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Abstract of the Dissertation

Finite generators for countable group actions; Finite

index pairs of equivalence relations; Complexity

measures for recursive programs

by

Anush Tserunyan

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2013

Professor Alexander S. Kechris, Co-chair

Professor Itay Neeman, Co-chair

Part 1: Consider a continuous action of a countable group G on a Polish space X. A

countable Borel partition P of X is called a generator if GP ∶= {gP ∶ g ∈ G,P ∈ P} generates

the Borel σ-algebra of X. It was asked by Benjamin Weiss in ’87 whether the nonexistence

of an invariant probability measure implies the existence of a finite generator. The main

result of this part is obtaining a positive answer to this question in case X is σ-compact (in

particular, when X is locally compact). We also show that finite generators always exist

modulo a meager set, answering positively a question raised by Alexander Kechris in the

mid-’90s.

Part 2: We investigate pairs of countable Borel equivalence relations E ⊆ F , where E is

of finite index in F . Our main focus is the well-known problem of whether the treeability

of E implies that of F : we provide various reformulations of it and reduce it to one nat-

ural universal example. In the measure-theoretic context, assuming that F is ergodic, we

characterize the case when E is normal. Finally, in the ergodic case, we characterize the

equivalence relations that arise from almost free actions of virtually free groups.

Part 3: We consider natural complexity measures for recursive programs from given primi-

tives and derive inequalities between them, answering a question asked by Yiannis Moschovakis.
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Introduction

The current thesis consists of three unrelated parts, each representing a separate research

project. Parts 1 and 2 were done under the supervision of my advisor Alexander Kechris, and

they fall into the general area of descriptive set theory, more specifically, the study of definable

equivalence relations and group actions with applications to ergodic theory and topological

dynamics. Part 3 was done under the supervision of Yiannis Moschovakis, and it lies in

complexity theory ; more specifically, it concerns recursive programs from given primitives

and relations between different complexity measures. Below I give a brief introduction to

the aforementioned general areas of research without going into the research projects and

contributions of this thesis. The latter are contained in the following three parts, each of

which is self-contained and starts with an extensive introduction to the research project it

represents, providing background, motivation and the main results.

Descriptive set theory and definable equivalence relations

Descriptive set theory (DST) combines techniques from set theory, topology, analysis, recur-

sion theory and other areas of mathematics to study definable subsets of R or, more generally,

of any Polish space (see [Kec95]). Examples of such sets include Borel, analytic (projections

of Borel), co-analytic (complement of analytic), etc. The framework of Polish spaces being

used is justified by its robustness since, by Kuratowski’s theorem, Polish spaces of the same

cardinality are Borel isomorphic. A typical example (one of the first) of a theorem in DST is

Souslin’s theorem that states that if a set is both analytic and co-analytic, then it is Borel.

At its earlier stage, a central interest in DST was investigating the regularity properties

of definable sets such as the perfect set property (being countable or containing a perfect

set, a version of Continuum Hypothesis that Cantor proved for closed sets), measurability

and the Baire property. As it turned out, all these properties are satisfied by analytic sets,

but curiously enough, whether they hold for the projections of co-analytic sets is already

independent from ZFC.
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For the past twenty years, a major focus of descriptive set theory has been the study of

equivalence relations on Polish spaces that are definable when viewed as sets of pairs (e.g.

orbit equivalence relations of continuous actions of Polish groups are analytic). This study

is motivated by foundational questions such as understanding the nature of complete clas-

sification of mathematical objects (measure preserving transformations, unitary operators,

Riemann surfaces, etc.) up to some notion of equivalence (isomorphism, conjugacy, etc.)

and creating a mathematical framework for measuring the complexity of such classification

problems. Due to its broad scope, it has natural interactions with other areas of mathe-

matics, such as ergodic theory and topological dynamics, functional analysis and operator

algebras, representation theory, topology, model theory and recursion theory.

The following definition makes precise what it means for one classification problem to be

easier (not harder) than another.

Definition. Let E and F be equivalence relations on Polish spaces X and Y , respectively.

We say that E is Borel reducible to F and write E ≤B F if there is a Borel map f ∶ X → Y

such that for all x0, x1 ∈X, x0Ex1 ⇐⇒ f(x0)Ff(x1).

We call E smooth (or concretely classifiable) if it is Borel reducible to the identity relation

id(X) on some (equivalently, any) Polish space X. An example of such an equivalence

relation is the similarity relation of matrices; indeed, if J(A) denotes the Jordan canonical

form of a matrix A ∈ Rn2
, then for A,B ∈ Rn2

, we have A ∼ B ⇐⇒ J(A) = J(B). It

is not hard to check that the computation of J(A) is Borel, so J ∶ Rn2 → Rn2
is a Borel

reduction of ∼ to id(Rn2), and hence ∼ is smooth. Another (much more involved) example

is the isomorphism of Bernoulli shifts, which, by Ornstein’s famous theorem, is reduced to

the equality on R by the map assigning to each Bernoulli shift its entropy.

However, many equivalence relations that appear in mathematics are nonsmooth. For

example, the equivalence relation E0 on 2N of eventual equality of binary sequences can be

easily shown to be nonsmooth, using measure-theoretic or Baire category arguments. The

following theorem, known as the General Glimm-Effros dichotomy [HKL90], shows that in
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fact containing E0 is the only obstruction to smoothness:

Theorem (Harrington-Kechris-Louveau ’90). Let E be a Borel equivalence relation on a

Polish space X. Then either E is smooth, or else E0 ⊑c E.

Here, ⊑c means that there is an injective continuous reduction. This theorem was one of

the first major victories of descriptive set theory in the study of equivalence relations. It in

particular implies that E0 is the easiest among all nonsmooth Borel equivalence relations in

the sense of Borel reducibility. Besides its foundational importance in the theory of Borel

equivalence relations, it also generalized earlier important results of Glimm and Effros. By

now, several other dichotomy theorems have been proved and general methods of placing

a given equivalence relation among others in the Borel reducibility hierarchy have been

developed. However, there are still many fascinating open problems left, and many parts of

the Borel reducibility hierarchy are yet to be understood.

Among Borel equivalence relations, an essential role is played by countable Borel equiv-

alence relations, i.e. those whose equivalence classes are countable. A Borel action of a

countable group on a Polish space induces such an equivalence relation (the orbit equiva-

lence relation), and conversely, the Feldman-Moore theorem states that all of the countable

Borel equivalence relations arise in this fashion. Thus, although often originating in ergodic

theory or topological dynamics, problems about countable group actions naturally fall into

the context of equivalence relations.

In Part 1 we study the question of the existence of finite generators1 for actions of

countable groups in the Borel and Baire category settings. Part 2, however, concerns finite

index extensions of countable equivalence relations and the question of whether the class of

treeable equivalence relations is closed under this operation.

1Certain kinds of partitions of the space on which the group acts.
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Complexity theory and recursive programs from given primitives

Complexity theory is a very active area of research that lies in the intersection of mathemat-

ics and theoretical computer science. One of its main focuses is classifying computational

problems according to their inherent difficulty; for example, the minimum number of steps

required.

When we want to establish lower bounds for some measure of computational complexity,

the standard methodology is to fix a rigorously defined model of computation, such as Turing

machines or random access machines, and to specify a representation of the input, e.g. unary

or binary coding for natural numbers, adjacency matrices for graphs, etc. Depending on the

problem, it is often convenient to use one or another model of computation in obtaining lower

bounds, and thus, there is a need to compare lower bounds established for different models

of computation. We can use the fact that one model of computation can be simulated by

another and this simulation is typically polynomial-time. This resolves the issue if the lower

bounds under consideration are not sensitive to polynomial-time perturbations: for example,

in case of super-polynomial or exponential lower bounds.

However, the issue remains if the lower bounds are smaller, e.g. logarithmic or linear. In

this case, the computational complexity heavily depends on what is considered as one step

in the given model of computation. In other words, what are the given primitives (functions

and relations) in that model. For example, the primitives of a Turing machine are the

functions that increment or decrement the pointer i (the position of the head) by one and

switch the ith bit of the binary representation of the input from 0 to 1, or vice versa. Thus,

it is convenient to consider a general model of computation that does not have a fixed set of

primitives, but rather allows specifying one for each individual algorithm. Such a model is

that of recursive programs, and it was extensively used in [MvdD04], [MvdD09] and [Mos].

Instead of defining recursive programs, I will give an example considered in [MvdD04] and

leave the rigorous definition for Part 3.
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The following is the Euclidean algorithm specified by a recursive program:

gcd(a, b) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

b if rem(a, b) = 0

gcd(b, rem(a, b)) otherwise
. (a ≥ b ≥ 1)

Here the primitives are the relation of equality to 0 and the function rem(a, b), which com-

putes the remainder in the division of a by b. It is easy to see that this algorithm requires at

most 3 log2 a steps (counting each call to primitives as one step). In [MvdD04], the authors

conjecture that this algorithm is, up to a constant, the best algorithm among all algorithms

that compute gcd(a, b), and they show a lower bound of 1
10 log2 log2 a for all such algorithms.

In [Mos], different measures of complexity for recursive programs are considered, as often

different methods may provide lower bounds for different measures of complexity. Hence,

it is important to investigate the relations between these complexity measures, and this is

the topic of Part 3. The main result is that (roughly speaking) the actual complexity of a

recursive program on a given input comes from the number of calls to primitives made by

the program, and not from the logical operations (such as “if ... then ... else ...”):

those only add a constant factor that depends on the length of the code of the program and

not the input.

