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Abstract
Biological sensors must often predict their input while operating under metabolic con-
straints.However, determiningwhether or not a particular sensor is evolved or designed
to be accurate and efficient is challenging. This arises partly from the functional
constraints being at cross purposes and partly since quantifying the prediction perfor-
mance of even in silico sensors can require prohibitively long simulations, especially
when highly complex environments drive sensors out of equilibrium. To circumvent
these difficulties, we develop new expressions for the prediction accuracy and ther-
modynamic costs of the broad class of conditionally Markovian sensors subject to
complex, correlated (unifilar hidden semi-Markov) environmental inputs in nonequi-
librium steady state. Predictive metrics include the instantaneous memory and the
total predictable information (the mutual information between present sensor state
and input future), while dissipation metrics include power extracted from the environ-
ment and the nonpredictive information rate. Success in deriving these formulae relies
on identifying the environment’s causal states, the input’s minimal sufficient statistics
for prediction. Using these formulae, we study large random channels and the sim-
plest nontrivial biological sensor model—that of a Hill molecule, characterized by the
number of ligands that bind simultaneously—the sensor’s cooperativity. We find that
the seemingly impoverished Hill molecule can capture an order of magnitude more
predictable information than large random channels.
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Keywords Predictive information rate · Information processing · Nonequilibrium
steady state · Thermodynamics

1 Introduction

To perform functional tasks, synthetic nanoscale machines and their macromolecular
cousins simultaneously manipulate energy, information, and matter. They are infor-
mation engines—systems that operate by synergistically balancing the energetics of
their physical substrate against required information generation, storage, loss, and
transformation to support a given functionality. Classically, information engines were
conceived as either potential computers (Bennett 1982)—that is, physical systems that
can compute anything given the right program—or asMaxwellian-like demons that use
information as a resource to convert disordered energy to useful work (Maxwell 1888;
Szilard 1929; Mandal and Jarzynski 2012; Deffner and Jarzynski 2013; Boyd et al.
2017, 2016; Chapman and Miyake 2015; McGrath et al. 2017; Horowitz et al. 2013;
Toyabe et al. 2010). Recently, investigations into functional computation1 embedded in
physical systems led to studies of the thermodynamics of various kinds of information
processing (Parrondo et al. 2015), including the thermodynamic costs of information
creation (Aghamohammdi and Crutchfield 2017), noise suppression (Hinczewski and
Thirumalai 2014), error correction and synchronization (Boyd et al. 2017), predic-
tion (Still et al. 2012; Barato et al. 2014; Horowitz and Esposito 2014), homeostasis
(Boyd et al. 2016), learning (Goldt and Seifert 2017), structure (Boyd et al. 2017), and
intelligent control (Boyd and Crutchfield 2016). Due to its broad importance to the
survival of biological organisms, here we focus on a specific functional computation
in information engines: How do sensors predict their environment?

Evolved and designed sensory systems can be tasked with at least two, potentially
competing, objectives: accurately predicting inputs (Rao and Ballard 1999; Palmer
et al. 2015) and contendingwithmetabolic constraints (Chklovskii andKoulakov2004;
Hasenstaub et al. 2010).2 Accurate and energy-efficient predictive feature extraction
can be used to reap increased rewards from the environment, no matter the particular
“reward function” (Sutton and Barto 1998; Littman et al. 2001; Brodu 2011; Little
and Sommer 2014).

Optimizing such sensors requires a nontrivial matching of sensory statistics and
sensor structure (Becker et al. 2015; Boyd et al. 2016). Undaunted, much effort has
been invested to find energetically efficient and maximally predictive sensors, often

1 Here, when analyzing sensory information processing in biological systems, we take care to distinguish
intrinsic, functional, and useful computation (Crutchfield and Young 1989; Crutchfield 1994; Crutchfield
andMitchell 1995). Intrinsic computation refers to how a physical system stores and transforms its historical
information. We take functional computation as information processing in a physical device that promotes
the performance of a larger, encompassing system. We take useful computation as information processing
in a physical device used to achieve an external user’s goal. The first is well suited to analyzing structure in
physical processes and determining if they are candidate substrates for any kind of information processing.
The second is well suited for discussing biological sensors, while the third is well suited for discussing the
benefits of contemporary digital computers.
2 We only consider online or real-time computations, so that the oft-considered energy–speed–accuracy
trade-off (Lan et al. 2012; Lahiri et al. 2016) reduces to an energy-accuracy trade-off.
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simplifying the challenges by ignoring action policies—how the sensed information is
used. Some seek sensor models that maximize a combination of prediction power and
(energetic) efficiency, e.g., as in Barato et al. (2014) and Becker et al. (2015). Others
validate learning rules based on whether or not they maximize the aforementioned
objective function (Creutzig and Sprekeler 2008; Creutzig et al. 2009). Finally, others
compare real biological sensors to in silico null models, e.g., as in Palmer et al. (2015).

All these efforts require estimating prediction and dissipation metrics of given sen-
sors. Doing so can be surprisingly difficult. Consider the total predictable information
captured by a sensor (Bialek et al. 2001; Palmer et al. 2015), which we take to be
the mutual information between the present sensor state and the future of the sensory
input. There are uncountably infinite possible futures. How, then, are we to estimate
the total predictable information from simulations given that we are always in the
undersampled limit?

One approach is to simulate and employ sophisticated techniques for estimating
entropy in the undersampled limit, e.g., as in Nemenman et al. (2002). However,
even estimating the joint probability distribution of environment and sensor states
from simulations can require long simulations, as we find in one example below.
Alternatively, one can rewrite prediction and dissipationmetrics in terms of generators
of the environment and sensor, similar to how the predictive information bottleneck can
be recast in terms of forward- and reverse-time causal states (Marzen and Crutchfield
2016). The following pursues this second line of inquiry by solving a Chapman–
Kolmogorov equation that yields a partial differential equation for the joint probability
distribution of forward-time causal states and channel state. We find new closed-
form expressions for total predictable information, power consumption, instantaneous
memory, and nonpredictive information rate in nonequilibrium steady-state sensors.
The challenge to this analytical approach, of course, is that it requires accurate models
of the environment and sensor dynamics.

We address a very general class of environments and sensors, here conceptualized
as input-dependent dynamical systems: conditionally Markovian channels subject to
a realization of a stationary unifilar hidden semi-Markov process (Marzen and Crutch-
field 2017a) with an energy function associated with each environment and channel
state combination. This setting is sufficiently general that it allows nonequilibrium
sensing. The latter is crucial for accurate sensing (Mehta and Schwab 2012; Govern
and ten Wolde 2014; Lang et al. 2014; Bo et al. 2015; Mancini et al. 2016), in that
detailed balance may not hold and the Boltzmann distribution need not be equivalent
to the steady-state distribution over sensor states for a frozen environment. Unlike pre-
vious treatments, we do not explicitly demarcate a separate memory or energy source
accessed by the sensor (Bo et al. 2015; Ito and Sagawa 2015; Sartori et al. 2014),
but include components as part of the sensor. Our framework allows for nondetailed-
balance dynamics, implying the presence of multiple reservoirs (Van den Broeck and
Esposito 2015). A lack of detailed balance in sensor dynamics is a reminder of the
presence of multiple reservoirs. Finally, the environment is assumed to be unaffected
by the sensor. That is, either there is no feedback or the environment is infinitely large.
After all these assumptions, we calculate the heat dissipated by the sensor into the
reservoir of interest.
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Fig. 1 Hill molecule: (Top) Ion channel in a membrane in the open (left) and closed (right) states in which
ions can and cannot travel through. (Below) Ligand concentrations during the open-closed cycle of the
molecule

For illustration, we study both large random channels (randomly wired channels
with a large number of states) and an “optimal” Hill molecule, which is a simple
model of a ligand-gated channel; see Fig. 1. For these examples, we assume that the
ligand concentration is a realization of a semi-Markov process—a generalization over
previous efforts that assumed Markovian (Barato et al. 2014; Brittain et al. 2017) or
Gaussian (Becker et al. 2015) processes. This generalization is necessary when, for
instance, the Hill molecule represents a nicotinic acetylcholine receptor on a synapse
and ligands are acetylcholinemolecules since, as a practicalmatter, neuronal dynamics
are often non-Markovian and non-Gaussian (Izhikevich 2007).

We find that (1) increases in cooperativity (sharpness of response) of the Hill
molecule lead to increases in both prediction power and heat dissipation rate, (2)
a large fraction of the heat dissipation rate comes from inefficient prediction, and (3)
simple gradient-based adaptation rules lead to hysteresis. Furthermore, we find that the
total predictable information captured by this seemingly impoverished Hill molecule
exceeds the total predictable information captured by large random channels by an
order of magnitude, despite the latter’s ability to capture potentially useful informa-
tion about the past of the stimulus. This latter result would be impossible to obtain via
interactions with a continuous-time Markovian environment.

2 Background

Central to our analysis is an appreciation of causal states (minimal sufficient statistics
of prediction or retrodiction), unifilar hidden semi-Markov processes, and condition-
ally Markovian channels. We review these concepts here, simultaneously introducing
relevant notation.

2.1 Environment

Input symbols x take on any value in the observation alphabet A. We code the past
of the input time series as ←−x = . . . (x−2, τ−2), (x−1, τ−1), (x0, τ+) and the input’s
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future as −→x = (x0, τ−), (x1, τ1), (x2, τ2), . . ., where τi is the total dwell time for
symbol xi . To ensure a unique coding, we stipulate that xi �= xi+1. Note that symbol
x0 is seen for a total dwell time of τ+ + τ− = τ0; that is, the present splits the dwell
time τ0 in two.

As is typical,
←−
X is the random variable corresponding to semi-infinite input pasts

and
−→
X the random variable corresponding to semi-infinite input futures. We now

briefly review the definition of causal states, as described in Shalizi and Crutchfield
(2001) and measure-theoretically defined in Löhr (2010, 2012). Forward-time causal
states S+, the minimal sufficient statistics for prediction, are defined via the following
equivalence relation: two semi-infinite pasts,←−x and←−x ′, are considered “predictively”
equivalent if:

←−x ∼ε+ ←−x ′ ⇔ Pr(
−→
X |←−X = ←−x ) = Pr(

−→
X |←−X = ←−x ′).

The relation partitions the set of semi-infinite pasts into clusters of pasts. Each
cluster is a forward-time causal state σ+, a realization of the random variable S+.
Reverse-time causal states S−, the minimal sufficient statistics for retrodiction, are
defined similarly.Twosemi-infinite futures,−→x and−→x ′, are considered “retrodictively”
equivalent if:

−→x ∼ε− −→x ′ ⇔ Pr(
←−
X |−→X = −→x ) = Pr(

←−
X |−→X = −→x ′).

This equivalence relation partitions the set of semi-infinite futures into clusters,
each cluster being a reverse-time causal state σ−, a realization of the random variable
S−.

Forward- and reverse-time causal states are useful in the ensuing calculations due
to the following Markov chains. First, forward-time causal states are a deterministic
function of the input past (σ+ = ε+(

←−x )), and reverse-time causal states are a deter-
ministic function of the input future (σ− = ε−(

−→x )). Hence, we have the Markov
chains S+ → ←−

X → −→
X and S− → −→

X → ←−
X ; so that, for instance:

p(−→x , σ+|←−x ) = p(−→x |←−x )p(σ+|←−x ),

where we introduce a simplified notation for the probability distributions; e.g.,
p(σ+|←−x ) = Pr(S+ = σ+|←−X = ←−x ). Note that p(σ+|←−x ) is singly supported—
that is, a Kronecker delta δσ+,ε+(

←−x ). However, causal states are minimal sufficient
statistics of the past relative to the future and vice versa. And so,

←−
X → S+ → −→

X
and

−→
X → S− → ←−

X are also valid Markov chains; so that, for instance:

p(−→x ,
←−x |σ+) = p(−→x |σ+)p(←−x |σ+).

