
the way-in phase, PDR reconstructs the user’s trajectory as a 
polyline from the step count and the detected turns (see Fig. 
2). In the return phase, the user starts from the endpoint of the 
way-in path and walks in the reverse direction. The objective 
of our system is to identify the location on the way-in path 
that best matches the user’s current location during the return. 
This information can be used to provide appropriate guidance 
to the walker. 

A straightforward solution would be to use PDR to create 
a polyline for the return path and compare it against the way-
in polyline to find the best match to the user’s current 
position. In theory, if accurate odometry data is acquired, all 
that is needed is to find the closest position in the way-in path 
to the current location in the return. This is shown in Fig. 2 
(a), where positions for the way-in and return paths that are 

matched in this way are depicted by blue and red dots, 
respectively. 

However, this method faces real-life challenges, such as 
different step lengths between way-in and return journeys, 
resulting in different step counts in the paths (see Fig. 2 (b)) 
or missed/falsely detected turns (see Fig. 2 (c)). These 
challenges highlight the need for sequence alignment 
algorithms to improve performance. Our approach is based 
on a graph-based path-matching algorithm, described below.  

 

 
(a)                                                    (b) 

 
(c) 

Fig. 2. Real-life challenges in matching the way-in and return paths. Red and 
blue lines represent return and way-in trajectories reconstructed by PDR. The 
start and end points for the way-in path are indicated by a square and a star. 
Blue and red dots show matched positions based on the closest distance. 
Green dots in (b) and (c) represent the correct positions of the red dots 
relative to the way-in path. Each segment's length is proportional to the 
number of steps in that segment. (a) Ideal situation with easily matched 
positions. (b) Shorter steps during the return result in more steps taken for 
the same segment length and thus, longer segment lengths in the return 
polyline, leading to incorrect matches. (c) The first turn in the return path 
went undetected. 

A. Path-Matching Algorithm 

Instead of matching spatial locations, we use a path-matching 
algorithm to match time sequences based on an appropriately 
defined graph ℊ  and dynamic programming to find the 
minimum cost path. This method, originally introduced by 
[18], was later developed in [9], [19]. We mainly consider the 
magnetic field vectors and detected turns to define the node 
cost and edge cost in the graph ℊ. Step detection is considered 
implicitly: the sequences of time indices are defined such that 
there are three regularly spaced time intervals between two 
consecutive detected steps. A primary source of node cost is 
the 2D magnetic discrepancies between matched way-in and 
return samples, while edge costs are based on orientation 
discrepancies associated with detected turns. This algorithm 
can handle variations in step length and mis-detected turns. 
(For details on this algorithm, please see[9], [19].) 

Fig. 3 shows a simple graph ℊ, where j samples of the 
return have been recorded in this case. The sequence of 
matched way-in and return samples is determined by the 
minimum cost path ����  in the graph computed using 
dynamic programming. ����  is formed by the pairs of 
matched indices terminating in ��� , � . Note that the minimum 
cost sequence is computed from all way-in samples and the 
available return samples (up to j). When a new return sample 
is available, the minimum cost path is recomputed. It is 
important to note that the new minimum cost sequence ��� !
1� may or may not contain the previous sequence ����. In 
particular, the last pair of matches ���#$, � ! 1  in ��� ! 1� 
may, in some circumstances, be largely different from ��� , � . 

Research reported in this publication was supported by the National Eye 
Institute of the National Institutes of Health under award number 
R01EY029260-01. The content is solely the responsibility of the authors 
and does not necessarily represent the official views of the National 
Institutes of Health.  



This is relevant because the last matches in a minimum cost 
sequence represent the system’s knowledge about the 
walker’s current position, which is used to provide guidance. 
An abrupt change in the estimated position may lead to 
inconsistent guidance. As an example, consider the situation 
shown in Fig. 4. In this figure, horizontal and vertical lines 
represent left or right turns detected during the way-in and 
return, respectively. During the return phase, the sequence of 
matched indices shifted significantly between return sample 
indices #150 and #180. The walker did not change their 
orientation during this period. While utilizing this 
information for navigation, at return sample index #150, the 
system might instruct the user to make a left turn at the next 
junction, but at return sample index #180, it may change to 
instruction of a right turn. These contradictory guidance 
instructions are clearly undesirable.  
  

 
Fig. 3. Calculated global path (black line) in the graph ℊ for return samples 
up to index �. The end of global path ���� is the red dot at ��� , �  , indicating 
the mapped position for return sample index � relative to the way-in path.   

