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EXPLORING THE QCD PHASE DIAGRAM
WITH FLUCTUATIONS∗

Volker Koch

Nuclear Science Division, Lawrence Berkeley National Laboratory
Berkeley, CA, 94720, USA

Volodymyr Vovchenko

Physics Department, University of Houston
Houston, TX 77204, USA

 We will discuss how the measurement and calculation of fluctuations of 
conserved charges, such as the baryon number, may be used to unveil  the 
structure of the QCD phase diagram. We will put special emphasis on how to 
make the connection between theory and experimental data and  what corrections 
are needed in order to draw meaningful conclusions from   experimental 
measurements.

1. Introduction

One of the open questions concerning the properties of the strong inter-
action is the existence of a phase transition between hadronic and partonic 
matter. Such a phase transition, if it exists, would be the only transition po-
tentially accessible to laboratory experiments involving fundamental degrees 
of freedom of the Standard Model, quarks and gluons. QCD, the theory of 
strong interactions, is expected to exhibit a second-order O(4) transition in 
the limit of vanishing quark masses [1], which is related to the chiral sym-
metry of QCD in this limit. For finite and physical quark masses, however, 
state-of-the-art lattice QCD calculations [2] have established that at vanish-
ing baryon number chemical potential, the transition from hadrons to quarks 
and gluons is an analytic crossover. This however does not rule out a phase 
transition at finite baryon chemical potential. Indeed, model calculations 
(see [3] for a compilation of various results) as well as recent calculations
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using functional methods [4, 5] and Padé extrapolations of lattice QCD [6]
results suggest the existence of a critical point associated with a first-order
transition at chemical potentials of µB ≳ 600 MeV.

Experimentally, the QCD phase diagram can be explored through rela-
tivistic heavy-ion collisions. Since the location of the transition is expected
at finite net-baryon density but its actual position in the baryon density–
temperature plane is not known, one needs to carry out a scan in these
variables. This can be achieved by varying the collision energy. As the
collision energy increases, less and less of the baryons from the projectile
and target will be stopped at mid-rapidity. Thus, the net-baryon density of
the system at mid-rapidity drops, while at the same time, the temperature
increases. Such a scan of the QCD phase diagram is the main motivation of
the RHIC beam energy scan program [7, 8]. This program, which provides
collisions from

√
sNN ≃ 3–200 GeV, together with the HADES experiment

at GSI and future experiments such as CBM, allows to scan a wide range in
the temperature–density plane.

Of course, one also needs observables which are sensitive to a possible
phase transition. While the usual observables such as spectra, flow, etc.
may allow to possibly deduce a strong transition, they are at best indirect
measures. Fluctuations of conserved charges, baryon number (B), electric
charge (Q), and strangeness (S), on the other hand, provide a rather direct
sensitivity to the existence of a phase transition or even to some significant
changes of the free energy with respect to the control parameters, temper-
ature T and the various chemical potentials µi, which are conjugate to the
conserved charges. This is because cumulants of distributions of conserved
charges measure the derivatives of the grand-canonical partition function,
and thus the pressure, with respect to the associated chemical potentials.
For example, cumulants of the net-baryon number distribution are given by

κn[B] =
∂n

∂ (µB/T )n
lnZ =

V

T

∂n

∂ (µB/T )n
P . (1)

Any non-trivial structures in the equation of state such as a possible phase
transition [8–11] will result in potentially large derivatives of the pressure
which are then reflected in the cumulants of conserved charges. Specifically
at the conjectured QCD critical point, cumulants will diverge as powers of
the correlation length with higher powers for higher orders of the cumu-
lants [9].

Since cumulants are derivatives of the pressure, they are accessible (at
vanishing chemical potential) to lattice QCD calculations [12, 13], which in
principle enables a direct comparison of ab initio QCD calculations with
experiment.



Measurements of fluctuations have meanwhile been carried out by many
experiments. The STAR Collaboration has measured cumulants of the net-
proton number up to sixth order over the entire energy range available at
RHIC [14, 15]. HADES has measured them up to fourth order at an even
lower energy of

√
s = 2.4 GeV [16], and ALICE has measured the second-

and third-order net-proton cumulant at the LHC at
√
s = 2.76 TeV and

5.02 TeV [17, 18]. NA61/SHINE has charged particle fluctuation over a
wide range of energies up to

√
s = 17.6 GeV [19].

