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Abstract

In many real-life situations, we make decisions between
a defined set of options, which can be either discrete (as
when deciding between going on driving and stopping the
car) or continuous (as when stirring the wheel, the possible
range of angles goes from −30 to 30 degrees). However,
most computational models for decision-making focus on
decisions between a discrete set of options. While there are
a few sequential sampling models that can explain behavioral
patterns (i.e., choices and response times) of decisions in a
continuous option space (i.e., the CDM and the SCDM), these
models have a few limitations. For example, these models
assume no leakage in the evidence accumulation process and
no spatial inhibition (i.e., inhibition among different areas of
the option space depending on their distance to each other).
In this paper, we propose a novel sequential sampling model
based on an existing computational model (i.e., the leaky
competing accumulator model) for decisions in a continuous
option space. Our proposed model includes leakage and spatial
inhibition and is thus more biologically plausible.
Keywords: Continuous Decision Task; Sequential Sampling;
Cognitive Modeling; Leaky Competing Accumulator; Radial
Basis function;

Introduction
Decision-making is the process of selecting one among
different, available options. Until recently, most decision-
making research focused on decisions in a discrete
option space (e.g., choosing between different gambles,
discriminating between perceptual stimuli, choosing between
altruistic vs. egoistic options). This includes many well
known paradigms, such as the Go/No-Go task (Gomez,
Ratcliff, & Perea, 2007; Ratcliff, Huang-Pollock, & McKoon,
2018), n-alternative forced-choice tasks (Bogacz, Brown,
Moehlis, Holmes, & Cohen, 2006; van Ravenzwaaij, Brown,
Marley, & Heathcote, 2020), the accept/reject task (Zhao,
Walasek, & Bhatia, 2020; Mallahi-Karai & Diederich,
2019, 2021). Although these kinds of decisions have
helped better understanding the cognitive and neural bases
of decision-making (Bogacz, 2007; Forstmann, Ratcliff, &
Wagenmakers, 2016), they exclude many situations in our
daily life in which we are instead confronted with a range
of options on a continuous scale (e.g., when setting the price
of an item we are planning to sell (Kvam & Busemeyer,
2020)). Moreover, there are many laboratory tasks with
continuous scale report stimuli in different areas such as
visual working memory (Lilburn, Smith, & Sewell, 2019) and
perceptual decision-making (Ratcliff & McKoon, 2020). For

more applications of decisions in continuous space, interested
readers can see (Yoo, Hayden, & Pearson, 2021).

Recently, a few sequential sampling models (Smith, 2016;
Ratcliff, 2018) have been developed to handle both choices
and response time in decisions between a continuous set of
options. The circular diffusion model (CDM) (Smith, 2016)
assumes that the process of evidence accumulation progresses
following a Brownian motion within a circle or semi-circle
and it terminates whenever the accumulator reaches any point
on the perimeter (and, thus, a decision is made). This model
has been used for modeling visual memory tasks with a
continuous reporting scale (e.g., remembering the color of
a previously presented stimulus and selecting it on a color
wheel). While this model is good at capturing different
behavioral phenomena, such as the color bias (Smith, Saber,
Corbett, & Lilburn, 2020), it has a few limitations. For
example, the CDM cannot capture the heavy-tailed response
error distribution. Moreover, the original CDM can only
be used to model choices in a one-dimensional (1D) option
space and not in two- or three-dimensional (2D or 3D) option
spaces. But there are some extended versions of CDM
which is called hyper-spherical diffusion model (Smith &
Corbett, 2019) and it can be applied for higher dimensional
spaces like 2D or 3D. The other problem with CDM is
that it can not produce multi-modal choice distributions. In
order to address this issue, Ratcliff introduced the spatially
continuous diffusion model (SCDM) (Ratcliff, 2018). This
model is the generalized form of the diffusion decision model
(Ratcliff & McKoon, 2020) and is based on a Gaussian
process in a 1D or Gaussian field process in 2D spaces.
The SCDM considers the accumulation process in both the
spatial and the temporal domain continuous. Therefore, by
running a Gaussian (field) process at each time step and
accumulating the obtained distributions, the first location
which reaches the decision threshold is selected. So the
process is similar to a multi-dimensional Brownian motion
and the sampling process is done continuously through time.
The SCDM has some advantages compared to the CDM. For
example, it can be utilized for both 1D and 2D option spaces.
However, the SCDM assumes total inhibition between the
different locations (i.e., evidence one of each location is
against the evidence for all other locations) and it does not
depend on distance from the other locations (Ratcliff, 2018;
Ratcliff & McKoon, 2020). Moreover, both models do
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not include leakage parameter and they have low biological
interpretation. In this paper, we are going to present a
computational model for decisions in a continuous option
space that attempts to overcome some of the limitations of
CDM and SCDM discussed above, in particular:

1. the fact that they do not have a mechanism for spatial
inhibition,

2. the fact that they do not include leakage and are thus less
biologically plausible,

3. the fact that they both have some problems with modeling
random decisions, which typically cause heavy-tailed
response error distribution.