B. Hybrid-Matching Algorithm Integrated with Machine 

Learning 

In order to reduce the likelihood of inconsistent directions, 
we propose a hybrid-matching algorithm that combines the 
path-matching and PDR approaches. As mentioned earlier, 
path-matching offers higher resilience than PDR to variable 
step length and incorrect turn detection but is liable to provide 
inconsistent direction when the minimum cost path changes 
abruptly upon receiving new return samples.  We introduce a 
new measure of reliability for the current minimum cost path, 
where reliability measures the likelihood that the last match 
��� , �  of the current sequence ���� will be preserved in future 
sequences ��%�, % & �. If the latest minimum cost path is 
deemed unreliable, we switch to the PDR algorithm, which, 
as explained earlier, generates a sequence of user positions 
based on the minimum distance matching of the reconstructed 
path. In this case, the reconstructed return sequence starts 
from the last reliable position (LPR), that is, the position in 
the reconstructed way-in path corresponding to the last 
endpoint ��� , �  of the latest minimum cost sequence in the 
graph that was found to be reliable. As soon as a minimum 
cost path is found to be reliable, the system switches back to 
the path-matching algorithm. In the following, we describe 
two approaches to estimate the reliability of a minimum cost 
path. 

C. Hybrid-Matching Algorithm Integrated with Machine 

Learning 

In order to reduce the likelihood of inconsistent directions, 
we propose a hybrid-matching algorithm that combines the 
path-matching and PDR approaches. As mentioned earlier, 
path-matching offers higher resilience than PDR to variable 
step length and incorrect turn detection but is liable to provide 
inconsistent direction when the minimum cost path changes 
abruptly upon receiving new return samples.  We introduce a 
new measure of reliability for the current minimum cost path, 
where reliability measures the likelihood that the last match 
��� , �  of the current sequence ���� will be preserved in future 
sequences ��%�, % & �. If the latest minimum cost path is 
deemed unreliable, we switch to the PDR algorithm, which, 
as explained earlier, generates a sequence of user positions 
based on the minimum distance matching of the reconstructed 
path. In this case, the reconstructed return sequence starts 
from the last reliable position (LPR), that is, the position in 
the reconstructed way-in path corresponding to the last 
endpoint ��� , �  of the latest minimum cost sequence in the 
graph that was found to be reliable. As soon as a minimum 
cost path is found to be reliable, the system switches back to 
the path-matching algorithm. In the following, we describe 
two approaches to estimating the reliability of a minimum 
cost path. 
 

 
Fig. 4. Examples of paths in the graph ℊ. The thick gray line shows the global 
path ��� � 'ℎ) )*+ ,- .)'/.* 01'ℎ� after all return data is available. The 
black line and dashed black line are global paths computed from return data 
up to sample indices #180 and #150, respectively. Solid red and hollow 
circles at the end of global paths indicate the current match observed for 
different return sample indices. Red and blue lines represent times at which 
a left turn and right turn were detected during the way-in (horizontal lines) 
and return (vertical lines).  

Linearly Defined LRP 
A simple method to find the LRP (i.e., to determine whether 
a minimum cost path is reliable) was originally proposed in 
[9], and briefly summarized here. This algorithm measures 
the local properties of the current minimum cost path in the 
graph. In practice, we examine the last 2 matches (2=21, 
corresponding to samples recorded in the last 7 steps) in the 
path and assume that the path is reliable if these matches form 
a line in the graph with a unitary slope. In practice, this means 
that consecutive time instants during return are matched one 
by one with consecutive time instants during way in. We 
found empirically that when this is the case, the path is 
normally reliable.  The LRP thus found is denoted as 
34567896 . 



LRP Defined Through Machine Learning 
The linearly defined LRP method described above is rather 
simplistic, and in addition, it does not consider information 
about the magnetic field that could be useful for reliability 
determination. We thus introduce a new method based on 
machine learning to incorporate more information in 
identifying the LRP. For time instant : during the return, we 
consider the following information: (1) the terminal part (last 
2 samples) of the current minimum cost path ��:�; (2) the 2D 
magnetic field measured in the return and way-in paths for 
these matches; (3) the matched pairs ��� , � ) that are the 
endpoint of the last 2 global paths ���� for  : � 2 ; � < :. 
This data is fed to a neural network tasked with determining 
whether the current minimum cost path is reliable (see Fig. 
5.) The LRP thus found is denoted as 345==. 

 

 
Fig. 5. Neural network architecture for determining the last reliable position 
(345==).  

To train the neural network, we need to collect a 
representative data set, where each minimum cost path is 
correctly labeled as reliable or not reliable. This ground truth 
data is denoted as 345�> . We recorded datasets from seven 
blind individuals in a user study on a prior version of the 
system [9] (user study dataset), along with another dataset 
collected by members of our team walking in a university 
building (E2 dataset, from the name of the building). The 
user study dataset (4392 data samples) contains 12 paired 
paths with 4 to 5 turns in each path, for distances ranging from 
72m to 123m. The E2 dataset (42313 data samples) from 
controlled experiments with intentional path variations in the 
return paths, includes 63 paired paths with 2-8 turns in each 
path, and distances ranging from 67m to 220m. Both datasets 
include recordings of magnetic data, steps, and turns.  