When comparing cumulants measured in experiment with those obtained
from lattice QCD or other field theoretical calculations [4, 5], one needs to
be aware of several key differences. Experiments deal with systems which are
finite, evolve in time, and are subject to global conservation laws. Thermal
field theory calculations, on the other hand, study static systems in thermal
equilibrium and in contact with an infinite heat bath.

In this contribution, we will discuss several of these differences and meth-
ods to correct for them. These are essential in order to extract the interesting
physics of the QCD phase diagram from heavy-ion experiments. In addition,
we will present a non-critical baseline which takes these corrections into ac-
count but does not assume any criticality. Such a baseline is important to
assess if the data show any hint of possible new physics.

2. Cumulants and factorial cumulants

Since the analysis of fluctuations in heavy-ion collisions is centered around
the concept of cumulants, let us remind ourselves about their basic prop-
erties. Given a multiplicity distribution P (N), the generating functions for
cumulants, g(t), and factorial cumulants, gF(t), are given by

g(t) = ln

∑
A,B

P (N) etN

 , (2)

gF(z) = ln

∑
A,B

P (N) zN

 . (3)

By construction, g(t = 0) = 0 and gF(z = 1) = 0. Cumulants and factorial
cumulants of the order of k, κk, and Ck, are then obtained through

κk =
∂k

∂tk
g(t)

∣∣∣∣
t=0

, (4)

Ĉk =
∂k

∂zk
gF(z)

∣∣∣∣
z=1

. (5)



The generating functions, g(t) and gF(t), are related through

gF(z) = g (ln(z)) (6)

which gives rise to simple relations between cumulants and factorial cumu-
lants

κk =

k∑
j=1

S(k, j)Ĉj , (7)

Ĉk =

k∑
j=1

Bk,j

(
1,−1, 2, . . . , (−1)j−1(k − j + 1)!

)
κj , (8)

where S(k, j) denotes the Stirling numbers of the second kind and Bk,j are
partial Bell polynomials. For the first four orders, this evaluates to

κ1 = Ĉ1 = ⟨N⟩ ,
κ2 = Ĉ1 + Ĉ2 ,

κ3 = Ĉ1 + 3Ĉ2 + Ĉ3 ,

κ4 = Ĉ1 + 7Ĉ2 + 6Ĉ3 + Ĉ4 , (9)

and

Ĉ2 = κ2 − κ1 ,

Ĉ3 = 2κ1 − 3κ2 + κ3 ,

Ĉ4 = −6κ1 + 11κ2 − 6κ3 + κ4 . (10)

In general, cumulants measure the deviation of a distribution from a
Gaussian, since for a Gaussian distribution κn = 0 for n > 2. And, as
already mentioned, cumulants can and have been calculated in finite tem-
perature field theories. This allows for a comparison with experimental data,
provided that various caveats and corrections are taken into account, as we
shall discuss in more detail below. Factorial cumulants, on the other hand,
measure the deviation of a distribution from a Poissonian, since Ĉn = 0
for n > 1 for a Poisson distribution. In addition, and related to that, facto-
rial cumulants correspond to the integrated irreducible correlation functions.
Consider, for example, the one- and two-particle densities, ρ1(p1) = dN

dp1
and

ρ2(p1, p2) =
dN

dp1 dp2
. Then the 2-particle density can be written as

ρ2(p1, p2) = ρ1(p1)ρ2(p2) + c2(p1, p2) . (11)



Here, c2(p1, p2) is the irreducible two-particle correlation function, which
typically vanishes if the particles are Poisson distributed1. The second-order
factorial cumulant is given by

Ĉ2 =

∫
dp1

∫
dp2 c(p1, p2) . (12)

Analogous relations exist between the higher-order factorial cumulants and
correlation functions (see e.g., [8, 20]).

While cumulants have the advantage that they can be calculated in finite
temperature field theory, they mix correlations of different orders as can be
seen from Eq. (9). This may not be a problem in the ideal situation where
we have a singular behavior of the cumulants right at the critical point. In
this case, the leading singularities of the cumulants and factorial cumulants
are identical as one can also see from Eq. (9) (see also [8]). However, in
reality, the lifetime and size of the systems studied in experiment are finite.
Therefore, the signal for a critical point is likely just an enhancement of the
cumulants. In this case, one expects a slightly larger enhancement of the
fourth-order cumulant as compared to the second-order one. However, a
similar relative increase may simply be due to a (non-critical) enhancement
of the second-order correlation only, since it enters the fourth-order cumulant
with a factor of 7. Therefore, a comparison of both, cumulants and factorial
cumulants is needed to ensure that any signal is related to critical behavior.

