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Region Segmentation Using LiDAR and Camera
M. Hossein Daraei1, Anh Vu2 and Roberto Manduchi3

Abstract—Inspired by the ideas behind superpixels, which
segment an image into homogenous regions to accelerate sub-
sequent processing steps (e.g. tracking), we present a sensor-
fusion-based segmentation approach that generates dense depth
regions referred to as supersurfaces. This method aggregates
both a point cloud from a LiDAR and an image from a camera
to provide an over-segmentation of the three-dimensional scene
into piece-wise planar surfaces by utilizing a multi-label Markov
Random Field (MRF). A comparison between this method that
generates supersurfaces, image-based superpixels, and RGBD-
based segments using a subset of KITTI dataset is provided in
the experimental results. We observed that supersurfaces are
less redundant and more accurate in terms of average boundary
recall for a fixed number of segments.

Index Terms—superpixel, sensor fusion, lidar, segmentation

I. INTRODUCTION

ENVIRONMENT understanding provides vital informa-
tion for autonomous driving systems mainly through

the use of feature-based sensors (e.g. camera, LiDAR, and
RADAR) and prior information (e.g. map). Different from
recognizing object classes, modeling the 3D structure of the
surroundings plays an important role in navigation and situa-
tion awareness. In order to understand the geometric structure
of the scene, sensor measurements are usually segmented into
those belonging to the ground plane and those belonging
to a set of independent objects. Subsequently, a 3D model
is assigned to each segment. Over-segmenting a 2D image,
i.e. superpixel segmentation, is a preprocessing technique
used in many computer vision applications such as image
segmentation [1] and 3D reconstruction [2]. The idea is to
provide a concise image representation by grouping pixels into
perceptually meaningful compact patches that adhere well to
object boundaries and do not overlap with multiple objects
[3]. It dramatically reduces the complexity of the subsequent
task, e.g. object segmentation. For many such applications, it
is far easier to merge superpixels than to split them [4].

In this work, we introduce supersurfaces which are com-
puted by tightly-coupled processing of sparse LiDAR and
dense Camera measurements. In addition to a spatial over-
segmentation of the scene, supersurfaces include 3D region
surfaces as well. Unlike superpixels, the goal of supersurface
segmentation is to represent possibly large surface areas of
3D objects using a parametric model. Such surfaces may be
merged or tracked in the next stages, thus while preferred to be
large they should not cross object boundaries. Homogeneous
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Fig. 1: Given (a) an image I and a point cloud P and a point ps, we
compute (b) MRF unary potentials based on LiDAR points, and (c)
MRF pairwise weights from image gradients on a 2D angular grid
Ωε = (θ, φ). The MRF solution is (d) a segment covering LiDAR
points while aware of image edges. The final output is (e) a three-
dimensional surface segment (or a supersurface).

regions and gradients of images provide clues on object
boundaries, but without depth data we are unable to reconstruct
surfaces. It is possible to measure semi-dense depth in a
stereoscopic vision [5] system and employ it for superpixel
segmentation, but this approach requires extra processing
and lacks accuracy especially in texture-less or distant areas.
LiDARs as active sensors, on the other hand, give accurate
range measurements at a sparse grid of azimuth-elevation
angles, providing rich information about scene structure and
discontinuities. Due to their sparsity, they alone cannot reliably
estimate objects true boundaries. In several cases (e.g. black
objects or windows in Fig. 1) there is remarkable missing
data in LiDAR measurements which results in neglecting
some object parts in segmentation. In order to combine the
complementary characteristics of these sensors, we suggest
to process them in a single joint Markov Random Field
(MRF) energy minimization. This is achieved using sensor
calibration parameters as well as estimated 3D surfaces that
help relating sensor spaces. Fig. 1 summarizes our MRF-
based approach for supersurface segmentation. The energy
function is optimized via max-flow/min-cut and a few move-
making iterations (α-expansion [6]) algorithms. The results
demonstrate the adherence of extracted supersurfaces to both
image and point cloud discontinuities.

The rest of this paper is organized as follows. In Sec. II
earlier work on scene segmentation is studied. In Sec. III we
formally state the problem. Sec. IV covers our ground re-
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moving, surface reconstruction, and supersurface segmentation
algorithms. Sec. V provides experimental results, and Sec. VI
concludes the paper.

