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Abstract: A high level of homocysteine (Hcy) is associated with oxidative/ER stress, apoptosis,
and impairment of angiogenesis, whereas hydrogen sulfide (H2S) has been found to reverse this
condition. Recent studies have shown that cancer cells need to produce a high level of endogenous
H2S to maintain cell proliferation, growth, viability, and migration. However, any novel mechanism
that targets this balance of Hcy and H2S production has yet to be discovered or exploited. Cells
require homocysteine metabolism via the methionine cycle for nucleotide synthesis, methylation, and
reductive metabolism, and this pathway supports the high proliferative rate of cancer cells. Although
the methionine cycle favors cancer cells for their survival and growth, this metabolism produces a
massive amount of toxic Hcy that somehow cancer cells handle very well. Recently, research showed
specific pathways important for balancing the antioxidative defense through H2S production in
cancer cells. This review discusses the relationship between Hcy metabolism and the antiapoptotic,
antioxidative, anti-inflammatory, and angiogenic effects of H2S in different cancer types. It also
summarizes the historical understanding of targeting antioxidative defense systems, angiogenesis,
and other protective mechanisms of cancer cells and the role of H2S production in the genesis,
progression, and metastasis of cancer. This review defines a nexus of diet and precision medicine in
targeting the delicate antioxidative system of cancer and explores possible future therapeutics that
could exploit the Hcy and H2S balance.

Keywords: targeted therapy; cancer biology; hyperhomocysteinemia; gene–environment interaction;
epigenetics; stress response

1. Introduction

Cancer is the second leading cause of death after cardiovascular disease [1]. Current
understanding characterizes cancer into six hallmarks: maintaining proliferative signaling,
bypassing growth suppressors, resisting apoptosis, enabling replicative immortality, induc-
ing angiogenesis, and initiating invasion and metastasis [2]. Due to the high proliferative
rate, cancer cells depend on many nutrient sources from the diet [3]. Methionine is one
of the nutrients that cancer cells require to maintain cell proliferation, growth, survival,
and metastasis [4]. Methionine was the first amino acid used in protein synthesis in the
eucaryotic system [5]. As an essential amino acid, methionine is not produced in our bodies,
so it must be consumed from the diet [6]. Methionine is not only essential for the formation
of all proteins, but it also provides lots of other metabolites that are required in multiple
other metabolic processes [7]. Via the methionine cycle (Figure 1), methionine can be
converted to S-Adenosyl methionine (SAM), the only methyl group donor in DNA, RNA,
and histone methylation reactions. DNA, RNA, and histone methylation are dynamic; these
regulate gene expression and alter cellular signaling [8]. After transferring methyl group,
SAM converts to S-Adenosyl homocysteine (SAH), which then converts to homocysteine
(Hcy) [7]. Hcy is a sulfur-containing nonproteinogenic amino acid; after production, half of
the Hcy goes to the transsulfuration pathway to produce cysteine (a semi-essential amino
acid), and another half of the Hcy can be remethylated back into methionine with the
help of the folate cycle [7]. Cysteine is a semi-essential amino acid obtained from the diet
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or by de novo synthesis from the methionine cycle [9]. In the transsulfuration pathway,
when cysteine is produced, other than helping in protein formation, it is also used for
hydrogen sulfide (H2S) and glutathione (GSH) production [7]. Due to the high proliferative
rate, cancer cells mainly depend on the methionine cycle for methylation reaction as well
as the production of H2S and GSH [10]. A study found that cancer cells express high
levels of methionine transporter SLC43A2 for the consumption of more methionine, which
causes cancer progression [11]. Many studies found that a methionine restriction diet
can reduce cancer risk and progression through various molecular processes [10,12,13].
A phase 1 trial also showed that it is tolerable for metastatic cancer patients to be on a
methionine-restricted diet to reduce tumor growth [14].
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thionine synthase reductase (MTR) is necessary for remethylation of 5-methyl-tetrahydrofolate 
(THF) to THF; (C) Dietary folic acid (vitamin B9) enters the folate cycle after its conversion first to 
dihydrofolate (DHF) and then to THF. The 5, 10-methyltetrahydrofolate reductase (MTHFR) is a 
key enzyme that converts 5, 10-methylene-THF to 5-methyl-THF [15]. 

Cancer cells depend highly on the methionine cycle, producing a massive amount of
Hcy [16]. As high levels of intracellular Hcy can be secreted to blood, so many studies 
correlate high Hcy levels with cancer [17–19]. More than 15 µmol/L of Hcy in the blood is 
clinically termed hyperhomocysteinemia (HHcy) [7]. HHcy has been associated with mul-
tiple disease conditions, including cancer [20]. Elevated levels of Hcy are connected with
oxidative stress, ER stress, apoptosis, protein oxidation, inflammation, and impaired an-
giogenesis [17,20]. Moreover, many previous studies found variable associations of poly-
morphisms of Hcy metabolism genes with cancer [21–23], suggesting the possible role of 
gene–environment interactions in the causation of cancer [24]. Some studies suggested 
that together with genetic polymorphisms, dietary methionine, folate, vitamin B12, B6, 
and alcohol consumption play an essential role in the genesis of tumors [25–27]. Also, 
different studies showed that specific genetic polymorphisms may induce risk for specific 
cancer types [28,29]. More studies are needed on a large number of patients in order to 
understand which genetic polymorphisms predispose to which types of cancer and how 
lifestyle modifications could be helpful in reducing cancer risk. 

Cancer cells depend on the methionine cycle for their cellular turnover, producing 
toxic Hcy [20]. Cancer patients show high Hcy levels, but that does not mean that high 

Figure 1. Schematic diagram of Hcy production through the methionine and folate cycle. (A) Di-
etary methionine is converted to homocysteine (Hcy) through S-adenosyl methionine (SAM) and
S-adenosyl homocysteine (SAH) and then back to methionine (MET) via the remethylation pathway.
Half of Hcy goes to the transsulfuration pathway, where it is converted to cysteine with the help of
cystathionine-β synthase (CBS) and cystathionine-γ lyase (CSE). Then cysteine is further converted
to glutathione (GSH); (B) Conversion of cobalamin (vitamin B12) to methyl-B12 in the presence of
methionine synthase reductase (MTR) is necessary for remethylation of 5-methyl-tetrahydrofolate
(THF) to THF; (C) Dietary folic acid (vitamin B9) enters the folate cycle after its conversion first to
dihydrofolate (DHF) and then to THF. The 5, 10-methyltetrahydrofolate reductase (MTHFR) is a key
enzyme that converts 5, 10-methylene-THF to 5-methyl-THF [15].