More specifically, we propose a sequential sampling model
based on the leaky competing accumulator (LCA) model
(Usher & McClelland, 2001), in which each accumulator
corresponds to a segment of the continuous option space.

In the following sections, we are first going to present our
proposed model, the ”Radial Basis LCA” (RB-LCA). Then,
we make a detailed comparison between our proposed model
and the two previous models (CDM and SCDM), and, finally,
we make some concluding remarks and discuss ideas for
future work.

Radial Basis Leaky Competing Accumulator
Model

In this section, we are going to present a sequential sampling
model based on the LCA model for decisions in a continuous
option space. In the original LCA model, the evidence
accumulation process is described by the following stochastic
differential equation (Usher & McClelland, 2001):

dXi =
(

Ii −κXi(t)−β ∑
j ̸=i

X j(t)
)

dt +σdWi, (1)

where xi(t) is the i-th accumulator and shows the accumulated
evidence to the benefit of the i-th option, Ii is the drift rate
of the i-th accumulator, κ is the leakage parameter, β is the
inhibition parameter, σ is the noise coefficient, and σdWi
represents Gaussian white noise with mean 0 and variance
σ2dt.

In order to extend the original LCA model for decisions
in a continuous option space, we first discretize the option
space to N segments and assign an accumulator to each part.
Then, based on the distance of each segment to each other,
we assign excitatory/inhibitory values of each corresponding
accumulator to the others. In order to better understand the
underlying mechanisms of such spatial excitation/inhibition,
let’s first recall the definition of the radial basis function:
Definition: A function Φ : Rd → R is called radial basis, if
there exists a univariate function ρ : [0,∞)→ R, such that

Φ(x) = ρ(r),

where r = ∥x∥ and ∥.∥ is a p-norm on Rd (Wendland, 2005;
Kazem, Rad, & Parand, 2012).

In other words, a radial basis function is a function in
which all points that have the same distance from a center
point have equal function values. The formulation of some
well-known radial basis functions is presented in Table 1,
where ε is a shape parameter in such a way that ε → 0
corresponds to the basis functions becoming flat (as discussed
extensively in, for example, (Fornberg & Wright, 2004)):

Table 1: Formulation of some radial basis functions.
Radial basis function Formulation

Gaussian (GA) e−(εr)2

Multiquadric (MQ)
√

1+(εr)2

Inverse quadric (IQ) 1
1+(εr)2

Inverse multiquadric (IMQ) 1√
1+(εr)2

We can add an excitatory-inhibitory weight to the LCA
model based on the main property of radial basis functions
(i.e., ρ(x) = ρ(y) ⇔ ∥x∥ = ∥y∥; which means that the
same distance from a center yields same function value)
by assuming that each accumulator excites the accumulators
that are close and inhibits the ones that are far (Seeholzer,
Deger, & Gerstner, 2019). Now, consider a semi-circle as the
presented option space. Then, the RB-LCA model assumes
that the decision space [0,π] is discretized into N segments:
Each segment has a length equal ∆θ = π

N , and the location
of i-th segment is obtained directly by θi = (i− 1) ∗∆θ for
i = 1,2, · · · ,N. Then, the i-th accumulator xi(t) accumulates
evidence to the benefit of the i-th segment and has a spatial
dimension that is determined by its index. The accumulation
process in the RB-LCA model is thus defined as:

dXi =
(

Ii −κXi(t)−∑
j ̸=i

β
i
jX j(t)

)
dt +σdWi, (2)

where βi
j is equal to ρ(|i− j|)− 0.5, and ρ is a radial basis

function. As an example, let’s consider ρ(r) = 1√
1+(εr)2

,

(inverse multiquadric formulation), then βi
j =

1√
1+(ε|i− j|)2

−

0.5. If βi
j > 0, then the j-th accumulator x j(t) has an

excitatory impact on the i-the accumulator xi(t). Similarly,
when βi

j < 0 the j-th accumulator x j(t) inhibits the i-
the accumulator xi(t). The RB-LCA model has an extra
parameter ε, in comparison with the original LCA model,
which determines the radius of excitation. In the inverse
multiquadric formulation of βi

j, the maximum value for the
fraction part is equal to 1, and it occurs when (εr)2 =
0. Therefore, when the distance between two accumulators
reduces, r = |i− j| tends to zero and the fraction part tends
to its maximum value. Consequently, βi

j increases. A
schematic view of how an accumulator can excite and inhibit
the other accumulators based on the distance between two
accumulators is illustrated in Figure 1.
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Figure 1: A schematic view for how location of an
accumulator can affect the excitatory/inhibitory impact of
that accumulator to the other accumulators.