Another advantage of factorial cumulants is that so-called efficiency cor-
rections are readily applied if the efficiency follows a binomial distribution.
Consider the factorial cumulant of a distribution W (n) which arises from the
folding of the true distributions P (N) with a binomial distribution B(n,N ; ϵ)
with Bernoulli probability ϵ, W (n) =

∑
N B(n,N ; ϵ)P (N). Then the facto-

rial cumulants are simply related via

Ĉk[W ] = ϵkĈk[P ] , (13)

where Ĉk[W ] and Ĉk[P ] are the factorial cumulants for W and P , respec-
tively. Equation (13) together with the relation between cumulants and fac-
torial cumulants then demonstrates that in the limit of ϵ → 0, all cumulants
approach the Poisson limit, κn = ⟨N⟩.

One disadvantage of factorial cumulants is that they can be only reason-
ably defined for distributions which have only a positive support. In other
words, a distribution P (x) which is defined for both positive and negative x,
such as the distribution of net baryons cannot be easily discussed in terms
of factorial cumulants (see discussion in [20]).

1 One could imagine a situation where c2(p1, p2) is different from zero, but where its
integral vanishes. However, the authors are not aware of any real example where this
is the case.



Finally, (factorial) cumulants are extensive quantities, i.e., they scale
with the size of the system. Since it is difficult to constrain the size of the
systems created in heavy-ion collision, one customarily studies ratios of (fac-
torial) cumulants where the overall system size drops out. However, these
still suffer from event-by-event fluctuations of the system size which cannot
be fully removed by even the tightest centrality cuts (see Refs. [21–25]).

3. Comparing theory with experiment

As already mentioned in the Introduction, a comparison of cumulants
extracted from theory such as lattice QCD calculations with those measured
in experiment should be done with some care. Several issues need to be
addressed for such a comparison to be meaningful2:

— Global charge conservation: Finite temperature theory calculations
are commonly done in the grand-canonical ensemble, where the sys-
tem can exchange conserved charges with the external (infinite) heat
bath. Thus, the charges such as baryon number, B, strangeness, S,
and electric charge, Q, are conserved only on the average. In a heavy-
ion collision, the charges of the entire system, on the other hand, are
conserved. While one can mimic a grand-canonical ensemble by con-
sidering only a subsystem, typically by looking only at slices in rapidity
[26], effects of global charge conservation remain since the entire sys-
tem is still finite. Corrections due to global charge conservation can
be quite sizable [27–30]. While most estimates of these corrections are
based on the (ideal) hadron resonance gas, recently it has been shown
that these corrections can be calculated for any equation of state, in
particular that of QCD [31–33]. For the commonly used cumulant
ratios, one finds

κ2[B]

κ1[B]
= (1− α)

χB
2

χB
1

, (14)

κ2[B]

κ1[B]
= (1− 2α)

χB
3

χB
2

, (15)

κ4[B]

κ2[B]
= (1− 3αβ)

χB
4

χB
2

− 3αβ

(
χB
3

χB
2

)2

. (16)

Here, κn[B], represents the baryon number cumulant of the order n,
corrected for global baryon number conservation. χB

n denotes the
nth-order baryon number susceptibility, ∂n

∂ (µB/T )nP , for a grand-canon-
ical ensemble in full QCD, as for example determined by lattice QCD.

2 Here, we will not discuss the important corrections due to volume fluctuations as
they will be covered in [21].



The factor α denotes the fraction of the total baryon number which
is actually observed, α = ⟨NB⟩observed

⟨NB⟩4π , and β = 1 − α. Since usually
one only measures protons, α < 1

2 . We note that the expressions in
Eqs. (14)–(16) are valid in the limit where the correlation length is
small compared to the system under consideration. As discussed in
detail in [31], this is the case for the systems studied in heavy-ion
collisions. Similar expressions have also been derived for the other
conserved charges, Q and S, as well as for mixed cumulants [32].

— Thermal smearing: The above relations between measured cumulants
and those obtained in the grand-canonical ensemble do not take into
account thermal smearing, i.e., the fact that due to thermal motion
even for a boost invariant system, particles in a given spatial rapidity
bin are smeared over a range in momentum-space rapidities. As a
result of the thermal smearing, the observed cumulants approach the
Poisson limit as the acceptance in rapidity approaches zero [34].