Cancer cells depend highly on the methionine cycle, producing a massive amount
of Hcy [16]. As high levels of intracellular Hcy can be secreted to blood, so many studies
correlate high Hcy levels with cancer [17–19]. More than 15 µmol/L of Hcy in the blood
is clinically termed hyperhomocysteinemia (HHcy) [7]. HHcy has been associated with
multiple disease conditions, including cancer [20]. Elevated levels of Hcy are connected
with oxidative stress, ER stress, apoptosis, protein oxidation, inflammation, and impaired
angiogenesis [17,20]. Moreover, many previous studies found variable associations of
polymorphisms of Hcy metabolism genes with cancer [21–23], suggesting the possible role
of gene–environment interactions in the causation of cancer [24]. Some studies suggested
that together with genetic polymorphisms, dietary methionine, folate, vitamin B12, B6,
and alcohol consumption play an essential role in the genesis of tumors [25–27]. Also,
different studies showed that specific genetic polymorphisms may induce risk for specific
cancer types [28,29]. More studies are needed on a large number of patients in order to
understand which genetic polymorphisms predispose to which types of cancer and how
lifestyle modifications could be helpful in reducing cancer risk.
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Cancer cells depend on the methionine cycle for their cellular turnover, producing
toxic Hcy [20]. Cancer patients show high Hcy levels, but that does not mean that high Hcy
is a risk factor for cancer, rather that cancer cells shuttle more Hcy to the transsulfuration
pathway [20]. As high Hcy levels lead to many cellular pathogeneses, cancer cells transfer
excess Hcy to the transsulfuration pathway for the production of H2S [20]. Recent studies
revealed that cancer cells increased the expression of CBS (the rate-limiting enzyme in
transsulfuration reaction) to reduce excess Hcy levels and produce H2S [30]. Previously,
H2S was considered a toxic gas; however, recent research found that H2S has beneficial
effects in reversing cellular pathophysiology [7]. H2S emerged as a third gasotransmitter
after NO and CO [31], and it has been shown to have beneficial effects in reducing oxidative
and ER stress, apoptosis, and inflammation, and improving neoangiogenesis [17]. Studies
in colon and ovarian cancer mainly showed that this higher production of H2S induced
tumor growth via inducing cell proliferation and angiogenesis [30]. Also, suppressing CBS
expression led to a reduction in tumor growth [32]. This suggests that cancer cells maintain
a balance of H2S and Hcy levels for their cellular growth and metastasis. Very limited
studies have exploited this delicate balance of H2S and Hcy as a therapeutic opportunity
for cancer treatment. Many studies showed that H2S reverses all the pathophysiological
effects of Hcy [17]. Many antifolate drugs and drugs targeting Hcy metabolism have long
been used to treat cancer; however, all showed limited clinical efficacy due to multiple
reasons [19]. In the future, more research is needed that exploits the Hcy and H2S balance
to treat cancer patients. This review article summarizes the Hcy metabolism and how Hcy
metabolism and H2S production are associated with cancer. This review also discusses the
current therapeutics and future therapeutic opportunities that target these pathways in
cancer treatment.

2. Homocysteine Production and Hyperhomocysteinemia

As discussed in the above section, after production, half of the Hcy goes to the transsul-
furation pathway, and the other half of the Hcy remethylates back to methionine with the
help of the folate cycle [33–35]. As Hcy can be secreted into the blood, so different forms of
Hcy can be found in blood circulation, as shown in Figure 2 [36]. In the transsulfuration
pathway, Hcy is converted to cystathionine with the help of cystathionine β-synthase (CBS),
where vitamin B6 (pyridoxine) is an essential co-factor [8]. This is the rate-limiting step of
the transsulfuration pathway [8]. After production, cystathionine is further converted to
cysteine by cystathionine γ-lyase (CSE), and this cysteine further produces GSH [37].

In normal conditions, cells maintain a delicate balance of Hcy production (through
the methionine cycle) and elimination of Hcy (via the transsulfuration pathway) [37]. The
normal range of plasma Hcy levels for young adults (~30 years) is 4.6–8.1 µM, and for
older adults (30 years and above) is 4–15 µM [38]. In different disease conditions, the
balance between the production and elimination of Hcy becomes affected [39,40]. High
levels of Hcy in the blood circulation are called hyperhomocysteinemia (HHcy), a systemic
disorder [7]. Patients with HHcy show more than 15 uM plasma Hcy [41]. HHcy has been
classified as moderate (15–30 µM), intermediate (30–100 µM), and severe (>100 µM) [41].
Genetic mutations in the CBS and methylenetetrahydrofolate reductase (MTHFR) genes
(involved in the folate cycle) can lead to HHcy [42–45]. Different genetic variants of the CBS
and MTHFR genes that lead to HHcy can also be associated with other disease conditions
(Table 1). Other than genetic factors, people also develop HHcy via various environmental
factors, including consuming excess amounts of a methionine-rich diet, vitamin B12/folate
deficiency, alcohol intake, diabetes, and the obstruction of renal clearance [46,47]. Under
HHcy conditions, the methionine cycle is generally dysregulated [48], so this leads to the
disruption of multiple signaling pathways because it is the only pathway that gives rise
to the production of essential methyl groups needed for the subsequent biosynthesis of
cellular compounds (for example, creatine, epinephrine, carnitine, phospholipids, proteins,
and polyamines) and also methylation of DNA, RNA, and histones [8,49].
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Table 1. Association of Hyperhomocysteinemia with different disorders.

Genes Polymorphisms Condition Associated Complications References

CBS

844INS68 HHcy Peripheral artery occlusive disease [50]

T833C HHcy Stroke [51]

844INS68 HHcy Thrombosis [52]

MTHFR

C677T HHcy Retinal vein occlusion [53]

C677T HHcy Stroke [42–45]

C677T HHcy Venous thromboembolism [54]

C677T HHcy Hypertension [55–57]

C677T HHcy Alzheimer’s Disease [58]

A1298C HHcy Cerebral venous sinus thrombosis [59–61]

C677T HHcy Hyperlipidemia [62]

C677T HHcy Diabetic nephropathy [63–66]

C677T HHcy Cerebral venous thrombosis [67]

C677T HHcy Parkinson’s Disease [68,69]

