
UC Irvine
UC Irvine Previously Published Works

Title
Asynchronous Local Construction of Bounded-Degree Network Topologies Using Only
Neighborhood Information

Permalink
https://escholarship.org/uc/item/5dk0c799

Journal
IEEE Transactions on Communications, 67(3)

ISSN
0090-6778

Authors
Koyuncu, Erdem
Jafarkhani, Hamid

Publication Date
2019-03-01

DOI
10.1109/tcomm.2018.2883457

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5dk0c799
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

1

Asynchronous Local Construction of Bounded-Degree
Network Topologies Using Only Neighborhood Information

Erdem Koyuncu, Member, IEEE, and Hamid Jafarkhani, Fellow, IEEE

Abstract—We consider ad-hoc networks consisting of n wire-
less nodes that are located on the plane. Any two given nodes
are called neighbors if they are located within a certain distance
(communication range) from one another. A given node can be
directly connected to any one of its neighbors and picks its
connections according to a unique topology control algorithm that
is available at every node. Given that each node knows only the
indices (unique identification numbers) of its one- and two-hop
neighbors, we identify an algorithm that preserves connectivity
and can operate without the need of any synchronization among
nodes. Moreover, the algorithm results in a sparse graph with
at most 5n edges and a maximum node degree of 10. Existing
algorithms with the same promises further require neighbor
distance and/or direction information at each node. We also
evaluate the performance of our algorithm for random networks.
In this case, our algorithm provides an asymptotically connected
network with n(1+ o(1)) edges with a degree less than or equal
to 6 for 1−o(1) fraction of the nodes. We also introduce another
asynchronous connectivity-preserving algorithm that can provide
an upper bound as well as a lower bound on node degrees.

Index Terms—Topology control, local algorithms, connectivity,
degree-bounded graphs.

I. INTRODUCTION

A. Topology Control and its Objectives
Topology control is a powerful technique that is commonly

used in ad-hoc wireless networks to reduce interference,
provide energy-efficient transmission, enable low-complexity
routing, and so on [2]–[4]. It refers to the intelligent choice
of connections between nodes so that the resulting graph
representation of the network (with nodes and direct node-to-
node connections respectively modeled as vertices and edges
of the graph) satisfies certain properties such as connectivity.

We study the problem of topology control over plane
networks with the disk-connectivity model. Specifically, we
consider networks consisting of n nodes that are indexed
(and uniquely identified) by the natural numbers 1, . . . , n with
locations x1, . . . , xn ∈ R2. A given node may only be directly
connected to any other neighboring node that is within a
certain communication range R > 0 in a bidirectional manner.
As an example, a network consisting of 10 nodes with no
connections together with the communication range of Node
7 is shown in Fig. 1(a). Node 7 can be directly connected to
any one of the nodes in its neighbor set {1, 3, 5, 6}.

This work was supported in part by the DARPA GRAPHS program Award
N66001-14-1-4061, and in part by the NSF Awards CCF-1814717 and CCF-
1815339.

This work was presented in part [1] at the IEEE Wireless Communications
and Networking Conference, Apr. 2017.

E. Koyuncu is with the Department of Electrical and Computer Engineering,
University of Illinois at Chicago. Email: ekoyuncu@uic.edu. H. Jafarkhani is
with the Center for Pervasive Communications and Computing, University of
California, Irvine. Email: hamidj@uci.edu.

R

9
10

8 2
6

3

4

1
5

7

(a) The network with no connections.

9
10

8 2
6

3

4

1
5

7

(b) The Gilbert graph corresponding to the node locations and the
communication range illustrated in (a).

9
10

8 2
6

3

4

1
5

7

(c) A possible topology (a spanning subgraph of the Gilbert graph)
generated by some topology control algorithm.

Fig. 1: Instances of a network with 10 nodes. Physical lo-
cations of the nodes are kept fixed throughout (a)-(c). The
“exact” physical location of a given node is the center of the
corresponding black disk.

A special case is when all nodes within communication
range are directly connected [5], which results in what we
call the Gilbert graph (V, g(V)) with

g(W) , {(i, j) : i, j∈W, i<j, |xi − xj |≤R}, W⊂V. (1)

Throughout the paper, | · | is the Euclidean metric. We note
that Gilbert graphs are also often called unit-disk graphs
whenever R = 1 or with an appropriate normalization of node
locations. As an example, Fig. 1(b) shows the Gilbert graph
corresponding to the setup in Fig. 1(a).

ar
X

iv
:1

81
1.

11
33

1v
1

 [
cs

.N
I]

 2
8

N
ov

 2
01

8

2

The primary goal of a topology control is then to provide
a “good” spanning subgraph (V, E) of the Gilbert graph
(V, g(V)). In this context, it is usually agreed upon that a
good topology (V, E) should satisfy the following properties:

1) Connectivity: The network (V, E) is called connected
if there is a path between any two distinct nodes in V . It
is clearly desirable to have a connected network so that
information from one node may be conveyed to another
(possibly through multiple hops) even if these two
nodes are not directly connected. The algorithm/method
that generates (V, E) is called connectivity-preserving if
(V, E) is connected whenever (V, g(V)) is connected.
Conversely, since (V, g(V)) is the largest feasible graph
given the node locations, we note that (V, E) can be
connected only when (V, g(V)) is connected.

2) Constant Stretch Factors: Sometimes, the requirement
of connectivity is further strengthened by imposing a
low stretch factor as discussed in the following. Let us
fix some α ≥ 0, and assign the weight |xi − xj |α to
every (i, j) ∈ g(V). The cost of a given path is defined
as the sum of the weights of the edges that appear in
the path. For any i, j ∈ V with i 6= j, if the path with
the lowest cost connecting Nodes i and j in (V, E) is
no more than b times that in (V, g(V)), we say that
(V, E) has an “α-stretch factor” of b. The 0- and 1-
stretch factors are commonly referred to as hop- and
distance- stretch factors, respectively. For example, the
network in Fig. 1(c) has a hop-stretch factor of 4: Two
nodes that are h-hop apart in Fig. 1(b) are no more than
4h-hops apart in Fig. 1(c). Note that even if a given
topology is connected, its (minimum) hop-stretch factor
can be as large as n− 1, while its α-stretch factors for
α > 0 can be arbitrarily large. The stretch factors of a
graph are related to the energy required for transmission
of information from one node to another [6], [7]. It is
thus desirable to have constant stretch factors that are as
small as possible.

3) Sparseness: The network (V, E) is called a sparse
network if |E| ≤ cn for some constant c ≥ 0. A sparse
network is desirable as the computational complexity of
routing grows with the number of edges in the network.
We note that a Gilbert graph is, in general, not a sparse
network as it can have as many as 1

2n(n− 1) edges.
4) Constant Maximum Degree: The degree of a Node

i ∈ V is the number of nodes that are directly connected
to Node i. The existence of nodes with high degrees
is not desirable in wireless networks due to several
practical issues such as radio interference [8]–[10]. In
fact, in practice, a given wireless node can be connected
to at most a finite number of nodes at any given time,
merely due to the fact that there can be at most a
finite number of non-interfering frequency bands. In
some cases, physical limitations of wireless devices
themselves necessitate degree restrictions. Also, several
communication standards have “built-in” node degree
constraints; for example, in Bluetooth networks, a master
node can be connected to at most 7 active slave nodes at

a given time [11]. It is thus desirable that the degree of
every node in (V, E) is no more than a constant d ≥ 0
that is independent of n. The maximum degree of a
general Gilbert graph can be as high as n− 1. We also
note that a graph with constant maximum degree is also
a sparse graph, but the converse is not true in general.

Consider now the problem of generating good topologies
with the four desired properties listed above. The first two and
the last two of the properties are mutually complementary. On
the other hand, satisfying any one of the first two properties
together with any one of the last two properties represent two
contradicting goals. Also, in practice, it is unreasonable to
expect the topology to be generated and imposed upon by
a decision center that has global knowledge on the nodes’
physical locations and identities. Instead, the topology should
ideally be generated locally in a distributed fashion with every
node picking its own connections using as little information
from its neighboring nodes as possible. The design of such
practical topology control methods has thus been a major
avenue of research in the field of networking. We provide an
overview of some of the relevant literature next.

