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Parallel three-dimensional simulations of quasi-static elastoplastic

solids. Part I: Numerical formulation and examples

Nicholas M. Boffia, Chris H. Rycrofta,b

aPaulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02139
bComputational Research Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720

Abstract

In this two-part paper, we extend to three dimensions a new projection method for simulating
hypo-elastoplastic solids in the quasi-static limit. The method is based on a surprising
mathematical correspondence to the incompressible Navier–Stokes equations, where the
projection method of Chorin (1968) is an established numerical technique. In both parts,
we explore the method through numerical simulation of a three-dimensional continuum-level
elastoplastic model of a bulk metallic glass based on the shear transformation zone (STZ)
theory of amorphous plasticity.

Here in part I, we review the development of the quasi-static projection method, and
extend it to three dimensions. We discuss the development of a three-dimensional parallel
geometric multigrid solver employed to solve a linear system for the quasi-static projection.
We test the method by simulating three-dimensional shear band nucleation and growth in
materials undergoing simple shear, and explore the agreement of the method with an explicit
timestepping method as the quasi-static limit is mathematically approached. We consider
several three-dimensional examples and contrast the dynamics of shear banding in these
situations with previous two-dimensional studies. We consider the generation of physically
realistic randomly distributed initial conditions in a relevant STZ internal variable, and
discuss relevance to experimental studies of shear banding.

Keywords: fluid mechanics, Chorin-type projection method, plasticity, elastoplasticity

1. Introduction

Elastoplastic behavior is ubiquitous in materials of modern engineering relevance and
scientific inquiry, including metal matrix composites [1], auxetics [2], granular materials [3],
and amorphous materials such as gels [4], thin films [5], and bulk metallic glasses (BMGs) [6].
Elastoplastic behavior is defined as any combination of elastic and plastic deformation, and
admits a number of mathematical descriptions [7]. For stress levels below the material yield
stress, the material deforms purely elastically and returns to its undeformed state upon
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removal of the load. When the yield stress is reached, the material begins to deform plastically,
leading to permanent, irreversible deformation that persists beyond load removal [8].

The mathematical representation of elastoplasticity is fundamental to its study, and
any modeling choice amounts to a description of the interaction of the elastic and plastic
components of deformation at a microscopic level [9]. An in-depth understanding of the
limitations of each formulation is a target of modern research, and the development of an
optimal theoretical framework has remained elusive [7]. Two of the most popular choices are
hyper-elastoplasticity [10, 11] and hypo-elastoplasticity [12]. In hyper-elastoplasticity, the
deformation gradient is decomposed multiplicatively into the product of an elastic part and a
plastic part, F = FeFp. In hypo-elastoplasticity, the Eulerian rate of deformation tensor is
decomposed additively into elastic and plastic parts, D = Del +Dpl [13]. Hypo-elastoplasticity
has some drawbacks, but is well-suited to problems with small elastic deformation and large
plastic deformation. We focus on hypo-elastoplasticity in the remainder of this article.

The hypo-elastoplastic formulation has several numerical advantages. Since it is based on
the Eulerian rate of deformation tensor, it is well-suited to a fixed-grid framework. Fixed grids
have simpler topologies than their Lagrangian counterparts, and are easier to program and
to parallelize. This is particularly important in three dimensions, where the computational
expense mandates parallelization techniques, and the implementation difficulty increases.
Fixed-grid methods are the methods of choice for fluid simulation [14, 15, 16] and are useful for
fluid–structure interaction [17, 18, 19]. Fixed-grid frameworks allow a wider range of numerical
linear algebra techniques to be used, such as the geometric multigrid method [20, 21].

The additive decomposition of D, coupled with the linear-elastic constitutive relation
and a continuum formulation of Newton’s second law, leads to a closed system of partial
differential equations for the material velocity, stress, and internal variables intrinsic to the
plasticity model. These equations can be solved via an explicit finite-difference discretization
scheme. Such explicit methods resolve elastic waves, and their timesteps are restricted by the
well-known Courant–Friedrichs–Lewy (CFL) condition [22]. The CFL condition states that
∆t ≤ h

ce
is necessary for numerical stability, where ce is a typical elastic wave speed in the

medium and h is the grid spacing. In metals and other materials of interest, elastic waves
can travel at kilometers per second. The CFL condition thus poses a prohibitive limit on the
timestep, and the development of alternative simulation approaches is necessary.

After scaling the hypo-elastoplastic equations to the long time and small velocity limit, the
continuum version of Newton’s second law can be replaced by a constraint that the stresses
must remain in quasi-static equilibrium [23]. This leads to an explicit update equation for
the stress tensor, still given by linear elasticity and dependent on the velocity, coupled with a
quasi-static constraint on the stress tensor. In this limit, there is a surprising mathematical
analogy with incompressible fluid flow. The incompressible limit of the Navier–Stokes
equations replaces an explicit equation for the fluid pressure with a divergence-free constraint
on the fluid velocity, but the explicit equation for the velocity is unaffected. A well-known
algorithm for this setting is the projection method of Chorin [24, 25]. In this method, the
velocity field is first updated explicitly, but this intermediate velocity does not obey the
incompressibility constraint. An elliptic problem is solved which simultaneously enforces the
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incompressibility constraint and enables computation of the pressure. A similar algorithm
was recently developed for the quasi-static limit of hypo-elastoplasticity and studied in two
dimensions [23]. The stress is first updated explicitly such that the intermediate value does not
obey the quasi-static constraint. The stress tensor is then projected back onto the manifold
of divergence-free solutions through an elliptic problem for the velocity. Importantly, this
quasi-static projection method does not resolve elastic waves, and hence enables timesteps
that are orders of magnitude larger than those required by the CFL condition. In this work,
we extend the quasi-static projection algorithm to three dimensions, and place it on a firmer
theoretical footing by making a connection to more general projection methods in fluid
dynamics.

As a physical testbed for our methodology, we employ an athermal formulation of the STZ
theory of Falk, Langer, Bouchbinder and coworkers as a plasticity model for a bulk metallic
glass [26, 27, 28, 29]. The combination of the STZ theory and BMG modeling is an excellent
setting for our three-dimensional method. Metallic glasses naturally lend themselves to study
through the hypo-elastoplasticity framework, as their elastic deformation is generally small
and well-described by a linear theory, yet they can exhibit significant plastic deformation [30].
Their elastic moduli are typically on the order of 10–100 GPa, and hence experimental loading
conditions often place samples in the quasi-static regime [31]. They present interesting and
poorly understood fundamental physics [32, 33, 34, 35]. A useful test case has been to
study the necking instability in a bar under uniaxial tension [36, 37, 38] since it highlights
the interplay between elastic and plastic deformation. The physical mechanisms of BMG
fracture were explored using the two-dimensional projection method [39, 23], subsequently
allowing BMGs fracture toughness to be predicted across a wide range of experimental
conditions [40]. Later experimental measurements due to Ketkaew et. al. demonstrated
that these simulation-based predictions were quantitatively correct [41]. Indeed, testable
predictions for complex amorphous systems such as BMGs are rare, and the development of
efficient numerical methods such as the ones presented here provide a way to generate them,
and to guide future experimental inquiry.

Under loading, BMGs exhibit shear bands [42], a nonlinear instability characterized by
rapid strain localization [43] along a thin band [44] within the material. Experimentally,
shear bands rapidly lead to material failure [45, 46], and are one of the primary limitations
in employing BMGs in applications [47]. Analytical work probing shear bands in amorphous
materials is difficult, particularly in two or three dimensions, which highlights a need for
computational investigations. The development of our method enables the study of shear-
banding in three dimensions at large scale and high resolution without excessive computational
expense. Our simulations demonstrate that this scale and resolution is indeed necessary, and
expose interesting fine-scale and uniquely three-dimensional features of shear banding. Our
methodology opens the door to future studies probing the shape, structure, and topology of
shear bands, as well as the mechanism and statistical properties of their formation.