3. Homocysteine Metabolism in Cancer

Hcy metabolism depends on several factors, including the intake of methionine in
the diet, the production of SAM, and the type of cells in which methionine metabolism
occurs [70]. Previous studies showed that high SAM levels can act as an allosteric inhibitor
of methylenetetrahydrofolate reductase (MTHFR) [17]. MTHFR enzymes convert the 5,10-
MTHF to 5-MTHF in the remethylation reaction [71]. So, high SAM levels prevent Hcy from
entering the remethylation pathway. Interestingly a high SAM level also acts as an allosteric
activator for the CBS, a rate-limiting enzyme of the transsulfuration pathway [72,73]. This
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suggests that high SAM levels favor Hcy entering the transsulfuration pathway. Cancer
cells depend on the methionine cycle for their methylation reaction, producing high SAM,
which leads to more production of GSH and H2S via the transsulfuration pathway. Hcy
metabolism also depends on the dietary methionine load, which can affect SAM synthesis,
suggesting a link between diet and cancer risk [10,74–76]. Studies suggest that when
our diet contains a basal methionine level, Hcy goes to the remethylation pathway about
1.5–2.0 times more than the transsulfuration pathway [77]. Alternatively, when we take
high methionine levels from the diet, Hcy cycling through remethylation is reduced by
about 1.5-fold [77]. HHcy is found in ~5–7% of the general population and is associated
with other disorders [7], including cancer [8,78–81]. Hcy metabolism pathways, including
the transsulfuration and remethylation pathways, are associated with several types of
cancer [82–91]. Recent advancements in research found a close link between HHcy and
cancer that is discussed in the following paragraph.

4. Association of Hyperhomocysteinemia and Cancer

A study by Lily L Wu and James T Wu showed that patients (who were not taking
antifolate drugs) with breast, ovarian and pancreatic carcinoma had elevated serum Hcy
levels [92]. Elevated Hcy is also associated with a rapid proliferation rate of tumors in
leukemia patients [93] and ovarian cancer [94]. Cancer cells have a high proliferation rate,
so they depend more on the methionine cycle for the DNA, RNA, and histone methylation
reactions. This methionine dependency or overproduction of Hcy could be a phenotypic
expression of malignancy. This suggests that elevated Hcy could be an early carcinogenesis
marker and a sensitive marker for detecting recurrence. Serum tumor markers have been
used most frequently for monitoring cancer patients during therapy [95].

4.1. High Plasma Hcy Levels and Cancer

High homocysteine levels have been associated with various types of cancer, as
summarized in Table 2. These studies (in Table 2) suggest that patients with advanced-stage
cancer show higher Hcy levels than patients with early-stage cancer. This suggests that high
Hcy levels can lead to apoptosis, and cancer cells in the late stage are more proliferative, so
they secrete Hcy outside the cells.

Table 2. Association of polymorphisms homocysteine metabolism genes with cancer risk. (odds ratio
is indicated as OR).

Genes Polymorphisms Cancer Types Significant Association (OR) References

MTHFR

677C-> T

Breast Cancer Positive Association (1.19) [22]

Ovarian Cancer No association (1.03) [22]

Esophageal Squamous Cell Carcinoma Positive Association (1.47) [96]

Acute Lymphocytic Leukemia Negative Association (0.99) [21]

Prostate Cancer Negative association (0.78) [23]

Colorectal Adenomas Negative association (0.76) [97]

Late-stage colorectal tumorigenesis Positive Association (1.32) [29]

Endometrial Cancer No association (1.10) [98]

1298A->C

Prostate Cancer Negative Association (0.58) [99]

Acute Lymphocytic Leukemia Negative Association (0.33) [21]

Acute Myeloid Leukemia No association (1.00) [88]

Endometrial Cancer No association (1.00) [98]
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Table 2. Cont.

Genes Polymorphisms Cancer Types Significant Association (OR) References

MTRR 66A->G

Acute Myeloid Leukemia Positive association for Asian
population (1.40) [100]

Head and Neck Cancer Positive Association (1.24) [101]

Colorectal Cancer Positive Association (2.77, 1.15) [87,102]

Gastric Cancer Positive Association (1.39) [103]

Breast Cancer Positive Association (4.45) [104]

MTR b2756A->G

Colorectal Cancer Positive Association (2.04) [28]

Primary Liver Cancer No association (1.00) [105]

Breast Cancer No association (1.00) [106]

Glioblastoma Multiforme No association (1.00) [107]

Upper Gastrointestinal Tract cancer No association (1.00) [108]

Digestive System Cancer No association (1.00) [109]

MTHFD1
1958G->A Gastric Cancer Positive Association (2.05) [110]

G1958A Colon Cancer Negative Association (0.89) [111]

BHMT 742G->A

Head and Neck Squamous
Cell Carcinoma Positive Association (1.34) [112]

Breast Cancer No association (0.98) [113]

Cervical Cancer Negative Association (0.433) [114]

Ovarian Cancer No association (1.00) [115]

Colorectal Adenoma Positive Association (1.09) [116]

TCN 2 776G>C
Glioblastoma Multiforme No association (1.00) [107]

Primary Central Nervous
System Lymphoma No association (1.00) [117]

TYMS TS 3′-UTR Esophageal and Stomach Cancer No association (1.00) [118]

Additionally, patients who underwent surgery or chemotherapy showed increased
Hcy levels in their blood. As most of the chemotherapy drugs (alkylating agents, an-
timetabolites, methotrexate, hormones, and antagonists) are antifolate, folate deficiency
can increase Hcy levels in these patients [119]. Another study showed that older cancer
patients have a higher risk of developing HHcy than younger [120], suggesting age is
another causing factor for high Hcy levels in cancer patients. Venous thromboembolism
(VTE) is the most common complication associated with cancer, and it is also shown to be
the most common cause of death in cancer. Interestingly, HHcy patients also developed
venous thromboembolism, suggesting a link between cancer-associated complications and
high Hcy levels. Moreover, a study showed that cancer patients without HHcy did not
show venous thromboembolism [121].