B. Related Work
There has been numerous works on local construction of

topologies with some or all of the four desired properties as
listed in Section I-A. Several well-known structured graphs
have been a source of inspiration for many of these studies. For
example, topology control algorithms have been inspired by
Delaunay triangulations [12]–[16], Gabriel graphs [17]–[19],
the minimum spanning tree [7], [20], Yao graphs [17]–[19],
[21], relative neighborhood graphs [18], [20], [22], or maximal
independent sets [23] and several new topologies have been
discovered and analyzed in the process. There are also other
approaches to topology control; for example, algorithms that
allow the adjustment of the communication ranges of each
node have been investigated [24]. We refer to [2]–[4] for a
general detailed treatment of topology control including other
algorithms.

One can conclude from the definitions in Section I-A that a
constant stretch factor implies the preservation of connectivity,
and a constant maximum node degree implies sparseness.
Hence, the most difficult topologies to construct have been
the ones with constant stretch factors and maximum node
degrees. In fact, existing algorithms that can provide such
topologies (see, e.g. [14], [17]) require each node to know
its exact geographical location (e.g. via GPS) as well as
the locations of their neighbors and rely on several complex
stages of message exchange between neighboring nodes. Other
works have considered scenarios where each node has limited
information about its neighbors. A notable algorithm is the
XTC algorithm in [25], where each node is assumed to only
know its distance to its neighbors as well as a certain ordering
of its one- and two-hop neighbors. The XTC algorithm can
provide a connected network with constant maximum degree.
Another example is the CBTC algorithm in [21] which can
operate with neighbor direction information at the nodes.

The availability of node geographical information (in the
form of direction, distance, or both) has been a common

3

assumption in all the above works on topology control. The
acquisition and communication of geographical information,
especially exact geographical information, are however both
non-trivial tasks in practice. It is thus desirable to drop the
requirement of geographical information entirely and focus
on algorithms that can operate only with neighborhood in-
formation. Some of the effort in this context has focused on
achieving sparse almost sure connectivity instead of preserving
connectivity whenever possible; see e.g. the k-Neigh protocol
of [26] that is based on [27], or the random Bluetooth networks
analyzed in [28]. These works do not consider node degree
restrictions. On the other hand, an XTC-like algorithm that
does not rely on distance information has been proposed
in [29], but it can only preserve connectivity without any
guarantees on sparseness or node degrees.

Another approach to position-unaware topology control is
to utilize the connected dominating set (CDS) [30]–[35] of
the network. It has been shown in [33] that by using only
neighborhood information, one can construct connected sparse
topologies via a minimum or close-to-minimum CDS. It is not
clear, however, how to obtain a degree-bounded topology using
the idea of a CDS with neighborhood information only. For
example, [16], [33], [34] require extra position information at
each node to obtain a CDS-based topologies with bounded
node degrees.

Position-unaware topology control has also been a major
focus of research on Bluetooth scatternet formation [11] with
several proposed algorithms such as BlueStars [36], BlueMesh
[37], BlueMIS [38], and BSF-UED [39]. Some of these algo-
rithms can provide degree-bounded topologies, but the degree
bound holds for only the master nodes of the network and not
for all the nodes of the network. In this context, construction of
network topologies with a constant degree bound at every node
and without position information at nodes has been described
[38] as “an interesting and major open problem in the area.”
In fact, in this paper, we solve the very same problem. Next,
we describe the properties of our solution.

C. Our Contributions

In this work, we assume that each node only knows the
indices of its one- and two-hop neighbors without any extra
geographical information. Under this restriction, we design a
local algorithm that preserves connectivity, results in a sparse
network with at most 5n edges, and meanwhile guarantees
a constant maximum node degree of 10. With the same
restrictions, to the best of our knowledge, there is no existing
local algorithm that can provide connectivity with bounded
degree. We also present an average case evaluation of our
algorithm and show that the algorithm can in fact preserve
connectivity with the almost-optimal amount of n(1 + o(1))
edges and a degree less than or equal to 6 for 1 − o(1)
fraction of the edges. We also note that the same algorithm
can be applied to the scenario where the nodes are located on
Rd, d ∈ {1, 2, . . .}, and will similarly provide degree-bounded
sparse connected topologies.

Our results show that neighborhood information by itself
can provide several fundamental properties that are desirable

in ad-hoc wireless network topologies. One can however only
achieve so much with only neighborhood information. In fact,
as we shall discuss in more details later, it is not difficult
to show that for any α > 0, no algorithm, even with a
global knowledge of the network neighborhood information,
can provide a constant α-stretch factor and a sparse network at
the same time. Similarly, no algorithm can provide a constant
hop-stretch factor and a constant degree bound at the same
time. We shall emphasize that there are many algorithms in
the existing literature that can guarantee connectivity with
degree-bounded nodes and even finite stretch factors. Such
algorithms were discussed in Section I-B. However, all of
these algorithms require position information at the network-
ing nodes. What distinguishes this work from the existing
literature is that we present the first local algorithm that
does not need any position information and can preserve
connectivity with degree-bounded nodes. We also introduce
another asynchronous algorithm that provides both an upper
bound and a lower bound on node degree.

We note that part of this work [1] has been presented at
the IEEE Wireless Communications and Networking Confer-
ence in April 2017. Compared to [1], the current manuscript
provides:
• the formal proofs for the average performance of the

algorithm (the corresponding results in Theorem 2 of this
paper were merely stated in [1] without proof),

• a new section that discusses the achievability of stretch
factors using only neighborhood information together
with new corresponding simulation results,

• comparisons with the existing algorithms in the literature
such as XTC and k-Neigh,

• a new algorithm that provides a topology with guaranteed
degree lower bounds, and finally,

• implementation details and communication complexity of
our topology control algorithm.

D. Organization

The rest of the paper is organized as follows: In Section I-E,
we introduce the notation and conventions that will be used
throughout the paper. In Section II, we present our topology
control algorithm and formally prove its properties. In Section
III, we present an average case analysis of our algorithm.
In Section IV, we discuss the practicalities that are associ-
ated with our topology control algorithm. In Section V, we
investigate the achievability of constant stretch factors using
only neighborhood information. In Section VI, we consider
the construction of robust graphs that provide a degree lower
bound in addition to a degree upper bound. In Section VII,
we present a numerical evaluation of our algorithms. Finally,
in Section VIII, we draw the main conclusions.

E. Notation and Conventions

Given i, j ∈ V with i 6= j, we say that Nodes i and j are two
neighboring nodes, or simply neighbors if |xi − xj | ≤ R.
Throughout the paper, we will only consider simple graphs
(i.e., undirected graphs with no self-loops or multiple edges)
of the form (W,F) with W ⊂ V and F ⊂ g(W). Given

4

any such graph/network (W,F), and any two indices/nodes
i, j ∈ W with i 6= j, we say that Nodes i and j are directly
connected in (W,F) if (i, j) ∈ F . Note that (i, j) and (j, i)
will always represent the same edge.

A path p , (p1, . . . , p|p|) in the graph (W,F) is a vector
of distinct elements of W such that |p| ≥ 2 and (pi, pi+1) ∈
F , ∀i ∈ {1, . . . , |P| − 1}. We say that Nodes i and j are
path-connected in (W,F) if there is a path p in (W,F) with
p1 = i and p|p| = j. A network (W,F) is called connected
if there is a path in (W,F) between any two distinct nodes in
W . By definition, any two nodes that are directly connected
are also path-connected.

A connected component of (W,F) is a connected sub-
graph (W ′,F ′) of (W,F) such that (i) for any i ∈ W ′ and
j ∈ W−W ′, Nodes i and j are not path-connected in (W,F),
and (ii) for any i, j ∈ W ′, we have (i, j) ∈ F =⇒ (i, j) ∈ F ′.

II. THE MAIN ALGORITHM

In this section, we present an algorithm that preserves
connectivity and results in a sparse network with at most 5n
edges and a maximum node degree of 10. The setup in which
the algorithm operates is as follows: Initially, we consider a
network without any connections. The unique algorithm will
be available to every node, and when “run,” will directly
connect its “host node” (i.e., the node that is running the
algorithm) to a certain subset of its host’s neighboring nodes.
All the connections initiated by the algorithm will be bidi-
rectional. Running the algorithm at every node exactly once
will result in the topology with the aforementioned properties.
Nodes will be able to run the algorithm in an arbitrary order,
or simultaneously in a completely asynchronous fashion.

Let us now present the algorithm itself. A key definition we
need is the notion of a lesser neighborhood of a node. For
any i ∈ V , we define the lesser neighborhood of Node i as

Ni , {j : j ∈ V, j < i, |xi − xj | ≤ R}. (2)

Thus, the lesser neighborhood of Node i are neighbors of Node
i whose indices are less than i.