II. PRIOR WORK

As an early technique for 2D image over-segmentation, FH
[7] estimates superpixels through finding minimum spanning
trees of the global graph of pixels and rule-based merging of
adjacent superpixels. But it does not consider compactness,
size, and shape regularity of superpixels. Normalized cut [8]
implicitly takes compactness into consideration, but it has
limited applicability due to its high computational complexity.
Turbopixel generates uniform and compact superpixels by
iterative dilation of seeds that are distributed evenly. Moore
et al. [9] proposed an algorithm to preserve the topology of a
regular lattice during superpixel segmentation. Liu et al. [10]
suggests an objective function based on the entropy rate of
a random walk and a regularization encouraging superpixels
of the same size. Bergh et al. present SEEDS in [11] by
encouraging color homogeneity and shape regularity in their
objective function. Achanta et al. [12] proposed a simple and
fast algorithm referred to as linear clustering based algorithm
(SLIC). It generates superpixels by performing iterative K-
means clustering in a five dimensional space combining color
and spatial information. Li and Chen [3] extend SLIC to
capture global as well as local similarity information. In their
Linear Spectral Clustering (LSC) each pixel is mapped to a ten
dimensional space in which weighted k-means approximates
the spectral clustering solution in linear time. Veksler et al [13]
reformulated superpixel generation as an energy minimization
problem which is solved using Graph Cuts [6]. They cover
the input image with overlapping square patches of fixed
size, which is equal to the maximum superpixel size. Then
they search for the optical assignment of pixels to patches
(labels) so that the global energy is minimized. Our method is
similar in spirit to their work. We also employ an energy-based
approach with overlapping patches as labels, but our patches
are defined as physical regions in three-dimensional space.

Superpixels have in recent years been employed for 3D
scene reconstruction in stereoscopic systems [5], [14], [15].
Güney et al [5] propose using object-class specific CAD
models for disparity proposal (displets) and aggregate them
in a superpixel-based Conditional Random Field (CRF). Yam-
aguchi et al, [14] use a piece-wise planar model and segment
the scene using superpixels. They use a Markov Random Field
(MRF) with a static scene assumption, and manage to optimize
segments, ego-motion, and plane parameters. Vogel et al, [15]
find segment plane parameters in a similar fashion, but they
also consider a pairwise term between nearby planes. In order
to deal with dynamic scenes, they assume a rigid motion for
each segment. Menze et al, [16] group segments into objects
and find motion parameters for each group, resulting in a
dramatic reduction in cost.

There is another class of over-segmentation techniques that
make use of RGB-D data [17], [18]. Depth Adaptive Superpix-
els (DASP), introduced by Weikersdorfer et al [18], performs
spectral graph clustering on a spatio-temporal graph of RGBD

a b

Fig. 2: (a) shows LiDAR-image data for a black car suffering from
missing data, and (b) demonstrates non-ground supersurfaces along
with their 3D models.

data combining position and normal information with color
data. Pappon et al, [17] introduce Voxel Connectivity Cloud
Superpixels (VCCS) which generates supervoxels in 3D by
processing the connectivity of RGB-D depth channel. Despite
their promising results on indoor RGB-D dataset, they fail to
handle LiDAR point clouds of outdoor scenes especially in
regions with low point density. In a probabilistic framework,
Held et al, [19] improve LiDAR point cloud segmentation by
adding temporal and semantic information to the conventional
spatial approach. Their algorithm requires object tracking,
does not take advantage of dense image data, and outputs point
clusters rather than object masks.