We emphasize that though the STZ theory is a useful test case for our method both
physically and numerically, the algorithm is general and can be used for many plasticity
models within the hypo-elastoplasticity framework. This could include free-volume based
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models of BMGs [48], hypo-elastic materials [49, 50, 51], geophysical models [52, 53], and rate-
independent plasticity models [54, 55, 56, 57]. We also emphasize that Chorin’s projection
method represents a first step towards more complex projection-based algorithms such as
gauge methods [58, 59, 60] and pressure-Poisson methods [61, 62], and that we have laid the
groundwork here to generalize these algorithms to the case of hypo-elastoplasticity.

The structure of this paper is as follows. In Section 2, we formally describe the relation
between Chorin’s projection method and the projection algorithm for hypo-elastoplasticity
employed here. In Section 3, we describe a finite-difference implementation of our projection
method, and describe a forward-Euler based explicit method for solving the hypo-elastoplastic
equations in the non-quasi-static limit. We also discuss our development of a parallel geometric
multigrid method used for the stress projection. In Section 4, we demonstrate convergence
between the explicit and projection methods in a regime in which the two are expected to
produce similar results, and study several interesting examples of shear banding dynamics in
a metallic glass. We conclude with some interim remarks in Sec. 5, and our work is continued
in part II [63], where the projection method is extended to an arbitrary reference domain via
a domain transformation.

2. Projection methods for fluid dynamics and hypo-elastoplasticity

2.1. Hypo-elastoplasticity

We denote by σ(x, t) the Cauchy stress tensor and by v(x, t) the velocity field at a
position x and time t in a material. The total rate of deformation tensor D is defined as
the symmetric part of the velocity gradient, D = 1

2
(∇v + (∇v)T). For any field f(x, t), we

define the advective time derivative by df
dt

= ∂f
∂t

+ (v · ∇) f . The fundamental assumption of
hypo-elastoplasticity is that the rate of deformation tensor can be additively decomposed
into a sum of elastic and plastic parts, D = Del + Dpl.

For stiff elastoplastic materials with small elastic deformation, the linear elastic constitutive
law provides an accurate description,

Dσ
Dt

= C : Del = C :
(
D−Dpl

)
. (1)

C is the fourth-rank stiffness tensor, taken to be homogeneous and isotropic. With Lamé’s
first parameter λ and shear modulus µ, the components of C are given by Cijkl = λδijδkl +
µ (δikδjl + δilδjk) [64]. The time derivative Dσ

Dt = dσ
dt
− LTσ − σL + Tr(L)σ denotes the

Truesdell objective stress rate, where L is the velocity gradient L = ∇v.1

1The Truesdell rate is usually presented in the form Dσ
Dt = dσ

dt − Lσ − σLT + Tr(L)σ. In this work we
have replaced LT in the standard definition with L [8]. The standard form of the Truesdell rate defines
L as the Fréchet derivative of the velocity field. We use the symbol ∇v to denote the gradient of the the
velocity field; formally, the gradient of a vector field is the transpose of its Fréchet derivative. The coordinate
transformation methodology presented in part II of this work requires the use of both vector field gradients
and Fréchet derivatives, and hence we distinguish between the two here. This corresponds to the convention
(∇f)ij = ∂ifj for the gradient of a vector field (i.e., the derivatives go row-wise).
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From Newton’s second law, the material velocity obeys the equation

ρ
dv

dt
= ∇ · σ (2)

where ρ denotes the material density. Equations 1 & 2 form a hyperbolic system of equations
for the stress and velocity fields, which can be solved explicitly using standard finite-difference
simulation methods. This hyperbolic system will resolve elastic waves, and so the timestep
∆t and grid spacing ∆x must satisfy the CFL condition ∆t ≤ ∆x/ce for numerical stability,
where ce is an elastic wave speed. In materials such as metals and metallic glasses, elastic
waves travel on the order of kilometers per second. Spatial discretizations capable of resolving
fine-scale features of interesting physical phenomena in these materials can be as small as
micrometers. For ∆x = 1 µm and ce = 1 km/s, the CFL condition requires ∆t ≤ 1 ns, an
extreme restriction for phenomena that occur on realistic timescales.

2.2. Quasi-static hypo-elastoplasticity

We consider a scenario in which plastic deformation occurs on a timescale much greater
than the time for waves to propagate through the material. In this setting, macroscopic
plastic deformation takes place due to the accumulation of small velocity gradients over long
times. The details of a limiting procedure describing this physical regime were performed in
previous two-dimensional work [23] and will not be reproduced here.

In this quasi-static limit, the equation for the velocity in Eq. 2 can be approximately
replaced by a constraint on the stress

∇ · σ ≈ 0. (3)

Equation 3 is referred to as the quasi-staticity constraint. The evolution equation for the
stress in Eq. 1 is unaffected by the limiting procedure, and hence Eq. 1 must be solved subject
to the global constraint Eq. 3 to obtain solutions valid in this limit.

At this stage, it is unclear how to do so. The velocity v appears in Eq. 1 through D, but
there is no longer an equation that can be integrated explicitly to solve for it. It is also not
guaranteed that solutions of Eq. 1 subject to the constraint in Eq. 3 will agree with solutions
of Eq. 1 and Eq. 2.

2.3. Incompressible fluid dynamics

We now demonstrate an analogy between the computational issues presented in the
previous section and those encountered in incompressible fluid dynamics. Consider a fluid
with velocity v, pressure p, and density ρ. The fluid velocity field obeys the Navier–Stokes
equation,

dv

dt
= −∇p+ ν∇2v. (4)

The fluid density satisfies
dρ

dt
= −ρ (∇ · v) , (5)
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Figure 1: The projection-based timestepping scheme for (a) the velocity field in incompressible fluid dynamics
and (b) the stress tensor in quasi-static hypo-elastoplasticity. In both cases, an intermediate field value
(denoted with a superscript ∗) is first computed which does not obey the divergence-free constraint. This
intermediate field value is then projected back onto the manifold of divergence-free solutions to compute the
field at the next timestep.

along with an equation of state linking the fluid density to the fluid pressure. Using an
explicit scheme to solve the hyperbolic system in Eqs. 4 & 5 will resolve sound waves in the
fluid, which leads to timestep restrictions from the CFL condition. In the long-time limit,
Eq. 5 is traded for the incompressibility constraint on the velocity field,

∇ · v = 0. (6)

This limit reduces the coupled partial differential equations for the pressure and velocity
to a single constrained equation for the velocity. The pressure is present in the equation
for the velocity, though its evolution equation has been exchanged for the incompressibility
constraint; this is much like the quasi-static limit of hypo-elastoplasticity described in the
preceding section.

Chorin [24, 25] developed a numerical method for this system of equations that involves the
use of an orthogonal projection, spurring significant research into related algorithms [61, 62].
Such projection methods proceed via a two-step procedure, where an intermediate velocity v∗

is first computed which does not obey the incompressibility constraint. v∗ is then orthogonally
projected onto the manifold of divergence-free solutions through the solution of an elliptic
problem for an auxiliary field related to the pressure. The process of projection simultaneously
enforces the constraint and enables computation of the pressure field.

