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Coordination of OLTC and Smart Inverters for
Optimal Voltage Regulation of Unbalanced

Distribution Networks
Changfu Li, Student Member, IEEE, Vahid R. Disfani, Member, IEEE, Hamed Valizadeh Haghi, Senior Member,

IEEE and Jan Kleissl

Abstract—Photovoltaic (PV) smart inverters can improve the
voltage profile of distribution networks. A multi-objective opti-
mization framework for coordination of reactive power injection
of smart inverters and tap operations of on-load tap changers
(OLTCs) for multi-phase unbalanced distribution systems is
proposed. The optimization objective is to minimize voltage
deviations and the number of tap operations simultaneously.
A novel linearization method is proposed to linearize power
flow equations and to convexify the problem, which guarantees
convergence of the optimization and less computation costs. The
optimization is modeled and solved using mixed-integer linear
programming (MILP). The proposed method is validated against
conventional rule-based autonomous voltage regulation (AVR) on
the highly-unbalanced modified IEEE 37 bus test system and a
large California utility feeder. Simulation results show that the
proposed method accurately estimates feeder voltage, significantly
reduces voltage deviations, mitigates over-voltage problems, and
reduces voltage unbalance while eliminating unnecessary tap
operations. The robustness of the method is validated against
various levels of forecast error. The computational efficiency
and scalability of the proposed approach are also demonstrated
through the simulations on the large utility feeder.

Keywords—Distribution network, photovoltaic, tap changer, smart
inverter, mixed-integer linear programming, voltage regulation.

I. INTRODUCTION

Penetration of variable distributed generation connecting
into distribution systems has increased significantly in recent
years. In California, specifically solar photovoltaics (PV) has
shown such growth predominantly. While PV brings economic
and environmental benefits, it presents voltage regulation chal-
lenges in distribution systems due to the variability in the solar
resource [2–5].

Conventionally, utility devices such as on-load tap changers
(OLTCs), shunt capacitors (ShCs), and shunt reactors regulate
the voltage within operation limits. These devices are usually
limited in number of switches and slow in response time,
and hence less effective in regulating feeder voltage during
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periods of minute-by-minute PV variability. In contrast, PV
smart inverters (SIs) provide an alternative method for fast-
response voltage regulation by modulating real and/or reactive
power of PV systems [6]. Moreover, all these devices typically
operate autonomously based on pre-defined rules or curves to
regulate voltage. These autonomous control schemes are based
on local measurements requiring no communications. The lack
of coordination between these devices leads to sub-optimal
system performance.

Numerous research works in the literature have studied co-
ordination of SIs for voltage regulation [7–12]. In [7], optimal
power flow (OPF) problems is formulated considering feeder-
wide constraints and then solved to determine the optimal
real and/or reactive power dispatch of SIs for minimizing
losses while eliminating voltage violations. Through convex
relaxation, the OPF is formulated as a second order cone
program, and reactive power of SIs is optimized to reduce
line losses and energy consumption. The alternating direc-
tion method of multipliers (ADMM) is used to solve the
OPF and find the optimal SI reactive power for reducing
losses in [8] and for voltage regulation in [9]. ADMM-based
algorithms are also employed in [10] to determine optimal
SI real and reactive power set points for voltage regulation.
In [11], semi-definite programming relaxation is leveraged
for optimal dispatch of SI real and reactive power. A linear
approximation of the power flow equations is used in [12]
to optimizate SI real and reactive powers efficiently. In these
works, however, cooperation amongst SIs is studied without
taking other voltage regulation devices including OLTCs into
account. Uncoordinated operation of OLTCs and SIs may
cause unintended OLTC tap operations [13] leading to higher
OLTC wear and tear and less effective voltage regulation.

Various studies have improved coordination between SIs and
other voltage regulation devices for better voltage regulation
performance. Some works improve the basic autonomous rule
based methods [14–16]. Reference [14] replaces the local
OLTC bus voltage with feeder end measurement for the control
of tap switching to improve the visibility of downstream volt-
age. SIs dynamically adjusts their power factor per autonomous
curves. OLTC voltage set points are dynamically adjusted
based on voltage estimates from sensitivity matrix to accom-
modate SI outputs in [15]. OLTC and SIs are coordinated by
iteratively updating their settings to achieve target local voltage
at the SI [16].

The improved rule based methods are relatively simple to
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implement and can accomplish partial coordination between
devices. However, optimization based approaches can achieve
optimal coordination to ensure optimal voltage regulation
performances for distribution feeders with complicated voltage
profiles caused by fluctuating distributed energy resources
[17–21]. In [17], SI real and reactive power and OLTC tap
positions are optimized simultaneously to minimize voltage
deviations. A robust optimization model is developed in [18]
to schedule real and reactive power of distributed generators
(DGs) and OLTCs for production cost minimization while
ensuring acceptable network voltage profiles. DGs and OLTCs
are coordinated through optimization to minimize voltage
deviations and network losses in [19]. The optimization in
[20] also coordinates SIs, OLTCs, and ShCs while meeting
voltage operation limit constraints. Reactive power of SIs,
ShCs and OLTC tap position are optimized to eliminate voltage
violations in [21].