5



Part 1

Finite generators for countable group

actions
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CHAPTER I

Introduction to finite generators and the main results

1 Background and motivation

Throughout this part of the thesis, let G denote a countably infinite discrete group. Let X

be a Borel G-space, i.e. a standard Borel space equipped with a Borel action of G.

Consider the following game: Player I chooses a finite or countable Borel partition P =

{Pn}n<k of X, k ≤ ∞, then Player II chooses x ∈ X and Player I tries to guess x by asking

questions to Player II regarding which piece of the partition x lands in when moved by a

certain group element. More precisely, for every g ∈ G, Player I asks to which Pn does gx

belong and Player II gives ng < k as an answer. Whether or not Player I can uniquely

determine x from the sequence (ng)g∈G of responses depends on how cleverly he chose the

partition P. A partition is called a generator if it guarantees that Player I will determine

x correctly no matter which x Player II chooses. Here is the precise definition, which also

explains the terminology.

Definition 1.1 (Generator). Let k ≤ ∞ and P = {Pn}n<k be a Borel partition of X (i.e. each

Pn is Borel). P is called a generator if the set of its G-translates GP ∶= {gPn ∶ g ∈ G,n < k}

generates the Borel σ-algebra of X. We also call P a k-generator, and, if k is finite, a finite

generator.

For each k ≤ ∞, we give kG the product topology and let G act by shift on kG. For a Borel

partition P = {Pn}n<k of X, let fI ∶X → kG be defined by x↦ (ng)g∈G, where ng is such that

gx ∈ Png . This is often called the symbolic representation map for the process (X,G,P).

Clearly, fI is a Borel G-map and, for every x ∈ X, fI(x) is the sequence of responses of

7



Player I in the above game. Based on this we have the following.

Observation 1.2. Let k ≤ ∞ and P = {An}n<k be a Borel partition of X. The following are

equivalent:

(1) P is a generator.

(2) GP separates points, i.e. for all distinct x, y ∈X there is A ∈ GP such that x ∈ A⇎ y ∈ A.

(3) fI is one-to-one.

In all of the arguments below, we use these equivalent descriptions of a finite generator

without comment.

Given a Borel G-map f ∶ X → kG for some k ≤ ∞, define a partition Pf = {Pn}n<k by

Pn = f−1(Vn), where Vn = {α ∈ kG ∶ α(1G) = n}. Note that fPf
= f . This and the above

observation imply the following.

Observation 1.3. For k ≤ ∞, X admits a k-generator if and only if there is a Borel G-

embedding of X into kG.

1.1 Countable generators

In [Wei87], it was shown that every aperiodic (i.e. having no finite orbits) Z-space admits a

countable generator. This was later generalized to any countable group in [JKL02].

Theorem 1.4 (Weiss, Jackson-Kechris-Louveau). Every aperiodic Borel G-space X admits

a countable generator. In particular, there is a Borel G-embedding of X into NG.

This is sharp in the sense that we could not hope to obtain a finite generator solely

from the aperiodicity assumption because of measure-theoretic obstructions. Indeed, the

Kolmogorov-Sinai theorem (see ) implies that measure-preserving actions of Z with infinite

entropy cannot have a finite generator, and there a lot of such actions (e.g. the action of Z

on [0,1]Z ∖A by shift, where A is the set of periodic points and the measure is the product

of the Lebesgue measure).

8



Thus, the question of existence of countable generators is completely resolved, and the

current part of this thesis concerns the existence of finite generators.

1.2 Entropy and finite generators

Generators arose in the study of entropy in ergodic theory. Let (X,µ,T ) be a dynamical

system, i.e. (X,µ) is a standard probability space and T is a Borel measure preserving

automorphism of X. We can interpret the above game as follows:

● X is the set of possible pictures of the world,

● P is an experiment that Player I conducts,

● the point x ∈X that Player II chooses is the true picture of the world,

● T is the unit of time.

Assume that P is finite (indeed, we want our experiment to have finitely many possible

outcomes). Player I repeats the experiment every day and Player II tells its outcome. The

goal is to find the true picture of the world x with probability 1. This happens exactly when

P is a generator a.e.

The entropy of the experiment P = {Pn}n<k is defined by

hµ(P) = −∑
n<k

µ(Pn) logµ(Pn),

and intuitively, it measures our probabilistic uncertainty about the outcome of the experi-

ment. For example, if for some n < k, Pn had probability 1, then we would be probabilistically

certain that the outcome is going to be in Pn. On the other hand, if all of Pn had proba-

bility 1
k , then our uncertainty would be the highest. Equivalently, according to Shannon’s

interpretation, hµ(P) measures how much information we gain from learning the outcome

of the experiment. Thus, the higher the entropy the “smarter” the experiment.

We now define the time average of the entropy of P by

hµ(P, T ) = lim
n→∞

1

n
hµ(⋁

i<n
T iP),

9



where ⋁ denotes the joint of the partitions (the least common refinement). The sequence in

the limit is decreasing and hence the limit always exists and is finite (see [Gla03] or [Rud90]).

Finally the entropy of the dynamical system (X,µ,T ) is defined as the supremum over

all (finite) experiments:

hµ(T ) = sup
P
hµ(P, T ),

and it could be finite or infinite. Now it is plausible that if P is a finite generator, then

hµ(P, T ) should be all the information there is to obtain about the dynamics of X and

hence P achieves the supremum above. This is indeed the case as the following theorem (see

Theorem 14.33 in [Gla03], for example) shows.

Theorem 1.5 (Kolmogorov-Sinai, ’58-59). If P is a finite generator modulo µ-NULL, then

hµ(T ) = hµ(P, T ). In particular, hµ(T ) ≤ log(∣P∣) < ∞.

Here µ-NULL denotes the σ-ideal of µ-null sets and, by definition, a statement holds

modulo a σ-ideal I if it holds on X ∖Z, for some Z ∈ I. We will also use this for MEAGER,

the σ-ideal of meager sets in a Polish space.

In case of ergodic systems, i.e. dynamical systems where every (measurable) invariant

set is either null or co-null, the converse of Kolmogorov-Sinai theorem is true (see [Kri70]):

Theorem 1.6 (Krieger, ’70). Suppose (X,µ,T ) is ergodic. If hµ(T ) < log k, for some k ≥ 2,

then there is a k-generator modulo µ-NULL.

2 Questions and answers

2.1 Weiss’s question and potential dichotomy theorems

Now let X be just a Borel Z-space with no measure specified. By the Kolmogorov-Sinai

theorem, if there exists an invariant Borel probability measure on X with infinite entropy,

then X does not admit a finite generator. What happens if we remove this obstruction?

More precisely:

10



Question 2.1. Let X be a Borel Z-space. If X does not admit any invariant Borel probability

measure of infinite entropy, does it have a finite generator?

The following seemingly simpler question was first asked in [Wei87]:

Question 2.2 (Weiss, ’87). Let X be a Borel Z-space. If X does not admit any invariant

Borel probability measure, does it have a finite generator?

It is shown below in Section 14 these two questions are actually equivalent, and thus, a

positive answer to Weiss’s question would imply the following dichotomy theorem:

Theorem 14.5. Suppose the answer to Question 2.2 is positive and let X be an aperiodic

Borel Z-space. Then exactly one of the following holds:

(1) there exists an invariant Borel probability measure with infinite entropy;

(2) X admits a finite generator.

We remark that the nonexistence of an invariant ergodic probability measure of infinite

entropy does not guarantee the existence of a finite generator. For example, let X be a

direct sum of uniquely ergodic actions Z↷Xn such that the entropy hn of each Xn is finite

but hn →∞. Then X does not admit an invariant ergodic probability measure with infinite

entropy since otherwise it would have to be supported on one of the Xn, contradicting unique

ergodicity. Neither does X admit a finite generator since that would contradict Krieger’s

theorem applied to Xn, for large enough n.

However, assuming again that the answer to 2.2 is positive for G = Z, we prove the

following dichotomy suggested by Kechris:

Theorem 14.3. Suppose the answer to Question 2.2 is positive and let X be an aperiodic

Borel Z-space. Then exactly one of the following holds:

(1) there exists an invariant ergodic Borel probability measure with infinite entropy,
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(2) there exists a partition {Yn}n∈N of X into invariant Borel sets such that each Yn has a

finite generator.

The proofs of these dichotomies use the Ergodic Decomposition Theorem and a version

of Krieger’s theorem together with Theorem 13.10 about separating the equivalence classes

of a smooth equivalence relation.

2.2 Weiss’s question for an arbitrary group and an answer

Because Questions 2.1 and 2.2 are equivalent, we may focus on answering the latter. More-

over, since the statement of Question 2.2 does not use the notion of entropy, one may as well

state it for an arbitrary countable group G as it is done in [JKL02]:

Question 2.3 (Weiss ’87, Jackson-Kechris-Louveau ’02). Let G be a countable group and

let X be a Borel G-space. If X does not admit any invariant Borel probability measure, does

it have a finite generator?

In order to state our answer, we need the following:

Definition 2.4. Let X be a Borel G-space and denote its Borel σ-algebra by B(X). For a

topological property P (e.g. Polish, σ-compact, etc.), we say that X admits a P topological

realization, if there exists a Hausdorff second countable topology on X satisfying P such that

it makes the G-action continuous and its induced Borel σ-algebra is equal to B(X).

We remark that every Borel G-space admits a Polish topological realization (this is

actually true for an arbitrary Polish group, but it is a highly non-trivial result of Becker and

Kechris, see 5.2 in [BK96]).