One typical approach is to employ a Hodge decomposition [61, 62],

v∗ = v +∇φ, (7)

where v is the desired divergence-free velocity field and φ is an auxiliary field. One then
updates v∗ via the equation

v∗t + (v · ∇) v +∇q = ν∇2v∗, (8)

where ∇q is an approximation to the pressure gradient. Substituting Eq. 7 into Eq. 8 leads
to a formula for the pressure

∇p = ∇ (q + φt)− ν∇2∇φ, (9)
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from which p can be computed. The divergence of Eq. 7 implies that ∇ · v = 0 if φ is such
that

∇2φ = ∇ · v∗. (10)

The Poisson problem in Eq. 10 can be solved for φ using standard techniques of numerical
linear algebra, and the projection can be completed by computing v = v∗ −∇φ. Boundary
conditions on φ depend on the physical scenario of interest, and are critical for obtaining
higher-order methods [61, 62]. The algorithm proceeds by setting v∗ = v. This procedure is
schematically represented in discrete-time in Fig. 1(a). Projection methods avoid the CFL
condition associated with compressive waves in the fluid, and hence can use significantly
larger timesteps than explicit methods.

It is possible to demonstrate that solving Eq. 10 represents an orthogonal projection. We
define the inner product between two vector-valued fields,

〈v,u〉 =

∫
Ω

v · u d3x, (11)

where Ω is the simulation domain. Using this inner product, we can compute

〈vn+1 − vn,vn+1 − v∗〉 = −
∫

Ω

(
vn+1 − vn

)
· ∇φ(x)d3x

=

∫
Ω

(
∇ · vn+1 −∇ · vn

)
φ(x)d3x = 0, (12)

thereby establishing that the projection vn+1 − v∗ is orthogonal to the difference between
the two velocity fields, vn+1 − vn.

2.4. A family of projection methods for hypo-elastoplasticity

We now formulate a three-dimensional projection method for solving Eq. 1 subject to the
quasi-static constraint Eq. 3. We define an intermediate stress

σ∗ = σ + C : ∇Φ, (13)

where Φ(x, t) is an auxiliary vector field. We can solve for σ∗ by dropping the C : D term in
Eq. 1,

σ∗t + (v · ∇)σ = LTσ + σL− Tr(L)σ + C :
(
∇q−Dpl

)
. (14)

In Eq. 14, q represents an approximation to the velocity v. Substituting Eq. 13 into Eq. 14,
we find

C : D = C : ∇ (q−Φt) , (15)

from which D can be computed. Taking the divergence of Eq. 13 and requiring ∇ · σ = 0, Φ
must satisfy the equation

∇ · (C : ∇Φ) = ∇ · σ∗. (16)

Equation 16 is a linear system with source term ∇ · σ∗ that can be solved for Φ. Once Φ
has been found, σ∗ is projected onto the manifold of divergence-free solutions by computing
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Table 1: Material parameters used in this study, for both linear elasticity and the STZ model of amorphous
plasticity. The Boltzmann constant kB is used to convert energetic values to temperatures.

Parameter Value
Young’s modulus E 101 GPa
Poisson ratio ν 0.35
Bulk modulus K 122 GPa
Shear modulus µ 37.4 GPa
Density ρ0 6125 kg m−3

Shear wave speed cs 2.47 km s−1

Yield stress sY 0.85 GPa
Molecular vibration timescale τ0 10−13 s
Typical local strain ε0 0.3
Effective heat capacity c0 0.4
Typical activation barrier ∆/kB 8000 K
Typical activation volume Ω 300 Å3

Thermodynamic bath temperature T 400 K
Steady state effective temperature χ∞ 900 K
STZ formation energy ez/kB 21000 K

σ = σ∗ − C : ∇Φ. The algorithm then proceeds by setting σ∗ = σ, and is represented
schematically in Fig. 1(b). A projection method is defined by the choice of the approximate
velocity field q, the auxiliary vector field Φ, and the integration method for Eq. 14.

As in the case of fluid dynamics, we can show that the projection is orthogonal in a
suitable inner product. To do so, we define an inner product between two stress tensors as
in [23],

〈σ,σ′〉 =

∫
Ω

σ : S : σ′ d3x, (17)

where S = C−1 is the stiffness tensor. Equation 17 computes the elastic strain energy of a
material with stress field σ and strain field S : σ′, or vice-versa by symmetry. Because S is a
symmetric positive definite tensor for physically realistic Lamé parameters, this definition is
an inner product. By explicit computation,

〈σn+1 − σn,σn+1 − σ∗〉 =

∫ (
σn+1 − σn

)
: S : C : ∇Φ d3x

=

∫ (
σn+1 − σn

)
: ∇Φ d3x

= −
∫ (
∇ · σn+1 −∇ · σn

)
·Φ d3x = 0. (18)

3. Numerical implementation

In this section, we describe an implementation of an explicit forward Euler method to
solve Eqs. 1 & 2, as well as a specific instance of the quasi-static projection method in Eqs. 14
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& 16. We model elastoplastic deformation in a BMG using an athermal variant of the STZ
theory.

3.1. Plasticity model
As a plasticity model for a metallic glass, we use an athermal form of the STZ theory

suitable for studying diverse materials including BMGs below the glass transition temperature,
dense granular materials, and soft materials such as foams or colloidal glasses [27, 28]. Within
the STZ theory, irreversible molecular rearrangements are assumed to occur sporadically
throughout an otherwise elastic material, and each rearrangement induces a small increment
of strain. The accumulation of many such events leads to macroscopic plastic deformation.
These rearrangements are assumed to occur at rare, localized, sites known as STZs when local
stresses surpass the material yield stress sy. Thermal fluctuations of the atomic configuration
are neglected in the athermal formulation: molecular rearrangements are entirely driven
by external mechanical forces. Thermal theories introduce additional coupling between
a configurational subsystem governing the rearrangements that occur at the STZs, and a
kinetic/vibrational subsystem governing the thermal vibrations of atoms in their cage of
nearest neighbors [65].

STZs may be conceptualized as clusters of atoms predisposed to configurational rearrange-
ments when subjected to external shear [27]. Each rearrangement corresponds to a transition
in the configurational energy landscape; these transitions are usually towards a lower-energy
configuration, but there is a small probability for a reverse transition. Before the application
of external shear, the material sample is at a local minimum. External shear alters the shape
of the energy landscape, and can make transitions to other states considerably more likely.

The density of STZs in space follows a Boltzmann distribution in an effective disorder
temperature denoted by χ [66, 67, 68, 69]. χ governs the out-of-equilibrium configurational
degrees of freedom of the material and has many properties of the usual temperature: it is
measured in Kelvin, and can be obtained as the derivative of a configurational energy with
respect to a configurational entropy [70]. χ is distinct from the thermodynamic temperature
T , though it plays the same role for the configurational subsystem as T does for the
kinetic/vibrational subsystem.

The plastic rate of deformation tensor is proportional to the deviatoric part of the stress
tensor σ0 = σ − 1

3
I tr(σ), so that Dpl = Dpl σ0

s̄
. s̄ is a local stress measure given by the

Frobenius norm of the deviatoric stress tensor, s̄2 = 1
2

∑
ij σ

2
0,ij . The magnitude of the plastic

rate of deformation is given by

τ0D
pl = e−ez/kBχC(s̄, T )

(
1− sY

s̄

)
, (19)

where τ0 is a molecular vibration timescale, ez is a typical STZ formation energy, and kB is
the Boltzmann constant. C(s̄, T ) represents the total STZ transition rate. With R(±s̄, T )
denoting the forward and reverse rates between two configurational states, the total transition
rate is C(s̄, T ) = 1

2
(R(s̄, T ) +R(−s̄, T )). The transitions follow a linearly stress-biased

thermal activation process,

R(±s̄, T ) = exp

(
−∆∓ Ωε0s̄

kBT

)
. (20)
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∆ is a typical energetic barrier for a transition, Ω is a typical STZ volume, and ε0 is a
typical local strain due to an STZ transition. While thermal fluctuations are neglected in the
athermal model, the thermodynamic temperature still sets the magnitude of transition rates
in the system. Using the form Eq. 20 yields the overall transition rate

C(s̄, T ) = e−∆/kBT cosh

(
Ωε0s̄

kBT

)
. (21)

The effective temperature satisfies [27, 71, 32, 33]

c0
dχ

dt
=

(
Dpl : σ0

)
sY

(χ∞ − χ) + l2∇ ·
(
Dpl∇χ

)
. (22)

Equation 22 consists of a term causing growth to an asymptotic value χ∞ and a diffusive
term with diffusion length scale l. Both saturation to χ∞ and diffusion occur in response to
plastic deformation. The term Dpl : σ0 is the rate of energy dissipated by externally applied
mechanical work, so that STZs are created and annihilated proportional to this rate. c0 is an
effective heat capacity; Eq. 22 is thus essentially a heat equation, representing the first law of
thermodynamics for the configurational subsystem [27]. The interdependence of Eqs. 19 & 22
enables the development of shear bands via positive feedback, as increasing χ also increases
Dpl [32, 33].