Since non-linear AC power flow constraints render optimiza-
tion problems non-convex and computationally intensive for
large distribution networks, different linearization techniques
have been applied in the literature to address this concern. In
[17], an analytical approach is proposed to calculate sensitivity
coefficients of node voltages to approximate voltage change
as a function of SI real power, reactive power, and OLTC tap
positions. Since [17] assumes that OLTCs are located at the
substation, the method is not directly applicable to distribution
feeder with OLTC in the middle of the feeder [17, 18]. In
[19], the sensitivity coefficients for OLTC tap position are
determined by summing real and reactive power coefficients
at all buses due to each OLTC variation. The computational
burden of the method could increase substantially due to
exponentially growing tap position combinations with more
OLTCs. Linearized power flow equations are exploited for
computational efficiency in [12]. The solution, however, does
not coordinate SIs and OLTCs and is not validated on multi-
phase and unbalanced distribution feeders. Furthermore, the
voltage estimate from the linear approximation differs sub-
stantially from the actual system voltage.

SIs, OLTCs, and ShCs are coordinated in [20] and the
method is tested on unbalanced feeders. The optimization
problem is non-linear and non-convex without relaxation of
AC power flow constraints. While computational strategies
are introduced to reduce computation cost, this non-linear and
non-convex formulation could lead to either local solutions
or convergence issues [20, 22, 23]. In [21], the big bang-big
crunch optimization is used to improve convergence speed.
However, the computation time can still be up to 40 s for the
small IEEE 33-bus feeder with only 3 DGs, 1 OLTC and 2
ShCs, which makes the optimization technique not applicable
for distribution systems with hundreds and thousands of nodes.

In the authors’ prior work [24], coordination of multiple
OLTCs for voltage regulation is studied. Voltage violations
are mitigated and the method is proven to be computationally
efficient. However, it does not address coordination between
OLTCs and SIs, which can lead to the higher OLTC wear and
less effective voltage regulation as discussed in [13].

As a follow-on work, this paper proposes an optimization-
based voltage control strategy to coordinate OLTCs and SIs in

operable time scales. It proposes a new linearization method to
linearize power flow equations and to convexify the problem,
which guarantees convergence of the optimization and less
computation costs. The optimization is modeled and solved
using mixed-integer linear programming (MILP). Since the
linearization technique convexifies the optimization problem,
convergence are guaranteed in contrary to [20]. By relaxing
the non-linear AC power flow constraints, fast solutions can
be achieved in a regular PC, unlike [21]. Also, the proposed
method addresses OLTCs which are located within the feeder–
not necessarily on substation–which differentiates this paper
from [17, 18]. The proposed formulation is scalable and can
be easily applied to distribution networks with any number
of OLTCs in contrast to [19]. A sensitivity study shows that
voltage estimation is more accurate with a maximum error of
0.009 p.u. compared to around 0.1 p.u. in [12]. The method
is also applicable to unbalanced feeders. It is demonstrated
on the highly-unbalanced modified IEEE 37 bus test network.
And it is robust against forecast errors as demonstrated by
simulations. The scalability of the method is also tested on a
real California utility feeder with 2844 nodes.

In summary, the contributions of this paper are as follows:
1) it addresses coordination of OLTCs and SIs for optimal

voltage regulation,
2) a novel linearization technique is proposed to convex-

ify the optimization problem for higher computational
efficiency,

3) it guarantees convergence and leads to more accurate
voltage estimates,

4) it is robust against forecast errors,
5) it is scalable to handle multiple OLTCs and SIs coor-

dination regardless of OLTC location.
The rest of the paper is organized as follows. Section II

discusses the linearization technique for modeling the OLTC
tap change and SI reactive power on distribution feeder volt-
age. Section III explains the formulation of the optimization.
Section IV provides details of the test feeder models, volt-
age regulation methods, and simulation scenarios. Section V
presents simulation results followed by conclusions in section
VI.

II. MODEL LINEARIZATION FOR VOLTAGE REGULATION

The goal of the optimization formulated in section III is
to coordinate OLTCs and SIs for voltage regulation. In this
section, we introduce the linearized model to represent the
relation between voltage and controllable parameters.