Invoking these Markov chains is called causal shielding.
For the discussion that follows, we must define hidden Markov models and unifi-

larity. We first do so in the case of discrete-time, discrete-event processes. A hidden
Markov model is equipped with hidden states and labeled transition probabilities
that give the probability for emitting a particular symbol and transitioning to a new
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Fig. 2 Two presentations of a unifilar hidden semi-Markov model. At bottom, a generative model for a
discrete-alphabet, continuous-time stochastic process. Dwell times τ are drawn upon transitions between
states, and the corresponding symbol is shown for that amount of time. At top, the corresponding “conveyor
belt” representation of the process generated by the model beneath. Conveyor belts represent the time since
last symbol based on the height along the conveyor belt traveled; each conveyor belt has a symbol. (Used
with permission from Marzen and Crutchfield (2017a).)

particular hidden state. (These are edge-emitting hidden Markov models, which are
completely general and equivalent upon transformation to the likely more familiar
state-emitting hidden Markov models.) In a unifilar hidden Markov model, the state
to which you transition is determined by the state that you are in and the symbol
that you emit. In other words, if g is the hidden state at time t , then p(gt+1|xt+1, gt )
is singly supported. Any nonunifilar hidden Markov model can be converted into a
unifilar hidden Markov model with equivalent statistics. However, typically, such a
unifilar hidden Markov model will have an uncountable infinity of states (Marzen and
Crutchfield 2017b). The process generated by a finite unifilar hidden Markov model
has a finite number of causal states (Travers and Crutchfield 2014), and the general-
ization of this statement to the continuous-time, discrete-event domain causes us to
focus on unifilar hidden semi-Markov models.

Now, we turn our attention to continuous-time, discrete-event processes. We focus
on unifilar hidden semi-Markov input, as in Marzen and Crutchfield (2017a). Causal
states of unifilar hidden semi-Markov processes have three distinct components, in a
way that can be visualized as state- and symbol-dependent conveyor belts that tran-
sition into one another. See Fig. 2. Each conveyor belt is labeled by a forward-time
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hidden state g. The forward-time hidden state is analogous to hidden states in unifilar
hidden Markov models, except that forward-time hidden states now emit both sym-
bols and dwell times. Dwell times are drawn from φg(τ ); the corresponding emitted
symbol x is chosen with probability p(x |g); and ε+(g, x) is the next hidden state
given that the current hidden state is g and the current emitted symbol is x . In other
words, x is emitted upon transition from g to the next hidden state g′. The last of these
properties is called unifilarity.

Having set up this machinery, forward-time causal states are labeled by σ+ =
(g+, x+, τ+). That is, the forward-time hidden state g+, current emitted symbol x+,
and time since last symbol τ+ (or equivalently, the time since x+ was emitted) together
comprise the forward-time causal states for unifilar hidden semi-Markov processes.
Similarly, the reverse-time causal state σ− = (g−, x−, τ−) for a unifilar hidden semi-
Markov process is a combination of reverse-time hidden state g−, current emitted
symbol x−, and time to next symbol τ−.

In what follows, we limit ourselves to finite unifilar hidden semi-Markov
processes—that is, unifilar hidden semi-Markov processes with a finite number of hid-
den states. While Marzen and Crutchfield (2017a)’s hidden semi-Markov processes
are completely general, they are restricted in that the unifilar hidden semi-Markov pro-
cess corresponding to a particular nonunifilar hidden semi-Markov processmight have
unordered uncountably infinite states. That said, we believe that any continuous-time,
discrete-event process can be approximated arbitrarily well by a countable unifilar
hidden semi-Markov process. (Alas, a proof of this is still lacking.) As such, we do
not believe that restricting ourselves to finite unifilar hidden semi-Markov processes
is limiting.

In our examples in Sect. 5, we focus on semi-Markov input, such that the aforemen-
tioned hidden states g are simply the current emitted symbol x . This greatly constrains
the forward- and reverse-time causal states, to the point that p(σ+, σ−) is easily attain-
able. (See App. C or below.) The forward-time causal states are now described by the
pair (x+, τ+), where x+ is the input symbol infinitesimally prior to the present and
τ+ is the time since last symbol—i.e., since x−1. The reverse-time causal states are
similarly described by the pair (x−, τ−), where x− is the input symbol infinitesimally
after the present and τ− is the time to next symbol—i.e., until x1. Let T± be the random
variable describing time since (to) last (next) symbol. The dwell time of symbol x has
probability density function φx (τ ), and the probability of observing symbol x after x ′
is q(x |x ′). By virtue of how we have chosen to encode our input: q(x |x) = 0.

Finally, the development to come requires finding the joint density ρ(σ+, σ−) of
forward- and reverse-time causal states. Let:

�x+(τ+) =
∫ ∞

τ+
φx+(t)dt and

μ−1
x+ =

∫ ∞

0
tφx+(t)dt .

As detailed in Marzen and Crutchfield (2017a), for the conditional density, we can
say:
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ρ(σ−|σ+) = ρ(g−, x−, τ−|g+, x+, τ+)

= δx+,x−
φg+(τ+ + τ−)

�g+(τ+)
p(g+|g−, x−).

For semi-Markov input, this simplifies the density: ρ(σ+, σ−) = ρ((x+, τ+),

(x−, τ−)). As described in Marzen and Crutchfield (2017a), we have:

ρ(x+, τ+) = μx+�x+(τ+)p(x+). (1)

Let p(x+) be the probability of observing symbol x+. This probability is given by:

p(x+) = (
diag(1/μx ) eig1(q)

)
x+ ,

where diag(1/μx ) is a diagonal matrix and eig1(q) is the eigenvector of q(·|·) asso-
ciated with eigenvalue 1. The conditional density of reverse-time causal states given
forward-time causal states is then:

ρ(σ−|σ+) = ρ((x−, τ−)|(x+, τ+))

= φx+(τ+ + τ−)

�x+(τ+)
δx+,x− . (2)

Together, Eqs. (1) and (2) give the joint density ρ(σ+, σ−) = ρ(σ+)ρ(σ−|σ+).

2.2 Sensory Channel

We assume the channel is conditionally Markovian. As such, its dynamics are fully
specified by input state-dependent kinetic rates. More precisely, the channel state y,
with corresponding random variable Y , can take on any value in Y , and the rate at
which channel state y transfers to channel state y′ when the input has value x is given
by ky→y′(x). Probability conservation dictates that:

ky→y(x) := −
∑
y′

ky→y′(x).

Then, the probability p(y, t) of being in channel state y at time t evolves as:

ṗ(y, t) =
∑
y′

ky′→y(x(t)) p(y′, t),

where x(t) is the input symbol at time t .
To simplify notation and ease computation, we write dynamical evolution rules in

matrix-vector form. Let p(y, t) be the column vector of probabilities that the channel is
in a particular state y at time t , and letM(x) be amatrix of rates:My′,y(x) = ky→y′(x).
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Fig. 3 Sensor information diagram (James et al. 2011) giving the relationship between prediction metrics
and nonpredictive information rate. Instantaneous memory is Imem = I[X0; Y0] = b+ d + f + h and total
predictable information Ifut = lim	t→0 I[Y0; X0:] = lim	t→0(b+c+d+e+ f +g+h), while the lower
bound on power consumption, the nonpredictive information rate is İnp = lim	t→0(b + h − c − e)/	t .

Recall a = H[Y0|X0, X	t ,
−→
X 2	t ], b = I[Y0; X0|X	t ,

−→
X 2	t ], f = I[Y0; X0; X	t ; −→

X 2	t ], and so on

Then, we have:

ṗ(y, t) = M(x(t)) p(y, t). (3)

with this, it is clear that p(y, t) can oscillate or decay to a steady state. The Perron–
Frobenius theorem guarantees that:

peq(x) := eig0(M(x)),

the probability distribution over channel states, when ligand concentration is set to x ,
is unique. This need not be a Boltzmann distribution due to the presence of unspecified
reservoirs.

3 Prediction and DissipationMetrics

We employ several metrics to quantify the sensor’s prediction performance and its
energetic efficiency. Instantaneous memory Imem (Still et al. 2012) and total pre-
dictable information Ifut (Still et al. 2010; Creutzig et al. 2009) characterize prediction
power, while the nonpredictive information rate İnp (Still et al. 2012; Horowitz and
Esposito 2014; Barato et al. 2014) and temperature-normalized power consumption
βP monitor dissipation. In nonequilibrium steady state, if detailed balance holds,
heat dissipation rate and power consumption are equivalent. Figure 3 uses an informa-
tion diagram (Yeung 1991; James et al. 2011) to illustrate the relationships between
the various information-theoretic quantities in terms of the elementary information
atoms—entropies, conditional entropies, and mutual information—out of which they
are constructed.
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In defining the sensor, we grouped into a single sensor what might separately
be called sensor, memory, and internal energy source(s). This allows us to con-
sider active sensors with memory. However, reading the sensor by other downstream
parts of an organism might entail a different grouping. In any case, since we use
information-theoretic quantities to define prediction metrics, the data processing
inequality employed below guarantees that we establish a (not necessarily tight) upper
bound on the instantaneous memory and total predictable information when reading
a sensor.

Our selection ofmetrics is inspired by previous efforts to characterize prediction and
dissipation in sensors. Instantaneousmemory and nonpredictive information were first
defined by Still et al. (2012). Horowitz and Esposito (2014) also focused on nonpre-
dictive information rate and power consumption, but did not calculate total predictable
information nor amore standard prediction-relatedmetric. Barato et al. (2014) used the
ratio of nonpredictive information rate to entropy production to characterize learning,
though nonpredictive information rate is not necessarily an intuitive metric for learn-
ing.Moreover, this ratio can be greater than unity when nonpredictive information rate
is negative. Finally, Becker et al. (2015) focused on metrics for prediction, including
a natural continuous-time extension of instantaneous predictive information, but not
on metrics for dissipation.

3.1 PredictionMetrics

Instantaneous memory and total predictable information are far from being the only
metrics useful for characterizing a sensor’s prediction capability. One could instead
study instantaneous predictable information I[Yt ; Xt+	t ] which requires choosing a
relevant	t (Still et al. 2012; Palmer et al. 2015). Or, following the echo-state network
literature, onemight instead calculate “memory capacity” (Jaeger 2001) or “prediction
capacity” (Marzen 2017). Or, if a reward function is known (Sutton and Barto 1998),
then the relevant metric would depend on the reward function and the organism’s
action policy.

Interestingly, information-theoretic predictionmetricsmight havemore relevance to
biology than, say, the so-called prediction capacity. In a discrete-time setting, extending
Kelly’s classic bet-hedging analysis shows that an increase in expected log-growth
rate via an increase in sensory information is equal to the instantaneous predictable
information I[Y0; X	t ] (Marzen and Crutchfield 2018).