— Baryons vs. protons: Protons are baryons but not all baryons are
protons. Thermal field theory calculations can typically only calcu-
late baryon number susceptibilities as they are associated with the
derivative of the pressure w.r.t. the baryon number chemical poten-
tial. Experiments, on the other hand, usually cannot measure neutrons
and are thus restricted to net-proton number cumulants. As argued
in Refs. [35, 36], in the presence of many pions, charge exchange re-
actions effectively randomize the proton and neutron numbers. In
this case, the proton cumulants can be obtained from the baryon-
number cumulants by a binomial folding with a Bernoulli probability
of p = ⟨Np⟩/⟨NB⟩ ≃ 1/2. As discussed in the previous section such a
binomial folding moves the cumulants closer to the Poisson (Skellam)
limit.

The effect of these three corrections is illustrated in Fig. 1 where we show
the dependence of the cumulant ratios κ4/κ2 and κ6/κ2 as a function of
the size of the rapidity acceptance window for a typical system produced at
LHC energies (for details, see [37]). Here, the horizontal gray lines represent
the value for the cumulant ratio as obtained from lattice QCD [13, 38]. The
black dashed lines show how this cumulant ratio changes with ∆Y due to
global charge conservation. The red lines are the result for the cumulant ratio
if both charge conservation and thermal smearing are taken into account.
Here one sees that, due to thermal smearing, the cumulant ratio approaches
the Poisson limit of κ4/κ2 = 1 as the acceptance window becomes small.
Finally, the blue points show the cumulant ratio for net-protons instead of
net baryons with both charge conservation and thermal smearing included.



Fig. 1. Cumulant ratio κ4/κ2 (upper panel) and κ6/κ2 (lower panel) as a function
of the acceptance window in rapidity, ∆Y , for a system created in heavy-ion colli-
sions at the LHC. The horizontal gray lines represent the result from lattice QCD
calculations for the net baryons [13, 38]. The black dashed lines show the effect of
global charge conservation, while the red lines include also thermal smearing. The
blue points are the results for the net-proton cumulant ratio, again with charge
conservation and thermal smearing included. The blue diamonds are the results
for net-proton cumulants using the method of [35, 36]. For details, see [37] where
this figure is adapted from.

The blue diamonds are the net-proton cumulants obtained using the method
of [35, 36]. The blue points are what an experiment such as ALICE is
expected to observe if the system created is in thermal equilibrium and if
there are no effects other than the fluctuations predicted by lattice QCD. For
both cumulant ratios, we see a substantial difference between the predicted
value from lattice QCD and what is measured in the experiment using net
protons. In particular, for the hyper-kurtosis, κ6/κ2, lattice QCD predicts
a negative value, while that for net protons turns out to be positive. A
negative sign of the hyper-kurtosis has been argued to be a signal for the
remnant of chiral criticality [39]. Therefore, great care needs to be taken
to reveal the underlying baryon cumulants from those measured. Such an
endeavour will likely require the measurement of several cumulant ratios as
a function of the size of the acceptance window in order to minimize the
systematic uncertainties.



In addition to the aforementioned issues, one should also be aware that
the systems created in heavy-ion collisions are dynamic, i.e., they evolve
with time whereas the systems studied in thermal field theories are static
and in thermal equilibrium. Of course, if the time evolution of the system
created in heavy-ion collisions is governed by hydrodynamics and the typical
hydrodynamic scale is larger than the correlations length responsible for
critical fluctuations as argued e.g., in [40], then the application of (local)
thermal equilibrium may be a reasonable approach. If one wants to calculate
the effect of critical fluctuation, diffusion and non-hydro modes need to be
propagated as well. This can be done either via stochastic hydrodynamics
[42] or by explicitly propagating two and higher-order critical correlation
functions as proposed in [40] (see also a contribution by Stephanov to these
proceedings [41]).