A. Linearization of Feeder Nodal Equation

Consider a distribution feeder with N nodes contained in
the set N . Its feeder nodal voltage equation can be written as:

V = ZI, (1)

where V and I are N × 1 complex vector for voltages and
net node current injections at all nodes (V, I ∈ CN ), and Z is
the N × N feeder impedance matrix (Z ∈ CN×N ). A linear
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approximation of the perturbations in node voltage resulting
from changes in impedance and current (∂V/∂(ZI)) leads to

∆V = ∆Z · I0 + Z0 ·∆I, (2)

where the subscript (0) represents unperturbed parameters. ∆Z
is a function of tap position changes of OLTCs and ∆I results
from current injection changes of PVs and loads. ∆V is further
derived by modeling the effects of OLTC tap changes on ∆Z
and current source changes on ∆I which we cover in Section
II-B and Section II-C.

B. Modeling OLTC Tap Operation Effects on Voltage
An OLTC regulates voltage via changing tap position τ ,

which alters the ratio of the transformer secondary voltage
with respect to the primary voltage (tap ratio a) and changes
the impedance matrix Z. The tap ratio a is a linear function
of τ ,

a = 1 +
τ

τmax
(amax − 1), (3)

where amax is the maximum tap ratio corresponding to the
maximum tap position τmax. OLTC tap operation effects on
voltage can be determined by modeling its effects on Z, which
is a function of tap ratio a.

In (2), ∆Z is needed to determine ∆V. Considering an
OLTC tap operation, which changes the tap ratio from a0 to a,
the corresponding impedance matrix change can be expressed
as

∆Z = −Y−10 ·∆Y · Y−10 , (4)

where Y0 is the admittance matrix associated with the initial
tap ratio a0. ∆Y is the admittance change due to change of
OLTC tap ratio from a0 to a.

Since ∆Y is the only unknown on the right-hand-side of
(4), ∆Z can be determined if the corresponding ∆Y can be
modeled. Considering an OLTC connected between node i of
the primary side and node j of the secondary side, only the
elements associated with these two nodes are impacted by a
OLTC tap change, i.e. only the following elements in ∆Y are
non-zero:

∆Yii = (a2 − a20)/zT , (5)
∆Yji = ∆Yij = −(a− a0)/zT , (6)

where zT is the equivalent impedance of the transformer on
the winding connected to node i. The non-linearity in (5) can
be removed by a Taylor series expansion for a2 around a0,
yielding a linear expression,

∆Yii = (2aa0 − 2a20)/zT . (7)

More details on the derivation of (4) and the relationship
between Y and a can be found in [24]. The derivation of
(4) is based on the assumption of fixed current loads in [24],
which does not accurately represent common loads [25]. In
this paper, we apply a more common fixed power model for
loads. However, the expression of (4) still applies since both
∆Z and ∆Y in (4) are direct results of OLTC tap changes and
are only functions of tap positions.

C. Modeling Voltage Impacts of Current Sources
PVs and loads are the current sources. A change in their

injected currents (∆I) affects the feeder voltage profile per (2).
The power injections of PVs and loads need to be specified
for modeling their current injections into the feeder.

The power injections and current injections are related by

S = P + jQ = VI∗, (8)

where S,P,Q ∈ CN are the vectors of complex power, real
power, and reactive power injections at all nodes. j :=

√
−1. V

is the voltage vector and I∗ is the conjugate of the net current
vector. Expressing the parameters as the initial value plus a
perturbation, V = V0 + ∆V and I = I0 + ∆I, (8) can be
rewritten as,

S = (V0 + ∆V)(I0 + ∆I)∗. (9)

Eq. (9) sets up the relation between ∆I and the power
injections of PVs and loads as needed for Eq. (2).

Substituting the real and imagery parts of V0, ∆V, I0 and
∆I into (9) yields the real and reactive power injection as,

P = (Vd0 + ∆Vd)(Id0 + ∆Id) + (Vq0 + ∆Vq)(Iq0 + ∆Iq),
(10)

Q = (Vq0 + ∆Vq)(Id0 + ∆Id)− (Vd0 + ∆Vd)(Iq0 + ∆Iq).
(11)

where V0 = Vd0+jVq0, I0 = Id0+jIq0, ∆V = ∆Vd+j∆Vq ,
and ∆I = ∆Id + j∆Iq .

The unperturbed variables (subscript “0”) are known. The
terms with ∆ symbol are the unknowns to be solved in the
optimization. Imposing constraints of P and Q directly would
result in a non-convex optimization problem due to products
of two unknown optimization parameters (e.g. ∆Vd∆Iq in P).
To convexify the problem, P and Q are linearized and the
constraints are implemented using ∆P and ∆Q (P = P0 +
∆P + Perr, Q = Q0 + ∆Q + Qerr). Higher order non-convex
square terms are dropped to yield

∆P = Vd0∆Id + ∆VdId0 + Vq0∆Iq + ∆VqIq0, (12)
∆Q = Vq0∆Id + ∆VqId0 − Vd0∆Iq −∆VdIq0. (13)

The higher-order non-convex terms constitute the real and
reactive power errors Perr = ∆Vd∆Id + ∆Vq∆Iq and Qerr =
∆Vq∆Id −∆Vd∆Id.