On the other hand, when ε tends to zero, ε → 0, βi
j is

less sensitive to the distance value |i− j| and the excitatory
radius becomes wider. The effect of ε value on the response
error distribution is illustrated in Figure 2. When ε has higher
values, RB-LCA yields more precise decisions.
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Figure 2: Plot of response error distributions for different
values of ε parameter.

As mentioned above, one of the limitations of the CDM
is its inability to explain the heavy-tailed response error
distribution which is typically observed in visual working
memory tasks (Zhang & Luck, 2008). Basically, CDM
utilizes drift rate variability to generate heavy-tailed response
error (Smith, 2019). The other way which is more popular in
the literature is considering the response error distribution as
the mixture of a uniform and von Mises distribution (Zhang
& Luck, 2008; Kvam & Turner, 2021). But empirically,
these methods are not successful to capture the guest very

well. The RB-LCA model is able to generate heavy-tailed
response error distributions thanks to the across-trial drift
rate variability η. Figure 3 exhibits the effect of the across-
trial drift rate variability η parameter on the response error
distribution.
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Figure 3: Plot of response error distributions for different
values of η parameter.

As it is clear by increasing the η value, RB-LCA
predicts more random decisions, and also the response error
distribution becomes more heavy-tailed.

One dimensional decision space

The RB-LCA model can be applied to both 1D and 2D
continuous option spaces. In this part, we explain how this
model can be used in 1D spaces. Mainly, there are three
types of 1D continuous option spaces: 1) interval [a,b], 2)
semi-circle, and 3) circle. Since each interval [a,b] can
be shifted to another interval, any value in the interval v ∈
[a,b] corresponds to v′ = π

b−a (v − a) ∈ [0,π]. Therefore,
there is no difference between the interval [a,b] and the
semi-circle [0,π] in the RB-LCA model. And what about
the circular option space? The formulation for the circular
option space is a bit different because there are two possible
distances between two points on a circle (i.e., clockwise and
anticlockwise) and the actual distance is the smaller one.
Thus, after discretizing the circle into N parts, each part is
assigned to two indexes (i.e., one positive and one negative).
Then, the actual distance is the minimum of the absolute
difference between the positive indexes of two parts and the
absolute difference between the negative indexes of them. For
simplicity, the positive index is assigned anticlockwise and
the negative index is assigned clockwise. Figure 4 illustrates
how this model works for a circle.
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Figure 4: A schematic view of how to index each segment in
a circular decision space. For example the distance for two
yellow points on the circle is equal to 5.

Thus the distance of two points on a circle can be obtained
by:

min
{
|i− j|, |N −|i− j||

}
. (3)

It should be mentioned here that, empirical studies have
illustrated that there are some differences between interval
and circular option spaces. One of the main effects which
are reported for interval option spaces is the bow effect. This
effect states that the options that are located at the ends of the
interval are identified more precisely (Lacouture & Marley,
1995). RB-LCA is also able to capture this effect because
the endpoints are infected less by the inhibitory effects of the
middle points. Hence, by considering proper drift rates for
the endpoints they can be identified more precisely. In other
words, the selection of the middle points is more competitive
than the endpoints and it causes a higher level of accuracy
in the selection of endpoints. While this inhibitory impact is
symmetric in a circular option space and there is no difference
between the points of the circular perimeter.

Two dimensional decision space

As in the 1D case, the 2D option space is discretized
first, and one accumulator is assigned to each part. Then,
each accumulator has an excitatory impact on the close
accumulators and has an inhibitory impact on the other
accumulators. While in 1D case we used absolute difference
between two points, in 2D case we can use p-norms (i.e.,
if z = (z1, · · · ,zN), then the p-norm is defined by ∥z∥p =

p
√

∑
N
i=1 |zi|p where p ≥ 1). When p is equal to 1 (L1 norm),

it is called the Manhattan norm and equal distance points
are located on the perimeter of a square. But when p is
equal to 2 (L2 norm), it is called Euclidean norm and equal
distance points are located on the perimeter of a circle.
Thus, by choosing different norms, accumulators may have
different effects on each other. The mechanism of allocating
accumulators to a 2D continuous option space is shown in
Figure 5.