At lower collision energies, which correspond to systems at higher net-
baryon density but lower-energy density, non-equilibrium effects are ex-
pected to become relevant, so that approaches based on hydrodynamics
may no longer be reliable. Instead, one has to resort to some kind of ki-
netic theory, which has not yet been developed for QCD matter. However,
in order to develop some intuition about the importance of non-equilibrium
effects and the possibility to detect signals for a dynamical system, it may
be a good first step to study classical molecular dynamics. This has been
recently done in Refs. [43, 44] for a Lennard-Jones fluid which does have a
critical point in the same universality class as the conjectured QCD critical
point. This study also addressed, at least qualitatively, another important
difference between theory and experiment:

— Theory calculates in coordinate space while experiment measures in
momentum space: In thermal field theory, one works in the grand-
canonical ensemble. In practice, this means that one considers a sys-
tem with spatial sub-volume VS of a large total volume VT such that
VS ≪ VT. The thermodynamic limit then corresponds to the limit
where both volumes go to infinity, VS, VT → ∞ while still preserving
that VS ≪ VT. Let us, therefore, consider the situation where VT is
large but not infinite. In the limit of VS ≪ VT but VS ≫ ξ3, one
recovers, after suitable corrections for global charge conservation as
discussed above, the grand-canonical results for the cumulants. Here,
ξ denotes the relevant correlation length. Thus, in theory, one studies
the fluctuations of a small spatial sub-volume which does particle and
energy exchange with the large total volume. At the same time, one
integrates over all particle momenta in the small sub-volume. In exper-
iment, the situation is just the opposite: One studies the cumulants of
a small sub-volume in momentum space characterized by, for example,
cuts in rapidity. At the same time, experimental measurements inte-



grate over all coordinate space. This can lead to quite different results
as demonstrated in [43]. To see this, let us consider a non-relativistic
system, such as the Lennard-Jones fluid which is governed by a two-
particle interaction in coordinate space, V (xi − xj). The Hamiltonian
of such a system is

H =
∑
i

p2i
2m

+
∑
i,j

V (xj − xj) (17)

so that partition function for a system of N particles in a total phase-
space volume Ω = ∆P ×∆R is given by

Z =

∫
Ω

dx1 dp1 · · · dxN dpN exp

(
−H

T

)

=

∫
∆P

dp1 · · · dpN exp

(
−
∑

i p
2
i

2mT

)

×
∫
∆R

dx1 · · · dxN exp

(−
∑

i,j V (xi, xj)

T

)
= ZPZR . (18)

Obviously, the partition function factorizes in a spatial, ZR, and mo-
mentum, ZP , piece with

ZR =

∫
∆R

dx1 · · · dxN exp

(
−
∑

i,j V (xi, xj)

T

)
, (19)

ZP =

∫
∆P

dp1 · · · dpN exp

(
−
∑

i p
2
i

2mT

)
. (20)

If we integrate over all momenta but limit the size of the spatial vol-
ume, as it is done in theory, we study the behavior of ZR and are
sensitive to the correlations introduced by the interaction. If, on the
other hand, we limit the momentum space but integrate over the entire
spatial volume as it is done in experiment, the resulting partition func-
tion Z ∼ ZP is essentially that of a gas of non-interaction particles.
Therefore, one will not observe any non-trivial correlations and fluctu-
ations. Exactly this has been demonstrated in Ref. [43] by explicit sim-
ulations of the Lennard-Jones liquid. Thankfully, the systems created
in heavy-ion collision are not static but exhibit considerable collective



flow, especially at high energies. Therefore, momentum space and co-
ordinate space are correlated, and cuts in momentum space correspond
to some cuts in coordinate space. However at lower energies, where the
collective flow is rather modest, one should expect that the signals will
become weaker simply because one is approaching the above-discussed
static limit. To which extent this is the case that has been studied
in [44] for the Lenard-Jones liquid.

4. Non-critical baseline

In order to see if there are any hints or signals from a possible phase tran-
sition or critical point in the measured cumulants, one needs a baseline which
uses an equation of state without any phase transition but includes all the
effects and corrections discussed in the previous section. There are several
versions of this in the literature. The STAR Collaboration [14, 15] typically
uses the UrQMD event generator for this purpose. UrQMD conserves all the
charges, such as the baryon number, and, being based on kinetic theory,
includes the effects of thermal smearing. In addition, it provides results
for (net) proton cumulants in addition to (net) baryon cumulants. Also,
UrQMD being an event generator, one can apply the same acceptance cuts
and centrality selection criteria as in the experiment. The latter may help to
simulate the effect of volume fluctuations [15]. Another approach [45] uses
the hadronic resonance gas including global charge conservation effects and
experimental data to constrain the fraction of baryons in the acceptance.
Since this approach is based on an ideal gas of hadrons, thermal smearing is
automatically included, and the model also gives results for (net) protons.
A third approach [46] uses viscous hydrodynamics for the time evolution
combined with a particlization method which respects global baryon-number
conservation also for (net) protons [33] and, by constructions, includes the
effects of thermal smearing. In addition, sampling is done such that the re-
sulting cumulants agree with those from lattice QCD at vanishing chemical
potential. This is achieved by introducing an excluded volume correction
into the hadron resonance gas equation of state tuned to reproduce the lat-
tice cumulants. Using an excluded volume is justified by an analysis of
lattice results for the fugacity expansion of the pressure [47, 48]. However,
both this approach and that based on the hadron resonance gas presently
do not account for volume fluctuations.