For load nodes, assuming a commonly used fixed power
load model [26], the load power injections remain unchanged
despite the perturbations. Therefore the power injection con-
straints for load nodes are

∆Pi = 0,∀i ∈ N l, (14)
∆Qi = 0,∀i ∈ N l, (15)

where N l is the set of load nodes.
For PV nodes, to maximize PV production real power

curtailment is prohibited . The real power injections at the
perturbed PV nodes then remain Pi0,∀i ∈ NPV and are
determined by the available solar irradiance. The reactive
power injections of the PV nodes are limited by the inverter
rated power, |Qi| ≤ Qimax ,∀i ∈ NPV as shown in Fig. 1.
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Fig. 1: PV smart inverter output curve. P is the PV real power
production, which is determined by the solar irradiance at each
time step. Assuming no curtailment, given the SI rating S,
the reactive power output can then vary between −Qmax and
Qmax.

Qimax
=

√
S2
i − P 2

i is the maximum available reactive power
of the SI, where Si is the SI rated power, ∀i ∈ NPV . After
the linearization, the constraints at the PV nodes become

∆Pi = 0,∀i ∈ NPV , (16)
|∆Qi| ≤ (Qimax

−Qi0),∀i ∈ NPV . (17)

Assuming that the PVs operate at unity power factor before
reactive power perturbations (Qi0 = 0), the constraint in (17)
becomes

−Qimax ≤ ∆Qi ≤ Qimax ,∀i ∈ NPV . (18)

D. Linearization of voltage magnitudes
The magnitude of the complex node voltages can be calcu-

lated based on their real and imaginary parts as

|V |2 = V 2
d + V 2

q , (19)

where V = Vd + jVq is the complex voltage of an arbitrary
node of the feeder.

Linearizing the nodal voltage magnitude in (19) around
the initial point (i.e. V0 = Vd0 + jVq0) yields |V0|∆|V | =
Vd0∆Vd+Vq0∆Vq . Then the voltage magnitude of an arbitrary
node can be calculated as

|V | = |V0|+ ∆|V | = |V0|+ |V0|−1(Vd0
∆Vd + Vq0∆Vq).

(20)

This definition sets up an affine relation between the voltage
magnitude of all nodes and the optimization parameters, which
convexifies the optimization problem.

E. Implementation and Forecasts
Fig. 2 presents the flowchart of the implementation of the

proposed voltage optimization. For tap operation minimization,
the optimization problem is defined over a 5-min time horizon.
V0 and I0 over the next 5 minutes are needed for modeling the
effects of OLTC tap position changes and SI reactive power

Fig. 2: Flowchart of the proposed voltage optimization. PV and
load forecasts are used to obtain the linearization voltages and
currents (V0, I0) for the next 5 minutes from an OpenDSS [27]
base power flow simulations. Then, the voltage optimization
per (??) is formulated and solved by interfacing with the
CVX [29] and Gurobi solvers [30] using MATLAB, providing
decision values for ∆V, ∆I and τ . The optimal SI reactive
power of the SI per (11) and the optimal tap positions τ are
then input into another power flow. The voltage estimation
accuracy using (20) is verified by comparing to the voltage
results from the OpenDSS simulation.

on voltage and they are obtained from a base power flow
run by OpenDSS [27] using solar and demand forecasts. Sky
imagers provide forecasts of PV availability throughout the
feeder at high spatio-temporal resolution [28]. Load profile is
from measured data at the substation provided by the utility.
Forecasts are generated from the original data by adding dif-
ferent levels of random noise. Details of forecast construction
are elaborated in Section V-C. The optimal tap positions and
SI reactive power set points are assumed to be delivered back
to each OLTC/SI without communication delay.

III. FEEDER-WIDE OLTC AND SI OPTIMIZATION

In this section, we formulate the optimization for coordi-
nation of OLTCs and SIs. The goals are to mitigate voltage
violations through minimizing voltage deviations and to reduce
tap operations. The optimization objectives are formulated
according to these two goals.

A. Optimization Model
The first objective function (J1) is the sum of voltage

deviations from 1 p.u. on the feeder during the optimization
horizon

J1 =

N∑
i=1

∑
t∈T

(||Vi(t)| − 1|), (21)

where T is the set of time steps in the optimization horizon,
and |Vi(t)| denotes the voltage magnitude of node i at time step
t. Minimizing J1 achieves a more homogeneous and steady
voltage.
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The second objective function (J2) counts the number of
tap operations as,

J2 =
∑
p∈P

∑
t∈T
|τp,t+1 − τp,t|, (22)

where P is the set of all OLTCs and τp,t denotes the tap
position of OLTC p at time step t. All tap changes over a
defined time horizon T are aggregated in J2.