We recall from Section I-A that the Gilbert graph generated
by the vertex set W ⊂ V is given by the graph (W, g(W)),
where g(W) , {(i, j) : i, j ∈ W, i < j, |xi − xj | ≤ R}. In
other words, when all the nodes in W that are within commu-
nication range are directly connected, we obtain the Gilbert
graph (W, g(W)) generated by W . Consider now the Gilbert
graph (Ni, g(Ni)) generated by the lesser neighborhood of
Node i. Let Ji denote the number of connected components
of (Ni, g(Ni)). Since each connected component of a Gilbert
graph is necessarily also a Gilbert graph, we can list the
connected components of (Ni, g(Ni)) as (Nij , g(Nij)), j =
1, . . . , Ji, where Nij , j = 1, . . . , Ji are mutually disjoint
subsets of Ni with

⋃Ji
j=1Nij = Ni. For any set A, let maxA

denote the maximum element of the set A. Our algorithm (at
Node i) is then as shown as Algorithm 1.

We have previously mentioned that the nodes may run the
algorithm in arbitrary order as long as each node runs the
algorithm exactly once. In fact, it is easily observed that the
order in which the nodes run the algorithm does not affect the

Algorithm 1 The Main Topology Control Algorithm (at Node
i)

1: Connect to all nodes in the set {maxNij : 1 ≤ j ≤ Ji}.

final topology as long as each node runs the algorithm at least
once. All the different possibilities in this context will lead to
the same final topology that we shall refer to as (V,A).

A. An Example Run

We now demonstrate how the algorithm operates over
the setup in Fig. 1(a). Suppose that initially there are no
connections in the network. We illustrate how the algorithm
(when it runs at Node 6) determines the direct connections to
be initiated by Node 6. The lesser neighborhood of Node 6
is given by N6 = {1, 2, 3, 4, 5}, as shown in Fig. 2(a). Note
that Node 6 itself and its “greater” neighbor Node 7 are not
members of N6. The next step for Node 6 is to calculate the
Gilbert graph (N6, g(N6)) induced by N6. This graph is as
shown in Fig. 2(b) and has J6 = 2 connected components
(N61, g(N61)) and (N62, g(N62)) where N61 = {1, 2, 5}
and N62 = {3, 4}. Finally, we have maxN61 = 5 and
maxN62 = 4, so that Node 6 will initiate a connection to
Nodes 4 and 5. The corresponding two undirected edges that
will be added to the initial graph will be (4, 6) and (5, 6).

R

9
10

8 2
6

3

4

1
5

7

(a) Lesser neighbors N6 = {1, 2, 3, 4, 5} of Node 6. They are
illustrated as gray disks.

2

3

4

1
5

(b) The Gilbert graph induced by the lesser neighborhood of Node
6.

Fig. 2: The steps as to how Node 6 determines its connections
using the algorithm.

In fact, running the algorithm at each node at least once
results in the final network topology that we have previously
shown in Fig. 1(c). For example, Node 1, having no lower
neighbors (J1 = 0), will not initiate a connection to any other
node. On the other hand, for Node 2, we have J1 = 1 with
N21 = {1}, so that Node 2 will initiate a connection to Node 1.
Hence, Node 1 in fact gets connected to Node 2, even though
it is not Node 1 that initiates this connection.

5

B. Analysis of the Algorithm

We now analyze the properties of the resulting topology
(V,A) generated by the algorithm. The following observation
will be very useful for this purpose.

Lemma 1. In Algorithm 1, each node initiates at most 5
connections. In other words, Ji ≤ 5 for any i ∈ V (and for
any given realization of node locations.).

Proof. Suppose that a given Node i initiates connections
to both Nodes j1 and j2; see Fig. 3 for an illustration.
The obvious neighborhood conditions |xi − xj1 | ≤ R and
|xi − xj2 | ≤ R hold. By the design of the algorithm, we also
have |xj1−xj2 | > R (As otherwise, if |xj1−xj2 | ≤ R, Nodes
j1 and j2 would belong to the same connected component, say
Ni` for some ` ∈ {1, . . . , Ji} of the Gilbert graph generated
by Ni. Then, since Node i initiates a connection to only one
of the nodes in Ni`, it would then be absurd that it connects to
both Nodes j1 and j2.). The three inequalities above imply that
the edge xj1xj2 is the longest edge of the triangle xj1xixj2 .
This leads to the strict inequality θ1 > 60◦. Using the same
arguments, we obtain θj > 60◦, ∀j ∈ {1, . . . , Ji}. Now,
assume the contrary to the statement of the lemma and suppose
Ji ≥ 6. We have 360◦ = θ1+ · · ·+ θJi > Ji60

◦ ≥ 360◦. This
is a contradiction that proves the lemma.

i

j1j2

j3

jJi

θ1
θ2

θJi

Fig. 3: Figure for the proof of Lemma 1.

The following theorem is then the main result of this paper.

Theorem 1. The graph (V,A) is connected if and only if
the Gilbert graph (V, g(V)) is connected. Moreover, we have
|A| ≤ 5n and the degree of each node in (V,A) is no more
than 10.

Proof. For the statement regarding connectivity, we only need
to prove the “if” part with the “only if” part being trivial.
Suppose (V, g(V)) is connected. Then, for any given two
nodes in V , there is a path in (V, g(V)) that connects these two
nodes with each edge in the path consisting of two neighboring
nodes. To show that (V,A) is connected, it is thus sufficient
to show that any two neighboring Nodes i and j are path-
connected in (V,A). To prove this, we may assume that i < j
without loss of generality. First, note that if i = j − 1, then,
by design, Node j will initiate a connection to Node i and
Nodes i and j will be path-connected. Otherwise, ∃k ∈ V
with i < k < j such that (i) Node j initiates a connection
to Node k, and (ii) there is a path p in (V, g(V)) connecting
Node k to Node i such that the index of each node in p is no
more than k ≤ j−1. It is then sufficient to show that any two

distinct neighbor nodes that appear in p are path-connected
in (V,A). On the other hand, to prove this latter claim, it is
sufficient to show that any two neighboring Nodes i′, j′ with
i′ < j′ ≤ j − 1 are path connected in (V,A).

By above arguments, we have established the following
statement: Any two neighboring Nodes i and j with i < j
are path-connected in (V,A) if either i = j − 1 or any two
neighboring Nodes i′ and j′ with i′ < j′ ≤ j − 1 are path-
connected in (V,A). This statement describes a finite descent
that immediately leads to the path-connectedness of Nodes
i and j. In fact, applying the statement on itself, any two
neighboring Nodes i and j with i < j are path-connected in
(V,A) if either i = j−1, or i = j−2, or any two neighboring
Nodes i′ and j′ with i′ < j′ ≤ j − 2 are path-connected in
(V,A). Hence, any two neighboring Nodes i and j with i < j
are path-connected in (V,A) if i = j − k for some natural
number k, which is clearly true. This concludes the proof of
the claim on connectivity.

We now prove the rest of the claims. The inequality
|A| ≤ 5n follows immediately as each node initiates at
most 5 connections by Lemma 1. We now prove the degree
bound. Let i ∈ V . By design, a node with a lower index
(< i) cannot initiate a connection to Node i. On the other
hand, Node i itself initiates at most 5 connections. To show
a maximum node degree of 10, it is thus sufficient to show
that there are at most 5 nodes with a higher index (> i)
initiating a connection to Node i. Assume the contrary and
suppose there are 6 or more such nodes. Two of these nodes,
say Nodes j and k (with j < k without loss of generality)
should then be within communication range as well as being
within range of Node i. This implies {i, j} ⊂ Nk` for some
` ∈ {1, . . . , 5} with i /∈ Nk`′ and j /∈ Nk`′ for `′ 6= `. Since
maxCk` ≥ max{i, j} = j > i, and i /∈ Nk`′ for `′ 6= `,
we have, in fact, maxNk` 6= i for every `. This contradicts
the fact that Node k initiates a connection to Node i and thus
proves the degree bound.

The degree bound of 10 is tight in the sense that there
are certain realizations of node locations for which the
resulting topology (V,A) has a node with degree 10. A
minimal example is with 11 nodes, x6 = [0 0], and xi =
R[cos iπ5 sin iπ

5], i ∈ {1, . . . , 11} − {6}. It does not seem to
be as trivial, however, to find node locations that result in as
much as 5n edges. In fact, as we show in the next section,
the number of edges in most connected topologies that are
generated by the algorithm is closer to n than 5n. We will
also show that the maximum node degree in most networks
generated by the algorithm is 6.

