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Abstract 
Anatomical evidence shows that our visual field is initially 
split along the vertical axis and contralaterally projected to 
different hemispheres. It remains unclear at which stage the 
split information converges. In the current study, we applied 
the Double Filtering by Frequency (DFF) theory (Ivry & 
Robertson, 1998) to modeling the visual split; the theory 
assumes a right hemisphere/low frequency bias. We compared 
three cognitive architectures with different timing of 
convergence and examined their cognitive plausibility to 
account for the left side bias effect in face perception 
observed in human data. We show that the early convergence 
model failed to show the left side bias effect. The left side 
bias effect was also observed in Greeble recognition. The 
modeling hence suggests that the convergence may take place 
at an intermediate or late stage, at least after information has 
been extracted/transformed separately in the two hemispheres; 
it also provides testable predictions about whether the left side 
bias effect may also be observed in (expertise-level) object 
recognition. 

Keywords: Connectionist modeling; face recognition; 
hemispheric differences; split modeling. 

Introduction 
Because of the partial decussation of optic nerves, our visual 
system is initially vertically split and the two visual 
hemifields are initially contralaterally projected to different 
hemispheres. A fundamental question in cognitive science is 
whether this initial split has any functional significance; that 
is, whether the effect of initial splitting can extend far 
enough to influence our cognition? A second question is at 
what stage does the information converge? 

A functional split 
Evidence from visual word recognition supports a functional 
split. The general finding is that the two hemispheres have 
contralateral influence on responses driven by the first and 
last halves of the stimuli, which are initially projected to 
different visual hemifields (e.g., Lavidor, Ellis, Shillcock, & 
Bland, 2001; Lavidor & Walsh, 2003; Hsiao & Shillcock, 
2005a; Hsiao, Shillcock, & Lavidor, 2006). There is also 
evidence from face recognition supporting a functional split. 
For example, a left side bias effect has been frequently 

reported in face perception. The classical experiment is to 
ask participants to judge the similarity between a face and 
chimeric faces made from the two left halves (left chimeric 
face) or the two right halves (right chimeric face) of the 
original face (from the viewer’s perspective; Figure 1). The 
results show that the left chimeric face is usually judged 
more similar to the original face than the right chimeric 
face, especially for highly familiar faces (Brady, Campbell, 
& Flaherty, 2005). Consistent with this result, other studies 
have argued for a right hemisphere (RH) bias in face 
perception (e.g., Rossion, Joyce, Cottrell, & Tarr, 2003). 
Nevertheless, it remains unclear how far the split effect 
extends. Although it has been shown that our visual system 
is organized as a set of hierarchically connected regions, and 
the receptive field sizes of the neurons increase by a factor 
of about 2.5 at each succeeding stage (Rolls, 2000), the 
initial trajectory of visual activation flow is a fast and 
widespread sweep and continues through iterations of 
feedback loops for further processing in the sensory area 
(Foxe & Simpson, 2002); hence, it is unclear yet whether 
the split influences high-level cognition. In visual word 
recognition, Hsiao and Shillcock (2005a) showed that this 
split effect can reach far enough to interact with sex 
differences in brain laterality for phonological processing. 
Thus, the split seems to influence high-level cognition. 

 
 

Figure 1: Left chimeric, original, and right chimeric faces. 

Split modeling & timing of convergence  
In order to address the splitting effects observed in visual 
word recognition, Shillcock and Monaghan (2001) proposed 
a split fovea model (Figure 2) and showed that some 
psychological phenomena in visual word recognition can be 
better accounted for by the split architecture, such as 
exterior letter effects in English word recognition and eye 
fixation behavior in reading English (Shillcock, Monaghan, 
& Ellison, 2000). Hsiao and Shillcock (2005b) further 
showed that the split and nonsplit architectures in modeling 
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Chinese character recognition exhibited qualitatively 
different processing, and the results were able to account for 
the sex differences in naming Chinese characters in human 
data. 

 
Figure 2: Architectures of different models. 