The main result of this part of the thesis is a positive answer to Question 2.3 in case X

has a σ-compact realization:

Theorem 9.5. Let X be a Borel G-space that admits a σ-compact realization. If there is

no G-invariant Borel probability measure on X, then X admits a Borel 32-generator.
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For example, 2.3 has a positive answer when G acts continuously on a locally compact

or even σ-compact Polish space.

Remark. The number 32 in the above theorem comes from the fact that the generator is

constructed as the partition generated by 5 Borel sets.

Remark. The fact that a concrete numerical bound of 32 is obtained in the conclusion

of the above theorem is still somewhat surprising. However, Robin Tucker-Drob pointed

out that if Question 2.3 has a positive answer, then automatically there is a uniform finite

bound on the number generators; indeed, otherwise, there is an unbounded sequence (kn)n∈N
of natural numbers such that for each n ∈ N, there is Borel G-spaces Xkn that

(i) does not admit an invariant probability measure,

(ii) admits an n-generator,

(iii) does not admit a k-generator for k < kn.

Then, letting X be the disjoint union of Xkn , n ∈ N, we see that X still does not admit an

invariant probability measure, but neither does it admit a finite generator, contradicting the

fact that the answer to Question 2.3 is positive.

Before explaining the idea of the proof of the above theorem, we present previously known

results as well as other related results obtained in this part of the thesis.

2.3 The measure-theoretic setting and weakly wandering sets

The following result gives a positive answer to a version of Question 2.3 in the measure-

theoretic context (see [Kre70] for G = Z and [Kun74] for arbitrary G).

Theorem 2.5 (Krengel, Kuntz, ’74). Let X be a Borel G-space and let µ be a quasi-invariant

Borel probability measure on X (i.e. G preserves the µ-null sets). If there is no invari-

ant Borel probability measure absolutely continuous with respect to µ, then X admits a 2-

generator modulo µ-NULL.
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The proof uses a version of the Hajian-Kakutani-Itô theorem (see [HK64] and [HI69]),

which states that the hypothesis of the Krengel-Kuntz theorem is equivalent to the existence

of a weakly wandering set (see Definition 11.1) of positive measure. We show in Section 11

that having a weakly wandering (or even just locally weakly wandering) set of full saturation

implies the existence of finite generators in the Borel context (Theorem 11.5).

However, it was shown by Eigen-Hajian-Nadkarni in [EHN93] that the analogue of the

Hajian-Kakutani-Itô theorem fails in the Borel context. In Section 15, we strengthen this

result by showing that it fails even in the context of Baire category (Corollary 15.11). This

result is a consequence of a criterion for non-existence of non-meager weakly wandering sets

(Theorem 15.7), and it implies a negative answer to the following question asked in [EHN93]

(question (ii) on page 9):

Question 2.6 (Eigen-Hajian-Nadkarni, ’93). Let X be a Borel Z-space. If X does not admit

an invariant probability measure, is there a countably generated (by Borel sets) partition of

X into invariant sets, each of which admits a weakly wandering set of full saturation?

Ben Miller pointed out that he also had obtained a negative answer to this question in

his Ph.D. thesis, see Example 3.13 in [Mil08].

2.4 The Baire category setting

In the mid-’90s, Kechris asked whether an analogue of the Krengel-Kuntz theorem holds in

the context of Baire category (see 6.6.(B) in [JKL02]), more precisely:

Question 2.7 (Kechris, mid-’90s). Does every aperiodic Polish G-space admit a finite gen-

erator on an invariant comeager set?

The nonexistence of invariant measures is not mentioned in the hypothesis of the question

because it is automatic in the context of Baire category, due to the following (cf. Theorem

13.1 in [KM04]):

Theorem 2.8 (Kechris-Miller, ’04). For any aperiodic Polish G-space, there is an invariant
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comeager set that does not admit any invariant probability measure.

Thus, a positive answer to Question 2.3 for all Borel G-spaces would imply a positive

answer to this question.

We give an affirmative answer to Question 2.7:

Theorem 12.2. Any aperiodic Polish G-space admits a 4-generator on an invariant comea-

ger set.

The proof of this uses the Kuratowski-Ulam method introduced in the proofs of Theo-

rems 12.1 and 13.1 in [KM04]. This method was inspired by product forcing and its idea

is as follows. Suppose we want to prove the existence of an object A that satisfies a cer-

tain condition on a comeager set (in our case a finite partition). We give a parametrized

construction of such objects Aα, where the parameter α ranges over 2N or NN (or any other

Polish space), and then try to show that for comeager many values of α, Aα has the desired

property Φ on a comeager set. In other words, we want to prove

∀∗α∀∗xΦ(α,x),

where ∀∗ means “for comeager many”. Now the key point is that the Kuratowski-Ulam

theorem allows us to switch the order of the quantifiers and prove

∀∗x∀∗αΦ(α,x)

instead. The latter is often an easier task since it allows one to work locally with a fixed

x ∈X.

Now that we have advertised the method, let us point out that a “blind” application of

it would not give us the statement of Theorem 12.2. Indeed, assume for a moment that we

have found a parametrized construction of finite partitions Pα, for α ∈ NN, and let

Φ(Pα, x, y) ≡ “if x ≠ y, then GPα separates x and y”.

If we apply the Kuratowski-Ulam method to this Φ, we will get that for comeager many

α ∈ NN, we have:

∀∗(x, y) ∈X2 Φ(Pα, x, y),
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while we want a comeager set D ⊆X such that

∀(x, y) ∈D2 Φ(Pα, x, y).

The problem is that a 2-dimensional comeager set may not contain a square of a 1-dimensional

comeager set. To get around this, we transform our 2-dimensional problem into two 1-

dimensional problems.

2.5 Finitely traveling sets and finite generators

Lastly, we give a positive answer to a version of Question 2.3 with slightly stronger hypothesis.

It is not hard to prove (see 6.7) that for a Borel G-space X, the nonexistence of invariant

probability measures on X is equivalent to the existence of so-called traveling sets of full

saturation (Definition 6.1). We define a slightly stronger notion of a locally finitely traveling

set (Definition 10.2), and show in 10.5 that if there exists such a set of full saturation, then

X admits a 32-generator. The proof uses the machinery developed for proving Theorem 9.5.

2.6 Nadkarni’s theorem

We now present an equivalent condition to the hypothesis of Question 2.3, i.e. to the

nonexistence of invariant measures. It was proved by Nadkarni in [Nad91] and it is the

analogue of Tarski’s theorem about paradoxical decompositions (see [Wag93]) for countably

additive measures.

Let X be a Borel G-space and denote the set of invariant Borel probability measures on

X by MG(X). Also, for S ⊆X, let [S]G denote the saturation of S, i.e. [S]G = ⋃g∈G gS.

The following definition makes no reference to any invariant measure on X, yet provides

a sufficient condition for the measure of two sets to be equal (resp. ≤ or <).

Definition 2.9. Two Borel sets A,B ⊆X are said to be equidecomposable (denoted by A ∼ B)

if there are Borel partitions {An}n∈N and {Bn}n∈N of A and B, respectively, and {gn}n∈N ⊆ G

such that gnAn = Bn. We write A ⪯ B if A ∼ B′ ⊆ B, and we write A ≺ B if moreover
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[B ∖B′]G = [B]G.

The following explains the above definition.

Observation 2.10. Let A,B ⊆X be Borel sets.

(a) If A ∼ B, then µ(A) = µ(B) for any µ ∈ MG(X).

(b) If A ⪯ B, then µ(A) ≤ µ(B) for any µ ∈ MG(X).

(c) If A ≺ B, then either µ(A) = µ(B) = 0 or µ(A) < µ(B) for any µ ∈ MG(X).

Definition 2.11. A Borel set A ⊆X is called compressible if A ≺ A.

It is clear from the observation above that if a Borel set A ⊆ X is compressible, then

µ(A) = 0 for all µ ∈ MG(X). In particular, if X itself is compressible then MG(X) = ∅.

Thus compressibility is an apparent obstruction to having an invariant probability measure.

It turns out that it is the only one:

Theorem 2.12 (Nadkarni, ’91). Let X be a Borel G-space. There is an invariant Borel

probability measure on X if and only if X is not compressible.

The proof of this first appeared in [Nad91] for G = Z and is also presented in Chapter 4

of [BK96] for an arbitrary countable group G. Although we don’t explicitly use this theorem

in our arguments, we use ideas from its proof.

2.7 Outline of the proof of Theorem 9.5

In our attempt to positively answer Question 2.3, we take the non-constructive approach

and try to prove the contrapositive:

No finite generator ⇒ ∃ an invariant probability measure.
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When constructing an invariant measure (e.g. Haar measure), one usually needs some

notion of “largeness” so that X is “large” (e.g. having nonempty interior, being incompress-

ible). So we aim at something like this:

No 32-generator ∃ an invariant probability measure

⇘ ⇗

X is not “small” = X is “large”

In the definition of equidecomposability of sets A and B, the partitions {An}n∈N and

{Bn}n∈N belong to the Borel σ-algebra. For i ≥ 1, we define a finer notion of equidecom-

posability by restricting the Borel σ-algebra to some σ-algebra that is generated by the

G-translates of i-many Borel sets. In this case we say that A and B are i-equidecomposable

and denote by A ∼i B. In other words, A ∼i B if i-many Borel sets are enough to generate

a G-invariant σ-algebra that is sufficiently fine to carve out partitions {An}n∈N and {Bn}n∈N
witnessing A ∼ B.