Several variations of Algorithm 1 can be envisioned. Some
of these variations also provide useful insights on how and
why the algorithm provides a degree-bounded topology and
preserves connectivity at the same time. In this context, we
discuss here the variant where Node i connects to one arbitrary
node in each of the sets Nij , j = 1, . . . , Ji instead of
connecting to the nodes maxNij , j = 1, . . . , Ji with the
maximum indices. Using the same arguments as in the proof
of Theorem 1, it is straightforward to show that the variant
algorithm preserves connectivity and provides a sparse graph

6

with at most 5n edges. However, it does not provide a degree-
bounded graph in general: Suppose all n nodes are mutually
within communication range. Running the variant algorithm,
all nodes (except Node 1) may decide to connect to Node 1,
resulting in a degree of n− 1 at Node 1 in the final network
topology.

The variant algorithm demonstrates that connecting to each
disconnected component of the Gilbert graph induced by the
lesser neighborhood of a node (as in our algorithm) provides
sparsity and preserves connectivity. Such a connection strategy
is, however, not enough to provide a degree-bounded topology.
The connections should be done in an intelligent manner so
as not to overwhelm a given node with too many connections.
In Algorithm 1, this is done through connecting the node with
the maximum index in a given component.

As a final remark, we note that Theorem 1 can be applied
and extended to networks in higher (or lower) dimensions,
i.e. for networks in Rd for any d ≥ 1 with the same disk-
connectivity model. In fact, let µd denote the maximum
number of points that can be packed in the unit ball in Rd
such that any two given distinct points are more than one unit
apart. We have µ1 = 2, µ2 = 5 (as shown in Lemma 1), and it
is not difficult to show that µd is finite for any d ≥ 3. The exact
same algorithm generates a connectivity-preserving topology
with at most µdn edges with a maximum node-degree of 2µd.
In fact, similar results can be proved for connectivity models
different than the disk model provided that the model admits
a similar packing property.

III. AVERAGE CASE EVALUATION

Algorithm 1, in the “worst cases,” results in a topology
with 5n edges and a maximum node degree of 10. However,
numerical results suggest that for most realizations of node
locations, the resulting topology is in fact much sparser and
most nodes have a degree less than or equal to 6. We present
an analytical justification of this phenomenon using random
graphs.

In this section, we let the node locations x1, . . . , xn be
independent and uniformly distributed on [0, 1]2 (instead of
being arbitrary fixed points in R2 as has been the case in
previous sections). For any given fixed realization of node
locations, we may simply run our algorithm to obtain one fixed
topology corresponding to the given locations. The random
nature of the node locations however means that the resulting
topology (V,A) will also be random. We are then interested
in the properties of the now-random graph (V,A) (We use the
same notation for fixed and random graphs as the difference
will be obvious from the context.).

For the random Gilbert graph (V, g(V)), Penrose [40] has
shown the extremely precise result that if R2 = logn+α

πn , then

Pr((V, g(V)) is connected)→ e−e
−α

(as n→∞). (3)

Here, Pr(·) represents the probability of an event, log(·) is the
natural logarithm, and e is the base of the natural logarithm.
In particular, Pr((V, g(V)) is connected) → 1 if and only if
α→∞. We consider here random networks with communica-
tion radii just asymptotically above the connectivity threshold
obtained by Penrose. Our main result is the following theorem.

Theorem 2. Suppose R2/(lognn) → ∞, and consider the
random network (V,A). Then,

∀ε > 0, Pr(|A| ≥ (1 + ε)n)→ 0. (4)

Moreover, let d≤6 denote the fraction of vertices in (V,A)
with degree no more than 6. We have

∀ε > 0, Pr(d≤6 ≥ 1− ε)→ 1. (5)

Proof. For any given Node i with index i > βn, where 0 <
β < 1, let Eij be the event that the jth Circular Sector Si,j
of Node i does not contain a node with index less than βn
(See Fig. 4 for the definition and the illustration of the circular
sectors of a given node.). Ignoring the edge effects (which can
be shown to not change the final results), we have

Pr(Eij) =
(
1− πR2

12

)βn
, ∀j ∈ {1, . . . , 12}, ∀i > βn. (6)

Now, let Ei be the event that Node i (with, again, i > βn) has
a circular sector that does not contain a node with index less
than βn. By a union bound, we have

Pr(Ei) ≤ 12

(
1− πR2

12

)βn
, ∀i > βn. (7)

Consider now the connections initiated by Node i when it
runs the algorithm. Given the complement of event Ei, for any
j ∈ {1, . . . , 12}, Sector Si,j of Node i contains at least one
node, say Node si,j , with si,j < βn. Now, note that any two
given nodes in any sector are clearly neighbors. Moreover, for
any given j ∈ {1, . . . , 12}, Node si,j is necessarily a neighbor
of the nodes of its neighboring sectors. In particular, Node si,1
is a neighbor of Nodes si,2 and si,12, Node si,2 is a neighbor
of Nodes si,1 and si,3, and so on. These imply that the Gilbert
graph induced by the lower neighborhood of Node i has only
one connected component, so that Node i initiates only one
direct connection provided that i > βn and event Ei does not
occur. On the other hand, since at most 5 other nodes can
initiate a direct connection to Node i (this was proved as part
of the proof of Theorem 1), the degree of Node i will be at
most 6 in all of the final topologies where Ei does not hold.

R
Si,1Si,6

Si,7

Si,3

Si,10

Si,4

Si,9

Si,12

Si,2Si,5

Si,8 Si,11

i

Fig. 4: The circular sectors around the location xi of Node i
that are used in the proof of Theorem 2. Each sector includes
its boundary. The central angle of each sector is equal to 30◦.

If, further, event
⋃n
i=βn Ei does not occur, the network

will have at most 5βn + (n − nβ) edges (at most 5 direct

7

connections are initiated by nodes with indices less than βn,
and only 1 direct connection is initiated by nodes with indices
greater than βn), with (1 − β)-fraction of its nodes having
degree no more than 6. To prove the theorem, it is thus
sufficient to show that Pr(

⋃n
i=βn Ei) → 0 with a suitable

choice of β such that β → 0. In fact, using a union bound,
and letting β = 24

π
logn
nR2 , we have β → 0, and

Pr

 n⋃
i=βn

Ei

 ≤ 12n

(
1− πR2

12

)βn
∼ 12n exp

(
−πR

2βn

12

)
∼ 12

n
→ 0, (8)

where ∼ represents asymptotic equivalence. For the first
equivalence, we have also assumed R2 → 0 without loss of
generality (A network with a larger R cannot have more edges
or larger node degrees.). This concludes the proof.

Hence, on average, Algorithm 1 provides an extremely
sparse connected network with n(1+o(1)) edges with a degree
less than or equal to 6 for 1− o(1) fraction of the nodes.

IV. ALGORITHM IMPLEMENTATION

In this section, we discuss the issues related to the imple-
mentation of Algorithm 1. We begin by describing a protocol
for the implementation of the algorithm.

A. A Protocol for Algorithm Implementation

For the algorithm to work correctly, a given Node i in the
network only has to know its lesser neighbors Ni and the
lesser neighbors Nj of each one of its lesser neighbors j ∈ Ni.
We weaken this statement by saying that each node only has
to know its neighbors and the neighbors of its neighbors,
i.e., its one- and two-hop neighbors. One way to implement
the algorithm may then be via the following protocol that
incorporates three rounds of inter-node communications: In
the first round, each node may broadcast a “Hello” message
(together with its index information) so that each node acquires
the knowledge of its neighboring nodes. In the second round
of communications, each node broadcasts the indices of its
neighbors so that each node can also acquire the indices of
each one of its neighboring nodes. Each node may then run
the algorithm to determine the set of nodes to connect to; this
step does not require any inter-node communication. In the
final and third round of communications, each node broadcasts
the indices of the nodes it has decided to connect to. Once the
corresponding connections are established, the final topology
is complete.

B. Communication Complexity

The communication overhead of the above protocol can
also be analyzed in an average sense. Suppose the n nodes
are distributed uniformly at random on [0, 1]2, as in Sec-
tion III. The index of each node can be represented via a
binary word of length O(log n) bits. In the first round of
communications, the message of each node is thus O(log n)

bits, for a total of O(n log n) bits over the entire network.
Given that the nodes are distributed on [0, 1]2, each node has
O(nR2) neighbors on average, resulting in a per-node message
length of O(n log nR2) bits on average for the second round
of communications. Finally, as each node initiates at most
5 connections by Lemma 1, the per-node message length is
O(log n) bits for the third round of communications. Each
node thus sends a total of O(log n(1 + nR2)) bits in total
during the topology formation phase. In particular, setting
R2 = logn+α

πn for some α→∞ and α ∈ o(log n), the network
is asymptotically almost surely connected according to (3),
and the per-node message length to establish the topology is
O(log2 n) bits. Hence, the average per-node communication
complexity for the establishment of the network topology is
only polylogarithmic in the number of nodes.