Combining the two objective functions, the optimization can
be formulated as:

min J = w1J1 + w2J2

s.t. (2), (3), (4), (6), (7),
(14), (15), (16), (18), (20),
τp,t ∈ Z,
τp,min ≤ τp,t ≤ τp,max,

|τp,t − τp,t−1| ≤ ∆TOp,max

(23)

The weighting factors w1 and w2 balance voltage regula-
tion performance and total tap operations. Increasing w1 will
improve the voltage profile at the cost of more tap operations
and vice versa. w1 = 1 and w2 = 0.15 are chosen in this
paper through trial-and-error. This combination of parameters
provide good performance on both test feeders. Details of
weights factors selection are provided in Section IV-C.

B. Optimization Constraints

As presented in Section III-A, (2) is included as an equality
constraint to represent the linearized feeder nodal voltage
equation. (3)(4)(6)(7) are equality constraints for modeling
the relationship between impedance matrix change (∆Z) and
OLTC tap position (τ ). (14)(15) are the fixed power load model
constraints for load real power and reactive power, respectively.

In this work, real power curtailment is prohibited to max-
imize PV production, (16) is the corresponding equality con-
straint. As discussed in Section II-C, the maximum available SI
reactive power injection is limited by the inverter rated capacity
(Fig.1). (18) reflects the constraint on reactive power injection
for each SI. The linearized voltage magnitude equation ((20))
is an equality constraint.

The remaining three constraints are OLTC tap position
constraints. τp,t ∈ Z indicates the tap position is an integer,
where τp,t denotes the tap position of OLTC p at time step
t and Z represents integer numbers. τp,min ≤ τp,t ≤ τp,max

denotes the tap position is within [τp,min τp,max], τp,min =
−16 and τp,max = 16 are the minimum and maximum tap
positions of OLTC p, respectively. |τp,t−τp,t−1| ≤ ∆TOp,max

constrains tap position change within two consecutive time
steps. Since OLTCs react slowly, ∆TOp,max (1 tap operation
per 30 sec) avoids unrealistic tap operation changes by limiting
the maximum tap operations between two consecutive time
steps.

TABLE I: Test Feeder Properties.

Feeder IEEE 37 Utility Feeder
# of nodes 120 2844
# of Loads 30 584
# of PV 30 203
Peak Load (MVA) 2.73 8.50
PV Penetration (%) 150 150
# of OLTC 1 1

0

100
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300

400

P
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iz

e
 [
k
W

]Substation

Fig. 3: Feeder topologies of the California utility feeder. Black
lines represent feeder lines. Each dot is a PV system and its
color indicates its AC power rating. The OLTC is located at
the substation (green star).

IV. CASE STUDY

A. Distribution Feeder Models
To evaluate the proposed method, quasi-steady state simu-

lations are carried out on two multi-phase unbalanced feeders,
the modified IEEE 37 bus feeder and a real California utility
feeder (feeder 10 in [31] as shown in Fig. 3). The feeder
properties are summarized in Table I. The IEEE 37 bus
feeder is simulated for 24 hours with 30-sec resolution using
measured solar profiles from a partially cloudy day. Due to
computation time limitations for the large utility feeder, a 5-
min simulation time step is used. The simulation is performed
for a clear day.

For the IEEE 37 bus feeder, 30 PVs with DC power rating
ranging from 23 to 206 kW and totalling P peak

pv = 4.1 MW are
randomly deployed on the feeder. The total PV penetration on
the feeder is 150% by capacity: PVPen =

Ppv peak

Pload peak
× 100%.

340 PVs with DC ratings varying from 7 kW to 458 kW are
connected to the utility feeder, resulting in a total capacity
Ppv peak = 12.8 MW and also 150% PV penetration. 10%
oversizing of AC power rating is assumed for the SIs on both
feeders [32]. Both feeders contain one OLTC at the substation.
The OLTC tap position can vary from τ = −16 to +16 with
voltage regulation capability of [0.9 1.1] p.u..

B. Voltage Regulation Methods
The proposed method is benchmarked against the widely-

used conventional autonomous voltage regulation scheme
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Fig. 4: Volt-Var curve of SI adapted from [33]. The SI
injects/absorbs the corresponding percentage of available vars
based on the voltage at the point of common coupling (PCC).
The available vars (Qmax) are limited by PV real power
generation and SI rating as shown in Fig. 1.

TABLE II: Summary of autonomous voltage regulation (AVR)
and optimal voltage regulation (OVR).

OLTC PV
AVR (benchmark) Autonomous control Volt-var Curve
OVR (proposed) Tap optimized VAR optimized

(AVR). The two different voltage regulation strategies are
summarized in Table II.