The total predictable information Ifut, defined as:

Ifut := I[Y ;−→
X ],

is an upper bound on this increase in expected log-growth rate. (Note that we dropped
time subscripts t due to stationarity.) This is the mutual information between present
channel state and the input’s future. It is the amount of information that is predictable
about the input future from the present channel state. We merely assert that on ontoge-
netic timescales total predictable information constitutes a reasonable reward function
(Still 2009; Tishby and Polani 2011).
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Even in a discrete-time setting, calculating the total predictable information appears
intractable, as there is an uncountable infinity of possible input futures. [An exception
to this is a Gaussian process input to linear dynamical systems; e.g., see Creutzig
et al. (2009).] To overcome this, we employ the causal-shielding relations specified
in Sect. 2. Due to the feedforward nature of the channel-input setup—that is, the
channel’s state does not affect the input—and the Markov chains given earlier—e.g.,
see Crutchfield et al. (2009)—we have the Markov chain Y → S+ → S− → −→

X and
the Markov chain Y → S+ → −→

X → S−. Two applications of the data processing
inequality yield:

Ifut = I[Y ;S−]
= I[Y ; X−, T−,G−].

In other words, when we calculate how much information we share with the future, in
fact, we are calculating how much information we share with the aspects of the future
that we can predict—the minimal sufficient statistics of retrodiction. (That is, S−, and
somewhat confusingly not S+, is a sufficient statistic for the future trajectory.) Ifut
then decomposes into:

Ifut = I[Y ; X−] + I[Y ; T−,G−|X−].
Note that X− is equal to X+ almost surely.

The term I[Y ; X−] is called the instantaneous memory Imem (Still et al. 2012), since
it is the amount of information available from the channel state about the just-seen
input symbol. Rewriting we have:

Ifut = Imem + I[Y ; T−,G−|X−]. (4)

Thus, the total predictable information is the sum of instantaneous memory and infor-
mation that is truly about the future, which here is the combined time to next-symbol
and reverse-time hidden state. For the special case of semi-Markov input, the reverse-
time hidden state is equivalent to the present observed symbol and so:

Ifut = Imem + I[Y ; T−|X−].
The difference between the total predictable information and instantaneous memory
for semi-Markov input is the information that the present sensor state captures about the
time to next observed symbol.Generally, the time to next observed symbol can be better
predicted using the time since last symbol. However, for a Markov input, Ifut = Imem
because the time to next symbol is independent of the time since last symbol—a
property that follows from the exponential nature of the dwell time distribution.

3.2 DissipationMetrics

Next,wequantify the power extracted from the environment by the sensor system.Note
that this does not include the power required to maintain the sensor in nonequilibrium
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steady state, even at fixed environment, due to the violation of detailed balance. In
other words, we do not account for the power needed for internal maintenance of the
sensor. Assuming access to a temperature-normalized “energy function” βE(x, y),
the temperature-normalized power βP is given by:

βP = lim
	t→0

〈βE(xt+	t , yt )〉 − 〈βE(xt , yt )〉
	t

. (5)

In effect, we group any internal energy sources into the sensor state, so thatwe calculate
the work done by the environment on the entire sensor and its internal energy sources.
Given an energy function, we do not assume that the distribution over sensor states
reached, if the environment is fixed, is identical to the Boltzmann distribution.

If determining an energy function is not possible, we can calculate a lower bound
using a continuous-time adaptation of the inequality in Still et al. (2012):

İnp := lim
	t→0

I[Yt ; Xt ] − I[Yt ; Xt+	t ]
	t

≤ βP, (6)

with an alternate equivalent definition in Horowitz and Esposito (2014). Note that Eq.
(6) only holds in nonequilibrium steady state. See Appendix A.

İnp is called the nonpredictive information rate since it loosely corresponds to how
much of the instantaneousmemory is useless for predicting the next input. Barato et al.
(2014) viewed İnp/βP as a learning efficiency, though; see Brittain et al. (2017). We
take the view that İnp is a potentially useful lower bound on temperature-normalized
power consumption and use Imem and Ifut instead to characterize learning. Any differ-
ences between the formulae shown here and in Still et al. (2012 Eq. (2)) are superficial;
we merely adapted the derivation for continuous-time processes. Unfortunately, the
nonpredictive information rate is not necessarily a tight lower bound on temperature-
normalized power. When the environment is Markovian, there is another lower bound
on the heat dissipation rate that is proportional to the instantaneous memory (Das et al.
2017), but we focus mainly on non-Markovian environments here.

There are other information measures related to dissipation that we do not address
here. Most popular of these is the transfer entropy, which is interpreted to quantify
the causal influence of one system on another (Ito and Sagawa 2013; Hartich et al.
2014; Ito and Sagawa 2015); however, see James et al. (2016) for arguments that such
information measures can be related to causal structure in nonintuitive ways. We also
do not calculate the predictive capacity (Spinney et al. 2018), not to be confused with
that in Marzen (2017), nor the causal irreversibility.

4 Results

Given aknownenvironment and sensor, twoapproaches to evaluate the aforementioned
prediction and dissipation metrics present themselves:
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• First, simulate the environment and sensor and approximate prediction and dissi-
pation metrics based on observed frequencies; or,

• Second, find (new) closed-form expressions for prediction and dissipation metrics
in terms of the environment generators (φx (τ ), ε+(g, x), p(x |g)) and sensorM(x).

The first can lead to prohibitively long simulations for accurate estimates. The follow-
ing pursues the second. This requires solving a Chapman–Kolmogorov equation that
turns into partial differential equations with coupled boundary conditions. The explicit
derivations are lengthy and therefore are relegated to the appendices. The appropriate
equations there are referenced here, where relevant.

That said, let us briefly expand upon the first approach to highlight its sev-
eral potential difficulties. To calculate prediction and dissipation metrics other than
the total predictable information Ifut, one can estimate p(xt , yt ) and p(xt+	t , yt )
for some small 	t from simulation and then use standard formulae (I[U ; V ] =∑

u,v p(u, v) log (p(u, v)/p(u)p(v))) andEqs. (7) and (10) to calculate Imem, İnp, and
βP . More sophisticated algorithms for calculating prediction metrics would directly
approximate I[Xt ,Yt ] (Nemenman et al. 2002) instead of “plugging-in” estimates
of the corresponding probability distribution. As total simulation time T increases,
estimates of the various probability distributions from empirical frequencies become
more and more accurate and our corresponding estimates of prediction and dissipa-
tion metrics also become more accurate. As discussed in Sect. 5, this might require
surprisingly long times T to obtain accurate estimates.

Using the first approach to calculate the total predictable information Ifut from
simulations can bemore difficult. Suppose we do not utilize the causal state machinery
and ignore Eq. (4). Then, we work with a continuous-time system and semi-infinite
futures and are always in a grossly undersampled limit. Alternatively, suppose that we
do employ causal-state machinery and calculate Ifut using Eq. (4). Then, progress can
be made, as there are mutual information estimators to calculate mutual information
of mixed random variables (Victor 2002). Rather than test the efficacy of mutual
information estimators, we will not calculate Ifut from simulations.

Notably, from the closed-form expressions of Sect. 4 later on, we find that Ifut is
close to Imem for random channels and the simple Hill molecule. This result, however,
will likely not hold for the interesting case of highly predictive sensors in complex
environments (Bialek et al. 2001).

4.1 Calculating PredictionMetrics

Ifut and Imem can be analytically calculated, though once ρ(σ+, y) = Pr(S+ =
σ+,Y = y) is in hand. This follows, in turn, bymanipulating aChapman–Kolmogorov
equation, shown in Appendix B. Set any ordering on the pairs (g, x); e.g., the order-
ing (g1, x1), (g1, x2), . . . , (g|G|, x|A|). An expression for p(y|σ+) = p(y|g, x, τ ) is
given by a combination of Eqs. (B5) and (B9):

p(y|g, x, τ ) =
(
eM(x)τ eig1(C)(g,x)/μg p(g)

)
y
,
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where C is a block matrix with entries:

C(g,x),(g′,x ′) = δg,ε+(g′,x ′) p(x
′|g′)

∫ ∞

0
φg′(t)eM(x ′)tdt,

and eig1(C) is a block vector. Normalization forces 1�eig1(C)(g,x) = μg p(g).
We then find the joint probability density as ρ(y, σ+) = p(y|σ+)ρ(σ+), which

enables computation of all prediction metrics. Instantaneous memory is given by
Imem = I[X; Y ], whereas Ifut = I[Y ;S−]. All the relevant probabilities—namely
p(x, y) and ρ(σ−, y)—are obtained from the previously derived density ρ(σ+, y).
For instance, to calculate ρ(σ−, y), we employ the Markov chain Y → S+ → S− to
find:

ρ(σ−, y) =
∑
σ+

ρ(σ−|σ+)p(y|σ+)ρ(σ+).

Equation (2) gives ρ(σ−|σ+). And, to calculate p(x, y), we recall that σ− =
(g−, x, τ−), so we only need marginalize the joint density ρ((g−, x, τ−), y).

4.2 Calculating DissipationMetrics

Additionally, dissipation metrics can be calculated once:

δ p(x, y)

δt
= lim

	t→0

(
Pr(Xt+	t = x,Yt = y) − Pr(Xt = x,Yt = y)

)
/	t

is obtained. (Note that this is not the total time derivative dp/dt .) An expression for
δ p/δt in terms of input and channel properties is given in Eq. (B11):

δ p

δt
=

∑
g′,x ′ �=x

∫
dτ ′ p(x |ε+(g′, x ′))p(x ′|g′)φg′(τ ′)

×
(
eM(x ′)τ ′

eig1(C)(g′,x ′)
)
y

−
∑
g′

∫
dτ ′ p(x |g′)φg′(τ ′)

(
eM(x)τ ′

eig1(C)(g′,x)
)
y
,

where normalization again requires 1�eig1(C)(g,x) = μx p(g). Then, from Eq. 6, we
find that:
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İnp = lim
	t→0

H[Yt , Xt+	t ] − H[Yt , Xt ]
	t

= lim
	t→0

( ∑
x,y

(
p(x, y) + δ p

δt
	t

)
log

1

p(x, y) + δ p
δt 	t

−
∑
x,y

p(x, y) log
1

p(x, y)

)
/	t

= −
∑
x,y

δ p(x, y)

δt
log p(x, y). (7)

If there is an energy function E(x, y), then it is straightforward to show that power
dissipated as heat into the reservoir of interest can be obtained from:

βP =
∑
x,y

δ p(x, y)

δt
E(x, y). (8)

For passive sensors, despite lacking direct access to an energy function, we find
βP by calculating the steady-state distribution over channel states with fixed input:

peq(y|x) = eig0(M(x))

= e−βE(x,y)

Zβ(x)
,

where the partition function is Zβ(x) := ∑
y e

−βE(x,y). Hence:

βE(x, y) = log
1

peq(y|x) − log Zβ(x). (9)

Recalling Eq. (5) and invoking stationarity—that Pr(Xt = x) = Pr(Xt+	t = x)—
yields:

βP = lim
	t→0

( 〈
log

1

peq(x, y)

〉
Pr(Xt+	t=x,Yt=y)

−
〈
log

1

peq(x, y)

〉
Pr(Xt=x,Yt=y)

)
/	t

=
∑
x,y

δ p(x, y)

δt
log

1

peq(x, y)
. (10)

The distributions Pr(Xt+	t = x,Yt = y) and Pr(Xt = x,Yt = y) can be obtained
from M(x). In other words, for passive sensors, we can calculate βP directly from
the kinetic rates ky→y′(x) and input generator (φg(τ ), ε+(g, x), p(x |g)) alone.

5 Examples

Using this theory, we now study four sensor–environment examples. The first two—a
two-state sensor channel in a binary environment—serves to both check our formulae
and quantify the gains in computational efficiency that result from using these for-
mulae. The third studies the performance of large random sensor channels at lossy
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prediction. The fourth example is a Hill molecule sensor in a fluctuating environment.
In this, we wish to find Hill molecules that “optimally” balance the need to predict
sensory input with constraints on heat dissipation. Thereafter, we compare to prior
results on optimized biochemical sensors.