(1, 1)

(N, M)

(1, M)

(N, 1)

(i, j)

Figure 5: A schematic view of a discretized 2D decision
space by N ×M parts.

Similarly to 1D situation, in 2D cases each part can be
indexed by two indexes (i, j). Thus, the corresponding
stochastic differential equation of accumulation process at
point (i, j) is as follows:

dXi, j =
(

Ii, j −κXi, j(t)−∑
l ̸=i

∑
s ̸= j

β
i, j
l,sXl,s(t)

)
dt +σdWi, j, (4)

and β
i, j
l,s is defined by ρ(∥(i, j)−(l,s)∥)−0.5, where ρ can be

one of the Gaussian, inverse quadric, or inverse multiquadric
functions. It is worth mentioning that the definition of the
norm function can affect the performance of the RB-LCA
model. Difference of L1 norm and L2 norm is presented in
Figure 6.
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Figure 6: Plot of difference between L1 and L2 norms. For
example the top panel shows different L1 distances from point
(1,1), and the bottom panel shows L2 distance from (1,1).

It is worth mentioning that the RB-LCA model is not
limited only to 1D or 2D option spaces and it can be
generalized to higher dimensions easily due to the nature of
radial basis functions.

Diffusion Properties of RB-LCA
The problem of the likelihood approximation of LCA
models is one of the challenging problems of cognitive
modeling literature. Various methods have been developed
for this approximation problem, such as the sampling method
(Miletić, Turner, Forstmann, & van Maanen, 2017), the
neural network method (Radev, Mertens, Voss, & Köthe,
2020), and the Lie-algebraic group method (Lo & Ip, 2021).
The Lie-algebraic method is a very powerful method because
it can obtain a close form solution for partial differential
equations and is based on solving the corresponding Fokker-
Planck equation of joint transition distribution of the
accumulators. The corresponding partial differential equation
of joint transition probability distribution of the accumulators
is one of the main properties of this model. Similarly to (Lo
& Ip, 2021), by defining x = lnX , the corresponding Fokker-
Planck equation is obtained as follows:

∂p({xi}, t)
∂t

= (5)

N

∑
i=1

∂

∂xi

{[
σ2

2
∂

∂xi
−
(
Ii −κxi +

N

∑
j ̸=i

βi, jx j
)]

p({xi}, t)

}
.

This equation is very important for studying the diffusion
properties of the RB-LCA model because it gives us the joint
transition probability distribution of all accumulators at each
time. So we can have the moment-to-moment dynamic of the
accumulators by solving this equation.

Discussion
In this paper, we have tried to overcome the limitations of the
two main computational models for decisions in continuous
space (i.e., the CDM and the SCDM) by introducing a new
computational model based on the LCA model. The behavior
of the RB-LCA model depends on a few crucial features, that
we explain here below.

The first important feature of our proposed model is
given by the parameter ε, which regulates the spatial
excitatory/inhibitory role of the accumulators. When linked
to neural data, this parameter could relate to the behavior of
competing neuronal populations (Smith & Ratcliff, 2004).
For example, when it has a high value, a long range of
accumulators excite each other and more precise decisions
are made. In contrast, when it has a low value, the RB-LCA
model approximates to the original LCA model in which all
accumulators inhibit each other. Therefore, the RB-LCA
inhibition mechanism can vary depending on ε.

The type of radial basis function and norm function in
our model is also crucial for the behavior of RB-LCA.
As mentioned before, the type of norm (L1 or L2 norm)
is not important in 1D option spaces but different norms
have different behavior in 2D option spaces. The norm
selection should be done based on the properties of the stimuli
representing the participants. Moreover, the type of radial
basis function can change the shape of the error distribution.
The inverse multiquadric function has a heavy-tailed behavior
and can generate the observed heavy-tailed distribution in the
visual memory tasks. Furthermore, the Gaussian functions
have normal-like behavior and are good when the response
error as a normal distribution.