As before, we say that a set A is i-compressible if A ≺i A. Taking i-compressibility as

our notion of “smallness”, we prove the following:

No 32-generator ∃ an invariant probability measure

(1)⇘ ⇗ (2)

X is not 4-compressible

We prove the contrapositive of Step (1). More precisely, assuming i-compressibility, we

construct a 2i+1-generator by hand, thus obtaining:

No 25-generator ⇒ X is not 4-compressible.

Step (2) is proving an analog of Nadkarni’s theorem for i-compressibility:

X is not 4-compressible ⇒ ∃ an invariant probability measure.

To accomplish this step, firstly, we show that i-compressibility is indeed a notion of “small-

ness”, i.e. that the set of i-compressible sets (roughly speaking) forms a σ-ideal. The

difficulty here is to prevent i from growing when taking unions.
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Secondly, we assume that X is not 4-compressible and give a construction of a measure

reminiscent of the one in the proof of Nadkarni’s theorem or the existence of Haar measure.

But unfortunately, our proof only yields a family of finitely additive invariant probability

measures (here, we cannot prevent i from growing when taking countable unions). However,

with the additional assumption that X is σ-compact, we are able to concoct a countably

additive invariant probability measure out of this family of finitely additive measures, thus

obtaining Theorem 9.5.

2.8 Open questions

Here are some open questions that arose in this research. Let X denote a Borel G-space.

(A) Is X being compressible equivalent to X being i-compressible for some i ≥ 1?

(B) Does the existence of a traveling complete section imply the existence of a locally finitely

traveling complete section?

(C) Can we get a 2-generator instead of a 32-generator in Theorem 9.5?

A positive answer to any of these questions would imply a positive answer to Question

2.3 since (A) is just a rephrasing of Question 2.3 because of 7.7 and for (B), it follows from

6.5 and 10.5.

3 Organization

In Chapter II, we develop the theory of i-compressibility and establish its connection with the

existence of finite generators and nonexistence of certain finitely additive invariant probabil-

ity measures. More particularly, in Section 4 we give the definition of I-equidecomposability

and prove the important property of orbit-disjoint countable additivity (see 4.9), which is

what makes Ci (defined below) a σ-ideal. In Sections 5 and 6 we define the notions of i-

compressibility and i-traveling sets and establish their connection. Finally, in Section 7, we
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show how to construct a finite generator using an i-traveling complete section1. In Section 8,

we prove the main theorem, which provides means of constructing finitely additive invariant

measures (Corollary 8.3) that are non-zero on a given non-i-compressible set.

In the following chapter, we give two applications of Corollary 8.3, namely 9.5 and 10.5,

where the former is the main result of this part stated above and the latter is the result

discussed in Subsection 2.5. Also, Section 11 provides various examples of i-compressible

actions involving locally weakly wandering sets.

Chapter IV contains various somewhat unrelated results. Section 12 establishes the

existence of a 4-generator on an invariant comeager set. In Section 13, we show that given

a smooth equivalence relation E on X with E ⊇ EG, there exists a finite partition P such

that GP separates points in different classes of E; in fact, we give an explicit construction

of such P. This result is then used in the following section, where we establish the potential

dichotomy theorems mentioned above (14.3 and 14.5). Finally, in Section 15 we develop a

criterion for non-existence of non-meager weakly wandering sets and derive a negative answer

to Question 2.6.

1A complete section is a set that meets every orbit (equivalently, has full saturation).
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CHAPTER II

The theory of i-compressibility: connections with finite

generators and finitely additive invariant measures

Throughout this chapter let X be a Borel G-space and EG be the orbit equivalence relation

on X. For a set A ⊆X and G-invariant set P ⊆X, let AP ∶= A ∩ P .

For an equivalence relation E on X and A ⊆X, let [A]E denote the saturation of A with

respect to E, i.e. [A]E = {x ∈ X ∶ ∃y ∈ A(xEy)}. In case E = EG, we use [A]G instead of

[A]EG
.

Let B denote the (proper) class of all Borel subsets of standard Borel spaces, i.e.

B = {B ∶ B is a Borel subset of some standard Borel space X}.

Also, let Γ be a class σ-algebra of subsets of standard Borel spaces containing B and closed

under Borel preimages, i.e. if X,Y are standard Borel spaces and f ∶X → Y is a Borel map,

then for a subset A ⊆ Y , if A ∈ Γ then f−1(A) is also in Γ. For example, Γ = B, σ(Σ1
1),

universally measurable sets.

For a standard Borel space X, let Γ(X) denote the set of all subsets of X that belong to

Γ. In particular, B(X) denotes the set of all Borel subsets of X.

4 The notion of I-equidecomposability

A countable partition of X is called Borel if all the sets in it are Borel. For a finite Borel

partition I = {Ai ∶ i < k} of X, let FI denote the equivalence relation of not being separated
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by GI ∶= {gAi ∶ g ∈ G, i < k}, more precisely, ∀x, y ∈X,

xFIy⇔ fI(x) = fI(y),

where fI is the symbolic representation map for (X,G,I) defined above. Note that if I is a

generator, then FI is just the equality relation.

For A ⊆X, put

Γ(X)⇂A= {A′ ⊆ A ∶ ∃B ∈ Γ(X) (A′ = B ∩A)}.

Also, for an equivalence relation E on X and A,B ⊆X, say that A is E-invariant relative to

B or just E ⇂B-invariant if [A]E ∩B = A ∩B.

Definition 4.1 (I-equidecomposability). Let A,B ⊆X, and I be a finite Borel partition of

X. A and B are said to be equidecomposable with Γ pieces (denote by A ∼Γ B) if there are

{gn}n∈N ⊆ G and partitions {An}n∈N and {Bn}n∈N of A and B, respectively, such that for all

n ∈ N

● gnAn = Bn,

● An ∈ Γ(X)⇂A and Bn ∈ Γ(X)⇂B.

If moreover,

● An and Bn are FI-invariant relative to A and B, respectively,

then we will say that A and B are I-equidecomposable with Γ pieces and denote it by A ∼Γ
I B.

If Γ =B, we will not mention Γ and will just write ∼ and ∼I.

Note that for any finite Borel partition I of X and Borel sets A,B ⊆ X, A and B are

I-equidecomposable if and only if fI(A) and fI(B) are equidecomposable (although the

images of Borel sets under fI are analytic, they are Borel relative to fI(X) due to the Lusin

Separation Theorem for analytic sets). Also note that if I is a generator, then ∼I coincides

with ∼.
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Observation 4.2. Below let I,I0,I1 denote finite Borel partitions of X, and A,B,C ∈ Γ(X).

(a) (Quasi-transitivity) If A ∼Γ
I0
B ∼Γ

I1
C, then A ∼Γ

I C with I = I0 ∨ I1 (the least common

refinement of I0 and I1).

(b) (FI-disjoint countable additivity) Let {An}n∈N,{Bn}n∈N be partitions of A and B, respec-

tively, into Γ sets such that ∀n ≠m, [An]FI ∩ [Am]FI = [Bn]FI ∩ [Bm]FI = ∅. If ∀n ∈ N,

An ∼Γ
I Bn, then A ∼Γ

I B.

If A ∼ B, then there is a Borel isomorphism φ of A onto B with φ(x)EGx for all x ∈ A;

namely φ(x) = gnx for all x ∈ An, where An, gn are as in Definition 2.9. It is easy to see that

the converse is also true, i.e. if such φ exists, then A ∼ B. In Proposition 4.5 we prove the

analogue of this for ∼Γ
I , but first we need the following lemma and definition that take care

of definability and FI-invariance, respectively.

For a Polish space Y , f ∶X → Y is said to be Γ-measurable if the preimages of open sets

under f are in Γ. For A ∈ Γ(X) and h ∶ A→ G, define ĥ ∶ A→X by x↦ h(x)x.

Lemma 4.3. If h ∶ A → G is Γ-measurable, then the images and preimages of sets in Γ

under ĥ are in Γ.

Proof. Let B ⊆ A, C ⊆ X be in Γ. For g ∈ G, set Ag = h−1(g) and note that ĥ(B) =

⋃g∈G g(Ag ∩ B) and ĥ−1(C) = ⋃g∈G g−1(gAg ∩ C). Thus ĥ(B) and ĥ−1(C) are in Γ by the

assumptions on Γ.

The following technical definition is needed in the proofs of 4.5 and 4.9.

Definition 4.4. For A ⊆X and a finite Borel partition I of X, we say that I is A-sensitive

or that A respects I if A is FI-invariant relative to [A]G, i.e. [A][A]G
FI

= A.

For example, if I is finer than {A,Ac}, then I is A-sensitive. Note that if A ∼I B and A

respects I, then so does B.
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Proposition 4.5. Let A,B ∈ Γ(X) and let I be a Borel partition of X that is A-sensitive.

Then, A ∼Γ
I B if and only if there is an FI-invariant Γ-measurable map γ ∶ A→ G such that

γ̂ is a bijection between A and B. We refer to such γ as a witnessing map for A ∼Γ
I B. The

same holds if we delete “FI-invariant” and “I” from the statement.

Proof. ⇒: If {gn}n∈N, {An}n∈N and {Bn}n∈N are as in Definition 4.1, then define γ ∶ A → G

by setting γ ⇂An≡ gn.