4.2. Alteration in Hcy Metabolism Gene and Risk of Cancer

Previous studies have identified numerous enzyme mutations and polymorphisms (MTHFR,
CBS, MTRR, MTR, MTHFD, BHMT, TYMS, TCN 2) that regulate Hcy metabolism [122–128].
These mutations and polymorphisms are often linked to HHcy and different cancer types
(Table 2). The most common mutations in MTHFR 677C->T transition at codon 222 and
1298A->C transversion at codon 429 have been associated with cervical [68], colorectal [129],
endometrial [130], and esophageal cancer [131]. Interestingly, the 677TT and 1298CC ho-
mozygotes have been found to have reduced prostate cancer risk, as the frequencies are very
low (9 and 11%, respectively) [90,99], suggesting the risk factor of specific polymorphism
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depends on the types of cancer. In addition to genetic polymorphisms, many environ-
mental factors, including folate status, methionine, and the effects of alcohol consumption,
play a vital role in the causation of cancer. This understanding gives rise to the targeted
therapy approach, where specific mutation types can be targeted with a specific drug.
Similarly, MTRR gene A66G Ile22Met is found to be associated with colorectal cancer [87]
and leukemia [21]. It is also noted that homozygotes (GG) have a three-fold higher risk of
colorectal cancer than with that heterozygote (AG) polymorphism. As this allelic frequency
varies between the different ethnic groups, this suggests that some populations may have a
higher risk for certain types than others. Likewise, one significant polymorphism (MTR
A2756G; Asp919Gly) has been documented in MTR [28]. A 1958G->A; Ala653Gly polymor-
phism in the MTHFD-1 gene was associated with acute lymphoid leukemia [132], but no
association was reported with lung cancer [133]; an inverse association was reported with
colon cancer.

4.3. Homocysteine-Mediated Epigenetic Alterations and Risk of Cancer

Epigenetics are the process of changes in phenotype without alteration of the DNA
sequence; this can be heritable or achieved through gene–environmental interaction [134].
There are three types of epigenetic modification: (1) DNA methylation, (2) histone modifica-
tion, and (3) RNA interference. Methylation can occur in DNA, RNA, and histone protein,
and this process is mediated via the methionine cycle. There are three DNA methyltrans-
ferase (DNMT) types: DNMT1, DNMT3a, and DNMT3b. SAMs act as a crucial substrate
methylation reaction via DNMTs. SAM levels can be changed via environmental factors
like a high methionine diet, folate deficiency, vitamin B6, and vitamin B12. Many studies
have connected Global DNA hypomethylation to cancer [135], suggesting that cancer cells
show differential signaling than normal cells due to high SAM levels.

Gene activation or deactivation depends upon the methylation pattern of the N-
terminal tail of histones [136]. Moreover, crosstalk between these histone tail modifications
(methylation, acetylation, and homocysteinylation) may have mechanistic linkages with
different types of cancer [137]. Although many studies showed that high Hcy levels are as-
sociated with different epigenetic alterations and associated with cellular pathology [8,138],
minimal studies have shown the role of these modifications in cancer. A study noted
that Hcy in various concentrations might alter gene silencing and activation in different
patterns [139]. Studies suggest that severe HHcy may induce more injurious effects via
alteration of the methylation reaction [140].

Global genomic hypomethylation has been found in many types of cancer, including
metastatic prostate, chronic lymphocytic, and hepatocellular carcinoma [141–144]. Regional
hypomethylation of DNA sequences is also often observed during the early stages of tumori-
genesis and in abnormal nonneoplastic tissue, such as hyperplasia [145]. DNA hypomethyla-
tion leads to the decondensation of pericentromeric heterochromatin and the activation of
retrotransposon elements [146]; these have been associated with activating some oncogene
and deactivating some tumor suppressor genes [147].

4.3.1. Hcy-Mediated DNA Methylation and Cancer

A previous study showed that methionine-rich food induces intra-cellular SAM lev-
els, and as a consequence, global hypermethylation occurs and induces Hcy levels [148].
Where another study noted elevated Hcy-induced SAH levels, this induced SAH, in
turn, inhibited SAM-dependent methyltransferases (such as DNMTs) via a negative feed-
back mechanism [140]. These studies suggest high Hcy levels may result in DNA hy-
per/hypomethylation. Moreover, many researchers using human and animal models
proposed that HHcy leads to hyper/hypomethylation in a tissue-specific manner [149–151].
Cancer patients often show high Hcy levels, suggesting a possible link between Hcy-
mediated hyper/hypomethylation and the causation of different types of cancer. Indeed, a
study found HHcy-mediated hypermethylation of CpG islands located in the promoter
of the ERα gene in breast cancer cell cells [152]. Interestingly, Zhang et al. showed that
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10 and 30 µmol/L Hcy levels induced hypomethylation, whereas 100 and 300 µmol/L
Hcy levels induced hypermethylation in the promoter of the Dimethylarginine Dimethy-
laminohydrolase 2 (DDAH2) gene [153]; this result suggests that hyper/hypomethylation
may also depend on levels of Hcy production. Additionally, the methylation pattern also
depends on many other factors such as DNA replication, chromatin accessibility, local
availability of SAM, nutritional factors (folate supplementation), and aging [154]. Although
hypo/hypermethylation of DNA depends on the HHcy state and tissue types [62,149–151],
very limited studies have been carried out so far to show the association of HHcy and
causation, progression and metastasis of cancer.

4.3.2. Hcy-Mediated Histone Modification and Cancer

Histone protein is present in the nucleosomes, where DNA molecules warp around
at specific intervals [155]. Many post-translation modifications (acetylation, methylation,
phosphorylation, ubiquitination, and sumoylation) of histones lead to gene activation and
inactivation [156]. These modifications are dynamic; one set of enzymes (called writers) can
put down these activation/repressive marks, and another group of enzymes (erasers) can
reverse these marks [156]. Although alteration of histone modifications can cause upregula-
tion or downregulation of specific gene expression, minimal studies have been conducted
on HHcy-mediated histone modification and its associated pathology in cancer. Since HHcy
can inhibit SAM-dependent methyltransferases via a negative feedback mechanism [157], it
can be concluded that HHcy can also alter histone methylation patterns that might influence
tumor formations. Indeed, some studies found that these histone modifications act as
drivers for different types of cancer, as reviewed by Levi A Garraway et al. and Kristian
Helin et al. [158,159]. However, histone modifications also vary between cell types [160], so
various histone modifications may lead to different types of cancer. Which factors and how
these modifications have been regulated in different cell types that lead to different types of
cancers is something that needs to be explored in the near future.