III. PROBLEM STATEMENT

Let I(x, y) and P = {p1, p2, . . . , pM} denote respectively
the Camera image grid and the set of LiDAR measurements.
For simplicity we assume calibration parameters are given
for both sensors and all measurements are synchronized to
the same time reference. Note that LiDAR points of a single
scan are essentially range measurements at discrete azimuth-
elevation angles. This is an important point that allows us to
model them simply as a sparse 2D depth map rather than a
3D point cloud. We accordingly define Ωε(θ, φ) as a two-
dimensional and discrete azimuth-elevation grid of cell size
ε◦. Accordingly LiDAR points are represented in spherical
coordinates as pi = (θ φ ρ) and mapped to Ωε. Now let G ⊆ P
represent the set of LiDAR reflections off the ground. We are
interested in finding an over-segmentation S = {s1, · · · , sN}
that covers all non-ground points in Ωε. Each segment is a
label mask spanning a subset of θ−φ cells in Ωε. It is desired
for segment borders to align with depth discontinuities as well
as image boundaries. For each segment s is also required
a surface (depth map) Fs(θ, φ) in order to capture the 3D
structure of the scene.

IV. PROPOSED METHOD

In this section we describe different components of the
proposed supersurface segmentation method. The first step is
to select a cell size ε, according to which the angular grid Ωε
is defined. While smaller ε results in finer segment resolution,
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it will be less computationally efficient. In what follows we
describe ground point removing, segment initialization, surface
modeling for each segment, and finally first- and second-
order potentials for MRF to specify object masks. Ground
points are removed in order to ensure segment masks do
not overlap with the ground surface. Removing them also
eliminates the connectivity of independent objects through
ground. Estimating an efficient and dense depth map for each
segment enables the algorithm to map surface points in Ωε to
unique image pixels. This helps with connecting sensor spaces,
especially for regions with missing LiDAR measurements.
Fig. 2 shows supersurface segments computed for a car with
missing data due to its color.

A. Preprocessing

As preprocessing we identify ground points G (along with
outliers) and remove them from the point cloud. A small subset
of ground points are first identified by constructing a coarse
2.5D grid for the point cloud [20]. This is followed by fitting a
parametric surface model Z = FG(X,Y ) in vehicle reference
system. Then all points in P within a fixed threshold (10cm)
of FG are marked as ground points. In order to handle slight
curvatures, the ground surface is parametrized using the model
in Sec. IV-C but defined over XY plane.

B. Segment initialization

The role of this step is to initialize a set of overlapping
segments that cover all non-ground points. For each segment
s we set a rectangle B∫ on the polar domain of Ωε which limits
the segment area. A set of points Ps ⊂ P is also assigned to
each segment. Let U denote the dynamic set of non-ground
points not assigned to any segments. The initialization process
for a new segment s is to randomly choose an anchor point
ps ∈ U , set Bs in Ωε around ps, and assign to s the points
in P that are within a Euclidean distance τ from ps (Fig.
3a). Assigned points are added to segment point set Ps and
removed from U . This process is repeated until U = ∅. Note
that assignment to multiple segments is possible for points,
as we do not remove them from P . The associated rectangle
Bs (as shown in Fig. 3a) is in Cartesian space a 3D rectangle
centered on ps and normal to the line connecting LiDAR origin
L to ps. We constrain them to be a square of size W meters,
and compute the corresponding size on Ωε as,

∆φ = ∆θ = 2tan−1
( W

2ρs

)
(1)

where ρs is the range (depth) for ps. Fig. 4b-c represents as
an example the estimated Bs for all segments extracted from
a sample scene. Note that W has a physical meaning and can
be set based on expected object size and regardless of object
position. This is in contrast to the method of Veksler et al [13]
where maximum segment size is defined in terms of pixels.
If available, semantic information for ps can be employed to
specify W .

L

W (m)

∆θ
2

∆φ
2

ρs

(a) Bs in LiDAR space

Fs

(b) Estimated Fs

Fig. 3: Each segment s has (a) a set of assigned points (in green)
and a square box Bs centered on its anchor ps, then (b) a 3D surface
Fs is fit to assigned points.
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Fig. 4: (a) LiDAR points on Ωε = (θ, φ) grid with gray representing
ground (or far) points, (b) square boxes B for all segments in Ωε,
and (c) projection of points and boxes on image.