1) Autonomous Voltage Regulation (AVR): In AVR, voltage
control devices operate autonomously based on pre-defined
rules/curves without coordination with each other. SIs output
reactive power following the Volt-Var curve in Fig. 4, which
is the recommended default Volt-Var curve by the California
Public Utility Commission [33]. OLTCs change tap position to
keep the deviation of the local busbar voltage from the preset
reference voltage within certain limits. The OLTC reference
voltage is set to 1.03 p.u. for IEEE 37 bus feeder and 1.02 p.u.
for the utility feeder. The voltage regulation bandwidth is
0.0167 p.u. for both feeders. For better voltage regulation, the
tap time delay is set to be 0 sec. All other OLTC parameters
are set as the default OpenDSS [27] values.

2) Optimal Voltage Regulation (OVR): For OVR, OLTCs
and SIs are coordinated to minimize voltage deviations as
described in Section III. Per the optimization outputs, SIs
participate in voltage regulation via reactive power absorption
and injection and OLTC tap position are specified. A reference
voltage is not needed as the OLTCs will follow the optimal
tap position.

C. Selection of Weighting Factors for OVR
Since the optimization objective J is a weighted sum of

J1 and J2, heavier weighting on J1 will improve the voltage
profile at the cost of more TOs and vice versa. Therefore,
appropriate weighting factors should be chosen to achieve a
desired trade-off between voltage profile and number of TOs.

TABLE III: Case study of different objective function weights
w2 on the IEEE 37 bus feeder with 150% PV penetration. w1

is fixed at 1. The mean voltage deviation is calculated for 8:00
- 17:00 of all nodes. The total TO is counted for the 24 hour
day.

w1 w2 Mean Voltage Deviation (p.u.) Total TO

1

0.001 0.0170 94
0.010 0.0170 91
0.050 0.0172 38
0.150 0.0174 2

Several combinations of weighting factors (w1, w2) are tested
with simulations on the IEEE 37 bus feeder on 150% PV
penetration (Table III).

As expected, larger weighting factors (w2) on J2 cause de-
creasing total TO, while voltage deviations generally increase.
Relative to w2 <= 0.05, w2= 0.15 provides a large reduction
in TO without a significant increase in voltage deviations. And
simulations with w2 = 0.15 on the California utility feeder
also show minimization of voltage deviations with a reasonable
number of total TOs. Therefore, w2 = 0.15 is used for both
test feeders hereinafter.

The best combination of w1 and w2 for different feeders may
vary due to the operator preferences between better voltage
regulation or less TO, different locations of OLTCs, feeder
topologies, distribution of PVs, etc. Local adjustments of the
weighting factors are therefore recommended.

V. DISTRIBUTION FEEDER SIMULATIONS RESULTS

A. Voltage Estimation Accuracy
Given that estimated node voltages are used in the optimiza-

tion to determine optimal OLTC tap position and SI reactive
power, we examine the errors resulting from the linearization
of feeder nodal voltage equations ((2)), the admittance matrix
(Section II-B), power injection constraints (Section II-C), and
the voltage magnitude ((20)). Errors are defined as the differ-
ences in estimation of voltage magnitude from (20) versus the
non-linear AC power flow results from OpenDSS (Fig. 2)

E(t)i = Vestimate(t)i − VOpenDSS(t)i. (24)

Fig. 5 presents E(t) distributions for the IEEE 37 bus feeder.
Since the voltage estimations match the AC power flow results
closely, it can be concluded that the proposed model estimates
voltage magnitudes accurately. The maximum error magnitude
is 0.009 p.u. and the mean absolute error magnitude is always
under 0.004 p.u.. Around noon when the distribution feeder
is prone to voltage violations with high PV generation, the
voltage estimation errors are less than 0.001 p.u.. At night
when the estimation errors are relatively high, the distribution
system is much less likely to experience voltage violations
even with simple local Volt-Var functions (Fig. 7). And the
proposed method can improve the night time voltage profile
further as shown in Fig. 7. Therefore, the proposed method
can effectively mitigate voltage violations despite somewhat
larger voltage estimation errors at night.
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Fig. 5: Box plot of voltage estimation errors for the IEEE 37
bus test feeder. For readability, the results are aggregated over
two hours into 12 groups.

B. Performance Under Perfect Forecasts

1) IEEE 37 Bus Feeder:
Voltage Profile: Fig. 6 presents snapshot voltage profiles

of the feeder around noon (11:32 h, medium loading of
0.84 MVA, large PV generation of 3.3 MW) and in the evening
(21:00 h, heavy loading of 1.91 MVA, no PV generation). At
noon, a voltage increase along the feeder results from reverse
power flow caused by excess PV production. For AVR, the
voltage violates ANSI standards at the feeder end at 1.056 p.u.
[34]. The over-voltage violation occurs in phases 1 and 2, while
the voltage on phase 3 remains within [0.95 1.05] p.u.. At
the feeder end, there are also large voltage imbalances across
different phases with a mean voltage imbalance of 0.012 p.u.
and a max of 0.030 p.u.