4.3.3. Hcy-Mediated RNA Interference and Cancer

Earlier researchers used to think that RNA had only a housekeeping function (tRNAs
and rRNAs) and a messenger function (mRNA) [161]; however, recent studies have found
many new classes of regulatory non-coding RNAs. Some important non-coding RNAs are
micro-RNA, endogenous small interfering RNAs (endo-siRNAs), PIWI-associated RNAs
(piRNAs), and long non-coding RNAs. The discovery of non-coding RNAs has completely
updated our understanding of cancer research [162]. The prognosis value of microRNA
(miRNA) and long non-coding RNA (lncRNA) are widely reported in cancers [163,164].
Many studies showed that HHcy interferes with microRNA regulation and long non-coding
RNA (lncRNA) [165], suggesting a link between HHcy and abnormal gene expression in
cancer progression. Although most cancer research has focused on the abnormal expression
of oncogenes or tumor suppressor genes, 97% of the human genome consists of non-coding
sequences, leading researchers to investigate this dark matter of tumorigenesis. Non-
coding RNAs can induce tumorigenesis and tumor progression via transcriptional and
post-transcriptional modification, chromatin remodeling, and signal transduction. Although,
to date, most of the integration of non-coding RNAs and tumorigenesis is still unknown,
current research has started uncovering the complex network of the interaction of non-coding
RNAs and how they modify the expression of oncogenes and tumor suppressor genes. These
non-coding RNAs present in a tissue-specific manner and are considered as diagnostic,
prognostic, and therapeutic targets in different diseases. There is growing research about the
dysregulation of Circular RNAs (circRNAs) in cancer [166–169]. Recent reports show that
circRNAs play essential roles in prostate cancer’s progression, proliferation, and epithelial–
mesenchymal transition (EMT) [170]. In our previous studies, we noticed that under HHcy
conditions circRNAs profile differently than in normal conditions [166,167,171]. HHcy-
mediated, non-coding RNAs vary in different tissue types, suggesting more research is
needed to identify specific changes in non-coding RNA based on the cancer types.
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4.4. Hcy-Mediated H2S Production and Risk of Cancer

H2S was previously thought of as a toxic gas. However, recent studies found that
other than from gut microbiota, H2S is produced inside a cell via Hcy metabolism [172].
H2S acts as a gasotransmitter like other gasotransmitters (for example, nitric oxide) and
has a cytoprotective role [17]. H2S plays a crucial role in reducing oxidative and ER stress
during HHcy conditions [7], suggesting a favorable role of H2S in cancer progression.
Many studies also reported the role of H2S in cell proliferation, viability, and migration of
cancer cells [173]. The CBS gene in Hcy metabolism typically catalyzes the condensation
of serine with Hcy to produce cystathionine (in a transsulfuration reaction), whereas it
produces H2S via β-elimination and β-replacement reactions [174]. Both β-elimination
(catalysis of cysteine) and β-replacement (reaction of L-cysteine and 2-mercaptoethanol)
reactions produce H2S. Many clinical studies have shown that there is CBS overexpression
and increased H2S production in many cancer types [175,176]. Previous studies showed
that tumor cells have a high proliferative rate, producing a massive amount of reactive
oxygen species (ROS) [177] and needing neoangiogenesis [178]. In contrast, many studies
have suggested that H2S reduces oxidative stress, induces cell proliferation and viability,
and improves neoangiogenesis [7,48,172,179]. As SAM is an allosteric activator of CBS that
binds to the regulatory domain of CBS and regulates H2S production, indeed, it helps in
the growth of tumor cells [180]. Therefore, future strategies to treat cancer patients should
involve modulation of CBS and H2S levels.

5. Multifactorial Role of H2S in Cancer

Recent studies showed that H2S production helps induce cancer cell proliferation,
viability, invasion, and metastasis [18]. Increasing levels of H2S have been proposed to
induce cancer development by regulating a wide variety of cancer-related processes; this
suggests that targeting H2S production could be a beneficial tool for cancer treatment.
This section focuses on how H2S plays a role in cancer progression by targeting different
processes, including oxidative stress, anti-apoptosis, DNA repair, tumor growth, cancer
metabolism, metastasis, and angiogenesis (summarized in Figure 3).
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5.1. H2S Production via Dysregulation of CBS, CSE, and 3MST Genes in Cancer

H2S is produced endogenously through the transsulfuration pathway (involving CBS,
CSE, and 3MST enzymes) of Hcy metabolism, as shown in Figure 4 [181]. Three enzymes
that catalyze H2S production are often found dysregulated in cancer, as shown in Table 3.
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Table 3. Association of different H2S-producing enzymes in different cancer types.

Enzymes Cancer Types Upregulation/Downregulation Reference

CBS

Colon Cancer Upregulation [182]

Ovarian Cancer Upregulation [176]

Breast Cancer Upregulation [183]

Thyroid Cancer Upregulation [184]

Gallbladder Adenocarcinoma Upregulation [185]

Hepatocellular Carcinoma Downregulation [186]

Gastrointestinal Cancer Downregulation [187]

CSE

Breast Cancer Upregulation [188]

Prostate Cancer Upregulation [189]

Gastric Cancer Upregulation [190]

Bladder Cancer Upregulation [191]

Hepatoma Upregulation [192]

Colon Cancer Upregulation [193]

Renal Cell Carcinoma Downregulation [194]

3MST
Glioma Tumor Upregulation [195]

Colon Cancer Upregulation [196]
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5.1.1. Dysregulation of CBS in Cancer

The main rate-limiting enzyme of the trans-sulphuration reaction of Hcy-metabolism
is CBS, which catalyzes H2S production by driving the beta-replacement. The CBS gene
is often found to be upregulated in colon cancer, ovarian cancer, breast cancer, thyroid
cancer, and gallbladder adenocarcinoma tissues [182,184,185,197]. A study found that
DNA methylation of the CBS promoter favors colon cancer progression [198]. SAM can
allosterically activate the CBS gene to favor the cell proliferation of colon cancer cells [199].
Additionally, CBS can also be controlled via its redox sensitivity through the 272CXXC275

motif [200]. The high proliferation of cancer cells creates redox stress conditions inside the
cells, which activates the CBS gene to produce H2S through the 272CXXC275 motif [200].
Although some studies showed that CBS expression is downregulated in glioma tumor
cells, gastrointestinal cancer cells [186,187,201], and hepatocellular carcinoma, alternatively,
reduced CBS expression upregulates the 3-MST gene in glioma tumor cells [202].

5.1.2. Dysregulation of CSE in Cancer

CSE is one of the three H2S-producing enzymes in the transsulfuration pathway of
Hcy metabolism. CSE has been upregulated in multiple cancer types, including prostate
cancer, gastric cancer, and melanoma cells [190,203,204]. CSE was found to be induced
by oxidative stress, ER stress, Golgi stress, inflammation, and starvation [205]. Unlike
CBS, CSE can be upregulated transcriptionally via cellular stress response [206]. Under
oxidative stress condition, nuclear factor (erythroid-derived 2)-like 2 (Nrf2) induces CSE
expression through binding to its antioxidant response element (ARE) at 5′-untranslated
regions (UTR), which in turn induce H2S production [207]. Overexpression of another
transcription factor, specificity protein (SP) 1, induces H2S generation via binding to the
CSE promoter [208]. Similarly, another study showed that tumor necrosis factor α (TNFα)
induces H2S production through SP1-mediated CSE promoter binding [209]. In prostate
cancer, a study found that CSE over-expression increased H2S production that led to
the activation of nuclear factor-κB (NF-κB)-mediated interleukin 1β (IL-1β) signaling,
resulting in enhanced cell invasion, angiogenesis, lymphangiogenesis, tumor growth, and
metastasis [210]. Moreover, the upregulation of CSE by the STAT3 pathway increased
breast cancer cell proliferation, growth, and migration [188]. Similarly, the upregulation
of CSE by the Wnt/β-catenin pathway increased cell proliferation in colon cancer [193]
whereas by extracellular signal-regulated protein kinase 1/2 (ERK1/2) pathway increased
cell proliferation in liver cancer [192].