C. Surface reconstruction

In order to associate each (θ, φ) cell in Bs to its corre-
sponding image pixel, we need to have an estimated depth for
that particular cell. Since points in Ps are sparse (especially
in regions with missing LiDAR data) and do not cover all
cells we need to fit a dense surface and interpolate depth.
Segment surface Fs, defined as a depth map over Bs grid, is
estimated through minimizing an energy term consisting of a
data and a regularization term. The data term encourages Fs
to align with points in Ps. We also add a non-quadratic (Huber
[21]) penalizer to handle outliers. Similar to [14], [15], we also
add a piecewise planar prior term. The prior term helps with
depth interpolation in regions where LiDAR measurements are
not available, e.g. the black car in Fig. 2. Inspired by the
regularization term in [22], [23], we minimize the second-
order derivatives of F to encourage smooth surfaces. In
addition, we want the surface to potentially fold along sparse
line patterns to prevent over-smoothing. To accomplish this,
we add a spatial Huber penalizer to the regularization term as
well [24]. Assuming pi = (θi φi ρi), surface energy term is
defined as,
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EF =
∑
pi∈Ps

ρ
(
F(θi, φi)− ρi)

)
+ γ

∑
θ,φ∈Bs

ρ
(
‖HF(θ, φ)‖F

)
(2)

where γ is a constant, ρ(.) denotes Huber penalizer [21], ‖.‖F
is the Frobenius norm, and H represents Hessian matrix. The
energy term in (2) is minimized using Iterative Reweighted
Least Squares (IRLS). For more efficiency, we represent Fs
as a linear combination of NB basis functions,

F(θ, φ) =

NB∑
j=1

djφj(θ, φ) (3)

Basis functions employed in our algorithm are introduced
in Sec. V-A. At each IRLS iteration, the data term will
be a quadratic function of d = (d1, · · · , dNB

). As shown
in Klowsky et al [22], the regularization term can also be
reformulated as a quadratic function of d. Huber weights for
data term decrease during re-weighting iterations for outliers
(encoded with color in Fig. 3b). In the regularization term,
most (θ, φ) cells will be assigned large Huber weights, re-
sulting in penalization of second-order derivatives and smooth
surface. But these weights will decrease for a sparse pattern of
cells, which leads to less regularization and possibly surface
bending.

D. MRF-based mask optimization

Through reconstruction approach of Sec. IV-C we have a
dense and piece-wise smooth surface computed over maximum
surface rectangle Bs. The purpose of this section is to find the
optimal mask on Bs that cuts segment surface Fs against other
segments as well as ground. Finding the optimal supersurface
mask is defined as an energy minimization on an MRF over
Ωε. An MRF formulation helps to aggregate LiDAR-based and
image-based information about segment mask. Since we have
multiple segments with overlapping Bs, a multi-label MRF is
employed. We find the optimal labels ` for (θ, φ) cells that
minimize the MRF energy. Let Gs = (Vs, Es) define a graph
for each segment. Vs is the set of (θ, φ) cells on Bs and Es is
the set of 8-neighborhood edges in Bs connecting nearby cells.
We define MRF unary (first order) potentials D(i) for each
vertex vi based on geometric features in LiDAR space, and
compliment it with pairwise (second-order) potentials V (i, j)
for each edge {vi, vj} based on image gradients. The unary
potential describes the likelihood of a particular (θ, φ) cell to
be occupied by segment s. While the pairwise term enforces
shape smoothness and encourages boundaries to coincide with
sharp image edges. Let ` be the global labeling for all cells
in all segments. The overall energy for segment s given ` is,

Es(`) =
∑
viinVs

[`i = s]D(i) +
∑

{vi,vj}∈Es

[`i = s, `j 6= s]V (i, j) (4)

where [· · · ] is Iverson bracket, and `i denotes the segment
label for vi. The global MRF energy is defined simply as,

E(`) =
∑
s∈S

Es(`) (5)

where S is the set of all segments including an extra ground
segment. As we have a multi-label energy we must use move-
making approximation algorithms [13], e.g. αβ-swap or α-
expansion. In most cases it is sufficient to perform 3 iterations
of α-expansion [6] to converge to a locally optimal solution.
In what follows we describe in detail the computation of D(i)
and V (i, j).