 
In the current study, we apply the split fovea model to 

face and object recognition. In contrast to previous models 
in visual word recognition, which act on a relatively abstract 
level of representation (i.e., localist representation of letters 
or stroke patterns), we incorporate some aspects of visual 
anatomy into the modeling. We use Gabor responses over 
the input image to simulate neural responses of complex 
cells in the early visual system (Lades et al., 1993). We then 
reduce the dimension of this perceptual representation with 
Principal Component Analysis (PCA), which has been 
argued to be a biologically plausible linear compression 
technique (Sanger, 1989; cf. Dailey et al., 2002); this is the 
visual input shown in Figure 1. With this level of 
abstraction, convergence of the initial split may happen at 
three different stages: early: after Gabor filters in the early 
visual system (i.e., at the input layer), Intermediate: after 
information extraction through PCA (i.e., at the hidden 
layer), and late: at the output layer (Figure 2). In the early 
convergence model, the left and right Gabor filters are 
processed as a whole through PCA (i.e., nonsplit input 
representation; Figure 3). In the intermediate convergence 
model, PCA is applied separately to the left and right Gabor 
filters and the convergence is at the hidden layer. In the late 
convergence model, in addition to the split input layer, the 
hidden layer is also split, and the information converges at 
the output layer. According to this categorization, the split 
fovea and nonsplit models proposed first in Shillcock and 
Monaghan (2001) can be considered as late and 
intermediate convergence models respectively 1 . Here we 

                                                           
1 The late convergence model differs from the split fovea model in 
that it does not have interconnections between the two hidden 
layers. We removed these interconnections here for comparison 

conduct a more general comparison between these three 
architectures and examine their performance and cognitive 
plausibility.  

DFF theory & face recognition 
In order to account for various psychological phenomena 
involving hemispheric differences, Ivry and Robertson 
(1998) proposed a Double Filtering by Frequency (DFF) 
theory. The theory argues that information coming into the 
brain goes through two frequency filtering stages. The first 
stage involves attentional selection of task-relevant 
frequency information, and at the second stage the two 
hemispheres have asymmetric filtering processing: the left 
hemisphere (LH) amplifies high frequency information (i.e., 
a high-pass filter), whereas the RH amplifies low frequency 
information (i.e., a low-pass filter).  

There has been an ongoing debate regarding whether the 
brain processes faces differently from objects. Evidence for 
this argument comes from studies showing that the fusiform 
face area (FFA) in the brain selectively responds to face 
stimuli (e.g., McKone & Kanwisher, 2005), whereas other 
studies have suggested that several phenomena that were 
thought to be unique to face recognition may be due to 
expertise (e.g., Gauthier et al., 1999). Thus, the left side bias 
effect observed in face perception may be due to a 
designated face processor located in the RH, or the reliance 
on low spatial frequency (LSF) processing in the RH 
(according to the DFF theory) once the expertise is 
acquired. The split architectures introduced here enable us 
to apply the DFF theory to modeling face and object 
recognition. We first examine whether the DFF theory is 
able to account for the left side bias effect in face 
perception. A positive result will suggest the RH reliance in 
face processing is due to the low frequency bias in the RH. 
We then examine whether the left side bias effect can also 
be obtained in expert object recognition. The objects under 
examination are Greebles, a novel class of objects that have 
been frequently used in studies of object recognition and 
perceptual expertise (e.g., Gauthier et al., 1999). If the left 
side bias effect also exists in modeling expert Greeble 
recognition, the results will provide testable predictions 
regarding whether faces and objects are processed 
differently in the brain. 

Models and Results 

Representations and modeling details 
To simulate responses of complex cells in the early visual 
system, the input image (135 x 100 pixels) was first filtered 
with a rigid grid (16 x 12) of overlapping 2D Gabor filters 
(Daugman, 1985) in quadrature pairs at six scales and eight 
orientations (Figure 3). The six scales corresponded to 2 to 
64 cycles per face. Given the width of the image (100 
pixels), this frequency range hence can be considered as the 
                                                                                                  