All code was implemented in Python. In this section, we focus on semi-Markov
environments, for which g is commensurate with x . This important special case is also
treated separately in the Supplemental Information.

5.1 Two-State Sensors in Markovian Environments

When the environment is Markovian, we can check our formula for p(x, y) in two
ways. First, we can analytically calculate (using similar ideas) a seemingly different
expression for p(x, y). Though an analytical match between the formula given here
and the formulae shown below is not obvious, there is an exact numerical match for
all tested randomly chosen sensor channels. Next, we simulate the system using the
temporal Gillespie algorithm (Vestergaard and Génois 2015), and this results in a
nearly exact numerical match with simulations.

TheMarkovian environment that we consider has two observed symbols with dwell
time densities of φA(t) = 4e−4t and φB(t) = 5e−5t . This implies that the kinetic rate
at which one moves from A to B is kA→B = 4 and that at which one moves from B
to A is kB→A = 5.

For a Markovian environment, only the present environmental symbol is needed to
predict future environmental states. In the language above, the present environmental
symbol is the causal state. As a result, to calculate p(x, y), we need only find the
stationary distribution of a master equation with kinetic rates given by:

k(x,y)→(x ′,y′) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 x �= x ′, y �= y′

k(x)
y→y′ x = x ′, y �= y′

kx→x ′ x �= x ′, y = y′

−k(x)
y→y − kx→x x = x ′, y = y′.

(11)

We use these kinetic rates to analytically characterize the evolution of the system’s
joint probability distribution p(x, y) as:

dp(x, y)

dt
=

∑
x ′,y′

k(x ′,y′)→(x,y) p(x
′, y′). (12)

That is, the steady state p(x, y) is an eigenvector of eigenvalue 0 of the kinetic rate
matrix k(x,y′)→(x,y). Using this technique, we get an exact match with Eqs. (B5) and
(B9) for all randomly chosen two-state channelswith theMarkovian environment listed
above. Ideally, wewould find an analyticmatch in the case ofMarkovian environments
between the two analytic methods. However, we could not find an obvious mapping.
The exact numerical match is good evidence that it exists, however.
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Finally, we compare theory to simulation using the temporal Gillespie algorithm
(Vestergaard and Génois 2015). The standard Gillespie algorithm (Gillespie 1976)
assumes constant environments in which the waiting-time density to the next transi-
tion between sensor states is a simple exponential. When the environment fluctuates,
the waiting-time density changes from a simple exponential to the exponential of
an integral of the time-varying kinetic rate out of the current sensor state. In the
present case, this time-varying kinetic rate is piecewise constant. We first generate
exponentially distributed random numbers that correspond to the dwell times in the
environment and, then, simulate transitions between sensor states using this temporal
Gillespie algorithm. The convergence to agreement with analytics is shown in Fig. 4.
Error is less than 10−3.

5.2 Two-State Sensors Driven by Semi-Markov Environments

The advantages of the analytic approach championed here are not clear when consid-
ering aMarkovian environment. Here, the more typical analytic approach is faster and
more accurate as it requires no integrals.

To better illustrate the advantages,we nowconsider a random two-state sensor chan-
nel driven by a semi-Markov environment in which the dwell-time density for symbol
A is φA(t) = 16te−4t and the dwell-time density for symbol B is φB(t) = 25te−5t .
Figure 5 shows comparison of the aforementioned temporal Gillespie algorithm to the
formulae developed above. In particular, it shows that as time increases, the simulation
becomes more accurate, as expected.

The simulation is quite efficient, partly since the environment is easily simulated
as the negative log of the product of two uniform random variables and partly since
the temporal Gillespie algorithm is fast. We speculate that the advantages of analytic
methods are better illustrated by an environment that is less easy to simulate.

5.3 RandomMultistate Sensors Driven by Semi-Markov Environments

Now consider lossy prediction—in which not all predictive information is captured—
by large (multistate) random sensor channels in a semi-Markov environment. The
fact that random channels achieve coding-theoretic limits (Cover and Thomas 1991)
strongly suggests that random sensors must be explored. On the one hand, in principle
they potentially can store information about an environment’s past that is useful for
prediction. On the other, they cannot store all the information about the past necessary
to predict the future as well as possible (Marzen and Crutchfield 2017a). As such,
large random sensors are lossy predictors.

We ask two questions. First, how well do random sensors perform relative to the
optimal possible performance? One can calculate bounds on lossy prediction (Marzen
and Crutchfield 2016) using a combination of causal-state machinery and the general-
ized Blahut–Arimoto algorithm. Second, are larger random sensors better or worse at
lossy prediction? Potentially, larger sensor channels have more capacity to store infor-
mation about the environment’s past (Marzen 2017), but whether or not they deploy
this capacity well is still undetermined.
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Fig. 4 Two-state sensor in Markov environment—theory versus simulation: A random two-state sensor is

chosen, such that k(A)
B→A = 0.449, k(A)

A→B = 0.192, k(B)
B→A = 0.646, and k(B)

A→B = 0.397. (Top) Comparing
total variational distance

∑
x,y |p(x, y)− psim(x, y)| between analytic estimate p(x, y) from Appendix B

and simulation estimate psim(x, y) as a function of simulation time. (Bottom) The corresponding difference
Îmem − Imem between estimates of the instantaneous memory also decreases as simulation time increases,
with Imem = 2.5× 10−5 nats. As time increases, error between the true p(x, y) and psim(x, y) decreases

We subjected random sensors of varying number of states N ∈ {3, 6, 10, 20, 30, 40,
50, 60, 100, 300, 1000} to a semi-Markov environment in which the dwell-time den-
sity of symbol A is φA(τ ) = 16τe−4τ and the dwell-time density of symbol B is
φB(τ ) = 25τe−5τ . The kinetic rate k(x)

y→y′ between one sensor state y and another y′,
conditioned on observing a particular environmental symbol x , is drawn uniformly
from the unit interval.

Figure 6 (Top) shows that random sensors are not good lossy predictors in that
their total predictable information I[Y ;−→

X ] falls three orders of magnitude below the
maximal achievable total predictable information for their coding rate I[Y ;S+]. In
using this bound on I[Y ;−→

X ], we assumed that one recodes the dynamical system’s
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Fig. 5 Two-state sensor in a semi-Markov environment—theory versus simulation: Random two-state
sensor as in Fig. 4. (Top) Total variational distance

∑
x,y |p(x, y) − psim(x, y)| between true p(x, y) and

simulation estimate psim(x, y) as a function of simulation time. As time increases, error between the true
p(x, y) and psim(x, y) decreases. (Bottom) The corresponding difference Îmem − Imem between estimates
of the instantaneous memory also decreases as simulation time increases. Same kinetic rates as in Fig. 4.
The true value is Imem = 2.9 × 10−5 nats

state so as to eliminate extraneous information about the past using the procedure
outlined in the proof of Theorem 1 of Marzen and Crutchfield (2016). This achieves
a coding rate of I[Y ;S+] rather than one of I[Y ;←−

X ].
Note that we can calculate I[Y ;−→

X ] exactly because I[Y ;−→
X ] = I[Y ;S−] (Marzen

and Crutchfield 2016), as the shared information between our sensor state and the
future environment is exactly the shared information between our sensor state and
the predictable parts of the future environment—the minimal sufficient statistics of
retrodiction.

Perhaps more interestingly, Fig. 6 (Top) also shows that as sensor size grows, large
random sensors become worse lossy predictors, in that they store information about
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Fig. 6 (Top) Random sensors are not good lossy predictors of semi-Markov stimuli: Blue solid curve is the
theoretical bound on total predictable information I[Y ; −→

X ] for a given constraint on mutual information
I[Y ;S+] between past and representation, calculated using the algorithm described in Marzen and Crutch-
field (2016). Blue dots represent realizations of prediction performance and compression for randomly
generated channels with states sets of size N ∈ {3, 6, 10, 20, 30, 40, 50, 60, 100, 300, 1000} from left to
right, with 25 random channels per size. All pieces of mutual information are reported in nats. (Bottom)
Most prediction power comes from correctly storing information about the present environmental symbol:
Each dot indicates the combination of instantaneous memory I[Yt ; Xt ] and total predictable information
I[Yt ; −→

X ] of a random channel. The solid line corresponds to their equality. At maximum, I[Yt ; Xt ] is
0.0.687 nats and I[Yt ; −→

X ] is 0.7065 nats. All mutual information are reported in nats

the environment’s forward-time causal states that is not the “right” information to
remember for predicting environment futures. This result is only potentially true in a
non-Markovian environment, as in a continuous-time Markovian environment every
bit stored about the forward-time causal states is useful for understanding environ-
mental futures. Typically, both prediction and memory capacity of random sensors
increase with increasing channel size (Marzen 2017). And so, the lack of efficacy of
random sensors is somewhat surprising.
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In addition, random sensors at fixed size tend to have similar achievable coding
rates I[Y ;S+] and total predictable information I[Y ;−→

X ], despite differences between
random instantiation. Likely, this results from central limit theorem-like behavior.
However, proving as much in even simpler settings can be difficult (Marzen and
DeDeo 2016; Marzen 2018).

In a semi-Markov environment, the total predictable information Ifut is the shared
information between our sensor’s representation and both the present symbol and the
time to next symbol. The dynamical system (sensor) obtains information about the time
to next symbol from the time since last symbol. In particular, the time since last symbol
can be used to better predict the time to next symbol, as the time between successive
symbols is nonexponential (Marzen and Crutchfield 2017a). Figure 6 (Bottom) shows
that random channels essentially are sensitive only to information about the current
environmental symbol, which is predictive of immediately following environmental
symbols.

If large random dynamical systems had been “good enough”, then evolutionary
search to find predictive sensors would not be needed. Naturally, such a result flies in
the face of current thinking (Palmer et al. 2015). Though many more examples need
be considered, the present results for this class demonstrate that one cannot reliably
design good lossy predictors simply by generating large randomly wired sensors. This
hints at the challenge faced in the evolution of biological sensors.

Note that these results hold no matter the energy function. To better understand
their thermodynamic efficiency, we now assume that they are passive sensors, so that
the steady-state probability distribution in a fixed environment is equivalent to the
Boltzmann distribution. We then calculate both nonpredictive information rate İnp
and power dissipated as heat into the reservoir of interest βP . While we average
the dissipation metric over many channels of the same size, we track the standard
deviations in Fig. 7. Mean İnp varies nonmonotonically with channel size, peaking at
around N = 30, while βP (equivalent to heat dissipation rate into the reservoir of
interest in nonequilibrium steady state) decreases monotonically with channel size.

Therefore, larger channels have smaller entropy production rates, as shown byFig. 6
(Top), even though they are emphatically not at equilibrium. The sensory capacity
(Hartich et al. 2016)—the ratio of the nonpredictive information rate or learning rate
to entropy production rate—increases monotonically with channel size. This qualita-
tively agrees with Barato et al. (2014) which claimed that adding memory to a sensor
increases its sensory capacity. Similar to Brittain et al. (2017), then, we find that max-
imizing sensory capacity and maximizing prediction metrics are at odds. Maximizing
sensory capacity yields large random channels, while maximizing prediction metrics
from Fig. 6 yields small random channels.