5.1.3. Dysregulation of 3MST in Cancer

3MST is another H2S-producing enzyme primarily regulated through a redox-sensitive
mechanism [206]. As oxidative stress is one of the characteristics of cancer cells, it seems
that cancer cells primarily depend on 3MST for H2S production. During oxidative stress
condition, 3MST becomes activated via oxidation at Cys247 and subsequently produces
H2S to control cellular homeostasis [211]. Indeed, pharmacological inhibition of 3MST
has been found to reduce cell proliferation, migration, and bioenergetics in colon cancer
cells [212]. More research is needed to understand how different cancer types regulate
3MST to maintain their cellular redox balance.

5.2. H2S-Mediated Redox Balance in Cancer

As cancer cells have a high proliferative rate, they produce many free radicals [213].
There is the possibility that cancer cells upregulate H2S-producing enzymes in order to
handle oxidative stress. Multiple studies demonstrated the cytoprotective effects of H2S
in different in vitro models, all relating to its ability to neutralize a variety of reactive
species [214–216] and reduction of a disulfide bond in proteins [217,218]. H2S in water
dissociates into H+, HS−, and S2− ions. HS− has the capacity to scavenge ROS. H2S itself
has also been recognized to be a reducing agent, as it can react directly with and quench
the superoxide anion (O2−) [219,220] and free radicals like peroxynitrite [221] as well as
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other ROS in vitro. Micro concentrations of H2S generated from Na2S/NaHS were found to
neutralize free oxyradicals [222], peroxynitrite [214], hypochlorous acid [215], and Hcy [216]
in in vitro conditions. There is no sulfide receptor in mammalian cells that is responsible
for the biological actions of sulfide; hence sulfide, as a thiol with strong reducing activities,
may also be a redox-controlling molecule similar to other small thiols, such as cysteine and
GSH [214,223]. A study using primary cultures of neurons found that H2S increases cellular
GSH levels by enhancing gamma-glutamylcysteine synthetase activity and upregulating
cystine transport [223]. Similarly, another study reported that 100µM NaHS induces
glutamate uptake by assisting glial glutamate transporter-1 (GLT-1) and enhances cysteine
transport and GSH synthesis [224]. In support of this effect, multiple studies demonstrated
that H2S induces cellular GSH in the brain [225], spinal cord [226], heart [227], lung [228],
kidney [229], liver [228], and gastrointestinal tract [230,231]. Moreover, recent reports
suggested that H2S could attenuate cellular oxidative stress by improving the activities of
catalase [227,232–234] and glutathione peroxidase [235–237].

5.3. H2S-Mediated Recovery of Hypoxia in Cancer

Hypoxia is one of the hallmarks of solid tumors. H2S has been widely studied for
its effects on the regulation of oxygen homeostasis via inhibiting HIF-1α activation [238].
Different studies found upregulation of H2S-producing enzymes under hypoxia conditions
and its associated cancer progression [239,240]. In addition to this, our previous studies
found that under hypoxia conditions, H2S induces neoangiogenesis via upregulation of
the PPAR-c/HIF-1α signaling pathway [48]. Similarly, another study identified that H2S
enhances HIF-1α expression via the downregulation of miR-640 [241]. In non-small cell
lung cancer, a study proposed that H2S might activate HIF-1α via the PI3K/AKT pathway
leading to angiogenesis [242]. Similarly, another study showed that under hypoxia, cancer
cells produce H2S via induction of CSE to facilitate angiogenesis [243].

5.4. H2S-Mediated Recovery of Apoptosis in Cancer

Apoptosis is the process of cell death that happens naturally due to physiological
or environmental stress [2]. Inhibition of apoptosis is one of the hallmarks of cancer
progression that allows cancer cells to survive under various stresses [244]. Recent studies
found that H2S has an antiapoptotic property in various cell types [17]. Different studies
also found that cancer cells produce more H2S to evade apoptosis [245–248]. These studies
suggest that, like classical antioxidants (for example, GSH), H2S inhibits apoptosis in cancer
cells via scavenging ROS and reactive nitrogen species (RNS). The cancer cell has a high
metabolic activity due to the high proliferative rate, and this leads to the generation of ROS
and RNS. So, to recover from this oxidative stress condition, cancer cells need to produce
more antioxidants like H2S to create profound antioxidant protection [206].

H2S not only suppresses apoptosis through the reduction in oxidative stress but is
also found to activate various antiapoptotic pathways, including NF-κB [209], kelch-like
ECH-associated protein 1 (Keap1) [249], and mitogen-activated protein kinase kinase 1
(MEK1) [250]. When NF-κB signaling becomes activated, it further activates multiple
antiapoptotic genes, including the X-linked inhibitor of apoptosis protein (XIAP), cellular
Inhibitors of Apoptosis Proteins (cIAPs), and the B-cell lymphoma 2 (Bcl-2) [251]. In
contrast, Keap1 is mediated by persulfidation by H2S; after persulfidation, Keap1 acts as an
adaptor for the Keap1-Cul3-RBX1 E3 ligase complex, which targets Nrf2 to proteasomal
degradation [252]. Nrf2 acts as a transcription factor for genes containing antioxidant
response elements (AREs) to suppress apoptosis in cancer cells [252]. The other process
of H2S-mediated inhibition of apoptosis is via the activation of MEK1, which is one of the
classical MAP kinase family proteins. MEK1 generally suppresses apoptosis via inhibition
of the expressions of apoptotic-related proteins, including Bad, Bim-EL, Caspase 9, MCL-1,
and TNFR [253].
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5.5. H2S-Mediated DNA Repair in Cancer

H2S has been found to activate the DNA repair process via MEK1/Protein poly [ADP-
ribose] polymerase 1 (PARP1)-mediated signaling pathways in cancer cells [250]. After
the persulfidation of MEK1 at Cys341 residue by H2S, MEK1 translocates to the nucleus to
stimulate PARP-1. PARP-1 is widely known as a sensor of DNA single- or double-strand
breaks [254]. This suggests that cancer cells may use H2S to recover from DNA damage
during proliferation. Moreover, H2S has also been found to help in mitochondrial DNA
(mtDNA) repair via persulfidation on mt-specific DNA repair enzymes EXOG at Cys76 [255],
which suggests that cancer cells may skip the apoptosis process via H2S-mediated recovery
of DNA damage.