reasons; in separate simulations, we found that adding these 
interconnections did not change the effects we reported here.  
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task-relevant frequency range (the seventh scale would have 
128 cycles, which exceeded the width of the image). Hence 
the first stage of the DFF is implemented by simply giving 
this input to all of our models. The paired Gabor responses 
were combined to obtain Gabor magnitudes. In the nonsplit 
input representation, this 9,216 (16 x 12 Gabor filters x 6 
scales x 8 orientations) element perceptual representation 
was compressed into a 50-element representation with PCA. 
In the split input representation, the face was split into left 
and right halves, and each had 16 x 6 Gabor filters (4,608 
elements). The perceptual representation of each half was 
compressed into a 50-element representation (hence in total 
there were 100 elements) 2 . After PCA, each principal 
component was z-scored to equalize the contribution of each 
component in the models. In the three models, the early 
convergence model had a nonsplit input representation, 
whereas both the intermediate and late convergence models 
had a split input representation. In order to equalize their 
computational power, the hidden layer of the early and the 
intermediate convergence models had 20 units, and each of 
the two hidden layers of the late convergence model had 10 
units; in the intermediate convergence model, half of the 
connections from the input layer to the hidden layer were 
randomly selected and removed. Hence, the three models 
had exactly the same number of hidden units and weighted 
connections. To implement the second stage of the DFF 
theory, we used a sigmoidal filter (Figure 4) after the Gabor 
filters to bias the Gabor responses on the left half face (RH) 
to LSF and those on the right half face (LH) to high spatial 
frequency (HSF). 

 
Figure 3: Nonsplit and split visual input representations. 

 
In short, we tried to bring the model architecture as close 

to the visual anatomy as possible. The Gabor filters 
correspond to V1, the PCA can be thought of as analogous 
to the Occipital Face Area (i.e., structural representation of 

                                                           
2  Although the split and nonsplit representation had different 
number of dimensions in the input layer, they both contained 
information from the first 50 principal components. This equalizes 
the information contained in each representation better than 
increasing the number of dimensions in the nonsplit representation 
to match that of the split representation. In fact, with 100 
components, the nonsplit model performs worse. 

faces), the hidden layer of the network has been associated 
with the Fusiform Face Area. Finally, the output layer has a 
unit for each individual subject. For the following 
simulations, we ran each model 80 times and analyzed its 
behavior with ANOVA after 100-epoch training (their 
performance on the training set all reached 100% accuracy). 
The training algorithm was discrete back propagation 
through time. (Rumelhart, Hinton & Williams, 1986), and 
the learning rate was 0.1. Performance was analyzed at the 
end of 7 time steps (cf. Shillcock & Monaghan, 2001; Hsiao 
& Shillcock, 2005b) 3 .The independent variables were 
architecture (early, intermediate, and late convergence) and 
frequency bias (unbiased vs. biased). The dependent 
variables were accuracy and size of left side bias effect. To 
examine the size of left side bias effect, we took output node 
activation for a particular individual as a measure of 
similarity between the chimeric face and the original face. 
After training, we presented the networks with left and right 
chimeric faces using test set images. The size of left side 
bias effect was measured as the difference between the 
activation of the output node for the original face when the 
left chimeric face was presented and when the right 
chimeric face was presented (note that output activation 
ranged from 0 to 1). For each simulation, the materials 
consisted images of 30 different individuals (so there are 30 
output nodes; see the following sections for simulation 
details). Two datasets were created for training and testing 
and the order was counterbalanced across the simulation 
runs. In order to eliminate any side bias effect due to the 
baseline difference between the two sides of the images, in 
half of the simulation runs the mirror images of the original 
images were used. 

 
Figure 4: Sigmoidal filters: unbiased (a = 0) and biased 

conditions (a = 1.5). 

Face recognition with expression changes 
We first examined face recognition with different 
expressions. Each of the two datasets created contained four 
images with different expressions (Figure 5), for a total of 
120 training and 120 test images. These images were taken 
from CAlifornia Facial Expressions dataset (CAFÉ; Dailey, 
Cottrell, & Reilly, 2001). The generalization accuracy 

                                                           
3 Although the networks do not have recurrent connections, we 
used discrete back propagation through time to be consistent with 
the split fovea model (Shillcock & Monaghan, 2001), which has 
recurrent connections between the two hidden layers. We found 
that adding these interconnections did not change the effects we 
reported here. 
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results showed a significant interaction between architecture 
and frequency bias (F(2, 474) = 8.513, p < 0.001; Figure 
6(a)). In general, biased spatial frequency hurt performance, 
and the later the convergence, the bigger the effect. As for 
the left side bias effect for chimeric faces, there was a main 
effect of architecture (F(2, 474) = 141.457, p < 10-48), a 
main effect of frequency bias (F(2, 474) = 709.651, p <  10-