RB-LCA model has some shared properties with the CDM
and the SCDM, but it is different in some properties. The
inhibition mechanism is one of the key mechanisms of the
RB-LCA model which is shared with CDM and SCDM
models. But the inhibition mechanism in SCDM is a bit
different from the two other models. In SCDM, it is assumed
that evidence for one location is evidence against all the other
locations (Ratcliff & McKoon, 2020), while in both RB-LCA
and CDM, evidence for one location is against only some
other locations but not all, depending on their distance. The
other difference between the models is the number of drift
rates. CDM model has only one drift rate, while RB-LCA and
SCDM both consider a drift rate for each location. The other
difference between models is in the noise-adding mechanism.
Since in CDM, there is only one accumulator, the whole
process consists of only one normal Gaussian noise. In
both RB-LCA and SCDM, each location has its own normal
Gaussian noise and these noise distributions are considered
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identical independent distribution (i.i.d) in the RB-LCA but
in SCDM, the noise distribution are considered correlated. A
summary of the model mechanisms is presented in Table 2

Table 2: Summary of different mechanisms which are
included in three computational models of decisions in
continuous space.

Model 1D space 2D space inhibition leakage
CDM – –

SCDM –
RB-LBA

Moreover, the bimodal distribution of responses cannot
be handled by the lone CDM of (Smith, 2016), as it
predicts unimodal distributions of responses on the circle, but
bimodality is accounted for in the SCDM model of (Ratcliff
& McKoon, 2020) by virtue of competing accumulation
processes (see Experiment 3 and 4 of SCDM article), a
similar approach can be gainfully applied here in our RBF
LCA model. Our idea could be that we can either use the
Bessel radial basis functions (because these radial functions
are multi-modal, see (Fornberg, Larsson, & Wright, 2006)
or (Roger, Moreau, & Marsan, 2014)), or we can use a
combination of several radial basis functions depending on
the nature of the behavior task in the β formula in RBF-LCA.

Another important thing to consider is the dimensionality
issue. In particular, the dimension of the Fokker-Planck
equation of RB-LCA can be very huge. For example,
in a semi-circle situation, if we discretize the arc into 36
parts, the corresponding partial differential equation has 36
spatial dimensions. Thus, solving this problem becomes
increasingly challenging. Recently, however, new powerful
methods for solving high dimensional partial differential
equations have been proposed. One of the most powerful
ones is the deep splitting method (Beck, Becker, Cheridito,
Jentzen, & Neufeld, 2021). There are also some other
deep learning based methods for solving the Eq (5) and
approximating the likelihood function. But solving Eq (5)
is not the only way for fitting this model on experimental
data. There are also some other deep learning methods
such as deep inference network (Radev, Mertens, Voss, &
Köthe, 2020) and Bayesfolow network (Radev, Mertens,
Voss, Ardizzone, & Köthe, 2020) which can learn the
behavior of the model in simulated parameter space and
then fit the model on behavioral data based on the learned
simulations data. Generally, likelihood approximation is the
main problem of sequential sampling models for decisions in
continuous space. SCDM does not have a close-form solution
for its likelihood function. On the other hand, while CDM has
an analytical form for its likelihood function but it is so time-
consuming to compute. Thus, maybe using a deep learning
method for fitting these models is a good solution that can be
tested.

The final point of discussion is about the discretizing
algorithm. In this paper, we considered that the points are

distributed in whole the decision space uniformly. But it
is more realistic to add some attention mechanisms to the
model which implies that in the focusing locations there
should be more accumulators. In this way, the model is able
to overcome the dimensionality issue. Because there is no
need to allocate so many accumulators to process whole the
decision space.

It is worth mentioning that there are also some other
computational models for some kinds of continuous outcome
decisions. One of these models is the geometric framework
which is developed recently (Kvam, 2019). This framework
can be applied to any number of alternatives (discreet or
continuous) in an optimal way. But it has two main
limitations. Firstly, similar to SCDM, there is no exact
formulation for its likelihood function. On the other hand,
since the aim of this framework is to accumulate the
information in an optimal way, the procedure of extending
this framework to multi-dimensional continuous spaces is not
straightforward.

Conclusion
To conclude, we here proposed a new sequential sampling
model for decisions in a continuous option space. Compared
to previously proposed models for decisions in a continuous
option space, our model has the advantage of modeling guess
decisions by adding drift rate variability, it can be applied to
both 1D and 2D decision space, and it is more biologically
plausible (Bogacz, Usher, Zhang, & McClelland, 2007). Note
that the proposed model’s fit to experimental data is not
illustrated in this paper yet and it is left to future studies.
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Köthe, U. (2020). Bayesflow: Learning complex stochastic
models with invertible neural networks. IEEE Transactions
on Neural Networks and Learning Systems.

Radev, S. T., Mertens, U. K., Voss, A., & Köthe, U.
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