3.2. Explicit method

An explicit forward Euler discretization of Eq. 2 reads

ρ
vn+1 − vn

∆t
= − (vn · ∇) vn +∇ · σn + κ∇2vn. (23)

The small viscous stress term κ∇2v is artificially imposed for numerical stability of the
explicit method [72], but is not needed in the quasi-static method. In three dimensions,
this term induces a restriction on the timestep ∆t ≤ h2

6κ
. Hence, if κ is viewed as a physical

constant, this condition is more restrictive than the CFL condition. However, for stability, it
is sufficient to choose κ as scaling linearly with the grid spacing, in which case the timestep
restriction scales in the same way as the CFL condition.

An explicit forward Euler discretization of Eq. 1 reads

σn+1 − σn

∆t
= − (vn · ∇)σn +

(
LT
)n

σn + σnLn + Tr(Ln)σn + C :

(
Dn − Dpl

s̄n
σn

0

)
. (24)

3.3. Quasi-static method

We now formulate a specific three-dimensional projection method for solving Eq. 1 subject
to the quasi-static constraint Eq. 3. We first neglect the C : D term in Eq. 1 and compute
an intermediate stress σ∗,

σ∗ = σn + ∆t

((
LT
)n

σn + σnLn − Tr(Ln)σn −C :

(
Dpl

s̄n
σn

0

))
. (25)
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If the velocity at the next timestep vn+1 were known, we could compute

Dn+1 =
1

2

((
∇vn+1

)
+
(
∇vn+1

)T)
(26)

and complete the forward Euler step in Eq. 25 as

σn+1 = σ∗ + ∆t
(
C : Dn+1

)
. (27)

Taking the divergence of Eq. 27 and rearranging terms leads to the equation

∆t∇ ·
(
C : Dn+1

)
= −∇ · σ∗. (28)

Equation 28 is a linear system for the velocity vn+1 involving mixed spatial derivatives. The
source term is given by −∇ · σ∗. After solving for vn+1, it can be used to compute σn+1 via
Eq. 27. Through this process, σ∗ is projected back to be divergence-free, arriving at σn+1.

The mixed derivatives in Eq. 28 increase the complexity of the projection for hypo-
elastoplasticity when compared to the Poisson problem in fluid dynamics, but Eq. 28 can
nevertheless be solved rapidly via standard techniques of numerical linear algebra such as the
multigrid method. The multigrid method relies on the Gauss–Seidel method for iterative
smoothing of the solution, and Gauss–Seidel smoothing is guaranteed to converge if either
the linear system is (A) weakly diagonally dominant, or (B) symmetric positive definite. In
general the linear system in Eq. 28 will not satisfy condition A, but will satisfy condition B.
Hence Gauss–Seidel smoothing is guaranteed to converge, which we use as a component in a
multigrid method—details of this multigrid solver are presented later. A connection to the
general continuous-time framework presented in Sec. 2.4 is provided in Appendix A.

3.4. Discretization and finite difference stencils

The evolution equation for the stress, Eq. 1, depends on spatial derivatives of the velocity,
while the equation satisfied by the velocity, Eq. 2, depends on spatial derivatives of the stress.
We exploit this structure through a staggered grid with uniform spacing ∆x = ∆y = ∆z = h.
The stress tensor σ and effective temperature χ are stored at cell centers and indexed by
half-integers, while the velocity v is stored at cell corners and indexed by integers, as shown
in Fig. 2(b).

Let (∂f/∂x)i,j,k denote the partial derivative of a field f with respect to x evaluated at
grid point (i, j, k). The staggered centered difference is(

∂f

∂x

)
i+ 1

2
,j+ 1

2
,k+ 1

2

=
1

4h

(
fi+1,j,k − fi,j,k + fi+1,j+1,k − fi,j+1,k

+ fi+1,j,k+1 − fi,j,k+1 + fi+1,j+1,k+1 − fi,j+1,k+1

)
. (29)

Equation 29 averages four edge-centered centered differences surrounding the cell center
and has a discretization error of size O(h2). The derivative at a cell corner is obtained by
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the replacement (i, j, k)→ (i− 1
2
, j − 1

2
, k − 1

2
). The diffusive term appearing in the velocity

update in Eq. 23 is computed via the standard center-difference formula,(
∂2f

∂x2

)
i,j,k

=
fi+1,j,k − 2fi,j,k + fi−1,j,k

h2
. (30)

The advective derivatives in Eqs. 23 & 24 must be upwinded for stability; we use the second-
order essentially non-oscillatory (ENO) scheme [73]. With [fxx]i,j,k denoting the second
derivative with respect to x of the field f at grid point (i, j, k) computed using Eq. 30, the
ENO derivative is defined in the x direction as

(
∂f

∂x

)
i,j,k

=
1

2h


−fi+2,j,k + 4fi+1,j,k − 3fi,j,k if ui,j,k < 0 and

∣∣∣[fxx]i,j,k∣∣∣ > ∣∣∣[fxx]i+1,j,k

∣∣∣,
3fi,j,k − 4fi−1,j,k + fi−2,j,k if ui,j,k > 0 and

∣∣∣[fxx]i,j,k∣∣∣ > ∣∣∣[fxx]i−1,j,k

∣∣∣,
fi+1,j,k − fi−1,j,k otherwise.

(31)
Equation 31 uses the curvature of f to switch between an upwinded three-point derivative
and a centered difference. Versions of Eqs. 29, 30, & 31 in the y and z coordinates are
obtained analogously.

To solve Eq. 28 via numerical linear algebra, the spatial derivatives must first be discretized
using finite differences. In addition to the finite differences discussed above, Eq. 28 also
contains mixed partial derivatives. The xy-derivative is computed numerically as(

∂2f

∂x∂y

)
i,j,k

=
fi+1,j+1,k − fi+1,j−1,k − fi−1,j+1,k + fi−1,j−1,k

4h2
, (32)

with analogous expressions for other mixed partials.

3.5. Parallelization via MPI and domain decomposition

We solve Eqs. 23 & 24 in parallel using a custom implementation written in C++ and
using the MPI library for parallelization [74]. The global grid is split into smaller subgrids,
each of which is assigned to an individual processor (Fig. 2(a)). The finite difference stencils
in Eqs. 29 & 30 require data from adjacent gridpoints, and the ENO derivative in Eq. 31
requires data from at most two grid points away. On grid points within two points of a
subdomain boundary, the derivative calculation can therefore require inaccessible data in a
distributed memory setting.