C. Node Identification

We also note that in practice, a node may not carry any
“index information,” at least not necessarily in the form of
a natural number ranging from 1 to n. Instead, each node
may have a unique identification number (or a unique address)
that can be used for indexing purposes. These identification
numbers can be ordered, for example, lexicographically. In-
stead of the natural numbers with their standard order, the
same algorithm can then operate over the node identification
numbers with their lexicographical order. Hence, the (likely)
possibility of “unnatural” node indices does not affect the
way the algorithm operates or the final results. In general,
we assume that each node is assigned its unique identification
number during manufacturing, in a manner similar to the
assignment of media access control (MAC) addresses. Hence,
a separate algorithm for node identification number assignment
is not necessary.

V. THE UNACHIEVABILITY OF CONSTANT STRETCH
FACTORS USING NEIGHBORHOOD INFORMATION

We have shown the existence of a local topology con-
trol algorithm that can preserve connectivity with constant
bounded maximum node degree using only one- and two-
hop neighborhood information. All the previous algorithms
with the same promises in addition require geographical
information (in the form of neighbors’ distance/direction). As
we have mentioned in Section I-B, some of these algorithms
also guarantee constant α-stretch factors, which provide a
stronger notion of connectivity. Unfortunately, in the case of
our algorithm, for any α ≥ 0, one can construct a specific
realization of node locations such that the α-stretch factor of
the resulting topology can be made arbitrarily large. However,
the stretch factors may be low with high probability, as we will
show numerically in the next section. This begs the question
of whether or not there exists another (better) algorithm that
similarly uses only neighborhood information and can provide
constant stretch factors with bounded node degrees. In this
section, we answer this question in the negative: There are
no such algorithms even if one assumes global knowledge of
neighborhood information.

8

Let us first define the α-stretch factors in a formal manner.
Let us fix some α ≥ 0, and assign the weight |xi − xj |α
to every (i, j) ∈ g(V). We can then model the cost of
communicating from Node i to Node j on a given spanning
subgraph (V, E) of (V, g(V)) via the quantity

cα(i, j; E) , min
p

|p|−1∑
i=1

|xpi − xpi+1
|α, (9)

where the minimization is over all paths in (V, E) connecting
Nodes i and j. We let cα(i, j;V, E) =∞ if Nodes i and j are
not path-connected in (V, E). We say that the topology (V, E)
has an α-stretch factor of t if cα(i, j; E) ≤ tcα(i, j; g(V)) for
every i, j ∈ V with i 6= j.

Let E denote the collection of all possible sets of edges
given the vertex set V . A centralized (and deterministic) con-
trol of topology can then be modeled as a mapping f : E→ E
with the property that for every E ∈ E, we have f(E) ⊂ E .
Operationally, we assume that a control center can somehow
have access to (only) the entire neighborhood information
g(V), and declares (V, f(g(V)) as the final topology. We have
the following result regarding the hop-stretch factors.

Theorem 3. Suppose that f preserves connectivity and results
in constant maximum node degree of d > 0. Then, f cannot
provide a constant hop-stretch factor.

Proof. Suppose all the nodes are located within each other’s
communication range. Then, g(V) is the complete graph Kn

of n nodes where all the nodes are within 1 hop of each other.
Consider now the topology f(Kn) generated by f . There
are n − 1 nodes that are at least 1 hop away from Node 1.
Moreover, due to the degree bound provided by f , there are
at least n − d − 1 nodes that are at least 2 hops away from
Node 1, and in general, at least n−(1+d+ · · ·+dk−1) nodes
that are at least k hops away from Node 1. Hence, for any k
and d, if n > 1 + d + · · · + dk−1, there exists a node with
index i ∈ V such that Node i is k hops away from Node 1
in (V, f(Kn)). On the other hand, Nodes i and 1 were only
1 hop apart in the graph (V,Kn). The hop-stretch factor with
f is thus at least k. The result now follows immediately as
for any d, k can be made arbitrarily large by considering a
sufficiently large n.

A stronger version can be proved in the case of the α-stretch
factors for α > 0.

Theorem 4. Suppose that f preserves connectivity but with
one or more edges missing from the Gilbert graph. Then, for
any α > 0, the mapping f cannot provide a bounded α-stretch
factor.

Proof. Suppose all the nodes are located on a disk of radius
εR centered at the origin for some ε > 0. We have g(V) = Kn.
Let (i, j) denote one of the missing edges in (V, f(Kn)).
Now, if (i, j) is not path-connected in (V, f(Kn)), we have
cα(i, j; f(Kn)) =∞. The claim of the theorem then follows
immediately as obviously, cα(i, j; g(V)) ≤ (2ε)α and thus
cα(i, j; g(V)) is finite. Otherwise, let P denote the set of all
paths in (V, f(Kn)) that connect Node i to Node j. Choose
a node k /∈ {i, j} in the path with the minimum cost in P .

Consider a change of locations where we move Node k to
[R 0] while keeping all the other nodes’ locations fixed. We
again have g(V) = Kn in this case, and the resulting topology
is thus the same topology (V, f(Kn)) when all the nodes were
located at the origin. However, we now have (for the new
node locations) cα(i, j; f(Kn)) > |xi − xk|α + |xk − xj |α =
2Rα(1 − ε)α while cα(i, j; g(V)) ≤ (2ε)α. The α-stretch
factor provided by f is then at least 2Rα(1−ε)α

(2ε)α , which can
be made arbitrarily large by choosing a sufficiently small ε.
This concludes the proof.

VI. CONSTRUCTING GRAPHS WITH DEGREE LOWER
BOUNDS

In practice, it is also important to construct a robust graph,
by e.g. providing a lower bound on the node degrees as
well as an upper bound. This way, if a certain subset of
communication links is broken, one can potentially use the
remaining links to reach one node from another.

Suppose that the degree of each node in a connected Gilbert
graph (V, g(V) is at least δ ≥ 1. In the following, we provide
an asynchronous algorithm that preserves connectivity, and
provides a lower bound of δ and a constant upper bound on
the degree of every node. In this context, one naive algorithm
that comes to mind is for each node to randomly add edges to
guarantee a degree lower bound of δ after running Algorithm
1. Unfortunately, this approach does not lead to a constant
upper bound on the degree of the networking nodes.

Let N i , {j : j ∈ V, j > i, |xi − xj | ≤ R} denote
the greater neighborhood of Node i. We then consider the
algorithm whose steps are provided in Algorithm 2. First, as
shown by Line 1 of the algorithm, Node i chooses the same
nodes to connect to as in Algorithm 1. Next, in Lines 2 and 3,
the remaining lesser neighbors are added to the list Ci of the
nodes that Node i will connect to, until the eventual degree
of the node, |Ci|, is guaranteed to be at least δ. The priority
is given to the lesser neighbors with the highest index. Often,
the set of lesser neighbors are not enough to satisfy the degree
lower bound, in which case we add the greater neighbors of
Node i via Lines 4 and 5. This time, the neighbors with the
smallest index are given priority.

Algorithm 2 Algorithm for Minimum Degree Guarantee (at
Node i)

1: Ci ← {maxNij , 1 ≤ j ≤ Ji}.
2: while |Ci| < δ and Ci 6= Ni do
3: Ci ← Ci ∪ {max(Ni − Ci)}.
4: while |Ci| < δ and Ci 6= Ni ∪N i do
5: Ci ← Ci ∪ {min(N i − Ci)}.
6: Connect to all nodes in the set Ci.

In particular, for δ = 1, Algorithm 2 is identical to
Algorithm 1. The following theorem provides the properties of
the topologies generated by Algorithm 2 for a general δ ≥ 1.

Theorem 5. Suppose that the n-node graph (V, g(V)) is
connected with a degree of di at Node i, where i ∈ {1, . . . , n}.
Then, the topology generated by Algorithm 2 is connected

9

with at most max{δ, 5}n edges. Moreover, for any given
i ∈ {1, . . . , n}, the degree of Node i is at least min{di, δ}
but no more than max{δ, 5}+ 10δ.