On the contrary, OVR keeps the voltage of all phases within
the [0.95 1.05] p.u. ANSI limits. Due to limited available
reactive power capacity around noon (at full active power,
Qmax = 42% of the rated power), the mean voltage unbalance
stays the same and the max unbalance increase to 0.041 p.u. as
a result of correcting the over-voltage issues. If PV curtailment
was allowed, more reactive power support would reduce the
voltage unbalance since OVR minimizes total voltage devia-
tion, bringing all the voltages closer to 1 p.u..

At 21:00 heavy loading causes a large voltage drop with
AVR. Again, voltage discrepancies between phases are large:
the largest voltage difference occurs between phases 1 and
3 at the feeder end at 0.042 p.u., equivalent to 42% of the
allowable voltage range. The mean voltage unbalance is 0.017
p.u.. With OVR, the voltages remain close to 1 p.u. across the
entire feeder, resulting in a more desirable homogeneous (flat)
voltage profile. The voltage unbalance is substantially reduced
with a maximum of 0.014 p.u. (a 67% reduction compared to
AVR) and a mean of 0.005 p.u.. OVR squeezes the voltage
range on all phases toward 1 p.u. with coordinated reactive
power support from SIs, reducing the voltage unbalance on the
feeder. The favorable OVR results are enabled by coordination
of OLTCs and SIs through optimization and also by unlimited
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Fig. 6: Feeder voltage profile at 11:32 (top, a) and 21:00
(bottom, b) for the AVR (left) and OVR (right) voltage
regulation methods.

reactive power support (Fig. 1) at night.
Fig. 7 compares absolute voltage deviation of all nodes

on the feeder between AVR and OVR. For AVR, the mean
voltage deviation is around 0.011 p.u. during periods without
PV production. The voltage deviation mean increases when
PV power production ramps up starting around 08:00 and
reaches 0.031 p.u. at noon. Generally, voltages are scattered
far around the mean value and the range is larger near noon
due to high PV generation. The voltage deviations exceeded
the 0.05 p.u. limit (over-voltage) for over one hour near noon.
With OVR, the voltage deviations of all nodes are under the
0.05 p.u. limit, eliminating the over-voltage problems in the
AVR case. The voltage deviation mean decreases to below
0.005 p.u. at night and is always below 0.01 p.u. during
the day. The minimum average voltage deviations around
08:30 and 16:00 occur when PV generation balances load
consumption minimizing power flow on the feeder. Like for
AVR, the OVR voltage deviation is larger during day time
and peaks around noon. The noon peak is a combined effect
of maximum power flow on the feeder (i.e. larger voltage
change) caused by more PV power production and reduced
available reactive power of SIs (Fig. 1).

OLTC Tap Operations: Fig. 8 presents the OLTC tap
positions. For AVR, the tap position is set high (+9) during the
night with no PV production compensating the voltage drop on
the feeder. During the PV production period, the tap position
is lowered (+6) due to increasing voltage. Since the OLTC
and SIs operate autonomously based on local voltage without
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Fig. 7: Distribution of the absolute values of feeder nodal
voltage deviations from 1 p.u. for all nodes on the IEEE
37 bus feeder. top: AVR; bottom: OVR. The absolute values
are plotted for consistency with J1(21). The red dashed line
represents the [0.95 1.05] p.u. ANSI voltage limits. For the
IEEE 37 bus feeder, all voltage deviations greater than 0.05
are over-voltages.

coordination, the fluctuating PV generation (as indicated by
Fig. 7) triggers three immediate up-and-down tap operations.
In total, 10 tap operations occur during the day. With OVR, SIs
provide optimized reactive power support in coordination with
OLTCs, allowing a lower tap position setting without violating
operation limits. Unnecessary tap operations are also avoided
per objective J2 (22) resulting in only 2 total tap operations,
which is an 80% reduction when compared to AVR.

2) Large California Utility Feeder: Fig. 9 displays the
voltage profile of the large utility test feeder with AVR and
OVR. The mean AVR voltage deviation is around 0.010 p.u.
at night and increases to 0.021 p.u. around noon. The feeder
experiences over-voltages for about 2 hours when PV gen-
eration peaks. The largest voltage deviation is 0.053 p.u.,
corresponding to a 1.053 p.u. overvoltage. With OVR, the
average nodal voltage deviation reduces to 0.002 p.u. at night
and reduces to 0.010 p.u. near noon. All voltage deviations
are under the 0.05 p.u. limit, indicating that the over-voltage
issues for AVR are eliminated. The maximum voltage deviation
decreases to 0.042 p.u., corresponding to a maximum voltage
of 1.042 p.u.. Due to smooth PV generation of clear day the
OLTC did not operate under AVR despite over-voltage issues
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Fig. 8: Time series of OLTC tap positions τ for the IEEE 37
bus feeder.
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Fig. 9: Distribution of absolute values of feeder nodal voltage
deviation from 1 p.u. for AVR (top) and OVR (bottom) cases.

on the feeder. With coordinated OLTC and SIs under OVR, 2
tap operations suffice to resolve the over-voltage problem for
the entire day.