The results for cumulants (left panels) and factorial cumulants (right
panels) from the third approach are shown in Fig. 2 together with the data
from the STAR Collaboration. Note that the data and calculations are for
protons (red lines and symbols) and anti-protons (gray lines and symbols)
separately, but not for net protons. The solid lines represent the results



Fig. 2. Comparison of STAR data with the non-critical baseline calculated in [46]
for cumulants and factorial cumulants. Data are from Ref. [14]. The figure is
adapted from [46].

using the excluded volume correction for the sampling process. The dashed
lines are the results without these corrections and are very similar to those
of Ref. [45]. We find that for collision energies above

√
sNN ≃ 20 GeV, the

baseline agrees well with the data for all proton (factorial) cumulants. This is
not the case for the anti-protons, a discrepancy which remains an open ques-
tion. We further observe that the third- and fourth-order factorial cumulants
are (within errors) consistent with this baseline. For the second-order fac-
torial cumulant, on the other hand, the baseline significantly underpredicts
the data for energies below

√
sNN ≃ 15 GeV. The third- and fourth-order



cumulants also seem to show some discrepancy between data and baseline.
However, this difference has its origin in that of the second-order factorial
cumulant. As discussed in the previous section, cumulants are a superposi-
tion of the factorial cumulants (see Eq. (9)) so that the discrepancy of the
second-order factorial cumulant enters the higher-order cumulants. This is
a nice example which demonstrates that looking at cumulants only may lead
to wrong impressions.

Given the presently available data, there is a clear deviation of the data
from the baseline for the second order cumulants which persists and actu-
ally increases at even lower energies as shown in Fig. 3. One cause for this
difference may be volume fluctuations. As shown in [49] the second order
factorial cumulants receive the strongest contribution from volume fluctu-
ations. In addition, at lower energies the multiplicity of charged particles,
which is used for centrality selection, is lower, resulting in less precise cen-
trality determination. Therefore, it would be interesting to see how the new
methods for removing volume fluctuations proposed in Refs. [24, 25] and
discussed in the contribution by Rustamov [21] change the present data. In
any case given the large discrepancy between the data and the baseline for
the second order (factorial) cumulants it seems wise to understand those
first before interpreting the higher order cumulants in terms of any critical
dynamics. And, given the rather large error bars of the higher order cumu-
lants it may be good to wait for the data from second phase of the RHIC
beam energy scan, which will have much improved statistics.
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Fig. 3. Collision energy dependence of κ2/κ1 for protons. The data are from
[14, 15] (STAR) and [16] (HADES). The red line represents the non-critical baseline
determined in [46].



5. Summary

In summary, we have discussed how the study of fluctuations may help
to find interesting structures and possible phase transitions in the QCD
phase diagram. The measure of these fluctuations, the cumulants of the
distributions of conserved charges, can be calculated in thermal field theo-
ries and, with some limitations, can also be measured in experiment. This
allows for a direct comparison between the predictions of (lattice) QCD and
measurement.

We have emphasized that such a comparison needs to be done with some
care as the systems created in heavy-ion collisions are different from those
studied in theory. Issues such as global charge conservation, thermal smear-
ing, volume fluctuations, etc. need to be carefully accounted for. While this
may seem like an impossible task, considerable progress has been made years
since these ideas originally have been formulated [9, 26]. The progress has
not been restricted to theory and phenomenology. On the experimental side,
the quality and wealth of the data have improved significantly. Fluctuation
measurements have and will be carried out over the entire collision energy
range allowing for a comprehensive understanding of these issues and, more
importantly, the physics of the QCD phase diagram.

Finally, we should point out that fluctuations may also help to constrain
and measure other interesting properties of dense matter, such as the speed
of sound [50] or the rate of baryon annihilation in the hadronic phase [51],
just to name a few. Thus, fluctuations measurements and their interpreta-
tion, while difficult and challenging, provide rich insights into the properties
of the QCD matter created in heavy-ion collisions
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