Determination of reliability of any minimum cost path 
���� at any return time is obtained by evaluating whether the 
endpoint ��� , �  of the path is contained in the global 
minimum cost path, that is the minimum cost path from all 
samples in the recorded return. If this is the case, ���� is 
deemed to be reliable. In practice, we relax this criterion by 
allowing ��� , �  to be within a maximum distance from the 
global minimum cost path. Specifically, this maximum 
distance is approximately 7.5 sample units or 2.5 steps, given 
that there are three samples taken between each step. This 
number was determined through trial and error in our initial 
experiments.  

We tested five different types of networks to determine 
the last reliable position 345== : Fully-Connected Network 
(FCN), Long Short-Term Memory (LSTM), 1D 
Convolutional Network (CONV), Graph Neural Network 
(GCN) [20] and Graph Attention Network (GAT) [21]. Each 
network has a similar number of parameters, including one 

input layer, one output layer, and one hidden layer, totaling 
around 7K parameters. In the case of FCN, the input data 
were flattened and fed into the network. For GAT and GCN, 
we used a graph representation of the data, dividing it into 
two groups of nodes: way-in nodes and return nodes. Each 
group contains the following features: two-dimensional 
magnetic field data, matched indices pair ��� , �) for  : � 2 ;
� < :, and the current global path ��:�. 

IV. RESULTS 

As mentioned earlier, we have collected two datasets to train 
the neural network. The user study dataset serves primarily 
for testing purposes because it is the actual dataset collected 
from seven visually impaired participants and all the datasets, 
including the user study dataset and E2 dataset, were both 
used for training. We ran experiments using the leave-one-
person-out modality: during testing, the model was tested on 
the “left-out” participant in the user study dataset while being 
trained by the combination of the rest of the data in the user 
study dataset and the E2 dataset. 

A. Error Metrics 

The error is calculated based on the reconstructed return path 
trajectory generated by different methods and compared 
against the trajectory generated by the ground truth LRP 
(345�>). The average error per sample is given by : 

?�> �  ∑ ||�ABC,DBC�E�AFG,C,DFG,C ||HCIJ
� , 

where �K�>,L , M�>,L� are the ground truth coordinates, and 
�KBL , MBL� are the calculated coordinates based on the proposed 
methods. 

Table I shows the errors ?�>  (in meters) of the 
reconstructed trajectory based on different methods of 
predicting LRP. It is important to note that in the last row of 
the table, the “Baseline” method refers to the basic path-
matching algorithm. The last two columns show the mean and 
standard deviation for each method. Additionally, since no 
training is involved for the “Linearly defined LRP” and 
“Baseline” methods, the results for each participant column 
represent the corresponding test outcomes directly generated 
by the methods. 

The lowest error is obtained based on the neural network, 
specifically FCN, while several neural networks outperform 
the "Linearly defined LRP" and “Baseline” methods, as 
shown in the gray-highlighted cells in Table I. This 
demonstrates the potential of using the hybrid-matching 
algorithm integrated with machine learning to reconstruct the 
user’s position for backtracking. 

Fig. 6 illustrates examples of reconstructed trajectories 
using different methods: the basic path-matching algorithm 
(a) hybrid matching (b) and traditional PDR (c). In Figure 
Fig. 6 (a), the trajectory reconstructed using PDR shows a 
shorter return path than the way-in path, likely due to the 
walker taking larger steps during the return, resulting in fewer 
steps detected. This discrepancy makes it challenging and 
error-prone to match the current user location with the way-
in path. Fig. 6 (b) demonstrates that the hybrid matching 
method successfully matches the user's position to the 
destination, even without any reliable match near the end of 
the route due to a significant magnetic field discrepancy, as 
illustrated by the white horizontal line in the magnetic 
discrepancy plot in Fig. 6 (d). In contrast, Fig. 6 (c) shows 
that the basic path-matching algorithm fails to provide an 
accurate match near the destination.  