Proof. Algorithm 2 contains all edges that are provided by
Algorithm 1 due to Line 1. Therefore, since Algorithm 1 pro-
vides a connected topology, so does Algorithm 2. The proof of
Theorem 1 shows that Line 1 results in a set Ci with cardinality
at most 5, while Lines 3 and 5 add new nodes to Ci (one at
a time) until |Ci| ≥ min{di, δ}. Therefore, |Ci| ≤ max{δ, 5}.
This implies that there are at most max{δ, 5}n edges in the
final topology. We now provide the degree bounds. The fact
that the final topology provides a degree lower bound of
min{di, δ} at every node is obvious by the design of the
algorithm. We thus prove the degree upper bound. First, note
that a given node initiates at most max{δ, 5} connections. We
now determine the maximum number of nodes that establish
a connection to Node i. We argue that there can be at most 5δ
greater neighbors of Node i that connect to Node i. Assume
the contrary. One can then find δ + 1 greater neighbors of
Node i with indices j1, . . . , jδ+1 that are all mutually within
communication range and connect to Node i. Without loss
of generality, suppose i < j1 < · · · < jδ+1. Since Node
jδ+1 connects to Node i, it also necessarily connects to Nodes
j1, . . . , jδ . There are now two possibilities when the algorithm
is run on Node jδ+1. The first possibility is that the connection
to Node jδ is made via Line 1, and the remaining δ connections
to Nodes i, j1, . . . , jδ−1 are made via Line 3 of the algorithm.
This leads to a contradiction as Line 3 cannot increase the
node degree beyond δ. The second possibility is that all
δ + 1 connections to Nodes i, j1, . . . , jδ are made via Line
3 of the algorithm, which leads to a similar contradiction. A
similar argument shows that there can be at most 5δ lesser
neighbors of Node i that connect to Node i. As a result, the
degree of each node in the final topology is no more than
max{δ, 5}+ 10δ.

In particular, if the degree of every node in the Gilbert graph
is at least δ, then Algorithm 2 provides a degree lower bound
of δ at every node, as desired. An interesting direction for
further research is to find a better algorithm that improves the
degree upper bound in Theorem 5, as for example, for δ = 1,
Theorem 1 provides a better degree upper bound.

VII. NUMERICAL RESULTS

In this section, we present numerical simulations that con-
firm our analytical results and provide additional insights. We
have run Algorithm 1 on a network with n = 1000 nodes
and initially no connections. Nodes are located independently
and uniformly on [0, 1]2. We have considered the choices
πR2 = N

n for N ∈ {10, 20, 30}. The parameter N can be
thought as a quantification of “node density” as any given node
of the network then has roughly (ignoring the edge effects) N
neighbors on average. Regarding our specific choices for N ,
we note that the probabilities of connectivity for the associated
Gilbert graphs are approximately 0.5654, 0.9922, and 0.9996
for the choices N = 10, N = 20, and N = 30, respectively.
These values were obtained numerically by averaging over

at least 5000 node location realizations. Hence, the three
different choices for N represent the three different scenarios
of “mostly-disconnected,” “usually connected,” and “almost-
always connected” networks.

In Fig. 5, we show the cumulative distribution functions
(CDFs) of the normalized number of edges |A|n for different
values of N . In all the node location realizations we have
simulated, the number of edges of the network never exceeded
1.14n or went below 1.02n for any choice of N . These
observations are in agreement with the inequality |A| ≤ 5n
as proved by Theorem 1. In addition, the fact that the number
of edges are very close to n for any N is in agreement
with Theorem 2, where we proved that the algorithm usually
generates topologies with n(1 + o(1)) edges, especially when
N is large. In fact, if N were equal to infinity, all the nodes
would be within the range of each other, and the algorithm
would generate the line topology with only the n edges
(1, 2), (2, 3), . . . , (n− 1, n).

1.02 1.04 1.06 1.08 1.1 1.12 1.14

Normalized number of edges

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

N = 10

N = 20

N = 30

Fig. 5: The CDFs of the normalized number of edges |A|n for
different node densities with Algorithm 1.

In Fig. 6, we compare the number of edges provided by
Algorithm 1 with other algorithms or topologies for a node
density of 20. We consider the topologies generated by the
XTC algorithm [25], Algorithm 2 with δ = 2, the k-Neigh
algorithm [26] for k = 6, and the Gilbert graph. XTC
is a powerful algorithm that can provide a degree-bounded
topology with constant stretch factors. However, it requires
neighbor distance information at the nodes. We recall from
Section VI that Algorithm 2 for δ = 2 guarantees (if at
all feasible) a degree lower bound of δ = 2 at every node,
and a degree upper bound of 25. In particular, for δ = 1,
Algorithm 2 is equivalent to Algorithm 1. According to the
k-Neigh algorithm, each node connects to k of its closest
neighbors. The k-Neigh algorithm provides sparse topologies
with typically low-degree nodes. However, it also requires

10

neighbor distance information, and is not guaranteed to pre-
serve connectivity. We have considered the choice k = 6 for
fairness in terms of the probability of connectivity: For k = 6,
the k-Neigh algorithm provides connectivity with probability
0.9904, which is a negligible loss compared to the probability
0.9922 of connectivity of the Gilbert graph. For k = 5, the
probability of connectivity with k-Neigh drops to 0.9681.

We can observe from Fig. 6 that with probability 0.99,
Algorithm 1 provides the sparsest topology with (at most)
1.07n edges, followed by the XTC algorithm with 1.27n
edges, Algorithm 2 for δ = 2 with 1.88n edges, k-Neigh
for k = 6 with 3.59n edges, and finally the Gilbert graph
with 9.64n edges. Thus, Algorithm 1 provides around 9-fold
reduction for the required number of edges for connectivity
compared to the Gilbert topology. Also, compared to its closest
competitor XTC, our algorithm reduces the required number of
edges for connectivity by around 100× 1.27n−1.07n

1.27n ≈ 16 per
cent. Moreover, unlike XTC, the reduction comes without the
need for the extra neighbor distance information at networking
nodes.

1 2 3 4 5 6 7 8 9 10

Normalized number of edges

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Algorithm 1

XTC

Algorithm 2, =2
k-Neigh, k=6

Gilbert

Fig. 6: The CDFs of the normalized number of edges |A|n for
different algorithms and N = 20.

In Fig. 7, we show the probability mass functions (PMFs)
corresponding to the degree of a given node of the network for
different values of N . More specifically, let I have a uniform
PMF on the set {1, . . . , n}. For a given N , the corresponding
PMF at a given degree d in Fig. 7 is then the probability that
Node I has degree d in the final network topology provided by
Algorithm 1. We can also observe that almost all the nodes in
the network have a degree of 6 or less, which is in agreement
with Theorem 2. Also, the fraction of nodes with degree 2
increases as N increases, and we expect it to approach to 1
as N → ∞ as a result of the aforementioned convergence to
line topology.

We show the PMFs of the degrees of individual nodes

0 2 4 6 8 10

Node degree

0

0.1

0.2

0.3

0.4

0.5

0.6

P
M

F

N = 10

N = 20

N = 30

Fig. 7: The PMFs of the degree of a given node for different
node densities with Algorithm 1.

and the corresponding expected node degrees in Fig. 8 for
the special case N = 20. We can observe that nodes with
lower or higher indices are more likely to have lower degrees.
In fact, by design, the only way for a low-indexed node to
“gain” degree in Algorithm 1 is by receiving connections
from a higher-indexed node, and there can be at most 5 such
connections. Likewise, the only way for a high-indexed node
to gain degree is by establishing connections to lower-indexed
nodes. Similarly, there can be at most 5 such connections.
On the other hand, a medium-indexed node can potentially
have many higher-indexed nodes as well as many lower-
indexed neighboring nodes, implying a potential degree of 10
in the final topology. Thus, intuitively, a medium-indexed node
should typically have a larger average degree compared to a
low- or high-indexed node. Fig. 8 verifies this intuition.

In Fig. 9, we compare different algorithms with respect to
their PMFs corresponding to the degree of a given node of the
network. We consider a node density of N = 20. Algorithm
1 provides the minimum possible average node degree of
2.12, followed by an average degree of 2.50 provided by
XTC. Compared to the average of 18.63 for the Gilbert graph,
Algorithm 1 provides a 9-fold reduction on the node degree.