⇐: Let γ be as in the lemma. Fixing an enumeration {gn}n∈N of G with no repetitions, put

An = γ−1(gn) and Bn = gnAn. It is clear that {An}n∈N,{Bn}n∈N are partitions of A and B,

respectively, into Γ sets. Since γ is FI-invariant, each An is FI-invariant relative to A and

hence relative to P ∶= [A]G = [B]G because A respects I. It remains to show that each Bn

is FI-invariant relative to B. To this end, let y ∈ [Bn]FI ∩B and thus there is x ∈ An such

that yFIgnx. Hence z ∶= g−1
n y FI g−1

n gnx = x and therefore z ∈ An because An is FI-invariant

relative to P . Thus y = gnz ∈ Bn.

In the rest of the subsection we work with Γ =B.

Next we prove that I-equidecomposability can be extended to FI-invariant Borel sets.

First we need the following separation lemma for analytic sets1:

Lemma 4.6 (Invariant analytic separation). Let E be an analytic equivalence relation on X.

For any disjoint family {An}n∈N of E-invariant analytic sets, there exists a disjoint family

{Bn}n∈N of E-invariant Borel sets such that An ⊆ Bn.

Proof (Vaught). We give the proof for two disjoint E-invariant analytic sets A0,A1 since this

easily implies the statement for countably many. Recursively define analytic sets Cn ⊆ X

and Borel sets Dn ⊆X such that for every n ∈ N we have

(i) A0 ⊆ Cn ⊆Dn ⊆ Cn+1 ⊆ Ac1,

1My original argument used Π1
1 reflection principles, but it was pointed out to me by Shashi Srivastava

that one could use analytic separation instead. I chose to present this latter argument here since analytic
separation may be more transparent for non-logicians than Π1

1 reflection principles.
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(ii) Cn is E-invariant.

To do this, let C0 = A0, and, assuming that Cn is defined, define Dn,Cn+1 as follows: since

Cn and A1 are disjoint analytic sets, there is a Borel set Dn separating them (by the Lusin

separation theorem), i.e. Dn ⊇ Cn and Dn ∩A1 = ∅. Let Cn+1 = [Dn]E, and note that Cn+1

is analytic and disjoint from A1 since A1 is E-invariant and disjoint from Dn. This finishes

the construction.

Now let B = ⋃n∈NDn; hence B is Borel, contains A0 and is disjoint from A1. On the

other hand, B = ⋃n∈NCn and thus is E-invariant.

Proposition 4.7 (FI-invariant extensions). Let I be a Borel partition of X and let A,B ⊆X

be Borel sets. If A ∼I B, then there exists Borel sets A′ ⊇ A and B′ ⊇ B such that A′,B′

are FI-invariant and A′ ∼I B′. In fact, if {gn}n∈N,{An}n∈N,{Bn}n∈N witness A ∼I B, then

there are FI-invariant Borel partitions {A′
n}n∈N,{B′

n}n∈N of A′ and B′ respectively, such that

gnA′
n = B′

n and A′
n ⊇ An (and hence B′

n ⊇ Bn).

Proof. Let {gn}n∈N,{An}n∈N,{Bn}n∈N be as in Definition 4.1 and put An = [An]FI . It is easy

to see that for n ≠m ∈ N,

(i) An ∩Am = ∅;

(ii) gnAn ∩ gmAm = ∅.

Put A = [A]FI and note that {An}n∈N is a partition of A. Although An and A are FI-

invariant, they are analytic and in general not Borel. We obtain Borel analogues of these

sets using invariant analytic separation as follows: by Lemma 4.6 applied to {An}n∈N and

{gnAn}n∈N, there are pairwise disjoint families {Cn}n∈N and {Dn}n∈N of FI-invariant Borel

sets such that Cn ⊇ An and Dn ⊇ gnAn. Taking A′
n = Cn ∩ g−1

n Dn, we see that {A′
n}n∈N is a

pairwise disjoint family of FI-invariant Borel sets such that A′
n ⊇ An. Moreover, {gnA′

n}n∈N
is also a pairwise disjoint family. Thus, taking B′

n = gnA′
n, we are done.
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Lemma 4.8 (Orbit-disjoint unions). Let Ak,Bk ∈ B(X), k = 0,1, be such that [A0]G and

[A1]G are disjoint and put A = A0 ∪ A1 and B = B0 ∪ B1. If I is an A,B-sensitive finite

Borel partition of X such that Ak ∼I Bk for k = 0,1, then A ∼I B. Moreover, if γ0 ∶ A0 → G

is a Borel map witnessing A0 ∼I B0, then there exists a Borel map γ ∶ A → G extending γ0

that witnesses A ∼I B.

Proof. First assume without loss of generality that X = [A]G (= [B]G) since the statement

of the lemma is relative to [A]G. Thus A,B are FI-invariant.

Applying 4.7 to A0 ∼I B0, we get FI-invariant A′
0 ⊇ A0,B′

0 ⊇ B0 such that A′ ∼I B′.

Moreover, by the second part of the same lemma, if γ0 ∶ A0 → G is a witnessing map for

A0 ∼I B0, then there is a witnessing map δ ∶ A′
0 → G for A′ ∼I B′ extending γ0. Put C = A′

0∩A

and note that C is FI-invariant since so are A′
0 and A. Finally, put A0 = {x ∈ C ∶ C[x]G =

A[x]G ∧ δ̂(C[x]G) = B[x]G} and note that A0 ⊇ A0 since δ ⊇ γ0 and [A0]G ∩ [A1]G = ∅.

Claim. A0 is FI-invariant.

Proof of Claim. First note that for any FI-invariant D ⊆X and z ∈X, [D[z]G]FI =D[[z]F
I
]G .

Furthermore, if D ⊆ C, then [δ̂(D)]FI = δ̂([D]FI) since δ̂ and its inverse map FI-invariant

sets to FI-invariant sets.

Now take x ∈ A0 and let Q = [[x]FI]G. Since A,B,C are FI-invariant, CQ = [C[x]G]FI =

[A[x]G]FI = AQ. Furthermore, δ̂(CQ) = δ̂([C[x]G]FI) = [δ̂(C[x]G)]FI = [B[x]G]FI = BQ. Thus,

∀y ∈ [x]FI , C[y]G = A[y]G and δ̂(C[y]G) = B[y]G ; hence [x]FI ⊆ A0. ⊣

Put A1 = A ∖A0, α0 = δ ⇂A0
, α1 = γ1 ⇂A1

, where γ1 is a witnessing map for A1 ∼I B1. It is

clear from the definition of A0 that A0 is EG-invariant relative to A and hence [A0]G∩[A1]G =

∅. Thus, for k = 0,1, it follows that αk witnesses Ak ∼I Bk, where Bk = α̂k(Ak). Furthermore,

it is clear that B[Ak]G = Bk and, since [A0]G∪[A1]G =X, B0∪B1 = B. Now since Ak are FI-

invariant, γ = α0 ∪ α1 is FI-invariant and hence witnesses A ∼I B. Finally, α0 ⇂A0= δ ⇂A0= γ0

and hence α0 ⊇ γ0.
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Proposition 4.9 (Orbit-disjoint countable unions). For k ∈ N, let Ak,Bk ∈ B(X) be such

that [Ak]G are disjoint and put A = ⋃k∈NAk, B = ⋃k∈NBk. Suppose that I is an A,B-sensitive

finite Borel partition of X such that Ak ∼I Bk for all k. Then A ∼I B.

Proof. We recursively apply Lemma 4.8 as follows. Put An = ⋃k≤nAk and Bn = ⋃k≤nBk.

Inductively define Borel maps γn ∶ ⋃k≤nAk → G such that γn is a witnessing map for An ∼I Bn

and γn ⊑ γn+1. Let γ0 be a witnessing map for A0 ∼I B0. Assume γn is defined. Then γn+1

is provided by Lemma 4.8 applied to An and An+1 with γn as a witness for An ∼I Bn. Thus

γn ⊑ γn+1 and γn+1 witnesses An+1 ∼I Bn+1.

Now it just remains to show that γ ∶= ⋃n∈N γn is FI-invariant since then it follows that

γ witnesses A ∼I B. Let x, y ∈ A be FI-equivalent. Then there is n such that x, y ∈ An. By

induction on n, γn is FI-invariant and, since γ ⇂An
= γn, γ(x) = γ(y).

Corollary 4.10 (Finite quasi-additivity). For k = 0,1, let Ak,Bk ∈ B(X) be such that

A0 ∩A1 = B0 ∩B1 = ∅ and put A = A0 ∪A1, B = B0 ∪B1. Let Ik be an Ak,Bk-sensitive finite

Borel partition of X. If A0 ∼I0 B0 and A1 ∼I1 B1, then A ∼I0∨I1 B.

Proof. Put I = I0 ∨ I1, P = [A0]G ∩ [A1]G, Q = [A0]G ∖ [A1]G and R = [A1]G ∖ [A0]G. Then

APk ,B
P
k respect I, and thus [A0]PFI ∩ [A1]PFI = ∅, [B0]PFI ∩ [B1]PFI = ∅. Hence AP ∼I BP since

the sets that are FI-invariant relative to APk are also FI-invariant relative to AP , and the

same is true for BP
k and BP . Also, AQ ∼I BQ and AR ∼I BR because AQ = A0, BQ = B0,

AR = A1, BR = B1. Now since P,Q,R are pairwise disjoint, it follows from Proposition 4.9

that A ∼I B.

5 The notion of i-compressibility

For a finite collection F of subsets of X, let ⟨F⟩ denote the partition of X generated by F .

Definition 5.1 (i-equidecomposibility). For i ≥ 1, A,B ⊆ X, we say that A and B are

i-equidecomposable with Γ pieces (write A ∼Γ
i B) if there is an A-sensitive partition I of X
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generated by i Borel sets such that A ∼Γ
I B. For a collection F of Borel sets, we say that F

witnesses A ∼Γ
i B if ∣F∣ = i, I ∶= ⟨F⟩ is A-sensitive and A ∼Γ

I B.