To handle this, we pad each processor subdomain with “ghost regions” of width two. A
ghost region is a cubical shell of non-physical grid points whose field values are filled with data
from adjacent processors, so that each subdomain can freely and locally access information
computed and stored in adjacent subdomains (Fig. 3). At the simulation boundaries, ghost
regions are used to enforce boundary conditions. For periodic boundary conditions, the
ghost regions wrap around to processor subdomains on the other side of the simulation.
For non-periodic conditions, the ghost grid points store whatever values enforce the desired
boundary conditions.
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Figure 2: (a) Domain decomposition. The overall grid is given by the large, multi-colored cube. Processor
subdomains are delimited by the thick black markings separating the global grid into a 4×4×4 grid of smaller
cubes. The fine black lines denote individual grid cells, which are further amplified in the depiction of the
staggered grid to the right. (b) The staggered arrangement of fields on the grid. The cube here corresponds to
to a single grid cell of side length h. Velocities v are stored at cell corners denoted by black spheres. Stresses
σ and effective temperatures χ are stored at cell centers indicated by the purple sphere. First-order velocity
derivatives are required to update the stress; by averaging the four available centered differences surrounding
the center of the cell, we obtain a second-order staggered stencil. The same arrangement arises for computing
stress derivatives at the cell corners in the velocity update.

At the start of each timestep, each processor communicates with 26 nearby processors
via non-blocking communication, sharing six faces, twelve edges, and eight corner regions.
Each processor sends data to nearby processors, receives the data it requires from the same
nearby processors, and loads that data into its ghost regions. The total cost of parallel
communication scales with the surface area of a processor subdomain. To reduce the overhead,
we compute a decomposition into rectangular regions that minimizes the surface area.

3.6. Performing the projection step

We solve Eq. 28 for the velocity using a custom parallel implementation of the geometric
multigrid method, a multi-resolution linear system solver that is particularly suited to elliptic
problems that take place on a physical grid [75]. Let G0 be the original grid, and let
A0x0 = b0 be the linear system to solve on this grid. In the multigrid method, a hierarchy of
progressively coarser grids G1, G2, . . . , Gg is introduced. In our implementation, if Gk has
resolution Qk ×Mk ×Nk, then Gk+1 has resolution dQk/2e, dMk/2e, dNk/2e. Interpolation
operators Tk : Gk → Gk−1 are introduced based on linear interpolation, and restriction
operators Rk : Gk → Gk+1 are introduced based on local averaging. Both Tk and Rk can be
represented as rectangular matrices, and in our implementation Rk−1 = TT

k—this condition
is not necessary for a practical implementation, but is useful in some convergence proofs [21].

Our multigrid implementation uses the standard V-cycle [20, 21] with two pre-smoothing
steps and two post-smoothing steps. On G0 the grid is decomposed among the processors in
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Figure 3: Processor ghost regions. The two solid cubes represent two adjacent processor subdomains; the
boundary between them is indicated by a gray plane in the center of the figure. Surrounding each processor
subdomain is a transparent two-grid-point ghost region bounded by black dashed lines. For clarity, the ghost
region grid in the left processor subdomain has been drawn in a thin gray, while the ghost region grid in
the right processor subdomain has been drawn in black. These two processors communicate the overlapping
rectangular strip surrounding the separating plane in the center of the figure.

the same way as the simulation fields (Fig. 2(b)). The smoothing steps are performed using
the Gauss–Seidel method on each processor, with the ghost regions being synchronized after
each step. This requires building a representation of the linear system on each grid, which
we do via recursive matrix multiplication [76, 77],

Ak = Rk−1Ak−1Tk. (33)

The implementation works with periodic and non-periodic boundary conditions, and arbitrary
grid dimensions. As the grids are coarsened, the amount of work on each grid is rapidly
reduced, to the point where it is no longer effective for all processors to share the work. The
implementation therefore has the ability to amalgamate the coarser problem onto a smaller
set of processors, with the rest remaining idle.

The multigrid implementation uses C++ templates, so that the linear system can be
compiled to work with an arbitrary data type. For the current problem, b0 is given by the
source term −∆t∇ · σ and x0 contains values of vn+1 across the entire grid. Hence, we
compile the multigrid library where the elements of b0 and x0 are 3-vectors, and the elements
of A0 are 3 × 3 symmetric matrices. The matrix A0 is sparse, and a grid point (i, j, k) is
only coupled to the 27 grid points in the 3× 3× 3 surrounding cube of grid points given by
coordinates (i+ {−1, 0, 1}, j + {−1, 0, 1}, k + {−1, 0, 1}) in our discretization scheme.
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4. Shearing between two parallel plates

In the following sections, we consider several material samples being sheared between two
parallel plates. This example is experimentally relevant, has simple boundary conditions,
demonstrates complex shear banding dynamics [43, 42, 44, 45, 47, 35, 34, 46], and has been
studied previously in two dimensions [23]. It represents a natural physical scenario to compare
three dimensional results to two dimensional results, compare simulation data to experiments,
and to quantitatively compare the explicit and quasi-static methods.

The domain occupies −L ≤ x < L,−L ≤ y < L, and −γL ≤ z ≤ γL with γ = 1
2

and
L = 1 cm. A natural unit of time is given as ts = L/cs where cs =

√
µ/ρ is the material

shear wave speed, and we measure time in this scale. In all simulations, we consider a
domain periodic in the x and y directions with shear velocity applied on the top and bottom
boundaries in z. The boundary conditions are given by

v(x, y,±γL, t) = (±U(t), 0, 0), (34)

where the function U(t) is given by

U(t) =

{
UBt
ts

if t < ts,

UB otherwise.
(35)

The ramp-up in the function U(t) prevents a large deformation rate near the boundary
that would be present with U(t) = UB immediately at t = 0. The elasticity and plasticity
parameters are defined in Table 1. From these values, the natural timescale is ts = 4.05 µs.

A diagram of the global three-dimensional grid and the ghost regions at simulation bound-
aries used for implementing the boundary conditions is shown in Fig. 4. The cell-cornered grid
points run according to i ∈ {0, . . . , Q− 1}, j ∈ {0, . . . ,M − 1}, and k ∈ {0, . . . , N}; because
the grid is non-periodic in z there is an extra grid point in this direction. The velocities at
grid points with k = 0 and k = N are fixed according to the boundary velocity in Eq. 34.
The cell-centered grid points run according to i ∈ {1

2
, 3

2
, . . . Q− 1

2
}, j ∈ {1

2
, 3

2
, . . .M − 1

2
}, and

k ∈ {1
2
, 3

2
, . . . N − 1

2
}. Ghost layers of cell-centered grid points are at (i, j,−1

2
), (i, j,−3

2
),

(i, j, N + 1
2
), and (i, j, N + 3

2
). The values of σ and χ in the ghost layers are linearly inter-

polated from the two most adjacent layers, to ensure that these fields remain free on the
boundary. At the simulation boundaries in the x and y directions, ghost points outside the
simulation domain are filled with values that wrap around.

In each case considered in the following sections, the physics of the material sample is
encoded in the initial effective temperature distribution χ(x, t = 0). Following the introduction
in Sec. 3.1, χ is a continuum-scale variable that encodes the density of STZs, and hence its
initial condition affects the future evolution of plastic deformation within the material.