95), and a significant interaction between architecture and 
frequency bias (F(2, 474) = 144.386, p < 10-48; Figure 6(b)). 
None of the models had a left side bias effect in the 
unbiased condition. In the biased condition, the frequency 
bias significantly induced the left side bias effect in the late 
and intermediate convergence models. In contrast, the early 
convergence model did not have the left side bias effect. 
This suggests that in the biased condition, converging at an 
early stage (i.e., nonsplit representation) may still extract 
balanced low and high frequency information for 
recognition, whereas converging at a later stage (i.e., split 
representation) allows more low frequency information 
from the left half face to the hidden layer, and consequently 
brings about the left side bias effect4. 

 
Figure 5: Face images for facial expression recognition. 
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4  The only difference between the early and intermediate 
convergence models was the input representation (nonsplit vs. 
split). In a separate simulation, we used a simple perceptron (i.e., 
the hidden layer was removed) to examine the baseline behavior 
between the two representations, and the split representation 
indeed had a left side bias effect whereas the nonsplit 
representation did not; this effect was consistent across the three 
simulations we reported here. 

Figure 6: (a) Performance and (b) Left side bias effect in 
the three models. Error bars show standard errors (* p < 

0.01; ** p < 0.001; *** p < 0.0001). 

Faces under natural lighting changes 
In order to reconfirm the left side bias effects we obtained, 
we conducted another simulation: face recognition under 
different lighting changes. We selected face images from 
Yale face database (Georghiades, Belhumeur, & Kriegman, 
2001) with a light source moving from right to left. Each 
individual had eight different lighting conditions (Figure 7); 
the lighting conditions in the training and test datasets had 
the same azimuths but different altitudes. 

 
Figure 7: Face images for training. From left to right, the 
azimuths are: -60, -35, -20, -10, +10, +20, +35, and +60. 

Altitudes range from -20 to 20. 
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Figure 8: (a) Performance of the three models. (b) Left 

side bias effect in the three models. Error bars show 
standard errors (*** p < 0.0001). 

The results showed that the late convergence model 
performed the worst (F(2, 234) = 158.918, p < 10-52), 
and performance in the unbiased condition was better 
than the biased condition (F(2, 234) = 172.075, p <10-33; 
Figure 8(a)). As for the left side bias effect for chimeric 
faces, there was a main effect of architecture (F(2, 234) 
= 233.286, p < 10-70), a main effect of frequency bias 
(F(2, 234) = 369.360, p < 10-60), and a significant 
interaction between architecture and frequency bias (F(2, 
234) = 242.055, p < 10-72; Figure 8(b)). The frequency 
bias again significantly induced the left side bias effect 
in the late and intermediate convergence models; the 

Dataset 1

Dataset 2

Dataset 1: Disgust, happy (with teeth), sad, and surprise. 

Dataset 2: happy, angry, fear, and neutral. 
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early convergence model failed to show the left side bias 
effect; in fact, it exhibited a slight right side bias effect. 
The results hence confirmed again that the intermediate 
convergence model had the strongest left side bias 
effect, and the early convergence model was not able to 
exhibit the left side bias effect in human data. 

Greebles under natural lighting changes  
We turned to see whether the same effects can be obtained 
in Greeble recognition. Objects such as Greebles do not 
have expressions; one of the most common object 
recognition tasks we perform in the real world is probably to 
recognize the same object under different lighting 
conditions. Hence, we examined the networks’ performance 
on recognizing Greebles under different lighting changes. 
We considered the sun as the major source of light in nature, 
and its azimuth increases during a day and its altitude first 
increases and then decreases from midday. In each of the 
two datasets created, each Greeble had eight images under 
the eight different lighting conditions shown in Figure 9. 

 
Figure 9: A Greeble, facing south, under the sun in San 

Francisco, California (latitude, longitude: 27.618, 
122.373) and Ketchikan, Alaska (55.342, 131.647), from 

9 am to 4 pm. 
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Figure 10: (a) Performance of the three models. (b) Left 

side bias effect in the three models. Error bars show 
standard errors (*** p < 0.0001). 