Remark. In the above definition, it might seem more natural to have i be the cardinality

of the partition I instead of the cardinality of the collection F generating I. However, our

definition above of i-equidecomposability is needed in order to show that the collection Ci

defined below forms a σ-ideal. More precisely, the presence of F is needed in the definition

of i∗-compressibility, which ensures that the partition I in the proof of 5.7 is B-sensitive.

For a family F of subsets of X, let σG(F) denote the σ-algebra generated by GF .

Remark. Slawek Solecki pointed out that for i ≥ 1 and Borel sets A,B ⊆ X, A ∼i B if

and only if A ∼ B and the partitions {An}n∈N, {Bn}n∈N witnessing the equidecomposability

of A and B can be taken from a σ-algebra generated by the G-translates of i-many Borel

sets. More precisely, A ∼i B if and only if there are a family F of i-many Borel sets,

a sequence {gn}n∈N ⊆ G, and partitions {An}n∈N and {Bn}n∈N of A and B, respectively,

such that An,Bn ∈ σG(F) and gnAn = Bn. Thus, i-equidecomposability is obtained from

equidecomposability by restricting the Borel σ-algebra to some σ-algebra generated by the

G-translates of i-many Borel sets. Finally, note that every instance of ∼i uses a (potentially)

different σ-algebra.

For i ≥ 1, A,B ⊆ X, we write A ⪯Γ
i B if there is a Γ set B′ ⊆ B such that A ∼Γ

i B
′. If

moreover [A ∖B]G = [A]G, then we write A ≺Γ
i B. If Γ =B, we simply write ∼i,⪯i,≺i.

Definition 5.2 (i-compressibility). For i ∈ N, A ⊆ X, we say that A is i-compressible with

Γ pieces if A ≺Γ
i A.

Unless specified otherwise, we will be working with Γ = B, in which case we simply say

i-compressible.

For a collection of sets F and a G-invariant set P , set FP = {AP ∶ A ∈ F}. We will use

the following observations without mentioning.
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Observation 5.3. Let i, j ≥ 2, A,A′,B,B′,C ∈B. Let P ⊆ [A]G denote a G-invariant Borel

set and F ,F0,F1 denote finite collections of Borel sets.

(a) If A ∼i B then AP ∼i BP .

(b) If F witnesses A ∼i B, then so does F [A]G.

(c) If A ∼i B ∼j C, then A ∼(i+j) C. In fact, F0 and F1 witness A ∼i B and B ∼j C,

respectively, then F = F0 ∪ F1 witnesses A ∼(i+j) C.

(d) If A ⪯i B ⪯j C, then A ⪯(i+j) C. If one of the first two ⪯ is ≺ then A ≺(i+j) C.

(e) If A ∼i B and A′ ∼j B′ with A ∩A′ = B ∩B′ = ∅, then A ∪A′ ∼(i+j) B ∪B′.

Proof. Part (e) follows from 4.10, and the rest follows directly from the definition of i-

equidecomposability and 4.2.

Lemma 5.4. If a Borel set A ⊆X is i-compressible, then so is [A]G. In fact, if F is a finite

collection of Borel sets witnessing the i-compressibility of A, then it also witnesses that of

[A]G.

Proof. Let B ⊆ A be a Borel set such that [A ∖B]G = [A]G and A ∼i B. Furthermore, let I

be an A,B-sensitive partition generated by a collection F of i Borel sets such that A ∼I B.

Let γ ∶ A → G be a witnessing map for A ∼I B. Put A′ = [A]G, B′ = B ∪ (A′ ∖A) and note

that A′,B′ respect I. Define γ′ ∶ A′ → G by setting γ′ ⇂A′∖A= id ⇂A′∖A and γ′ ⇂A= γ. Since

A′ respects I and id ⇂A′∖A, γ are FI-invariant, γ′ is FI-invariant and thus clearly witnesses

A′ ∼I B′.

The following is a technical refinement of the definition of i-compressibility that is (again)

necessary for Ci, defined below, to be a σ-ideal.

Definition 5.5 (i∗-compressibility). For i ≥ 1, we say that a Borel set A is i∗-compressible if

there is a Borel set B ⊆ A such that [A∖B]G = [A]G =∶ P , A ∼i B, and the latter is witnessed

by a collection F of Borel sets such that B ∈ FP .
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Finally, for i ≥ 1, put

Ci = {A ⊆X ∶ there is a G-invariant Borel set P ⊇ A such that P is i∗-compressible}.

Lemma 5.6. Let i ≥ 1 and A ⊆X be Borel. If A ≺i A, then A ∈ Ci+1.

Proof. Setting P = [A]G and applying 5.4, we get that P ≺i P , i.e. there is B ⊆ P such that

[P ∖ B]G = P and P ∼i B. Let F be a collection of Borel sets witnessing the latter fact.

Then F ′ = F ∪ {B} witnesses P ∼(i+1) B and contains B.

Proposition 5.7. For all i ≥ 1, Ci is a σ-ideal.

Proof. We only need to show that Ci is closed under countable unions. For this it is enough

to show that if An ∈B(X) are i∗-compressible G-invariant Borel sets, then so is A ∶= ⋃n∈NAn.

We may assume that An are pairwise disjoint since we could replace each An by An ∖

(⋃k<nAk). Let Bn ⊆ An be a Borel set and Fn = {F n
k }k<i be a collection of Borel sets with

(F n
0 )An = Bn such that Fn witnesses An ∼i Bn and [An ∖Bn]G = An. Using part (b) of 5.3,

we may assume that FAn
n = Fn; in particular, F n

0 = Bn.

Put B = ⋃n∈NBn and Fk = ⋃n∈NF n
k , ∀k < i; note that F0 = B. Set F = {Fk}k<i and I = ⟨F⟩.

Since B ∈ F and A is G-invariant, I is A,B-sensitive. Furthermore, since FAn = Fn, An ∼I Bn

for all n ∈ N. Thus, by 4.9, A ∼I B and hence A is i∗-compressible.

6 Traveling sets

Definition 6.1. Let A ∈ Γ(X).

● We call A a traveling set with Γ pieces if there exists pairwise disjoint sets {An}n∈N in

Γ(X) such that A0 = A and A ∼Γ An, ∀n ∈ N.

● For a finite Borel partition I, we say that A is I-traveling with Γ pieces if A respects

I and the above condition holds with ∼Γ replaced by ∼Γ
I .
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● For i ≥ 1, we say that A is i-traveling if it is I-traveling for some A-sensitive partition

I generated by a collection of i Borel sets.

Definition 6.2. For a set A ⊆ X, a function γ ∶ A → GN is called a travel guide for A if

∀x ∈ A,γ(x)(0) = 1G and ∀(x,n) ≠ (y,m) ∈ A ×N, γ(x)(n)x ≠ γ(y)(m)y.

For A ∈ Γ(X), a Γ-measurable map γ ∶ A → GN and n ∈ N, set γn ∶= γ(⋅)(n) ∶ A → G and

note that γn is also Γ-measurable.

Observation 6.3. Suppose A ∈ Γ(X) and I is an A-sensitive finite Borel partition of X.

Then A is I-traveling with Γ pieces if and only if it has a Γ-measurable FI-invariant travel

guide.

Proof. Follows from definitions and Proposition 4.5.

Now we establish the connection between compressibility and traveling sets.

Lemma 6.4. Let I be a finite Borel partition of X, P ∈ Γ(X) be a Borel G-invariant set and

let A,B be Γ subsets of P . If P ∼Γ
I B, then P ∖B is I-traveling with Γ pieces. Conversely,

if A is I-traveling with Γ pieces, then P ∼Γ
I (P ∖A). The same is true if we replace ∼Γ

I and

“I-traveling” with ∼Γ and “traveling”, respectively.

Proof. For the first statement, let γ ∶X → G be a witnessing map for X ∼Γ
I B. Put A′ =X∖B

and note that A′ respects I since so does P and hence B. We show that A′ is I-traveling.

Put An = (γ̂)n(A′), for each n ≥ 0. It follows from injectivity of γ̂ that An are pairwise

disjoint. For all n, recursively define δn ∶ A′ → G as follows

⎧⎪⎪⎪⎨⎪⎪⎪⎩

δ0 = γ ⇂A′

δn+1 = γ ○ δ̂n
.

It follows from FI-invariance of γ that each δn is FI-invariant. It is also clear that δ̂n = (γ̂)n

and hence δn is a witnessing map for A′ ∼Γ
I An. Thus A′ is i-traveling with Γ pieces.

For the converse, assume that A is I-traveling and let {An}n∈N be as in Definition 6.1.

In particular, each An respects I and An ∼Γ
I Am, for all n,m ∈ N. Let P ′ = ⋃n∈NAn and
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B′ = ⋃n≥1An. Since An ∼Γ
I An+1, part (b) of 4.2 implies that P ′ ∼Γ

I B
′. Moreover, since

P ∖ P ′ ∼Γ
I P ∖ P ′, we get P ∼Γ

I (B′ ∪ (P ∖ P ′)) = P ∖A.

For a G-invariant set P and A ⊆ P , we say that A is a complete section for P if [A]G = P .

The above lemma immediately implies the following.

Proposition 6.5. Let P ∈ Γ(X) be G-invariant and i ≥ 1. P is i-compressible with Γ pieces

if and only if there exists a complete section for P that is i-traveling with Γ pieces. The same

is true with “i-compressible” and “i-traveling” replaced by “compressible” and “traveling”.