5.4 Hill Molecule Interacting with a Semi-Markov Environment

The Hill molecule—a common fixture in theoretical biochemistry—is the simplest
mechanistic model of binding cooperativity (Marzen et al. 2013). Recall Fig. 1. A Hill
molecule can be in one of two states, open or closed. When open, n ligand molecules
are bound; when closed, no ligand molecules are bound. Hence, the Hill molecule
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Fig. 7 Dissipation metrics for random channels vary with channel size: Mean nonpredictive
information rate İnp and mean power consumption βP (equivalent to heat dissipation rate in
nonequilibrium steady state) averaged over 25 random channels at each of several sizes: N ∈
{3, 6, 10, 20, 30, 40, 50, 60, 100, 300, 1000}. Error bars give standard deviations across these 25 realized
random channels. Higher sensory capacity—larger ratio of nonpredictive information rate to power con-
sumption İnp/βP—is attained with larger random channels, even though this yields the lower prediction
metrics shown in Fig. 6 (Top)

state carries information about the number of bound ligand molecules. In other words,
Hill molecules sense their environment’s ligand concentration. Though they seem
impoverished in their simplicity, the following concludes that they are sensitive to an
order-of-magnitude more total predictable information in their environment than the
large random sensors just studied.

Let us outline a simple dynamical model of the Hill molecule’s operation. The
transition rate from closed C to open O given a ligand concentration x is:

kC→O = kOx
n, (13)

while the rate from open O to closed C is:

kO→C = kC . (14)

Given fixed ligand concentration, the steady-state distribution is familiar:

Preq(Y = O|X = x) = kOxn

kC + kOxn

= xn

(kC/kO) + xn
.

Thus, the rates are determinedby thenumbern of ligands that bind simultaneously—
this is called the cooperativity.Although themechanisticmodelmakes sense onlywhen
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n is a nonnegative integer, thismodel is often usedwhen n is any nonnegative real num-
ber; increases in n can still be thought of as increases in cooperativity. Equations (13)
and (14) constitute a complete characterization of its channel properties.

Note that these dynamics obey detailed balance, so no power is required to sustain
operation out of equilibrium in a fixed environment. This is a passive sensor for which
the power extracted from the environment is identical to the heat dissipation rate,
according to the first lawof thermodynamics. Itmay seema priori that sensor designers
should not care how much energy a sensor must draw from its environment. However,
the power extracted from the environment is dissipated as heat, and increased heat
dissipation can require additional biological machinery; e.g., sweating when internal
temperature rises. With this in mind, it would seem that biology should favor sensors
with smaller power consumption.

Increasing the cooperativity n increases the steepness of the molecule’s sigmoidal
“binding curve”—the probability of being “on” as a function of concentration. In other
words, the sensor becomes more switch-like and less a proportionately responding
transducer of the input. If the concentration is greater than (kC/kO)1/n , the switch
is essentially “on” if n is high. A more switch-like sensor is useful if the optimal
phenotype depends only upon the condition “ligand concentration greater than X”. A
less switch-like, smoother-responding sensor helps if the optimal phenotype depends
on ligand concentration in a more graded manner.

The concentration scale is set by (kC/kO)1/n , while the timescale is set by 1/kC ;
as such, we set both to kO = kC = 1 without loss of generality. We imagine that the
ligand concentration alternates between high and low values: xl and xh , respectively.
When there is less ligand (x ≈ xl ), the Hill molecule reverts to and stays in the closed
state. When there is ligand (x ≈ xh > xl ), it reverts to and stays in the open state.
With no particular application in mind, we again imagine that the dwell-time densities
take the form φx (τ ) = λ2(x)τe−λ(x)τ with λ(xl) = 5 and λ(xh) = 4.

We now deploy the earlier formulae to study the prediction capabilities and dissi-
pation tendencies of a Hill molecule subject to semi-Markov input. Previous studies
of biological sensors found that increases in cooperativity accompanied increases in
channel capacity (Tkačik et al. 2009; Walczak et al. 2010; Martins and Swain 2011)
and in sensor accuracy (Govern and ten Wolde 2014) in equilibrium systems. Others
studied the thermodynamics of prediction of cooperative biological sensors (Barato
et al. 2014; Becker et al. 2015), but did not use the more general class of semi-Markov
input which, we argued, is more typical of real environmental stimuli. They also did
not calculate the total predictable information.

Absent a reward function, we assert that energetic rewards are proportional to
Ifut (Still 2009; Tishby and Polani 2011). Altogether, this argues that α Ifut −βP is a
reasonable objective function for sensor design, similar to that ofMancini et al. (2016).
However, unlike there, we hold the environment fixed and do not consider the scenario
in which the environment tries to adversely impact the total predictable information
captured by the sensor. The proportionality constant α is a conversion factor between
information and energy units. It is ultimately set by the type of environment in which
the sensor finds itself. It determines the energetic reward for prediction. All said, a
sensor that maximizes this objective is predictive of its input and does not dissipate
much heat.
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An example—xl = 0.5, xh = 2.0, kO = kC = 1.0, and n = 2—illustrates that
roughly 99% of Ifut is devoted to capturing instantaneous memory Imem and roughly
25% of βP is devoted to İnp. That is, the inefficiency in choosing what information
to store about the present input contributes substantively to energetic inefficiency.
These results hold qualitatively even when the dwell-time densities are lognormal;
i.e., heavier-tailed.

Figure 8 shows that increased cooperativity—that is, increases in n—lead to
increases in prediction performance, qualitatively in line with Martins and Swain
(2011) and Mancini et al. (2016). Additionally, the larger the cooperativity, the higher
the fraction Imem / Ifut. Larger cooperativity, however, leads to roughly linear increases
in the power consumption and nonpredictive information rate, whereas increases in
prediction power take a more sigmoidal shape. The correlation between prediction
power and power consumption are qualitatively in line with the results of Mehta and
Schwab (2012).

This suggests a preference for intermediate values of cooperativity (e.g., n ≈ 5)
over larger values of cooperativity (e.g., n ≥ 10). This is qualitatively similar to the
results of Tkačik et al. (2009) and Walczak et al. (2010) in that physical constraints
force optimal information transmission at intermediate levels of cooperativity. Notice
that instantaneous memory and total predictable information sit at around 0.05 bits
for Hill factors n ≈ 4. This is an order of magnitude higher than the instantaneous
memory and total predictable information of the large random sensors above.

The sensor’s objective function α Ifut − βP is optimized by the cooperativity n̂ =
argmaxn

(
α Ifut − βP

)
. As both Ifut and βP increase monotonically with n, there is

generically only one such cooperativity n̂. At lower α, however, there are two local
maxima of the function of n given by α Ifut − βP , as shown in Fig. 9 (Top). Let us
pursue the consequences of this regime dependence.

There are rules for how sensor biochemical parameters adapt to the present environ-
ment. If adaptation rules for cooperativity of a Hill molecule increase the total energy
budget by gradient descent then, for a range of α, we expect cooperativity to be in
either of the two local maxima of α Ifut −βP just noted. Let us assume a separation
of timescales—namely, that cooperativity adapts much more slowly than the longest
environmental timescale and that the sensor does not adapt quickly enough to always
find the global maximum in cooperativity space.

Figure 9 (Bottom) shows the optimal cooperativity n̂ as a function of conversion
factor α. As expected from the presence of two local maxima at lower α, there is a
discontinuity [supercritical bifurcation (Strogatz 1994)] in the function of α given by
n̂ = argmaxn(α Ifut − βP). Thus, initially, if the energetic reward α for prediction
increases, the cooperativity discontinuously jumps to a higher n̂ at a critical αh . From
there, if one decreases α, optimal cooperativity slowly decreases, but stays high well
below αh , suddenly decreasing to zero cooperativity at the lower value αl . Thus, there
is a substantial hysteresis loop built into the optimal trade-off between energy and
sensitivity.

What could be the functional benefit of this hysteresis? Recall that in switching
circuits hysteresis is essential to adding stability to a switch’s response. Hysteresis
stops “race” conditions in which the switch oscillates wildly just as the threshold
is passed, amplifying any noise in the control and internal dynamics. In the Hill

123



Prediction and Dissipation in Nonequilibrium Molecular… Page 25 of 46    25 

Fig. 8 (Top) Hill molecule prediction-related metrics: Instantaneous memory Imem and total prediction
power Ifut, as functions of n in nats. (Bottom) Hill molecule temperature-normalized dissipation-related
metrics: Nonpredictive information rate İnp and temperature-normalized power βP , both in nats per unit

time. Ligand concentrations take one of two values, xl = 0.5 and xh = 2.0, in units of (kC/kO )1/n .
Dwell-time densities are parametrized as φx (t) = λ(x)2te−λ(x)t with λ(xl ) = 5 and λ(xh) = 4 in units of
1/kC . Hill molecule parameters are set to kO = kC = 1, with varying cooperativity n

molecule, hysteresis is helpful if a memory of past environmental conditions (α)
provides insight into future conditions (future α). For example, the environment might
shift α suddenly to being low, but there is a replenishment mechanism for the available
energy that will soon increase α again. Thus, we see that robustness to environmental
noise emerges naturally if a Hill molecule sensor adapts to and anticipates changing
external conditions.
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Fig. 9 (Top) “Lagrangian” α Ifut + βP for several α—that represent the energy rewards of Ifut—as a
function of cooperativity n. Notice that a particular α singles out a particular optimal n̂. (Bottom) Optimal
cooperativity n̂ as a function of conversion factorα. Circles (solid blue) are the values of the globalmaximum
n̂ and circles (solid green) are local maxima. Arrows indicate the directionality in the hysteresis loop: n̂
jumps up at the upper value αh , if starting at low α, and jumps down at the lower value αl , if starting at
high α

Finally, we note that if both xl and xh are larger than 1 or less than 1, the Hill
coefficient n that maximizes predictable information is not infinite, but finite, and
dependent on the exact values of xl and xh . If n is too large, the Hill molecule acts
as a switch that opens when x is larger than 1; then, xl and xh will have a nearly
identical response, and the sensor will be unable to distinguish the two. However, if
n is too small, the concentration will have a reduced effect on the switching rates.
A middling Hill coefficient leads to maximal predictive power, as shown in Fig. 10,
though the maximal predictive power is still an order of magnitude smaller than the
predictive power of the sensor when its natural concentration is between the low and
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Fig. 10 (Top) Hill molecule prediction-related metrics: Instantaneous memory Imem and total prediction
power Ifut, as functions of n in nats. (Bottom) Hill molecule temperature-normalized dissipation-related
metrics: nonpredictive information rate İnp and temperature-normalized power βP , both in nats per unit

time. Ligand concentrations take one of two values, xl = 1.5 and xh = 2.0, in units of (kC/kO )1/n .
Dwell-time densities are parametrized as φx (t) = λ(x)2te−λ(x)t with λ(xl ) = 5 and λ(xh) = 4 in units of
1/kC . Hill molecule parameters are set to kO = kC = 1, with varying cooperativity n

high ligand concentrations. Similar results hold for the case that both xl and xh are
below 1. Hysteresis remains regardless of xl and xh .

6 Conclusion

We provided closed-form expressions for instantaneous memory, total predictable
information, nonpredictive information rate, and heat dissipated into the reservoir
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of interest for a conditionally Markovian channel subject to the broad class of
very complex environments described by unifilar hidden semi-Markov input. The
information-theoretic quantities among that list are best motivated by Marzen and
Crutchfield (2018) and Still et al. (2012).

We showed that determining these closed-form expressions requires knowledge of
the environment’s causal states. In some cases, one has generated the environment,
and so a reasonable model for its dynamics is known. In other cases, the environment
in question is well-studied and a reasonable model for its dynamics is known. Causal
states can be straightforwardly derived from these models. In other cases, however,
reasonable dynamical models might need to be inferred from data. This is quite a
difficult problem on which much work has been done, e.g., Refs. Rabiner (1989), Pfau
et al. (2011) and Strelioff and Crutchfield (2014).