4.1. Qualitative comparison between explicit and quasi-static methods

We now demonstrate the qualitative equivalence between results computed with the
explicit and quasi-static methods. We consider an initial condition corresponding to a finite
cylindrical inclusion

χ(x, t = 0) = 600 K + (200 K)e−500(z2+y2)/L2

, (36)
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Figure 4: A diagram of the simulation grid layout for the simplified case of (Q,M,N) = (2, 2, 2). Corner-
centered grid points are shown in pink and cell-centered grid points are shown in green. Ghost grid points
used for enforcing boundary conditions are shown adjacent to the ±x faces and are surrounded by see-through
rectangular prisms. For clarity, these are omitted from the ±z faces. Corner-centered ghost points and
cell-centered ghost points are smaller and are shown in lighter pink and green than their physical counterparts.
The ghost points adjacent to the ±x and ±y faces wrap around, and are used to enforce periodic boundary
conditions. In the z direction, the ghost grid points are used to linearly interpolate the σ and χ values,
leaving them effectively free. In the z direction, there is one extra corner-centered grid point, giving the
appearance of a grid of size 2× 2× 3. This grid point is used to enforce shear boundary conditions on the
velocity field, but the equivalent cell-centered grid points are used to store ghost σ and χ values.

for x > −L/2 and x < L/2, and 600 K otherwise. Initially the cylindrical inclusion is slightly
more amenable to plastic deformation, and hence we expect to see a shear band nucleate
from it. To visualize the effective temperature field in three dimensions, we use a custom
opacity function defined as

O(x) =


(
χ(x)−χbg

χ∞−χbg

)
if

χ(x)−χbg

χ∞−χbg
> 1

2
,

exp
(
−a
(
χ∞−χbg

χ(x)−χbg

)η)
otherwise.

(37)

Equation 37 sets the opacity of a grid point based on the value of χ(x). The parameters
a and η are chosen on a case-by-case basis to reveal the most interesting features2. The
initial condition is depicted in Fig. 5. The grid is of size 64 × 64 × 32 to accommodate
the limitations of the explicit simulation method, corresponding to a grid spacing h = L

32
.

2Ideally, we would like to use the same opacity parameters for all plots. However, due to significant
variations in the ranges of the χ fields and their spatial structures, we found it was necessary to set the
parameters on an individual basis. We note, however, that the color scale is absolute across all simulations.
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Figure 5: The effective temperature field χ in the initial configuration for the quasi-static to explicit method
quantitative comparison. Here, a = 0.25 and η = 0.5 in the opacity function.

A viscous stress constant of κ = 0.15L
2

ts
was used in Eq. 23. The timestep for the explicit

method is ∆te = h2ts
20L2 .

A typical applied shear velocity that is comparable to a realistic loading rate in a
laboratory experiment is Ub = 10−7L/ts [43]. With this velocity, running an explicit simulation
is prohibitively expensive due to the CFL condition. To ensure that significant plastic
deformation occurs on timescales reachable by the explicit method, a scaling parameter ζ
is introduced. The molecular vibration timescale τ0 is rescaled to τ0ζ

−1 and the applied
shear velocity is inversely rescaled to UB = 10−7L/tsζ. The simulation is conducted until a
final time of tf = 2× 106ts/ζ. As ζ approaches zero, the quasi-static limit of Eqs. 1 & 2 is
formally approached. We therefore expect greater agreement for smaller values of ζ. Due to
the appearance of 1

τ0
in Eq. 19, the introduction of ζ has the effect of linearly scaling the

magnitude of plastic deformation by a factor of ζ. A quasi-static timestep of ∆tqs = 200ts/ζ
is used.

In Fig. 6, we show three snapshots of the effective temperature field from each of the two
simulation methods, at t = 50ts, t = 75ts, and t = 100ts respectively. The explicit simulation
is shown on the left and the quasi-static simulation is shown on the right. The results are
qualitatively similar in all three snapshots. At t = 50ts, a shear band begins to emerge,
nucleating outwards from the center of the simulation. A thin region of higher χ is visible in
the center of the band. By t = 75ts, the shear band has fully formed and spans the system.
At t = 100ts, the band grows stronger and χ continues to increase.

Figure 7 shows cross-sections in z for fixed x = 0 and y = 0 of ‖σ0‖qs − ‖σ0‖e for several
time points before the onset of plastic deformation, highlighting some differences between the
two methods. The explicit simulation exhibits oscillations due to elastic waves propagating
through the medium. Because the quasi-static method does not resolve these elastic waves,
the oscillations are apparent in the deviatoric stress differences. When plastic deformation
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Figure 6: Snapshots of the effective temperature distribution χ(x, t) for the explicit simulation (left) and
quasi-static simulation (right) for ζ = 104. The simulation fields are qualitatively similar. In all plots, a = 0.4
and η = 1.4 in the opacity function. (a,b) t = 50ts. (c,d) t = 75ts. (e,f) t = 100ts. The colorbar is the same
as in Fig. 5.
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Figure 7: (a) The magnitude of the deviatoric stress tensor ‖σ0‖ for the explicit and quasi-static simulation
methods along a cross section in z for x = 0 and y = 0 fixed. Results for the explicit and quasi-static
simulation methods are shown in dashed and solid lines respectively. Oscillations at t = 5ts and t = 10ts are
due to elastic waves propagating through the medium in the explicit simulation, but are difficult to see by
eye at this scale, see (b). As plasticity kicks in past t = 15ts, these waves damp out. (b) The difference in the
magnitude of the deviatoric stress tensor ‖σ0‖ for the explicit and quasi-static simulation methods, along a
cross section in z for x = 0 and y = 0 fixed. The oscillations are due to elastic waves propagating through
the medium in the explicit simulation.

sets in, plasticity-induced damping removes the elastic waves and the agreement improves.

4.2. Quantitative comparison between explicit and quasi-static methods

Having demonstrated the qualitative agreement between the two simulation methodologies
for ζ = 104 in the previous section, we now examine convergence as ζ is decreased. The same
simulation geometry, boundary conditions, and initial conditions in the effective temperature
field are used here as in the previous section. To quantitatively compute the agreement
between the explicit and quasi-static methods, we define a norm on simulation fields f ,

‖f‖ (t) =

√
1

8γL3

∫ γL

−γL

∫ L

−L

∫ L

−L
|f (x, t)|2 dx dy dz. (38)

The integral in Eq. 38 runs over the entire simulation domain and is computed numerically
via the trapezoid rule. The appearance of | · | in Eq. 38 is taken to be the Euclidean norm for
vectors, absolute value for scalars, and the Frobenius norm for matrices.

Explicit and quasi-static simulations were carried out for values of ζ = 104, 5×103, 2.5×103

and 1.25× 103. Equation 38 was evaluated for χqs − χe, σqs − σe, and vqs − ve at intervals
of 0.02ts. The norm in χ is measured in terms of χ∞, the norm in σ is measured in terms
of sY , and the norm in v is measured in terms of UB to ensure all values are of order unity.
The explicit timestep was ∆te = tsh2

20L2 and the quasi-static timestep was ∆tqs = 100ts
ζ

for each
simulation.

Plots of all three norm values are shown as a function of time in Fig. 8(a) for the value
of ζ = 1.25× 103. Oscillations due to elastic waves are visible in all simulation fields until
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Figure 8: L2 norm of the χ, v, and σ simulation field differences between the explicit and quasi-static
method computed using Eq. 38 and normalizing by the respective characteristic variables as defined in the
text, for different values of ζ. (a) A comparison of the four different field norms, for the values of ζ = 104.
The remaining three panels show the differences in (b) velocity, (c) effective temperature, and (d) stress,
respectively, for a range of values of ζ.

around t ≈ 12ts when the yield stress is reached. After the onset of plastic deformation, the
norm in effective temperature increases steadily, most rapidly during the period of shear
band nucleation from t ≈ 12ts to t ≈ 25ts. The disagreements in σ and v decrease during
the elastic region, and steadily increase after plastic deformation begins.