Fig. 10 shows the PMFs of the maximum node degree
of the network for Algorithm 1 and different node densities.
According to Theorem 1, the PMFs should only take values
on the set {0, . . . , 10}. In fact, for every value of N , we
have not observed a single realization of node locations where
the maximum node degree is 8 or higher. Such realizations
obviously exist (see Section II); Fig 10 rather suggests that
they correspond to very rare events. Fig. 11 provides the
comparison of different algorithms in terms of the PMFs of the
maximum node degrees. We can observe that the maximum
degree with Algorithm 1 is more likely to be 5 compared to a

11

0 200 400 600 800 1000

Node index

0

0.5

1

1.5

2

2.5

P
M

F
 o

f
n
o
d
e
 d

e
g
re

e
 o

r
th

e
 e

x
p
e
c
te

d
 n

o
d
e
 d

e
g
re

e

Expected node degree

PMF at d=2

PMF at d=3

PMF at d=4

PMF at d=5

PMF at d=6

Fig. 8: The expected value and the PMF of node degrees for
different node indices using Algorithm 1 and N = 20.

0 5 10 15 20 25 30 35

Node degree

0

0.1

0.2

0.3

0.4

0.5

0.6

P
M

F

Algorithm 1

XTC

Algorithm 2, =2
k-Neigh, k=6

Gilbert

Fig. 9: The PMFs of the degree of a given node for different
algorithms and N = 20.

maximum degree of 4 with XTC. The price to pay to guarantee
a minimum degree of 2 via Algorithm 2 is to increase the
maximum node degree to 7 with high probability.

In Fig. 12, we show the CDFs of the α-stretch factors
associated with two given distinct nodes of the network for
α ∈ {0, 1, 2} (hop-, distance-, and power-stretch factors) and
N ∈ {10, 20, 30}. Specifically, let (I1, I2) have a uniform
PMF on the set {(i, j) : 1 ≤ i < j ≤ n}. Given N and α,
the corresponding CDF evaluated at a given stretch factor t in
Fig. 7 is then given by Pr[cα(I1, I2;A) ≤ tcα(I1, I2; g(V))].

0 2 4 6 8 10

Maximum node degree

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
M

F

N = 10

N = 20

N = 30

Fig. 10: The PMFs of the maximum node degree for different
node densities using Algorithm 1.

0 5 10 15 20 25 30 35 40

Maximum node degree

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
M

F

Algorithm 1

XTC

Algorithm 2, =2
k-Neigh, k=6

Gilbert

Fig. 11: The PMFs of the maximum node degree for different
algorithms and N = 20.

We can observe that all the CDFs remain less than 1
at every finite stretch factor. This means that the algorithm
cannot provide a constant α-stretch factor for any α ≥ 0.
This result is not surprising as by Theorems 3 and 4, any
topology control algorithm that solely relies on neighborhood
information will necessarily have unbounded stretch factors.
Still, we can observe that our algorithm keeps the stretch
factors low with high probability, at least for some cases of
α and N . For example, for the network with N = 20 that is
connected for more than 99% of the time, any two nodes that

12

are h hops away in the Gilbert graph will be no more than 5h
hops away in (V,A) for more than 90% of the time.

1 2 3 4 5 6 7 8 9 10

Stretch factor

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

 = 0, N = 10

 = 0, N = 20

 = 0, N = 30

 = 1, N = 10

 = 1, N = 20

 = 1, N = 30

 = 2, N = 10

 = 2, N = 20

 = 2, N = 30

Fig. 12: The CDFs of α-stretch factors for different node
densities with Algorithm 1.

Comparison of different algorithms in terms of their stretch
factors are provided in Fig. 13. Typically, algorithms that result
in more edges provide a better stretch factor distribution. For
example, the k-Neigh algorithm outperforms all other algo-
rithms for the case α ∈ {1, 2}. XTC also provides very good
performance for α ∈ {1, 2} despite providing a very sparse
topology: It is only slightly worse than the k-Neigh topologies,
outperforms the denser topologies provided by Algorithm 2 for
δ = 2, and significantly outperforms the sparser topology of
Algorithm 1. Interestingly, for α = 0, Algorithm 1, despite
inducing a sparser topology compared to XTC, outperforms
XTC by a significant margin for a wide range of stretch factors.
Algorithm 2 for δ= 2 outperforms even the much denser k-
Neigh topology in certain cases. Therefore, Algorithms 1 and
2 can provide very good performance especially in terms of
the 0-stretch factors.

VIII. CONCLUSIONS

We have studied the problem of topology control in wireless
ad-hoc networks consisting of n nodes that are located on
the plane. We have considered the disk-connectivity model
where any two given neighboring nodes that lie within a
certain communication range can be directly connected. We
have addressed the fundamental problem of generating net-
work topologies with the practically-relevant graph-theoretical
properties such as connectivity or degree-boundedness.

We have observed that all the previous work in the lit-
erature require detailed geographical/locational information
at each node to achieve these desired properties. We have
shown that, in fact, a sufficient condition to achieve degree-
bounded connectivity is just for each node to know the

1 1.5 2 2.5 3 3.5 4

Stretch factor

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F Algorithm 1, = 0

Algorithm 1, = 1
Algorithm 1, = 2

XTC, = 0
XTC, = 1

XTC, = 2
Algorithm 2, =2, = 0

Algorithm 2, =2, = 1
Algorithm 2, =2, = 2

k-Neigh, k=6, = 0
k-Neigh, k=6, = 1

k-Neigh, k=6, = 2

Fig. 13: The CDFs of α-stretch factors for different algorithms
and N = 20.

identification numbers of its one- and two-hop neighbors -
no distance/directional information is needed whatsoever. Our
corresponding local topology control algorithm guarantees a
connected network with 5n edges and a maximum node degree
of 10. We have shown that for most networks, these numbers
are in fact much lower. We have also designed an algorithm
that can provide an upper bound as well as a lower bound on
node degrees.

REFERENCES

[1] E. Koyuncu and H. Jafarkhani, “Local construction of bounded-degree
network topologies using only neighborhood information,” IEEE Wireless
Commun. Networking Conf., Apr. 2017.

[2] X.-Y. Li, “Topology control in wireless ad hoc networks,” in Ad Hoc
Networking, S. Basagni, M. Conti, S. Giordano, and I. Stojmenovic, Eds.
IEEE Press, 2003.

[3] P. Santi, “Topology control in wireless ad hoc and sensor networks,” ACM
Computing Surveys, vol. 37, no. 2, pp. 164–194, June 2005.

[4] ——–, Topology control in wireless ad hoc and sensor networks, 1st ed.
Wiley, 2012.

[5] E. N. Gilbert, “Random plane networks,” Journal of the Society for
Industrial and Applied Mathematics, vol. 9, no. 4, pp. 533–543, 1961.

[6] V. Rodoplu and T. H. Meng, “Minimum energy mobile wireless net-
works,” IEEE J. Select. Areas Commun., vol. 17, no. 8, pp. 1333–1344,
Aug. 1999.

[7] N. Li, J. C. Hou, and L. Sha, “Design and analysis of an MST-based
topology control algorithm,” IEEE Trans. Wireless Commun., vol. 4, no.
3, pp. 1195–1206, May 2005.

[8] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE
Trans. Inf. Theory, vol. 46, no. 2, pp. 388–404, Mar. 2000.

[9] R. Vaze, “Percolation and connectivity on the signal to interference ratio
graph,” IEEE Intl. Conf. on Computer Commun. (INFOCOM), Mar. 2012.

[10] E. Koyuncu and H. Jafarkhani, “Connectivity of random wireless net-
works with distributed resource allocation,” IEEE Global Commun. Conf.
(GLOBECOM), Dec. 2015.

[11] R. M. Whitaker, L. Hodge, and I. Chlamtac, “Bluetooth scatternet
formation: A survey,” Ad Hoc Networks, vol. 3, no. 4, pp. 403–450, 2005.

[12] L. Hu, “Topology control for multihop packet radio networks,” IEEE
Trans. Commun., vol. 41, no. 10, pp. 1474–1481, Oct. 1993.

[13] ——–, “Geometric spanners for routing in mobile networks,” IEEE J.
Select. Areas Commun., vol. 23, no. 1, pp. 174–185, Jan. 2005.

13

[14] Y. Wang and X.-Y. Li, “Localized construction of bounded degree and
planner spanner for wireless ad hoc networks,” Mobile Networks and
Applications, vol. 11, no. 2, pp. 161–175, Mar. 2006.

[15] X.-Y. Li, G. Calinescu, and P.-J. Wan, “Distributed construction of planar
spanner and routing for ad hoc wireless networks,” IEEE Intl. Conf. on
Computer Commun. (INFOCOM), June 2002.