It is not necessary to use the closed-form expressions in Sect. 4 to calculate predic-
tion and dissipation metrics. Instead, one may numerically estimate them as follows:

1. Generate a realization of the environment, and
2. Simulate transitions between states using the temporal Gillespie algorithm (Vester-

gaard and Génois 2015).

This approach has its challenges, however. Generating realizations of non-
Markovian environments, as considered here, is straightforward but could be quite
compute intensive, if one desires accurate simulations. Simulating transitions between
Hill molecule states given an environmental realization is straightforward, too.

This highlights the benefits of Sect. 4’s closed-form expressions. Their accuracy,
however, is limited by that of the numerical algorithms for calculating integrals and
finding eigenvectors. Available routines exhibit several weaknesses in accurately
evaluating the requisite integrals when, for instance, φx (τ ) is heavy-tailed. For the
dwell-time densities considered here, there were no such issues.

All in all, the ease with which the sensor metrics were numerically estimated masks
the difficulty of deriving the underlying closed-form expressions in the first place.
Appendices B and C give those derivations. That said, leveraging this one-time cal-
culation effort, we provided universal estimators of prediction and dissipation metrics
for conditionally Markovian channels. The universality claimed here arises from the
fact that unifilar hidden semi-Markov processes are very general memoryful processes
that capture highly complex environmental behaviors.

One practical consequence going forward is that analyzing sensor prediction and
dissipation no longer requires simulating arbitrarily long trajectories. Instead, one can
now validate or invalidate predictive learning rules and sensor designs using the uni-
versal estimators. This will also greatly accelerate searching through parameter space
for “optimal” (predictive and energy efficient) sensors. In addition, given that the the-
ories of random dynamical systems and of input-dependent dynamical systems are
still under development (Arnold 2013), we believe the formulae presented here will
eventually lead in those domains to a precise generalization of timescale matching for
nonlinear systems (Becker et al. 2015). Finally, we hope to extend these new calcu-
lational techniques to nonstationary environments and thereafter to analyze sensory
adaptation in more familiar scenarios, as in Sartori et al. (2014) and Ito and Sagawa
(2015).
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Appendix A Revisiting the Thermodynamics of Prediction

For completeness, we review the derivation of Eq. (6). Let xt represent the input
at time t , yt represent the sensor state at time t , and E(x, y) the system’s energy
function for the reservoir of interest. We assume constant temperature. The system’s
temperature-normalized nonequilibrium free energy Fneq is given by:

βFneq [p(y|x)] = β〈E(x, y)〉p(y|x) − H[Y |X = x]. (A1)

Even if this is not a valid expression for nonequilibrium free energy, the validity of
Still et al. (2012)’s derivation only rests on this expression being a Lyapunov function
for the dynamics. Intuitively, this corresponds to an assumption that the system reduces
its nonequilibrium free energywhen the sensor thermalizes to its attached thermal bath.
[Accordingly, the β in the above expression refers to the temperature of the sensor
when the environment is fixed, indirectly circumventing the difficulty with defining a
nonequilibrium temperature (Casas-Vázquez and Jou 2003).] If so, then:

βFneq[p(yt |xt+	t )] ≥ βFneq[p(yt+	t |xt+	t )],

giving:

0 ≤ βFneq[p(yt |xt+	t )] − βFneq[p(yt+	t |xt+	t )]
≤ (

β〈E(xt+	t , yt )〉p(yt |xt+	t )

−H[Yt |Xt+	t = xt+	t ]) − (β〈E(xt+	t , yt+	t )〉p(yt+	t |xt+	t )

− H[Yt+	t |Xt+	t = xt+	t ])
≤ β lim

	t→0

( 〈E(xt+	t , yt )〉p(yt |xt+	t )

	t
− 〈E(xt+	t , yt+	t )〉p(yt+	t |xt+	t )

	t

)

+ lim
	t→0

(
H[Yt+	t |Xt+	t = xt+	t ]

	t
− H[Yt |Xt+	t = xt+	t ]

	t

)
.

Finally,we average over possible environmental realizations, equivalent in nonequi-
librium steady states (NESSs) to averages over time, to find:

0 ≤ β lim
	t→0

〈E(xt+	t , yt )〉 − 〈E(xt+	t , yt+	t )〉
	t

+ lim
	t→0

H[Yt+	t |Xt+	t ] − H[Yt |Xt+	t ]
	t

.
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The former term could be called −Q̇—the negative of the sensor’s heat dissipation
rate into the reservoir of interest—and the latter İlost—the rate of lost information.
And so:

0 ≤ −β Q̇ + İlost. (A2)

This is valid even outside ofNESSs. In aNESS, however,we can invoke stationarity,
concluding that:

Q̇ = −P, (A3)

where P is the part of the power extracted by the sensor from the environment that
is dissipated as heat into the reservoir of interest. Furthermore, İlost reduces to the
negative of the nonpredictive information rate, since H[Yt+	t |Xt+	t ] = H[Yt |Xt ],
giving:

İlost = lim
	t→0

H[Yt |Xt ] − H[Yt |Xt+	t ]
	t

.

Calling on a standard information theory identity (Cover and Thomas 2006)—
H[U |V ] = H[U ] − I[U ; V ]—leads to:

İlost = lim
	t→0

I[Yt ; Xt+	t ] − I[Yt ; Xt ]
	t

.

We recognize this as the continuous-time version of the nonpredictive information
rate İnp; also called the learning rate. Hence, the nonpredictive information rate is the
increase in unpredictability of sensor state Yt given a slightly delayed environmental
state:

İnp = lim
	t→0

H[Yt |Xt+	t ] − H[Yt |Xt ]
	t

. (A4)

In a NESS, then:

İlost = −İnp. (A5)

Outside of NESSs, these terms are augmented by the time derivative d H[Yt |Xt ]/dt
of the conditional entropy. This leads to the addition of an Landauer-erasure informa-
tion (Landauer 1961) when integrated.

One of Still et al. (2012)’s main results follows directly from Eqs. (A2), (A3), and
(A5):

İnp = lim
	t→0

I[Yt ; Xt ] − I[Yt ; Xt+	t ]
	t

≤ βP. (A6)

In contrast to Still et al. (2012)’s implication, this is true only in a NESS and Eq.
(A2) should be used otherwise.
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Differences in presentation between the derivation here and that of Still et al. (2012)
come from the difference between discrete- and continuous-time formulations. To
make this clear, we present a continuous-time formulation of the same result, following
Horowitz and Esposito (2014). We start from βFneq[p(yt ′ |xt )] being a Lyapunov
function in t ′:

0 ≥ β
∂Fneq[p(yt ′ |xt )]

∂t ′

= β
∂

∂t ′
〈E(xt , yt ′)〉p(yt ′ |xt )

∣∣∣
t ′=t

− ∂

∂t ′
H[Yt ′ |Xt = xt ]|t ′=t

= β

〈
∂E(xt , yt )

∂ yt
ẏt

〉
p(yt ′ |xt )

− ∂

∂t ′
H[Yt ′ |Xt = xt ]|t ′=t .

Next, as before, we average over protocols (or, equivalently in NESS, over time) to
find:

0 ≥ β

〈
∂E(xt , yt )

∂ yt
ẏt

〉
p(xt ,yt )

− ∂

∂t ′
H[Yt ′ |Xt ]|t ′=t

We then recognize β
〈
∂E(xt ,yt )

∂ yt
ẏt

〉
p(xt ,yt )

as the temperature-normalized rate of heat

dissipation β Q̇, so that:

β Q̇ ≤ ∂

∂t ′
H[Yt ′ |Xt ]|t ′=t .

The quantity on the right-hand side is simply the rate İlost of information loss,
defined earlier. InNESS,d〈E〉/dt andd H[Yt |Xt ]/dt vanish.As a result,β Q̇+βP = 0
and:

∂

∂t ′
H[Yt ′ |Xt ]|t ′=t = − ∂

∂t ′
H[Yt |Xt ′ ]|t ′=t ,

giving:

βP ≥ ∂

∂t ′
H[Yt |Xt ′ ]|t ′=t . (A7)

We recognize this as the continuous-time formulation of Eq. (A4). Again invoking
stationarity, d H[Xt ]/dt vanishes and so:

βP ≥ − ∂

∂t ′
I[Xt ′ ; Yt ]|t ′=t , (A8)

the continuous-time formulation of Eq. (A6). We have, in Eqs. (A4), (A6), (A7), and
(A8), four equivalent definitions for the nonpredictive information rate in the NESS
limit.
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Appendix B Closed-form Expressions for Unifilar Hidden
Semi-Markov Environments

To find ρ(σ+, y), we start with the following:

Pr(S+
t+	t = (g, x, τ ),Yt+	t = y)

=
∑

g′,x,′,τ ′,y′
Pr(S+

t+	t = (g, x, τ ),Yt+	t = y|S+
t

= (g′, x ′, τ ′),Yt = y′)Pr(S+
t = (g′, x ′, τ ′),Yt = y′). (B1)

We decompose the transition probability using the lack of feedback as:

Pr(S+
t+	t = (g, x, τ ),Yt+	t = y|S+

t = (g′, x ′, τ ′),Yt = y′)
= Pr(S+

t+	t = (g, x, τ )|S+
t

= (g′, x ′, τ ′))Pr(Yt+	t = y|S+
t = (g′, x ′, τ ′),Yt = y′).

From the setup, we have:

Pr(Yt+	t = y|S+
t = (g′, x ′, τ ′),Yt = y′) =

{
ky′→y(x ′)	t y �= y′

1 − ky′→y′(x ′)	t y = y′,

with corrections of O(	t2).
Now split this into two cases. As long as τ > 	t , so that x = x ′, we have:

Pr(S+
t+	t = (g, x, τ )|S+

t = (g′, x ′, τ ′)) = �g(τ )

�g(τ ′)
δ(τ − (τ ′ + 	t))δx,x ′δg,g′ .