Figures 8(b), 8(c), and 8(d) show the quantitative comparisons as a function of time for
values of ζ = 104, 5× 103, 2.5× 103, and 1.25× 103 for v, χ, and σ respectively. In all plots,
better agreement with smaller ζ is observed during the elastic regime and during the onset of
plasticity while t ≤ 12ts. After shear band nucleation from 12ts ≤ t ≤ 25ts, all values of ζ
have roughly equal error magnitudes, with slightly greater agreement for higher values of ζ.
This is consistent with previous comparisons in two dimensions, where the dominant factor
governing the disagreement between the two simulation methods was shown to be due to
differences in the discretization rather than the value of ζ itself [23].

A method to reduce the differences in discretization is to increase the background χ field.
With higher values of background χ, finer-scale features in the shear banding dynamics are
less prominent. This ensures that differences in the spatial discretization will be minimized.
There is also less rapid development of the shear band, and thus the difference in timestep
between the two methods will be less significant. Snapshots of the effective temperature
field are shown in Fig. 9 at t = 106ts for background χ field of χbg = 600 K, 650 K, 700 K.
Figure 10 confirms that the differences between the two types of simulation decreases as χbg

increases.
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Figure 9: Qualitative demonstration of the effect of increasing the background χ field with χbg set to (a/b)
600 K (c/d) 650 K and (e/f) 700 K. All snapshots are displayed at t = 106ts for a value of ζ = 104, with
fixed values of a = 0.75 and η = 3 in the opacity function. Simulation results are shown for the explicit
method on the left and the quasi-static method on the right. For lower χbg, the shear band is more prominent,
develops more rapidly, and has more fine-scale features, ensuring that the differences in spatial and temporal
discretizations become more pronounced.
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Figure 10: Normalized L2 difference in (a) v (b) χ and (c) σ between the explicit and quasi-static methods
for various choices of background χ field. Agreement improves as χbg increases due to a reduction in fine-scale
features that differ between the two methods due to differences in the discretization.
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4.3. Gaussian Defects

We now turn to simulating realistic physical timescales with the quasi-static method,
where the scaling parameter is ζ = 1. We first consider the nucleation of shear bands from
localized imperfections of higher χ. Physically, this describes defects within the material
structure which may be particularly susceptible to plastic deformation [78]. To begin, we
consider a single defect, corresponding to an initial χ field of the form

χ(x, t = 0) = 550 K + (170 K) exp

(
−200

‖x‖2

L2

)
. (39)

The simulation was performed on a grid of size 256 × 256 × 128, corresponding to a grid
spacing of h = L/128. The length scale l appearing in Eq. 22 was fixed at 3h and sets the
width of the shear bands. The boundary velocity was set to a value of UB = 5×10−7L/ts, and
the simulation was conducted to a final time of tf = 4× 105ts, using a quasi-static timestep
of ∆t = 200ts. For three-dimensional visualization, we use the opacity function from Eq. 37.

Snapshots of the effective temperature field at various time points are shown in Fig. 11.
The initial condition is shown in Fig. 11(a). At t = 105ts in Fig. 11(b), the defect has started
to expand. By t = 2× 105ts in Fig. 11(c), a shear band begins to nucleate, indicated by a
quadrupolar structure emanating from the defect. The background χ field also begins to
increase, as demonstrated by the presence of the transparent light blue background. By
t = 2.5 × 105ts in Fig. 11(d), a distinct system-spanning band has become clear with a
propagating front visible near its center. The band displays no curvature in either of the x
or y directions. By t = 150ts in Fig. 11(e), a prominent band has formed, and there is no
longer a visible propagating front. The band continues to grow stronger and thicker through
t = 175ts in Fig. 11(f) and t = 200ts (not shown).

We now introduce a second defect to highlight some three-dimensional characteristics of
shear banding. We expect that their relative size and location will determine the dynamics,
with the possibility of forming a single shear band that connects the two defects. The initial
effective temperature field is

χ(x, t) = 550 K + (200 K)

(
exp

(
−200

‖(x−X1)‖2

L2

)
+ exp

(
−250

‖(x−X2)‖2

L2

))
. (40)

Two cases of Eq. 40 are considered. First, X1 = (−0.5,−0.5, 0.35), X2 = (−0.5, 0.5, 0.25),
corresponding to two defects symmetric about the y = 0 plane with the same x coordinate,
a slight offset in z, and different sizes. The results for this case using the same simulation
parameters as Fig. 11 are shown in Fig. 12. Second, we take X1 = (−0.5,−0.5, 0.35),X2 =
(0.5,−0.5, 0.25); this is the same as the previous case, but with the roles of x and y interchanged.
The results for this case again with the same grid size, quasi-static timestep, and boundary
velocity as for the single defect are shown in Fig. 13.

There is an interesting contrast between the time-sequences displayed in Figs. 12 and 13.
The initial configurations are shown in Figs. 12(a) and 13(a). Much like in the single defect
simulations, t = 50ts in Figs. 12(b) and 13(b) displays expansion of the defects, and t = 100ts
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Figure 11: Snapshots of the effective temperature distribution χ(x, t) for a quasi-static simulation with ζ = 1.
The initial condition is given in Eq. 39, corresponding to a small Gaussian defect at the center of the material.
a = 0.35 and η = 1.1 for plots (a)–(c). a = 0.4 and η = 1.4 for plots (d)–(f). (a) t = 0ts. (b) t = 105ts. (c)
t = 2× 105ts. (d) t = 2.5× 105ts. (e) t = 3× 105ts. (f) t = 4× 105ts.
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Figure 12: Snapshots of the effective temperature distribution χ(x, t) for a quasi-static simulation with ζ = 1.
The initial condition is given in Eq. 40 with X1 = (−0.5,−0.5, 0.35), X2 = (−0.5, 0.5, 0.25). a = 0.35 and
η = 1.1 for plots (a)–(c). a = 0.4 and η = 1.4 for plots (d)–(f). (a) t = 0. (b) t = 105ts. (c) t = 2× 105ts. (d)
t = 2.5× 105ts. (e) t = 3× 105ts. (f) t = 4× 105ts.
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Figure 13: Snapshots of the effective temperature distribution χ(x, t) for a quasi-static simulation with ζ = 1.
The initial condition is given in Eq. 40 with X1 = (−0.5,−0.5, 0.35), X2 = (0.5,−0.5, 0.25). a = 0.35 and
η = 1.1 for plots (a)–(c). a = 0.4 and η = 1.4 for plots (d)–(f). (a) t = 0. (b) t = 105ts. (c) t = 2× 105ts. (d)
t = 2.5× 105ts. (e) t = 3× 105ts. (f) t = 4× 105ts.
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in Figs. 12(c) and 13(c) shows the initiation of shear band nucleation. In Fig. 12(d), we see
the formation of a single curved band connecting the two defects, while in Fig. 13(d), the
band is flat. Figs. 12(e), 12(f), 13(e), and 13(f) make this more clear as the band becomes
more defined. The curvature seen in Fig. 12 is in the direction orthogonal to shear.

The dependence of band curvature on the relative orientation of the two defects can be
best understood in terms of the qualitative structure of Fig. 11(c). There is a substantial
extension of elevated χ along the x direction (parallel to shear, in-plane), a small extension
along the y direction (orthogonal to shear, in-plane), and a moderate extension along the
z direction (orthogonal to shear, out-of-plane). In Fig. 12, the defects are offset in y and
z. Because the χ field is stronger in z than in y, this relative placement of the defects can
accomodate curvature along the y direction. On the other hand, in Fig. 13, the defects are
offset in x and z. The strength of the χ field extension in the x direction is great enough
that the flat, horizontal regions of the two forming bands reach each other. The two bands
join into one fatter flat band.

Taken together, Figs. 11, 12, & 13 provide insight into the structure and nucleation of
shear bands from localized material defects. They help understand experimentally observed
band curvature and raise the possibility that the placement and orientation of microscopic
material properties can influence the qualitative structure of macroscopic shear bands. Finally,
they provide intuition for more complex initial conditions, such as the random initializations
considered later in this work, as a superposition of many defects.