C. Performance With Forecast Errors

To evaluate the robustnes of the proposed OVR, multiple
case studies are carried out on the IEEE 37 bus feeder
assuming different levels of forecasting error. The PV and load
profiles with forecast errors are constructed using the following
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Fig. 10: Maximum and average voltage deviation of the IEEE
37 bus feeder under different levels of forecast errors with
OVR. Both quantities are calculated based on all nodal voltages
for simulations of the same cloudy day as Section V-B1

equation:

y(t) = (1 + αε(t))ytrue(t), (25)

where y(t) represents the forecasted PV output or load con-
sumption at time step t, ytrue(t) is true PV/load profile for
time step t. α is a scalar to represent the maximum error ratio
in terms of ytrue(t) while ε(t) is a random number from an
uniform distribution within [-1,1].

Fig. 10 presents the maximum and average nodal voltage
deviations within 24 hr simulation period for IEEE 37 bus
feeder with OVR for α = [0, 0.1, 0.2, 0.3]. α = 0 indicates
perfect forecasts as in Section V-B1.

As shown in Fig. 10, the both maximum and average
voltage deviations increase with larger forecasting errors. This
is consistent with expectations that less accurate forecasts will
lead to performance deterioration. Even with 30% forecast
error, the OVR is still capable of keep the maximum voltage
deviation (0.0467 p.u.) under 0.05 p.u., i.e. without voltage
violations. In contrast, AVR fails to maintain e the voltage
within [0.95 1.05] p.u. operation limits as shown in Fig. 7
(Note that since AVR does not require any forecasts, it is
always tested with true PV and load profiles). With AVR,
the maximum voltage deviation is 0.056 p.u., corresponding
to an over-voltage of 1.056 p.u.. As for mean nodal voltage
deviation, OVR keeps average voltage deviation under 0.0068
p.u. even with a forecast error of 30% while the average
voltage deviation is 0.0135 p.u. for the AVR case. OVR
significantly decreases voltage deviation per J1.

D. Computation Time
Solving the optimization problem at an operational timescale

would enable the control to be used in real time applications.
Table IV compares the average computation time in [12, 21]
for the IEEE 33 bus feeder and IEEE 2500 node feeder with
the OVR cases in this paper. For the IEEE 33 bus feeder
with 99 nodes, 3 DGs, 2 ShCs and 1 OLTC, the average
computation time is 40 s in [21] using an Intel Core i7-2600

TABLE IV: Comparison of average computation time (s) per
time step in [12, 21] and OVR case study in this paper.

Test Feeder # of nodes Optimization Solution time (s)
IEEE 33 99 [15] 40
IEEE 37 120 OVR 0.95

IEEE 2500 2500 [9] 600
Utility Feeder 2844 OVR 127

@ 3.4 GHz processor. With the proposed OVR algorithm in
this paper, however, the solution time is less than 1 second for
the slightly larger IEEE 37 feeder with 120 nodes, 30 PVs
and 1 OLTC using an Intel(R) Core(TM) i7-4700MQ 2.8-
GHz processor. For the large feeders, the solution time for
IEEE 2500 node feeder in [12] is 600 s with an Intel core
i7-4710HQ @ 2.5 GHz processor, while our proposed OVR
reduces computing time by 80% for a larger feeder on the
PC with Intel (R) Core(TM) i7-4700MQ 2.8-GHz processor.
While the computation cost comparison is not apples-to-
apples, the results strongly favor our OVR approach which
outperforms prior research by a large margin on larger feeders
and comparable and even inferior computing resources.

Due to compatibility issue between CVX [29] and the
newest version of Gurobi solver [30], Gurobi v6.5 is used in
this paper; the solution speed could be further improved with
the latest version Gurobi v8.1 [35].

VI. CONCLUSIONS

A novel method of coordinating OLTCs and SI reactive
power for voltage regulation was proposed. OVR is capable
of coordination voltage regulation between multiple OLTCs
and SIs. The proposed OVR is compared against conventional
AVR through simulations on the highly unbalanced IEEE 37
bus test and a large California utility feeder. Results show
that OVR can mitigate over-voltage violations, significantly
reduce voltage deviations, decrease voltage unbalance across
phases, and avoid unnecessary tap operations. This is achieved
by effective coordination between OLTCs and SI reactive
power control. The robustness of the proposed OVR is also
demonstrated on the IEEE 37 bus test feeder assuming different
levels of forecast error. The computational efficiency of OVR
is superior to prior methods and the solution time is compatible
with real-time operation on large California utility feeder with
2844 nodes and 203 PVs even on a regular PC.
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