5.6. H2S-Mediated Tumor Growth and Metastasis in Cancer

Different studies found that higher levels of H2S in multiple cancer types [182,188,210,212]
and inhibition of H2S production via suppression of CBS or CSE activities cause a reduction
in tumor growth in multiple cancer types [182,210,255]. This suggests the critical role of
H2S in the growth, proliferation, and survival of cancer cells. In addition, many studies
found that endogenous H2S promotes cancer cell migration and invasion in multiple
cancer types [210,242,256,257]. These studies showed that H2S promotes the metastasis
process via various mechanisms, which include induction of epithelial-to-mesenchymal
transition (EMT). Moreover, NF-κB is a key player in cancer metastasis; as H2S induces the
persulfidation of NF-κB, it helps p65 to translocate into the nucleus and induce expressions
of the metastatic promoting gene [210].

5.7. H2S-Mediated Metabolism in Cancer

Cancer cells have a very high proliferative rate, so they require more ATP production
to maintain cellular energetics [258]. Endogenous H2S production was shown to act as a
metabolic substrate for mitochondrial ATP production in cancer cells [199]. Moreover, H2S
was found to increase the catalytic activity of mitochondria ATP synthase via persulfidation
of ATP synthase (ATP5A1), which may induce mitochondrial ATP production [258]. To
support their high growth rates, cancer cells preferentially convert glucose to lactate by aer-
obic glycolysis even in sufficient O2 (Warburg effect). In this process, lactate dehydrogenase
A (LDHA) acts as a key player, and it is found that cancer cells induce LDHA activity via
the persulfidation of LDHA at Cys163. Consistent with this, depletion of H2S production
via knockdown of CBS was also found to reduce ATP production in cancer cells [176,182].

5.8. H2S-Mediated Angiogenesis in Cancer

Angiogenesis is one of the hallmarks of cancer; during tumor growth and metastasis,
tumor cells secret proangiogenic factors such as VEGF [259]. Previous studies found that
H2S induced angiogenesis under different disease conditions [48], including cancer [243].
Similarly, suppressing H2S production via silencing the CBS gene reduced angiogenesis
in colon and ovarian cancer [176,182]. Additionally, suppression of H2S production via
silencing another H2S-producing enzyme, CSE, was found to block angiogenesis [210].
Moreover, H2S was found to promote angiogenesis via activation of HIF-1α [197]. Addition-
ally, H2S-mediated induction of angiogenesis has been found via NF-κB/IL-1β, PI3K/AKT,
and MAPK signaling pathways [199,210].

5.9. H2S-Mediated Reduction in ER Stress in Cancer

As cancer cells have a high proliferation rate, they create different gene mutations,
produce more misfolded proteins, and induce ER stress response [260]. As H2S was found
to reduce ER stress in different disease conditions [7,261–263], it suggests that cancer cells
may produce more H2S to recover from ER stress. In addition, as cancer cells mainly depend
on the methylation cycle, this also produces a high amount of Hcy, which induces homocys-
teinylation of protein and further activates ER stress [264]. There is also the possibility that
H2S can reverse protein homocysteinylation [265].
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6. Current Cancer Therapeutics Targeting the Hcy and H2S Signaling and
Their Limitations

Current treatment options for cancer are based on specific types of cancer and the stage
of cancer; these include chemotherapy, radiation therapy, immunotherapy, and targeted
therapy [266]. While treatment increases the lifespan of many patients, it is also associated
with many side effects that will determine the health consequences. Also, the efficacy
of these treatment options is limited by the resistance that patients develop [267]. As
chemotherapy has many side effects due to the property of killing normal healthy cells,
recent treatment is shifting gears toward targeted therapy approaches.

Methionine is an essential amino acid, and many tumor cells show dependence on
exogenous sources of methionine [4]. Studies showed that methionine restriction inhibits
cancer cell growth proliferation while normal cells remain unaffected [4]. In addition,
methionine restriction showed enhanced efficiency of chemotherapy and radiotherapy in
animal models [268]. A previous study showed that methionine restriction for an average
of 17 weeks is safe and feasible in patients with advanced metastatic cancer [14].

Moreover, there have been many drugs developed that target the methionine cycle,
but none of them showed clinical success. Antifolate drugs (for example, methotrexate)
that interfere with the folate cycle have shown limited clinical efficiency due to side effects
and resistance [269,270]. As the methylation cycle is essential for normal cells, these drugs
kill both cancer and healthy cells. However, small molecule inhibitors that target serine
synthesis pathways have been successful in in vitro and animal studies [271,272]. However,
in order to reduce side effects, the drug used has to be specific to the particular cancer.
For small molecule inhibitors that inhibit PHGDH (for example, NCT-503, CBR-5884), the
tumor has to be fully addicted to PHGDH. Also, it needs to be ensured that this drug does
not interfere with any other signaling pathways critical for signaling. If any type of tumor is
not fully dependent on a specific pathway, that means the cancer cells may be using another
source for that specific pathway. For targeting the serine synthesis pathway, if any specific
cancer cell lines do not respond to the drug, these cells may be using exogenous serine
supplementation. So, to target this cancer type with this drug, we should also consider the
external source of nutrients/diet. Another type of mechanism is called the compensatory
mechanism, by which cancer cells become resistant to specific drugs. For example, any drug
targeting mitochondrial methylenetetrahydrofolate dehydrogenase (MTHFD1L) cancer
cells can compensate using cytoplasmic MTHFD1 [273].

There are variable reports so far documented when it comes to targeting H2S metabolism.
Lower doses of H2S donor compounds were found to have pro-cancer activity by different
mechanisms [274], whereas higher doses had anticancer activity due to uncontrolled intra-
cellular acidification [275–277]. Various H2S donor compounds (for example, NaHS, Na2S,
GYY4137) tested preclinically for their anticancer property [275–277]. In contrast, as many
studies showed, endogenous H2S has beneficial effects for tumor growth and metastasis,
and inhibiting endogenous production of H2S (via targeting H2S-producing enzymes) may
be a good strategy. DL-propargylglycine (PAG) is an inhibitor of CSE that showed limited
cell permeability [218] and non-selective inhibition of other enzymes [278–280]. Another
inhibitor of H2S-producing enzymes is aminooxy acetic acid (AOAA), which is also found
to inhibit cysteine aminotransferase (CAT) [281]. HMPSNE is an inhibitor that targets the
3rd H2S-producing enzyme 3MST, showed the highest selectivity for 3MST [31,282], and
was found to inhibit cell proliferation of colon cancer [212,283]. In order to make a more
efficient drug that inhibits H2S production, more research is needed.