 
The first set was Greebles under the San Francisco sun, 

and the other was the same Greebles in Ketchikan. Hence, 
in the two datasets, the sun positions had different azimuths 
and altitudes. The accuracy results showed that there was a 
main effect of frequency bias (F(2, 234) = 94.089, p <10-19): 
performance in the unbiased condition was better than the 
biased condition (Figure 10(a)). As for the left side bias 
effect for chimeric Greebles, there was a main effect of 
architecture (F(2, 234) = 100.768, p < 10-36), a main effect 
of frequency bias (F(2, 234) = 13.891, p < 0.001), and an 
interaction between architecture and frequency bias (F(2, 
234) = 178.707, p < 10-57; Figure 10(b)). Similar to the 
previous simulation, the frequency bias significantly 
induced the left side bias effect in the late and intermediate 
convergence models; the early convergence model did not 
have the left side bias effect; it exhibited right side bias 
instead. The results suggest that the left side bias effect may 
also exist in Greeble recognition. 

Conclusion and Discussion 
In the current study, we explored split architecture in 
modeling face and object recognition. We applied the DFF 
theory to the split modeling of visual processing; for the 
input representation, we first selected a task relevant 
frequency range, and then biased the information coming 
into the RH (i.e., left half of the input) to low frequency and 
that coming into the LH (i.e., right half of the input) to high 
frequency through a sigmoidal filter. We then compared 
performance and cognitive plausibility of three cognitive 
architectures with different timings of convergence. We 
showed that, in this computational exploration, the 
combination of the spatial frequency bias and the splitting of 
the information between left and right are sufficient to show 
the left side bias effect, but neither alone can show the 
effect. This is consistent with the observation that there is a 
low spatial frequency bias in face identification, both in 
humans and computational models (Schyns & Oliva, 1999; 
Dailey et al., 2002). This is reflected in the higher activation 
of the identity unit when the model’s right hemisphere 
receives the same side of the face it was trained upon, 
compared with when it does not.  

The failure of the early convergence model in exhibiting 
the left side bias effect suggested that the initially split 
visual input may converge at an intermediate or late stage, at 
which at least certain type of information 
extraction/transformation has been applied separately in 
each hemisphere, perhaps after the Occipital Face Area.   
This result is consistent with several behavioral studies 
showing that each hemisphere seems to have dominant 
influence on the processing of the visual information 
presented in the visual hemifield to which it has direct 
access (e.g., Brady et al, 2005; Hsiao et al., 2006).  

The results from modeling Greeble recognition also 
showed a left side bias effect in both the intermediate and 
late convergence models, but not in the early convergence 
model. In human data, the left side bias effect has never 

Ketchikan, AK 

9am   10am      11am    12pm      1pm       2pm     3pm    4pm
  

San Francisco, CA  
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been shown in recognition tasks other than faces, and hence 
has been considered a face-specific effect. However, it may 
also be due to our expertise in face processing (cf. Gauthier 
et al., 1999). The modeling result hence provides a testable 
prediction about whether a left side bias effect can also be 
observed in object recognition once expertise is acquired. 

The models we propose here unavoidably involve 
abstraction and assumptions about the underlying neural 
complexity, but they nevertheless address the issue under 
examination here. The study provides a computational 
explanation of the cognitive implausibility of the early 
convergence model, which has been the most typical model 
for face/object/word recognition in the literature (e.g., 
Dailey et al, 2002; Harm & Seidenberg, 1999). The fact that 
the initial split has a functional significance has been 
overlooked in connectionist modeling of cognitive 
processes; the current study shows that this fact does have 
significant impact on how modeling is able to explain and 
predict human behavior. 

As future directions, the proposed models can also be 
applied to visual word recognition (cf. Shillcock et al., 
2000) to examine the current debates about the foveal 
splitting phenomena (e.g. Lavidor & Walsh, 2004). We will 
also examine a fundamental question about why such a split 
and frequency bias exists in the brain. The current 
simulations seem to suggest that frequency bias deteriorates 
performance. There may exist an optimal frequency bias 
setting that is able to boost performance, or the advantage of 
split and frequency bias may be observed when the system 
(i.e., the brain) has to deal with tasks with different 
frequency requirements; for example, word recognition may 
rely more on high frequency information processing in 
contrast with face recognition. These issues are currently 
under examination. 
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