E. First-order potentials

The unary term for segment s is the combination of a prior
Dp and a data term Dd. The prior assigns larger potentials
to cells that are closer to the anchor ps = (θs φs ρs). And
the data term is defined in terms of the projection of segment
assigned points Ps onto Bs. Represented as a spatial grid, the
overall unary term is computed as,

D(θ, φ) = Gs(θ, φ) + α
∑
pi∈Ps

wiKi(θ, φ) (6)

where Gs and Ks are 2D Gaussian kernels, α is a constant,
and wi is the weight assigned to pi. Gs has mean (θs, φs)
and standard deviation ∆θ/6 = ∆φ/6, and covers the whole
box. Ki is centered on (θi, φi) and has a variance equal to
LiDAR’s characteristic angular error variance. Point weights
wi are also computed as,

wi = exp
(−d(pi, ps)

2

2τ2
+
−(ρi −F(θi, φi))

2

2σ2
F

)
(7)

where d(., .) denotes Euclidean distnace, τ is the assignment
threshold from Sec. IV-B, and σF = 0.3m. Note the weighting
function in (7) gives less weight to surface outliers or points
that are far from the anchor.

F. Pairwise potentials

Let Γ(v) denote the projection of a vertex v onto the
image. For each {vi, vj} ∈ Es, the idea behind pairwise
potentials is to see if the line segment connecting Γ(vi) and
Γ(vj) crosses any strong gradients. This approach has been
successfully employed as an affinity metric in contour-based
segmentation [25], [26]. Similar to [25] we define the affinity
distance de(vi, vj) as the maximum edge map value along the
connecting line segment. The pairwise energy between vi and
vj is then defined as,

V (i, j) = ξ exp
(−de(vi, vj)2

2σ2
e

)
(8)

where σe and ξ are constants. Note if the line segment crosses
an edge the pairwise potential V (i, j) will be close to zero.
This encourages vi and vj to have different labels. We also
project the vertex 3D point X = (θ φ Fs(θ, φ)) as,

x̃ = Kc [R | t ] X (9)

where x̃ is the projected point in homogeneous coordinates,
Kc is camera projection matrix, and [R | t ] is the extrinsic
parameters converting LiDAR to camera reference system. We
simply use Canny edge detector to quickly compute image
edge map.
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a b

dc

Fig. 5: Superpixels generated for (a) a sample scene using different
methods, (b) proposed method, (c) SLIC [12], (d) DASP [18]. No
superpixel is generated for the pink region.

a b

Fig. 6: Transferring supersurfaces from Ωε to image plane is
susceptible to parallax, as the pole occludes the car in (a). This can
be solved through (b) depth-ordering of surface segments.

V. EXPERIMENTAL RESULTS

In order to evaluate our method, we test it on 30 LiDAR-
image samples from KITTI raw dataset [27]. LiDAR point
clouds have 64 vertical layers and are synchronized with image
data. Using Interactive Segmentation Tool 1, object contours
are annotated on the image plane for this subset. Estimated
supersurfaces are projected onto the image plane (Sec. IV-D)
and their boundaries are compared with ground truth. We use
average boundary recall (Avg BR) to evaluate the results of
various methods. BR measures average fraction of ground truth
edges falling within at least 2ε◦ of a segment boundary. High
BR shows that the superpixels are well aligned with ground
truth object boundaries. Since we are interested in efficient
representation of the scene, there is a preference for fewer
segments for a fixed BR. Therefore, we tune the segment size
parameter for each method so they produce relatively the same
number of segments to cover non-ground regions.

A. Implementation

We set maximum supersurface size W to 2.0 meters and an-
gular cell size ε to 0.2◦ for our experiments. Model parameters
are selected based on LiDAR range and angular accuracy, and
the constants are tuned heuristically. Depending on ε we need
different sets of nested basis functions to cover the angular grid
Ωε. Let L2(R) denote the set of all functions f : R → R for
which ‖f‖2 is integrable over R. A multi-resolution analysis
of L2 is a nested set of vector spaces V 0 ⊂ V 1 ⊂ V 2 ⊂ . . .
where closL2(∪k∈ZV k) = L2(R). The basis functions for the
spaces V j are called scaling functions {φji}. There are many
possibilities for the choice of multi-resolution basis functions,
but we choose square B-spline wavelets [23] due to their
simplicity and continuous first and second order derivatives.