4.3.1. Circular Defects

We now turn to a set of more complex initial conditions in the effective temperature field.
Results for circular initial conditions parallel and perpendicular to the direction of shear are
shown in Figs. 14 and 15 respectively. Mathematically, the initial conditions are

d =

√
y

L
+
z

L
− 1

4
,

χ(x, t = 0) = 550 K + (200 K) exp
(
−750

(
d2 + x2

))
, (41)

and

d =

√
x

L
+
z

L
− 1

4
,

χ(x, t = 0) = 550 K + (200 K) exp
(
−750

(
d2 + y2

))
, (42)

representing circles in the yz and xz planes respectively. Simulations were carried out using
the same simulation geometry, discretization, quasi-static timestep, and boundary velocity as
in the previous section. The initial conditions in Eqs. 41 and 42 are displayed in Figs. 14(a),
15(a) respectively.

By t = 8 × 104ts in Figs. 14(b) and 15(b) little has changed. At t = 1.6 × 105ts in
Figs.14(c) and 15(c), differences due to the orientation of the circles become clear. The circle
oriented perpendicular to shear closes vertically into a disk. The circle oriented along shear
exhibits signatures of shear band nucleation at four equally space points. At t = 2.5× 105ts
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Figure 14: Snapshots of the effective temperature distribution χ(x, t) for a quasi-static simulation with ζ = 1.
a = 0.35 and η = 1.1 in (a)–(c). a = 0.4 and η = 1.4 in (d)–(f). (a) t = 0 (b) t = 8× 104ts (c) t = 1.6× 105ts
(d) t = 2.4× 105ts (e) t = 3.2× 105ts (f) t = 4× 105ts.
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Figure 15: Snapshots of the effective temperature distribution χ(x, t) for a quasi-static simulation with ζ = 1.
a = 0.35 and η = 1.1 in (a)–(c). a = 0.4 and η = 1.4 in (d)–(f). (a) t = 0 (b) t = 8× 104ts (c) t = 1.6× 105ts
(d) t = 2.4× 105ts (e) t = 3.2× 105ts (f) t = 4× 105ts.
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in Fig. 14(d), the disk has expanded and has developed a pointed front in the y direction.
There are also two thick, curved bands forming close together near the center of the disk.
In Fig. 15(d), there are two thinner, well-separated bands forming off the top and bottom
of the circle with propagating fronts. By t = 3.2 × 105ts in Figs. 14(e) and 15(e), these
differences have become even more prominent. The disk is still clear in Fig. 14(e) emerging
from the two bands, and these bands are seen to have a curved structure in the y direction.
They are also fatter and less separated than the bands seen in Fig. 15(e). These features
continue to develop into the final pane at t = 4 × 105ts. Taken together, Figs. 14 and 15
demonstrate another example of the dependence of shear banding structure and dynamics on
the orientation of initial conditions in the χ field with respect to shear.

4.3.2. A randomly fluctuating effective temperature field

In this section, we consider the case of a randomly distributed initial effective temperature
field. The initial conditions presented in the previous sections provide insight into the
dynamics of shear banding, but it is unlikely that they have exact physical correspondences.
The STZ theory postulates that STZs are randomly distributed throughout the material, and
a random initial condition in χ is most faithful to this fundamental assumption [79]. Random
initial conditions are thus expected to shed the most light on the structure of shear bands
observed in experiments. The randomly fluctuating χ field furthermore leads to the formation
of multiple shear bands, and potentially enables the study of shear band interactions in the
STZ model [80].

We first populate the grid and a shell of ghost points with random variables χζ(x) using
the Box–Muller algorithm. With µχ and σχ respectively denoting the desired mean and
standard deviation, we perform the convolution

χ(x) =
σχ
N

∑
r∈V ′

e
− ‖x−r‖2

l2c χζ(r) + µχ, N =

√∑
r∈V

e
−2
‖r‖2
l2c . (43)

where V denotes the set of grid points and V ′ denotes the set of grid points with the addition
of the ghost points. Equation 43 ensures that the effective temperature value at each point
is normally distributed with mean µχ and standard deviation σχ. In practice, the sums in
Eq. 43 are performed with a cutoff length scale specified as a multiplicative factor of the
convolution length scale lc, and the number of ghost points in V ′ is set by the choice of cutoff
length scale. Results for a random initialization with µχ = 500 K, σχ = 15 K, lc = 5h and a
cutoff factor of 5 (leaded to 25 ghost points in each direction for the convolution) are shown
in Fig. 16. The grid is of size 512×512×256. The simulation geometry, quasi-static timestep,
and boundary velocity are the same as in previous sections. The initial conditions are shown
in Fig. 16(a).

By t = 5×104ts in Fig. 16(b), the effective temperature has increased somewhat uniformly
across the grid. At t = 105ts in Fig. 16(c), both horizontal and vertical shear bands begin to
nucleate throughout the simulation. Fig. 16(d) displays a multitude of thin, system-spanning
horizontal bands connected by vertical bands. Curvature is present in the horizontal bands
both parallel and orthogonal to the direction of shear. A branching pattern is seen at
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Figure 16: Snapshots of the effective temperature distribution χ(x, t) for a quasi-static simulation with ζ = 1.
a = 0.6 and η = 1.5 for subfigures (a) and (b). a = 0.7 and η = 1.55 for subfigures (c)–(f). (a) t = 0. (b)
t = 5× 104ts. (c) t = 105ts. (d) t = 1.5× 105ts. (e) t = 2.5× 105ts. (f) t = 4× 105ts.
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t = 2.5 × 105ts and t = 4 × 105ts in Figs. 16(e) and (f), where thick bands split into two
thinner bands and later rejoin.

5. Interim Remarks

We have discussed a family of quasi-static projection methods for hypo-elastoplasticity
through an analogy with incompressible fluid dynamics. A single member of this family was
chosen, and a discrete scheme was developed for use in three dimensions, generalizing previous
work in two dimensions [23]. Several numerical examples were considered within the shear
transformation zone model of amorphous plasticity, and both qualitative and quantitative
convergence of the quasi-static method to an explicit scheme was demonstrated.

In part II of this paper [63], the hypo-elastoplastic equations are derived in a fixed
reference domain that can be related to a physically deforming grid through a time-dependent
linear transformations T(t). This framework enables straightforward implementation of
several otherwise complex continuum-scale boundary conditions, such as pure shear and the
Lees–Edwards boundary conditions used in molecular dynamics simulations. The projection
method developed is extended to the transformed domain. We demonstrate the convergence
of the transformed method to the standard method presented here in a physically equivalent
setup. Several other interesting numerical examples within the shear transformation zone
model of amorphous plasticity are considered, including the dependence of shear banding
dynamics with random initializations in χ on the mean µχ of the distribution. Particular
attention is paid to the effect of periodicity in z on shear banding dynamics. Part two
concludes with a summary of the ideas discussed here and in part II itself.

Appendix A. Connection to the continuous-time framework

We can make a connection to the general continuous-time framework presented in Sec. 2.4
as follows. By comparison of Eqs. 16 and 28, we can identify Φ = ∆t v. Equation 15 then
says that

C : Dn+1 = C :

(
∇q + ∆t

∂Dn+1

∂t

)
. (A.1)

Recall that q is chosen to be the best available approximation to vn+1, and note that by
symmetry of C,

C : ∇q = C :
1

2

(
∇q +∇ (q)T

)
. (A.2)

Equation A.1 thus says the following: C : Dn+1 is given by the best available guess before
the solve for vn+1 - C : ∇q - plus an O(∆t) correction constructed via a first-order Taylor
expansion in time.
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