We need the following lemma in the proofs of 6.7 and 6.8.

Lemma 6.6. Suppose A ⊆ X is an invariant analytic set that does not admit an invariant

Borel probability measure. Then there is an invariant Borel set A′ ⊇ A that still does not

admit an invariant Borel probability measure.

Proof. LetM denote the standard Borel space of G-invariant Borel probability measures on

X (see Section 17 in [Kec95]). Let Φ ⊆ Pow(X) be the following predicate:

Φ(W ) ⇔ ∀µ ∈ M(µ(W ) = 0).

Claim. There is a Borel set B ⊇ A with Φ(B).

Proof of Claim. By the dual form of the First Reflection Theorem for Π1
1 (see the discussion

following 35.10 in [Kec95]), it is enough to show that Φ is Π1
1 on Σ1

1. To this end, let Y be

a Polish space and D ⊆ Y ×X be analytic. Then, for any n ∈ N, the set

Hn = {(µ, y) ∈ M× Y ∶ µ(Dy) >
1

n
},

is analytic by a theorem of Kondô-Tugué (see 29.26 of [Kec95]), and hence so are the sets

H ′
n ∶= projY (Hn) and H ∶= ⋃n∈NH ′

n. Finally, note that

{y ∈ Y ∶ Φ(Ay)} = {y ∈ Y ∶ ∃µ ∈ M∃n ∈ N(µ(Ay) >
1

n
)}c =Hc,

and so {y ∈ Y ∶ Φ(Ay)} is Π1
1. ⊣
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Now put A′ = (B)G, where (B)G = {x ∈ B ∶ [x]G ⊆ B}. Clearly, A′ is an invariant Borel

set, A′ ⊇ A, and Φ(A′) since A′ ⊆ B and Φ(B).

Proposition 6.7. Let X be a Borel G-space. The following are equivalent:

(1) X is compressible with universally measurable pieces;

(2) There is a universally measurable complete section that is a traveling set with universally

measurable pieces;

(3) There is no G-invariant Borel probability measure on X;

(4) X is compressible with Borel pieces;

(5) There is a Borel complete section that is a traveling set with Borel pieces.

Proof. Equivalence of (1) and (2) as well as (4) and (5) is asserted in 6.5, (4)⇒(1) is trivial,

and (3)⇒(4) follows from Nadkarni’s theorem (see 2.12). It remains to show (1)⇒(3). To

this end, suppose X ∼Γ B, where Bc = X ∖ B is a complete section and Γ is the class of

universally measurable sets. If there was a G-invariant Borel probability measure µ on X,

then µ(X) = µ(B) and hence µ(Bc) = 0. But since Bc is a complete section, X = ⋃g∈G gBc,

and thus µ(X) = 0, a contradiction.

Now we prove an analogue of this for i-compressibility.

Proposition 6.8. Let X be a Borel G-space. For i ≥ 1, the following are equivalent:

(1) X is i-compressible with universally measurable pieces;

(2) There is a universally measurable complete section that is an i-traveling set with univer-

sally measurable pieces;

(3) There is a partition I of X generated by i Borel sets such that Y = fI(X) ⊆ ∣I∣G does

not admit a G-invariant Borel probability measure;

(4) X is i-compressible with Borel pieces;
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(5) There is a Borel complete section that is a i-traveling set with Borel pieces.

Proof. Equivalence of (1) and (2) as well as (4) and (5) is asserted in 6.5 and (4)⇒(1) is

trivial. It remains to show (1)⇒(3)⇒(5).

(1)⇒(3): Suppose X ∼Γ
I B, where Bc = X ∖ B is a complete section, I is a partition of

X generated by i Borel sets, and Γ denotes the class of universally measurable sets. Let

γ ∶ X → G be a witnessing map for X ∼Γ
i B. By the Jankov-von Neumann uniformization

theorem (see 18.1 in [Kec95]), fI has a σ(Σ1
1)-measurable (hence universally measurable)

right inverse h ∶ Y → X. Define δ ∶ Y → G by δ(y) = γ(h(y)) and note that δ is universally

measurable being a composition of such functions. Letting B′ = δ̂(Y ), it is straightforward

to check that δ̂ ○ fI = fI ○ γ̂ and thus B′ = fI(γ̂(X)) = fI(B). Now it follows that δ is a

witnessing map for Y ∼Γ B′ and hence Y is compressible with universally measurable pieces.

Finally, (1)⇒(3) of 6.7 implies that Y does not admit an invariant Borel probability measure.

(3)⇒(5): Assume Y is as in (3). Then by Lemma 6.6, there is a Borel G-invariant Y ′ ⊇ Y

that does not admit a G-invariant Borel probability measure. Viewing Y ′ as a Borel G-

space, we apply (3)⇒(4) of 6.7 and get that Y ′ is compressible with Borel pieces; thus

there is a Borel B′ ⊆ Y ′ with [Y ′ ∖ B′]G = Y ′ such that Y ′ ∼ B′. Let δ ∶ Y ′ → G be a

witnessing map for Y ′ ∼ B′. Put B = f−1
I (B′) and γ = δ ○ fI . By definition, γ is FI-

invariant. In fact, it is straightforward to check that γ is a witnessing map for X ∼I B and

[X ∖B]G = [f−1
I (Y ∖B′)]G = f−1

I ([Y ∖B′]G) = f−1
I (Y ) =X. Hence X is I-compressible.

We now give an example of a 1-traveling set. First we need some definitions.

Definition 6.9. Let X be a Borel G-space and A ⊆X be Borel. A is called

● aperiodic if it intersects every orbit in either 0 or infinitely many points;

● a partial transversal if it intersects every orbit in at most one point;

● smooth if there is a Borel partial transversal T ⊆ A such that [T ]G = [A]G.
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Proposition 6.10. Let X be an aperiodic Borel G-space and T ⊆ X be Borel. If T is a

partial transversal, then T is ⟨T ⟩-traveling.

Proof. let G = {gn}n∈N with g0 = 1G. For each n ∈ N, define n̄ ∶ X → N and γn ∶ T → G

recursively in n as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

n̄(x) = the least k such that gkx ∉ {γ̂i(x) ∶ i < n}

γn(x) = gn̄(x)
.

Clearly, n̄ and γn are well-defined and Borel. Define γ ∶ T → GN by setting γ(⋅)(n) = γn. It

follows from the definitions that γ is a Borel travel guide for T and hence, T is a traveling set.

It remains to show that γ is FI-invariant, where I = ⟨T ⟩. For this it is enough to show that n̄

is FI-invariant, which we do by induction on n. Since it trivially holds for n = 0, we assume

it is true for all 0 ≤ k < n and show it for n. To this end, suppose x, y ∈ T with xFIy, and

assume for contradiction that m ∶= n̄(x) < n̄(y). Thus it follows that gmy = γ̂k(y) ∈ γ̂k(T ),

for some k < n. By the induction hypothesis, γ̂k(T ) is FI-invariant and hence, gmx ∈ γ̂k(T ),

contradicting the definition of n̄(x).

Corollary 6.11. Let X be an aperiodic Borel G-space. If a Borel set A ⊆X is smooth, then

A ∈ C1.

Proof. Let P = [A]G and let T be a Borel partial transversal with [T ]G = P . By 6.10, T

is I-traveling, where I = ⟨T ⟩. Hence, P ∼I P ∖ T , by Lemma 6.4. This implies that P is

1∗-compressible since I = ⟨T c⟩ and P ∖ T ∈ {T c}P .

7 Constructing finite generators using i-traveling sets

Lemma 7.1. Let A ∈ B(X) be a complete section and I be an A-sensitive finite Borel

partition of X. If A is I-traveling (with Borel pieces), then there is a Borel 2∣I∣-generator.

If moreover A ∈ I, then there is a Borel (2∣I∣ − 1)-generator.

Proof. Let γ be an FI-invariant Borel travel guide for A. Fix a countable family {Un}n∈N
generating the Borel structure of X and let B = ⋃n≥1 γ̂n(A ∩ Un). By Lemma 4.3, each γ̂n

35



maps Borel sets to Borel sets and hence B is Borel. Set J = ⟨B⟩ , P = I ∨ J and note that

∣P∣ ≤ 2∣I∣. A and B are disjoint since {γ̂n(A)}n∈N is a collection of pairwise disjoint sets and

γ̂0(A) = A; thus if A ∈ I, ∣P∣ ≤ 1+ 2(∣I∣ − 1) = 2∣I∣ − 1. We show that P is a generator, that is

GP separates points in X.

Let x ≠ y ∈ X and assume they are not separated by GI, thus xFIy. We show that GJ

separates x and y. Because A is a complete section, multiplying x by an appropriate group

element, we may assume that x ∈ A. Since A respects I, A is FI-invariant and thus y ∈ A.

Also, because γ is FI-invariant, γn(x) = γn(y), ∀n ∈ N. Let n ≥ 1 be such that x ∈ Un but

y ∉ Un. Put g = γn(x)(= γn(y)). Then gx = γ̂n(x) ∈ γ̂n(A∩Un) while gy = γ̂n(y) ∉ γ̂n(A∩Un).

Hence, gx ∈ B and gy ∉ B because γm(A) ∩ γn(A) = ∅ for all m ≠ n and gy = γ̂n(y) ∈ γ̂n(A).

Thus GJ separates x and y.

Now 6.8 and 7.1 together imply the following.

Proposition 7.2. Let X be a Borel G-space and i ≥ 1. If X is i-compressible then there is

a Borel 2i+1-generator.