1https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/
resources.html

a

c

b

Fig. 7: A sample scene from KITTI containing obstacles of different
classes, with (a) LiDAR measurements and (b) image data. Super-
surface segments are extracted for non-ground points in (c).

Note these derivatives (used to compute H in Eq. 2) are pre-
computed and cached. Currently the method is implemented in
Python and uses pymaxflow2 to implement segment graphs
and to perform max-flow/min-cut. With this implementation
and selected parameters it takes 5.5 seconds on average to
process one frame on a single-threaded Intel Core i7 CPU.

B. Discussion

We compare our supersurfaces with the results of SLIC 3

[12] and Veksler et al 4 [13] as two image-based superpixel
segmentation techniques. We also experiment with DASP 5

[18] as an RGB-D based method. Since DASP requires a
depth channel with the same size as the input image, we
project our sparse point clouds onto the image plane and
generate semi-dense 16-bit pgm files. Fig. 5 shows the results
different methods on a scenario consisting of two cars at
different distances. Depth-aware techniques (supersurface and
DASP) produce segments with approximately similar physical
size. While image-based methods (SLIC) produces segments
that are of the same spatial size. As shown in Fig. 5c, this
results in significantly more segments for near object while
they have a fixed physical size. This is a disadvantage for 3D
scene processing, as we prefer efficient object representations
for tasks such as tracking. There is also noticeable missing
data in LiDAR measurements of Fig. 5a due to vehicles dark
color. As a result, DASP fails to generate segments for these
regions (marked as pink in Fig. 5d). Table I summarizes the
quantitative results for various methods in terms of average
boundary recall (Avg BR) for a relatively fixed average
number of segments covering non-ground regions. Superpixel
segmentation techniques that are purely image-based (SLIC

2https://github.com/pmneila/PyMaxflow
3http://ivrl.epfl.ch/research/superpixels
4http://www.csd.uwo.ca/∼olga/Projects/superpixels.html
5https://github.com/Danvil/asp

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
https://github.com/pmneila/PyMaxflow
http://ivrl.epfl.ch/research/superpixels
http://www.csd.uwo.ca/~olga/Projects/superpixels.html
https://github.com/Danvil/asp
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SLIC [12] Veksler [13] DASP [18] Proposed

Avg Seg 73.6 77.5 71.1 70.2
Avg BR 0.66 0.62 0.75 0.83

TABLE I: Average boundary recall (Avg BR) and average number
of segments for non-ground regions (Avg Seg) for two image-based
(SLIC, Veksler), one RGB-based (DASP), and the proposed method.

and Veksler) have poor boundary recall when lower number
of segments are allowed (or equivalently segment size is large).
This is primarily because image boundaries do not in general
coincide with object boundaries, and with larger segments
a smaller fraction of image boundaries are covered. DASP
performs better compared to SLIC and Veksler, but has less
boundary recall compared to the proposed method. This is
partly due to its failure to estimate surface normals from
simulated pgm depth map.

C. Parallax and class-independence

Since LiDAR and camera are mounted at different positions
on ego-vehicle, they have different viewpoints and observe
different things. This is referred to as parallax, and results
in overlapping segments when they are transferred from Ωε
to the image plane. Fig. 6a represents such case where pole
segments are occluding the vehicle. As shown in Fig. 6b, this
can be resolved by depth-ordering of layers and checking their
estimated surface Fs.

Fig. 7a-b represents a scene with irregular obstacles from
different classes with ground LiDAR points marked in gray.
Segmented supersurfaces shown in Fig. 7c are computed for
non-ground regions, and work equally well for all objects
regardless of their class.

VI. CONCLUSION

An efficient surface-based over-segmentation approach was
introduced in this paper, combining accurate but sparse range
measurements from a LiDAR with dense image data. As
shown in the results, compared to image-based superpixels our
supersurfaces are more efficient when structural information
are available for the scene. There are a few possible directions
for future work. We can couple supersurfaces with a tracking
module and refine them through accumulating temporal data.
As mentioned in Sec. IV-B, semantic information could be
incorporated for further improvement of segments. Supersur-
face merging can also be investigated in order to form objects.
Finally a multi-processor version of the overall work will be
implemented, as many processes in the proposed method could
run in parallel.
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