Then, Eq. (B1) reduces to:

Pr(S+
t+	t = (g, x, τ ),Yt+	t = y)

=
∑
y′

Pr(S+
t+	t = (g, x, τ )|S+

t = (g, x, τ − 	t))

× Pr(Yt+	t = y|S+
t = (g, x, τ − 	t),Yt = y′)

× Pr(S+
t = (g, x, τ − 	t),Yt = y′)

=
∑
y′ �=y

Pr(S+
t+	t = (g, x, τ )|S+

t = (g, x, τ − 	t))

× Pr(Yt+	t = y|S+
t = (g, x, τ − 	t),Yt = y′)

× Pr(S+
t = (g, x, τ − 	t),Yt = y′)

+ Pr(S+
t+	t = (g, x, τ )|S+

t = (g, x, τ − 	t))

× Pr(Yt+	t = y|S+
t = (g, x, τ − 	t),Yt = y)
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× Pr(S+
t = (g, x, τ − 	t),Yt = y)

=
∑
y′ �=y

�g(τ )

�g(τ − 	t)
ky′→y(x)

× Pr(S+
t = (g, x, τ − 	t),Yt = y′)	t

+ �g(τ )

�g(τ − 	t)

(
1 − ky→y(x)	t

)

× Pr(S+
t = (g, x, τ − 	t),Yt = y) , (B2)

plus terms of O(	t2). We Taylor expand �g(τ + 	t) = �g(τ ) − φg(τ )	t to find:

�g(τ )

�g(τ − 	t)
= 1 − φg(τ )

�g(τ )
	t‘,

plus terms of O(	t2). And, similarly, assuming differentiability, we write:

Pr(S+
t = (g, x, τ − 	t),Yt = y′)

= Pr(S+
t = (g, x, τ ),Yt = y′) − d

dτ
Pr(S+

t = (g, x, τ ),Yt = y′)	t,

plus terms of O(	t2). Substitution into Eq. (B2) then gives:

Pr(S+
t+	t = (g, x, τ ),Yt+	t = y)

=
⎛
⎝∑

y′ �=y

ky′→y(x)Pr(S+
t = (g, x, τ ),Yt = y′)

⎞
⎠	t + Pr(S+

t = (g, x, τ ),Yt = y)

− d Pr(S+
t = (g, x, τ ),Yt = y)

dτ
	t − φg(τ )

�g(τ )
Pr(S+

t = (g, x, τ ),Yt = y)	t

− ky→y(x)Pr(S+
t = (g, x, τ ),Yt = y)	t,

plus terms of O(	t2). For notational ease, we denote:

ρ((g, x, τ ), y) := Pr(S+
t = (x, τ ),Yt = y),

which is equal to Pr(S+
t+	t = (g, x, τ ),Yt+	t = y) since we assumed the system is

in a NESS. Then we have:

ρ((g, x, τ ), y) =
⎛
⎝∑

y′ �=y

ky′→y(x)ρ((g, x, τ ), y′)

⎞
⎠ 	t + ρ((g, x, τ ), y) − dρ((g, x, τ ), y)

dτ
	t

− φg(τ )

�g(τ )
ρ((g, x, τ ), y)	t − ky→y(x)ρ((g, x, τ ), y)	t
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plus corrections of O(	t2). We are left equating the coefficient of the O(	t) term to
0:

dρ((g, x, τ ), y)

dτ
=

∑
y′ �=y

ky′→y(x)ρ((g, x, τ ), y′) − φg(τ )

�g(τ )
ρ((g, x, τ ), y)

− ky→y(x)ρ((g, x, τ ), y). (B3)

Our task is simplified if we separate:

ρ((g, x, τ ), y) = p(y|g, x, τ )ρ(g, x, τ )

and if we recall that:

ρ(g, x, τ ) = μg�g(τ )p(g)p(x |g).

These give:
dρ(g, x, τ )

dτ
= −μgφg(τ )p(x)p(x |g). (B4)

Plugging Eq. (B4) into Eq. (B3) yields:

dp(y|x, τ )

dτ
ρ(g, x, τ ) − μgφg(τ )p(g)p(x |g)p(y|g, x, τ )

=
∑
y′ �=y

ky′→y(x)ρ(g, x, τ )p(y′|g, x, τ )

− φg(τ )

�g(τ )
ρ(g, x, τ )p(y|g, x, τ )

− ky→y(x)ρ(g, x, τ )p(y|g, x, τ ),

where we note that:

μgφg(τ )p(g)p(x |g)p(y|g, x, τ ) = φg(τ )

�g(τ )
ρ(g, x, τ )p(y|g, x, τ ).

Hence, we are left with:

dp(y|g, x, τ )

dτ
=

∑
y′ �=y

ky′→y(x)p(y
′|g, x, τ ) − ky→y(x)p(y|g, x, τ ).

We can summarize this ordinary differential equation in matrix-vector notation as
follows. Let v(g, x, τ ) be the vector:

v(g, x, τ ) :=
⎛
⎜⎝

p(y1|g, x, τ )
...

p(y|Y ||g, x, τ ).

⎞
⎟⎠
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We have:

dv
dτ

= M(x)v,

with solution:

v(g, x, τ ) = eM(x)τv(g, x, 0). (B5)

The structure of M(x) guarantees that probability is conserved, as long as
1�v(g, x, 0) = 1 for all x ∈ A.

Our next task is to find expressions for v(g, x, 0).Wedo this by consideringEq. (B1)
in the limit that τ < 	t . More straightforwardly, we consider the equation:

ρ((g, x, 0), y) =
∑
g′,x ′

∫ ∞

0
dτ

φg′(τ )

�g′(τ )
δg,ε+(g′,x ′) p(x |g)ρ((g′, x ′, τ ), y), (B6)

which is based on the following logic. For probability to flow into ρ((g, x, 0), y) from
ρ((g′, x ′, τ ), y′), we need the dwell time for symbol x ′ to be exactly τ and for y′ = y.
(The latter comes from the unlikelihood of switching both channel state and input
symbol at the same time.) Again decomposing:

ρ((g′, x ′, τ ), y) = p(y|g′, x ′, τ )ρ(g′, x ′, τ )

= μg′�g′(τ )p(g′)p(x ′|g′)p(y|g′, x ′, τ ) (B7)

and, thus, as a special case:

ρ((g, x, 0), y) = p(y|g, x, 0)p(g)p(x |g)μg. (B8)

Plugging both Eqs. (B7) and (B8) into Eq. (B6), we find:

μg p(g)p(x |g)p(y|g, x, 0) =
∑
g′,x ′

∫ ∞

0
μg′ p(g′)p(x ′|g′)φg′ (τ )δg,ε+(g′,x ′) p(x |g)p(y|g′, x ′, τ )dτ

μg p(g)p(y|g, x, 0) =
∑
g′,x ′

∫ ∞

0
μg′ p(g′)p(x ′|g′)φg′ (τ )δg,ε+(g′,x ′) p(y|g′, x ′, τ )dτ.

UsingEq. (B5),we see that p(y|g′, x ′, τ ) =
(
eM(x ′)τv(g′, x ′, 0)

)
y
and p(y|g, x, 0) =

(v(g, x, 0))y . So, we have:

μg p(g)v(g, x, 0) =
∑
g′,x ′

μg′δg,ε+(g′,x ′) p(g
′)p(x ′|g′)

(∫ ∞

0
φg′ (τ )eM(x ′)τdτ

)
v(g′, x ′, 0).
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If we form the composite vector:

U =

⎛
⎜⎜⎜⎝

u(g1, x1)
u(g1, x2)

...

u(g|G|, x|A|)

⎞
⎟⎟⎟⎠

=
⎛
⎜⎝

μg1 p(g1)v(g1, x1, 0)
...

μg|G| p(g|G|)v(g|G|, x|A|, 0)

⎞
⎟⎠

and the matrix (written in block form) as:

C :=
⎛
⎜⎝
C(g1,x1)→(g1,x1) C(g1,x2)→(g1,x1) . . .

C(g1,x1)→(g1,x2) C(g1,x2)→(g1,x2) . . .
...

...
. . . ,

⎞
⎟⎠

with:

C(g′,x ′)→(g,x) = δg,ε+(g′,x ′) p(x
′|g′)

∫ ∞

0
φg′(t)eM(x ′)tdt,

we then have:

U = eig1(C). (B9)

Finally, we must normalize u(x) appropriately. We do this by recalling that
1�v(g, x, 0) = 1, since v(g, x, 0) is a vector of probabilities. Then we have:

u(g, x) → u(g, x)

1�u(g, x)
μg p(g).

for each g, x .
To calculate prediction metrics—i.e., Imem and Ifut—we need p(x, y) and

p(y, σ−). The former is a marginalization of p(σ+, y) that we just calculated. The
second can be calculated via:

p(σ−, y) =
∑
σ+

p(σ−|σ+)p(y, σ+),

where:

p(σ−|σ+) = p((g−, x−, τ−)|(g+, x+, τ+))

= δx+,x− p(g−|g+, x+)μg+φg+(τ+ + τ−).
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Hence, we turn our attention to calculating dissipation metrics, for which we only
need:

δ p

δt
= lim

	t→0

Pr(Xt+	t = x,Yt = y) − Pr(Xt = x,Yt = y)

	t
.

Moreover, we can use the Markov chain Yt → S+
t → Xt+	t to compute it:

Pr(Xt+	t = x,Yt = y) =
∑
σ+

Pr(Xt+	t = x |S+
t = σ+)Pr(Yt = y,S+

t = σ+).

We have:

Pr(Xt+	t = x |S+
t = σ+) = Pr(Xt+	t = x |S+

t = (g′, x ′, τ ′))

=
⎧⎨
⎩

�g′ (τ ′+	t)
�g′ (τ ′) x = x ′

φg′ (τ ′)
�g′ (τ ′) p(x |ε+(g′, x ′))	t x �= x ′.

This, combined with p(σ+, y), gives:

Pr(Xt+	t = x, Yt = y) =
∑

g′,x ′ �=x

∫
dτ ′ ρ((g′, x ′, τ ′), y)

φg′ (τ ′)
�g′ (τ ′)

	t p(x |ε+(g′, x ′))

+
∑
g′

∫
dτ ′ �g′ (τ ′ + 	t)

�g′ (τ ′)
ρ((g′, x ′, τ ′), y)

= Pr(Xt = x, Yt = y)

+ 	t
( ∑
g′,x ′ �=x

∫
dτ ′ p(x |ε+(g′, x ′))

φg′ (τ ′)
�g′ (τ ′)

ρ((g′, x ′, τ ′), y)

−
∑
g′

∫
dτ ′ φg′ (τ ′)

�g′ (τ ′)
ρ((g′, x, τ ′), y)

)
,

correct to O(	t). Recalling that:

ρ((g′, x ′, τ ′), y) = ρ(g′, x ′, τ ′)p(y|g′, x ′, τ ′)

= p(x ′|g′)�g′(τ ′)
(
eM(x ′)τ ′

u(g′, x ′)
)
y
,

gives:

δ p

δt
= lim

	t→0

Pr(Xt+	t = x, Yt = y) − Pr(Xt = x, Yt = y)

	t

=
∑

g′,x ′ �=x

∫
dτ ′ p(x |ε+(g′, x ′))

φg′ (τ ′)
�g′ (τ ′)

ρ((g′, x ′, τ ′), y) −
∑
g′

∫
dτ ′ φg′ (τ ′)

�g′ (τ ′)
ρ((g′, x, τ ′), y)

(B10)
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=
∑

g′,x ′ �=x

∫
dτ ′ p(x |ε+(g′, x ′))p(x ′|g′)φg′ (τ ′)

(
eM(x ′)τ ′

u(g′, x ′)
)
y

−
∑
g′

∫
dτ ′ p(x |g′)φg′ (τ ′)

(
eM(x)τ ′

u(g′, x)
)
y
. (B11)

From this, Eqs. (7) and (10) can be used to calculate İnp and βP .

Appendix C Specialization to Semi-Markov Input

Up to this point, we wrote expressions for the general case of unifilar hidden semi-
Markov environment inputs to the sensor.We now specialize to the semi-Markov input
case: the environment’s states are directly observed, not hidden. Not surprisingly, a
great simplification ensues: hidden states g are the current emitted symbols x . Recall
that, in an abuse of notation, q(x |x ′) is now the probability of observing symbol x
after seeing symbol x ′.

Hence, forward-time causal states are given by the pair (x, τ ). The analog of
Eq. (B5) is:

p(y|x, τ ) = eM(x)τp(y|x, 0),

and we define vectors:

u(x) := μx p(x)p(y|x, 0).

The large vector:

U :=
⎛
⎜⎝

u(x1)
...

u(x|A)

⎞
⎟⎠

is the eigenvector eig1(C) of eigenvalue 1 of the matrix:

C =
⎛
⎜⎝

0 q(x1|x2)
∫ ∞
0 φx2(τ )eM(x2)τdτ . . .

q(x2|x1)
∫ ∞
0 φx1(τ )eM(x1)τdτ 0 . . .

...
...

. . .