Table I.  
ERROR METRIC (METERS) COMPUTER BASED ON DIFFERENT 

METHODS 

  Left-out participant 

  P1 P2 P3 P4 P5 P6 P7 Mean Std 

 
 
 

345== 

GAT 0.56 1.60 0.90 0.93 0.74 0.95 0.35 0.86 0.39 

GCN 0.90 3.13 1.07 3.21 0.85 1.09 5.38 2.23 1.73 

FCN 0.53 1.05 0.68 0.51 0.62 0.24 0.22 0.55 0.28 

LSTM 1.15 3.12 0.62 1.12 1.50 1.21 2.65 1.62 0.91 

CONV 0.67 1.66 0.91 1.52 1.09 0.70 0.76 1.04 0.40 

34567896   
(Linearly defined LRP) 

1.63 2.68 0.94 0.85 1.12 0.90 2.63 1.54 0.81 

Baseline 0.82 3.20 1.52 3.64 1.98 1.6 3.62 2.34 1.13 

 

 

(a)                                                               (b)

(c)                                                               (d) 

Fig. 6. Examples of reconstructed return paths and the magnetic discrepancy 
(a) PDR using step and turn information. (b) Hybrid matching with machine 
learning. (c) Basic path-matching algorithm. (d) Magnetic discrepancy plot 
for all possible pairs ��� , �� of samples from way-in (vertical axis) and return 
(horizontal axis). Lighter gray indicates larger discrepancies. The way-in 
path is a thick purple line ending at the black square. The gray line is the 
approximate return path of the participant. Reconstructed return paths are 
shown in black lines, with reliable matches in (b) indicated by yellow circles. 

When there is a mis-detected turn (false-positive turn), or 
the user deviates from the correct path, such as missing a turn 
and traversing a previously unvisited path, the hybrid 
matching integrated with machine learning can accurately 
locate the user’s position and provide path-recovery 
notifications to guide them back. Fig. 7 illustrates such an 
example. In Fig. 7 (a), the reconstructed path based on PDR is 
entirely off due to a falsely detected turn near the beginning of 
the path, resulting in a misaligned return trajectory. 
Consequently, later in the journey, when the user misses a 
turn, PDR cannot map the user’s position to the way-in path. 
In contrast, the hybrid matching method is able to map the 
user’s position despite the mis-detected turn. As shown in the 
green highlighted area in Fig. 7 (b), there is a temporary 
misplacement of the user for a short period, however, as the 
user progresses along the return route, the method successfully 
remaps the user to the correct path. Additionally, when the 
user takes the wrong path, shown in the orange highlighted 
area, the hybrid matching with machine learning can project 
the user’s position and guide them back to the correct path. 

The basic path-matching algorithm, however, is not capable 
of mapping the user’s position when they deviate from the 
correct path. As mentioned previously, this method always 
calculated a matched position with respect to a position on the 
way-in path. 

Fig. 8 shows that using 345== determined by FCN can 
accurately map the user's position. The linearly defined LRP 
( 34567896 ) misplaces the position after the last turn 
(highlighted area in Fig. 8). This demonstrates the superior 
performance of 345== for hybrid matching, as demonstrated 
in the prior Table I. 

 
(a)                                                               (b) 

Fig. 7. See caption of Fig. 6. Examples of paths with a mis-detected turn 
(false-positive) and user deviation. (a) PDR. (b) Hybrid matching with 
machine learning. Orange highlights indicate wrong paths taken during 
return. 

 

Fig. 8. See caption of Fig. 6. Comparison of return paths using hybrid 
matching with different LRP definitions. Black lines represent paths using 
hybrid matching with machine learning (345==, determined by FCN). The 
green line is the path using hybrid matching with a linearly defined LRP 
(34567896). 

V. DISCUSSION AND CONCLUSION 

Backtracking without a map is challenging, especially with 
odometry errors like mis-detected steps and turns. We 
developed a hybrid matching algorithm with machine 
learning to improve backtracking accuracy. This method uses 
step counts, turns, and magnetic signatures, alternating 
between the path-matching graph and PDR to perform hybrid 
matching. A neural network was adopted to determine the 
"last reliable position" (LRP) to assess current mapped 
positions. This hybrid approach is particularly helpful when, 
due to magnetic field fluctuations, the path-matching graph 
method gives inconsistent results (in which case, the system 
temporarily resorts to PDR, which is only based on 
steps/turns). We tested the system with datasets from seven 
visually impaired individuals and another dataset collected in 
a university building. 

We used various neural networks to test the system. 
Results showed that FCN significantly improves path-
matching accuracy. However, further research is needed to 
understand why other networks, like LSTM and GCN, did not 
perform as well. The limited dataset might have restricted 
these networks' ability to learn features during training. 



The system assumes indoor environments consist of 
networks of corridors intersecting at certain angles (e.g., 90° 
or 45°; the dataset only contains turns of 90°). Its 
performance degrades with different angles or in open spaces. 
Using computer vision to periodically adjust the walker's 
position can improve performance but should minimize the 
need for the walker to hold the phone constantly. 

Despite these limitations, the hybrid matching method 
with machine learning shows promising results in 
backtracking, especially when the user deviates from the 
correct path. Compared to the original path-matching 
algorithm, this approach offers enhanced reliability and 
accuracy. 
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