[16] X.-Y. Li, I. Stojmenovic, and Y. Wang, “Partial Delaunay triangulation
and degree limited localized Bluetooth scatternet formation,” IEEE Trans.
Parallel and Distributed Systems, vol. 15, no. 4, pp. 350–361, Apr. 2004.

[17] W.-Z. Song, Y. Wang, X.-Y. Li, and O. Frieder, “Localized algorithms
for energy efficient topology in wireless ad hoc networks,” ACM Intl.
Symp. on Mobile Ad Hoc Networking and Computing (MobiHoc), May
2004.

[18] X.-Y. Li, P.-J. Wan, and Y. Wang, “Power efficient and sparse spanner
for wireless ad hoc networks,” IEEE Intl. Conf. on Computer Commun.
and Networks (ICCCN), Oct. 2001.

[19] X.-Y. Li, P.-J. Wan, Y. Wang, and O. Frieder, “Sparse power efficient
topology for wireless networks,” Hawaii Intl. Conf. on Systems Sciences
(HICSS), Jan. 2002.

[20] X.-Y. Li, Y. Weng, P.-J. Wan, and W.-Z. Song, “Localized low-weight
graph and its applications in wireless ad hoc networks,” IEEE Intl. Conf.
on Computer Commun. (INFOCOM), Mar. 2004.

[21] R. Wattenhofer, L. Lie, P. Bahl, and Y. Wang “Distributed topology con-
trol for power efficient operation in multihop wireless ad hoc networks,”
IEEE Intl. Conf. on Computer Commun. (INFOCOM), Apr. 2001.

[22] N. Li and J. C. Hou, “Localized topology control algorithms for
heterogeneous wireless networks,” IEEE/ACM Trans. Networking, vol.
13, no. 6, pp. 1313–1324, Dec. 2005.

[23] E. Gelal, G. Jakklari, S. V. Krishnamurthy, and N. E. Young, “Topology
control to simultaneously achieve near-optimal node degree and low path
stretch in ad hoc networks,” IEEE Intl. Conf. on Sensing, Communication
and Networking (SECON), Sept. 2006.

[24] R. Ramanathan and R. Rosales-Hain, “Topology control of multihop
wireless networks using transmit power adjustment,” IEEE Intl. Conf. on
Computer Commun. (INFOCOM), Mar. 2000.

[25] R. Wattenhofer and A. Zollinger, “XTC: a practical topology control
algorithm for ad-hoc networks,” IEEE Intl. Parallel and Distributed
Processing Symp. (IPDPS), Apr. 2004.

[26] D. M. Blough, M. Leoncini, G. Resta, and P. Santi, “The K-Neigh
protocol for symmetric topology control in ad hoc networks,” ACM Intl.
Symp. on Mobile Ad Hoc Networking and Computing (MobiHoc), June
2003.

[27] F. Xue and P. R. Kumar, “The number of neighbors needed for
connectivity of wireless networks,” Wireless Networks, vol. 10, no. 2,
pp. 169–181, Mar. 2004.

[28] N. Broutin, L. Devroye, N. Fraiman, and G. Lugosi, “Connectivity
threshold of Bluetooth graphs,” Random Structures & Algorithms, vol.
44, no. 1, pp. 45–66, Sept. 2014.

[29] K. Islam and S. G. Akl, “Localized topology control algorithm with no
geometric information for ad hoc sensor networks,” IEEE Intl. Conf. on
Sensor Technologies and Applications (SENSORCOMM), Aug. 2008.

[30] P.-J. Wan, K.-M. Alzoubi, and O. Frieder, “Distributed construction of
connected dominating set in wireless ad hoc networks,” IEEE Intl. Conf.
on Computer Commun. (INFOCOM), June 2002.

[31] Y. Li, M. T. Thai, F. Wang, C.-W. Yi, P.-J. Wan, and D.-Z. Du, “On
greedy construction of connected dominating sets in wireless networks,”
Wireless Commun. & Mobile Comput., vol. 5, no. 8, pp. 927–932, Dec.
2005.

[32] A. Das, C. Mandal, C. Reade, and M. Aasawat, “An improved greedy
construction of minimum connected dominating sets in wireless net-
works,” IEEE Wireless Commun. and Networking Conf. (WCNC), Mar.
2011.

[33] W.-Z. Song, Y. Wang, C. Ren, C. Wu, and X.-Y. Li, “Multi-hop scatternet
formation and routing for large-scale Bluetooth networks,” Intl. J. Ad Hoc
and Ubiquitous Comput., vol. 4, no. 5, pp. 251–268, July 2009.

[34] I. Stojmenovic, “Dominating set based Bluetooth scatternet formation
with localized maintenance,” IEEE Intl. Parallel and Distributed Process.
Symp. (IPDPS), Apr. 2002.

[35] L. Ding, W. Wu, J. Willson, H. Du, W. Lee, D.-Z. Du, “Efficient
algorithms for topology control problem with routing cost constraints in
wireless networks,” IEEE Trans. Parallel and Distributed Systems, vol.
22, no. 10, pp. 1601–1609, Oct. 2011.

[36] C. Petrioli, S. Basagni, and I. Chlamtac, “Configuring BlueStars:
Multihop scatternet formation for Bluetooth networks,” IEEE. Trans.
Computers, vol. 52, no. 6, pp. 779–790, June 2003.

[37] ——–, “BlueMesh: Degree-constrained multi-hop scatternet formation
for Bluetooth networks,” Mobile Networks and Applications, vol. 9, no.
1, pp. 33–47, Feb. 2004.

[38] N. Zaguia, Y. Daadaa, and I. Stojmenovic, “Simplified Bluetooth scat-
ternet formation using maximal independent sets,” Integrated Computer-
Aided Engineering, vol. 15, no. 3, pp. 229–239, 2008.

[39] A. Jedda, A. Casteigts, G.-V. Jourdan, and H.T. Mouftah, “Bluetooth
scatternet formation from a time-efficiency perspective,” Wireless Net-
works, vol. 20, no. 5, pp. 1133–1156, July 2014.

[40] M. D. Penrose, “The longest edge of the random minimal spanning tree,”
Annals of Applied Probability, vol. 7, no. 2, pp. 340–361, 1997.

Erdem Koyuncu is an Assistant Professor at the
Department of Electrical and Computer Engineering
(ECE) of the University of Illinois at Chicago (UIC).
He received the B.S. degree from the Department
of Electrical and Electronics Engineering of Bilkent
University in 2005. He received the M.S. and Ph.D.
degrees in 2006 and 2010, respectively, both from
the Department of Electrical Engineering and Com-
puter Science of the University of California, Irvine
(UCI). Between Jan. 2011 and Aug. 2016, he was
a Postdoctoral Scholar at the Center for Pervasive

Communications and Computing of UCI. Between Aug. 2016 and Aug. 2018,
he was a Research Assistant Professor at the ECE Department of UIC.

Hamid Jafarkhani is a Chancellor’s Professor
at the Department of Electrical Engineering and
Computer Science, University of California, Irvine,
where he is also the Director of Center for
Pervasive Communications and Computing and
the Conexant-Broadcom Endowed Chair. He was
a a Visiting Scholar at Harvard University in 2015
and a Visiting Professor at California Institute
of Technology in 2018. Among his awards are
the IEEE Marconi Prize Paper Award in Wireless
Communications, the IEEE Communications

Society Award for Advances in Communication, and the IEEE Eric E.
Sumner Award.

Dr. Jafarkhani is listed as a highly cited researcher in
http://www.isihighlycited.com. According to the Thomson Scientific,
he is one of the top 10 most-cited researchers in the field of “computer
science” during 1997-2007. He is the 2017 Innovation Hall of Fame Inductee
at the University of Maryland’s School of Engineering. He is a Fellow of
AAAS, an IEEE Fellow, and the author of the book “Space-Time Coding:
Theory and Practice.”

http://www.isihighlycited.com

	I Introduction
	I-A Topology Control and its Objectives
	I-B Related Work
	I-C Our Contributions
	I-D Organization
	I-E Notation and Conventions

	II The Main Algorithm
	II-A An Example Run
	II-B Analysis of the Algorithm

	III Average Case Evaluation
	IV Algorithm Implementation
	IV-A A Protocol for Algorithm Implementation
	IV-B Communication Complexity
	IV-C Node Identification

	V The Unachievability of Constant Stretch Factors Using Neighborhood Information
	VI Constructing Graphs with Degree Lower Bounds
	VII Numerical Results
	VIII Conclusions
	References
	Biographies
	Erdem Koyuncu
	Hamid Jafarkhani