Although targeting H2S production showed promise, there are a few limitations. Firstly,
many previous studies that targeted H2S production used the pharmacological inhibitor
AOAA (a CBS inhibitor). However, AOAA showed nonspecific inhibition of CSE, 3MST,
and over thirty other cellular enzymes [284]. Similarly, another H2S production inhibitor,
β-cyano-alanine, showed suboptimum specificity [285]. Secondly, there are functional
differences between H2S production enzymes in different cancer types. For example, in
prostate cancer, mutant CSE was found to be lowly invasive but did not interfere with cell
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migration capacity [210], suggesting the mutation-specific targeting of H2S production will
be necessary for future therapeutics.

A Hypothesis of Targeting the Hcy and H2S Balance for Cancer Treatment and Its Application

Due to the high proliferative rate, cancer cells require an external source of methionine
for protein formation, methylation reaction (epigenetic alteration), and the production
of H2S (antioxidant). When cancer cells use the methionine cycle, it produces a massive
amount of Hcy, which is toxic for the growth of the tumors. As previous studies found
that high SAM levels act as an allosteric inhibitor of MTHFR (involved in the folate cycle)
and activator of CBS, so when cancer cells produce high SAM levels, it prevents Hcy
from entering the remethylation pathway rather than allowing excess Hcy to shuttle to
the transculturation pathway to produce H2S [71–73]. This production of high H2S in
cancer cells helps them to survive, proliferate, grow, and metastasize. Although many
therapeutic strategies have been developed either by methionine restriction or targeting
different enzymes of the methionine cycle, folate cycle, and transsulfuration pathway, none
of these treatment strategies showed effectiveness in clinical studies. So, in the future, more
research is required where we can utilize their dependence on the methionine cycle and
target specific enzymes to treat cancer. So far, we have noticed that cancer cells depend
on the methionine cycle more, so if we can target both the transsulfuration pathway (via
CBS) and the remethylation pathway at the same time, as shown in Figure 5, then these
cells will build up toxic Hcy and inhibit the production of H2S. High levels of Hcy will
induce apoptosis, protein oxidation, and oxidative and ER stress and inhibit angiogenesis,
whereas low levels of H2S will inhibit cancer growths; as a result, tumor progression will
be inhibited due to the effects of high Hcy and low levels of antioxidants like H2S.
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Figure 5. Cartoon diagram showing how homocysteine and H2S balance can be targeted for cancer
treatment. Targeting the transsulfuration and remethylation pathway in cancer cells will build up
highly toxic homocysteine inside the cells. Consequently, cancer progression will be inhibited via
apoptosis, poor angiogenesis, protein oxidation, and oxidative and ER stress.
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Efforts to interfere with the methylation cycle in different cancers have reached a
plateau, with only incrementally effective inhibitors developed to date. In order to over-
come this barrier and develop highly effective inhibitors, we need to understand how to
target this Hcy and H2S signaling more precisely with minimal side effects. Based on the
above discussion, although it is apparent that targeting Hcy and H2S balance is beneficial
for cancer treatment, there are however no studies have been carried out that exploit this
circuit. This extensive review article will likely lead us and many in academia and industry
to develop next-generation therapeutic agents targeting the blocking of H2S production
and Hcy remethylation. The significance and impact would be profound in increasing
efficacy and reducing toxicity for a large number of cancer patients where targeted therapy
was shown to be non-effective. For example, in treating triple-negative breast cancer, this
treatment strategy will be a good option as there is no other oncogene-driven monotherapy
available. Similarly, cancer types that are more dependent on the methionine cycle will
be the best option to use this strategy. Another exciting cancer treatment aspect that was
not covered in this review is Hcy-mediated epigenetic alteration and H2S-mediated poly-
sulfide production in cancer. So, a better understanding of their signaling in cancer will
undoubtedly facilitate better treatment for cancer patients.

7. Conclusions

Given that cancer cells depend on the methionine cycle for their methylation reaction
and H2S production, many researchers tried different strategies to target these signaling
pathways. Unfortunately, none of the strategies turned out beneficial for cancer treatment.
Based on current understanding, it is noted that indefinite targeting of the methionine cycle,
either via a methionine restriction diet or targeting different enzymes of the methionine cy-
cle, is not feasible due to the development of resistance, non-responsiveness, and numerous
side effects. However, targeting H2S production showed to be somewhat promising based
on its effects on cancer progression via inhibition apoptosis, oxidative stress, ER stress, and
stimulation of the DNA repair process, cancer metabolism, tumor growth, and metastasis.
Again, this strategy did not benefit cancer treatment due to nonspecific targeting. Therefore,
for future prospects, it is necessary to target the transsulfuration pathway for blocking
H2S production and the remethylation pathway to build up toxic Hcy. As we noticed,
Hcy has detrimental effects on cells via apoptosis, protein oxidation, lipid peroxidation,
poor angiogenesis, oxidative stress, and ER stress. So, excess Hcy build-up will not be
able to recover via simultaneous blocking of H2S production, which leads to the regression
of tumor growth. However, more research is anticipated to test this proof of concept for
cancer treatment.
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MTHFR Methylenetetrahydrofolate Reductase
MTRR Methionine Synthase Reductase
MTR Methionine Synthase
MTHFD Methylenetetrahydrofolate Dehydrogenase
BHMT Betaine Homocysteine Methyltransferase
TYMS Thymidylate Synthase
TCN2 Transcobalamin 2
MTHFD1L Methylenetetrahydrofolate dehydrogenase
DNMTS DNA Methyltransferases
VSMCS Vascular Smooth Muscle Cells
DDAH2 Dimethylarginine Dimethylaminohydrolase 2
HMT Histone Methyltransferase
lncRNA Long Non-Coding RNA
miRNA MicroRNA
circRNA CircularRNA
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
Keap1 Kelch-like ECH-associated protein 1
MEK1 Mitogen-activated protein kinase kinase1
XIAP X-linked inhibitor of apoptosis protein
cIAPs Cellular Inhibitors of Apoptosis Proteins
Bcl-2 B-cell lymphoma 2 gene
AREs Antioxidant Response Elements
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