⎞
⎟⎠ ,

where normalization requires 1�u(x) = μx p(x).
We continue by finding p(y), since from this we obtain H[Y ]. We do this via

straightforward marginalization:

p(y) =
∑
σ+

ρ(σ+, y) =
∑
σ+

p(y|σ+)ρ(σ+)
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=
∑
x

∫ ∞

0
p(y|x, τ )ρ(x, τ ) dτ

=
∑
x

∫ ∞

0

(
eM(x)τv(x, 0)

)
y
μx p(x)�x (τ )dτ

=
∑
x

((∫ ∞

0
eM(x)τ�x (τ )dτ

)
u(x)

)
y
.

This implies that:

p(y) =
∑
x

(∫ ∞

0
eM(x)τ�x (τ )dτ

)
u(x).

From earlier, recall that u(x) := μx p(x)p(y|x, 0).
Next, we aim to find p(x, y), again via marginalization:

p(x, y) =
∫ ∞

0
ρ((x, τ ), y)dτ

=
∫ ∞

0
μx p(x)�x (τ )p(y|x, τ )dτ

=
∫ ∞

0
μx p(x)�x (τ )

(
eM(x)τv(x, 0)

)
y
dτ

=
((∫ ∞

0
eM(x)τ�x (τ )dτ

)
u(x)

)
y
. (C1)

From the joint distribution p(x, y), we easily numerically obtain I[X; Y ], since
|A| < ∞ and |Y| < ∞.

For notational ease, we introduced Tt in this section as the random variable for the
time since last symbol, whose realization is τ . Finally, we require p(y|σ−) to calculate
H[Y |S−], which we can then combine with H[Y ] to get an estimate for Ifut. We utilize
the Markov chain Y → S+ → S−, as stated earlier, and so have:

p(y|σ−) =
∑
σ+

ρ(y, σ+|σ−)

=
∑
σ+

p(y|σ+, σ−)ρ(σ+|σ−)

=
∑
σ+

p(y|σ+)ρ(σ+|σ−).

Eq. (B5) gives us p(y|σ+) as:

p(y|σ+) = p(y|x+, τ+)

=
(
eM(x+)τ+v(x+, 0)

)
y
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and Eq. (2) gives us ρ(σ+|σ−) after some manipulation:

ρ(σ+|σ−) = ρ((x+, τ+)|(x−, τ−))

= δx+,x−
φx−(τ+ + τ−)

�x−(τ−)
.

Combining the two equations gives:

p(y|x−, τ−) =
∑
x+

∫ ∞

0
δx+,x−

φx−(τ+ + τ−)

�x−(τ−)

(
eM(x+)τ+v(x+, 0)

)
y
dτ+

= 1

�x−(τ−)

((∫ ∞

0
φx−(τ+ + τ−)eM(x−)τ+dτ+

)
v(x−, 0)

)
y
.

From this conditional distribution, we computeH[Y |S− = σ−], and soH[Y |S−] =
〈H[Y |S− = σ−]〉ρ(σ−). In more detail, define:

Dx (τ ) :=
∫ ∞

0
φx (τ + s)eM(x)sds,

and we have:

p(y|x−, τ−) = Dx−(τ−)u(x−)/μx− p(x−)�x−(τ−).

This conditional distribution gives:

H[Y |X− = x−,T− = τ−] = −
∑
y

p(y|x−, τ−) log p(y|x−, τ−)

= −1�
(

Dx− (τ−)u(x−)

μx− p(x−)�x− (τ−)
log

(
Dx− (τ−)u(x−)

μx− p(x−)�x− (τ−)

))

= − 1

μx− p(x−)�x− (τ−)

(
1� (

(Dx− (τ−)u(x−)) log(Dx− (τ−)u(x−))
)

− 1�(Dx− (τ−)u(x−)) log(μx− p(x−)�x− (τ−))
)
.

We recognize the factor μx− p(x−)�x−(τ−) as ρ(x−, τ−) and so we find that:

H[Y |X−, T−] =
∑
x−

∫ ∞

0
ρ(x−, τ−)H[Y |X− = x−, T− = τ−]dτ−

= −
∫ ∞

0

⎛
⎝∑

x−
1� (

(Dx−(τ−)u(x−)) log(Dx−(τ−)u(x−))
)
⎞
⎠ dτ−

+
∫ ∞

0

⎛
⎝∑

x−
1�Dx−(τ−)u(x−) log(μx− p(x−)�x−(τ−))

⎞
⎠ dτ−.
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This, combined with earlier formula for H[Y ], gives Ifut.
Finally, wewish to find an expression for the nonpredictive information rate İnp.We

review the somewhat compact derivation of δ p/δt in themore general case, specialized
for semi-Markov input. This requires finding an expression for Pr(Yt = y, Xt+	t = x)
as an expansion in 	t . We start as usual:

Pr(Yt = y, Xt+	t = x) =
∑
x ′

∫ ∞

0
Pr(Yt = y, Xt+	t = x, Xt = x ′, Tt = τ)dτ

and utilize the Markov chain Yt → S+
t → Xt+	t , giving:

Pr(Yt = y, Xt+	t = x) =
∑
x ′

∫ ∞

0

Pr(Yt = y|Xt = x ′, Tt = τ)Pr(Xt+	t = x |Xt = x ′, Tt = τ)ρ(x ′, τ )dτ. (C2)

We have Pr(Yt = y|Xt = x, Tt = τ) from Eq. (B5). So, we turn our attention to
finding Pr(Xt+	t = x |Xt = x ′, Tt = τ). Some thought reveals that:

Pr(Xt+	t = x |Xt = x ′, Tt = τ) =
{

	tq(x |x ′)φx ′(τ )/�x ′(τ ) x �= x ′

�x ′(τ + 	t)/�x ′(τ ) x = x ′ , (C3)

plus corrections of O(	t2). We substitute Eq. (C3) into Eq. (C2) to get:

Pr(Yt = y, Xt+	t = x) =
⎛
⎝∑

x ′ �=x

∫ ∞

0
Pr(Yt = y|Xt = x ′,Tt = τ)q(x |x ′) φx ′ (τ )

�x ′ (τ )
ρ(x ′, τ )dτ

⎞
⎠ 	t

+
∫ ∞

0
Pr(Yt = y|Xt = x,Tt = τ)

�x (τ + 	t)

�x (τ )
ρ(x, τ )dτ,

plus corrections of O(	t2). Recalling:

�x (τ + 	t)

�x (τ )
= 1 − φx (τ )

�x (τ )
	t,

plus corrections of O(	t2), we simplify further:

Pr(Yt = y, Xt+	t = x) =
⎛
⎝∑

x ′ �=x

∫ ∞

0
Pr(Yt = y|Xt = x ′,Tt = τ)q(x |x ′) φx ′ (τ )

�x ′ (τ )
ρ(x ′, τ )dτ

⎞
⎠ 	t

+
∫ ∞

0
Pr(Yt = y|Xt = x,Tt = τ)ρ(x, τ )dτ

−
(∫ ∞

0
Pr(Yt = y|Xt = x,Tt = τ)

φx (τ )

�x (τ )
ρ(x, τ )dτ

)
	t,
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plus O(	t2) corrections. We notice that:

∫ ∞

0
Pr(Yt = y|Xt = x, Tt = τ)ρ(x, τ )dτ = Pr(Yt = y, Xt = x),

so that:

lim
	t→0

Pr(Yt = y, Xt+	t = x) − Pr(Yt = y, Xt = x)

	t

=
∑
x ′ �=x

∫ ∞

0
Pr(Yt = y|Xt = x ′, Tt = τ)q(x |x ′) φx ′(τ )

�x ′(τ )
ρ(x ′, τ )dτ

−
∫ ∞

0
Pr(Yt = y|Xt = x, Tt = τ)

φx (τ )

�x (τ )
ρ(x, τ )dτ.

Substituting Eqs. (B5) and (1) into the above expressions yields:

∑
x ′ �=x

∫ ∞

0
Pr(Yt = y|Xt = x ′, Tt = τ)q(x |x ′) φx ′(τ )

�x ′(τ )
ρ(x ′, τ )dτ

=
∑
x ′

q(x |x ′)
((∫ ∞

0
φx ′(τ )eM(x ′)τdτ

)
u(x ′)

)
y

and:

∫ ∞

0
Pr(Yt = y|Xt = x,Tt = τ)

φx (τ )

�x (τ )
ρ(x, τ )dτ =

((∫ ∞

0
φx (τ )eM(x)τdτ

)
u(x)

)
y
,

so that we have:

lim
	t→0

Pr(Yt = y, Xt+	t = x) − Pr(Yt = y, Xt = x)

	t

=
(∑

x ′
q(x |x ′)

(∫ ∞

0
φx ′ (τ )eM(x ′)τ dτ

)
u(x ′) −

(∫ ∞

0
φx (τ )eM(x)τ dτ

)
u(x)

)
y
.

For notational ease, denote the left-hand side as δ p(x, y)/δt . The nonpredictive infor-
mation rate is given by:

İnp = lim
	t→0

I[Xt ; Yt ] − I[Xt+	t ; Yt ]
	t

= lim
	t→0

(H[Xt ] + H[Yt ] − H[Xt ,Yt ]) − (H[Xt+	t ] + H[Yt ] − H[Xt+	t ,Yt ])
	t

= lim
	t→0

H[Xt+	t ,Yt ] − H[Xt ,Yt ]
	t

,
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where we utilize stationarity to assert H[Xt ] = H[Xt+	t ]. Then, correct to O(	t),
we have:

H[Xt+	t ,Yt ] = −
∑
x,y

(
p(x, y) + δ p(x, y)

δt
	t

)
log

(
p(x, y) + δ p(x, y)

δt
	t

)

= −
∑
x,y

p(x, y) log p(x, y) −
∑
x,y

p(x, y)
δ p(x, y)/δt

p(x, y)
	t

−
∑
x,y

δ p(x, y)

δt
log p(x, y)	t

= H[Xt ; Yt ] −
∑
x,y

δ p(x, y)

δt
log p(x, y)	t,

which implies:

İnp =
∑
x,y

δ p(x, y)

δt
log p(x, y),

with:

δ p(x, y)

δt
=

(∑
x ′

q(x |x ′)
(∫ ∞

0
�x ′ (τ )eM(x ′)τ dτ

)
u(x ′) −

(∫ ∞

0
φx (τ )eM(x)τ dτ

)
u(x))y (C4)

and p(x, y) given in Eq. (C1).
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Walczak AM, Tkačik G, Bialek W (2010) Optimizing information flow in small genetic networks II. Feed-

forward interactions. Phys Rev E 81(4):041905
Yeung RW (1991) A new outlook on Shannon’s information measures. IEEE Trans Info Theory 37(3):466–

474

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1111.4500

	Prediction and Dissipation in Nonequilibrium Molecular Sensors: Conditionally Markovian Channels Driven by Memoryful Environments
	Abstract
	1 Introduction
	2 Background
	2.1 Environment
	2.2 Sensory Channel

	3 Prediction and Dissipation Metrics
	3.1 Prediction Metrics
	3.2 Dissipation Metrics

	4 Results
	4.1 Calculating Prediction Metrics
	4.2 Calculating Dissipation Metrics

	5 Examples
	5.1 Two-State Sensors in Markovian Environments
	5.2 Two-State Sensors Driven by Semi-Markov Environments
	5.3 Random Multistate Sensors Driven by Semi-Markov Environments
	5.4 Hill Molecule Interacting with a Semi-Markov Environment

	6 Conclusion
	Acknowledgements
	Appendix A Revisiting the Thermodynamics of Prediction
	Appendix B Closed-form Expressions for Unifilar Hidden Semi-Markov Environments
	Appendix C Specialization to Semi-Markov Input
	References