Proof. By 6.8, there exists a Borel i-traveling complete section A. Let I witness A being

i-traveling and thus, by Lemma 7.1, there is a 2∣I∣ ≤ 2 ⋅ 2i = 2i+1-generator.

Example 7.3. For 2 ≤ n ≤ ∞, let Fn denote the free group on n generators and let X be the

boundary of Fn, i.e. the set of infinite reduced words. Clearly, the product topology makes

X a Polish space and Fn acts continuously on X by left concatenation and cancellation. We

show that X is 1-compressible and thus admits a Borel 22 = 4-generator by Proposition 7.2.

To this end, let a, b be two of the n generators of Fn and let Xa be the set of all words in

X that start with a. Then X = (Xa−1 ∪Xc
a−1) ∼I Y , where Y = bXa−1 ∪ aXc

a−1 and I⟨Xa−1⟩.

Hence X ∼1 Y . Since X ∖ Y ⊇Xa−1 , [X ∖ Y ]Fn =X and thus X is 1-compressible.

Now we obtain a sufficient condition for the existence of an embedding into a finite

Bernoulli shift.
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Corollary 7.4. Let X be a Borel G-space and k ∈ N. If there exists a Borel G-map f ∶X →

kG such that Y = f(X) does not admit a G-invariant Borel probability measure, then there

is a Borel G-embedding of X into (2k)G.

Proof. Let I = If and hence f = fI . By (3)⇒(5) of 6.8 (or rather the proof of it), X admits

a Borel I-traveling complete section. Thus by Lemma 7.1, X admits a 2∣I∣ = 2k-generator

and hence, there is a Borel G-embedding of X into (2k)G.

Lemma 7.5. Let I be a partition of X into n Borel sets. Then I is generated by k = ⌈log2(n)⌉

Borel sets.

Proof. Since 2k ≥ n, we can index I by the set 2k of all k-tuples of {0,1}, i.e. I = {Aσ}σ∈2k .

For all i < k, put

Bi = ⋃
σ∈2k∧σ(i)=1

Aσ.

Now it is clear that for all σ ∈ 2k, Aσ = ⋂i<kBσ(i)
i , where B

σ(i)
i is equal to Bi if σ(i) = 1, and

equal to Bc
i , otherwise. Thus I = ⟨Bi ∶ i < k⟩.

Proposition 7.6. If X is compressible and there is a Borel n-generator, then X is ⌈log2(n)⌉-

compressible.

Proof. Let I be an n-generator and hence, by Lemma 7.5, I is generated by i Borel sets.

Since GI separates points in X, each FI-class is a singleton and hence X ≺ X implies

X ≺I X.

From 7.2 and 7.6 we immediately get the following corollary, which justifies the use of

i-compressibility in studying Question 2.3.

Corollary 7.7. Let X be a Borel G-space that is compressible (equivalently, does not admit

an invariant Borel probability measure). X admits a finite generator if and only if X is

i-compressible for some i ≥ 1.
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8 Finitely additive invariant measures and i-compressibility

This section is mainly devoted to the following theorem, together its corollaries and proof.

Theorem 8.1. Let X be a Borel G-space. If X is aperiodic, then there exists a function

m ∶B(X) ×X → [0,1] satisfying the following properties for all A,B ∈B(X):

(a) m(A, ⋅) is Borel;

(b) m(X,x) = 1, ∀x ∈X;

(c) If A ⊆ B, then m(A,x) ≤m(B,x), ∀x ∈X;

(d) m(A,x) = 0 off [A]G;

(e) m(A,x) > 0 on [A]G modulo C4;

(f) m(A,x) =m(gA,x), for all g ∈ G, x ∈X modulo C3;

(g) If A ∩B = ∅, then m(A ∪B,x) =m(A,x) +m(B,x), ∀x ∈X modulo C4.

Remark. A version of this theorem is what lies at the heart of the proof of Nadkarni’s

theorem. The conclusions of our theorem are modulo C4, which is potentially a smaller σ-

ideal than the σ-ideal of sets contained in compressible Borel sets used in Nadkarni’s version.

However, the price we pay for this is that part (g) asserts only finite additivity instead of

countable additivity asserted by Nadkarni’s version.

Before proceeding with the proof of this theorem, we draw a couple of corollaries. Theo-

rem 8.1 will only be used via Corollary 8.3.

Definition 8.2. Let X be a Borel G-space. B ⊆B(X) is called a Boolean G-algebra, if it is

a Boolean algebra, i.e. is closed under finite unions and complements, and is closed under

the G-action, i.e. GB = B.
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Corollary 8.3. Let X be a Borel G-space and let B ⊆ B(X) be a countable Boolean G-

algebra. For any A ∈ B with A ∉ C4, there exists a G-invariant finitely additive probability

measure µ on B with µ(A) > 0. Moreover, µ can be taken such that there is x ∈ A such that

∀B ∈ B with B ∩ [x]G = ∅, µ(B) = 0.

Proof. Let A ∈ B be such that A ∉ C4. We may assume that X = [A]G by setting the (to be

constructed) measure to be 0 outside [A]G.

If X is not aperiodic, then by assigning equal point masses to the points of a finite orbit,

we will have a probability measure on all of B(X), so assume X is aperiodic.

Since C4 is a σ-ideal and B is countable, Theorem 8.1 implies that there is a P ∈ C4

such that (a)-(g) of the same theorem hold on X ∖ P for all A,B ∈ B. Since A ∉ C4, there

exists xA ∈ A ∖ P . Hence, letting µ(B) = m(B,xA) for all B ∈ B, conditions (b),(f) and (g)

imply that µ is a G-invariant finitely additive probability measure on B. Moreover, since

xA ∈ [A]G ∖ P , µ(A) = m(A,xA) > 0. Finally, the last assertion follows from condition

(d).

Corollary 8.4. Let X be a Borel G-space. For every Borel set A ⊆ X with A ∉ C4, there

exists a G-invariant finitely additive Borel probability measure µ (defined on all Borel sets)

with µ(A) > 0.

Proof. The statement follows from 8.3 and a standard application of the Compactness The-

orem of propositional logic. Here are the details.

We fix the following set of propositional variables

P = {PA,r ∶ A ∈B(X), r ∈ [0,1]},

with the following interpretation in mind:

PA,r⇔ “the measure of A is ≥ r”.

Define the theory T as the following set of sentences: for each A,B ∈B(X), r, s ∈ [0,1] and

g ∈ G,
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(i) “PA,0”∈ T ;

(ii) if r > 0, then “¬P∅,r”∈ T ;

(iii) if s ≥ r, then “PA,s → PA,r”∈ T ;

(iv) if A ∩B = ∅, then “(PA,r ∧ PB,s) → PA∪B,r+s”, “(¬PA,r ∧ ¬PB,s) → ¬PA∪B,r+s”∈ T ;

(v) “PX,1”∈ T ;

(vi) “PA,r → PgA,r”∈ T .

If there is an assignment of the variables in P satisfying T , then for each A ∈B(X), we

can define

µ(A) = sup{r ∈ [0,1] ∶ PA,r}.

Note that due to (i), µ is well defined for all A ∈ B(X). In fact, it is straightforward to

check that µ is a finitely additive G-invariant probability measure. Thus, we only need to

show that T is satisfiable, for which it is enough to check that T is finitely satisfiable, by the

Compactness Theorem of propositional logic (or by Tychonoff’s theorem).

Let T0 ⊆ T be finite and let P0 be the set of propositional variables that appear in the

sentences in T0. Let B denote the Boolean G-algebra generated by the sets that appear in

the indices of the variables in P0. By 8.3, there is a finitely additive G-invariant probability

measure µ defined on B. Consider the following assignment of the variables in P0: for all

PA,r ∈ P0,

PA,r ∶⇔ µ(A) ≥ r.

It is straightforward to check that this assignment satisfies T0, and hence, T is finitely

satisfiable.

We now start working towards the proof of Theorem 8.1, following the general outline of

Nadkarni’s proof of Theorem 2.12. The construction of m(A,x) is somewhat similar to that

of Haar measure. First, for sets A,B, we define a Borel function [A/B] ∶ X → N ∪ {−1,∞}
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that basically gives the number of copies of B[x]G that fit in A[x]G when moved by group

elements (piecewise). Then we define a decreasing sequence of complete sections (called a

fundamental sequence below), which serves as a gauge to measure the size of a given set.

Assume throughout that X is an aperiodic Borel G-space (although we only use the

aperiodicity assumption in 8.15 to assert that smooth sets are in C1).

8.1 Measuring the size of a set relative to another

Lemma 8.5 (Comparability). ∀A,B ∈ B(X), there is a partition X = P ∪ Q into G-

invariant Borel sets such that for any A,B-sensitive finite Borel partition I of X, AP ≺I BP

and BQ ⪯I AQ.

Proof. It is enough to prove the lemma assuming X = [A]G ∩ [B]G since we can always

include [B]G ∖ [A]G in P and X ∖ [B]G in Q.

Fix an enumeration {gn}n∈N for G. We recursively construct Borel sets An,Bn,A′
n,B

′
n

as follows. Set A′
0 = A and B′

0 = B. Assuming A′
n,B

′
n are defined, set Bn = B′

n ∩ gnA′
n,

An = g−1
n Bn, A′

n+1 = A′
n ∖An and B′

n+1 = B′
n ∖Bn.

It is easy to see by induction on n that for any A,B-sensitive I, An,Bn are FI-invariant

since so are A,B. Thus, setting A∗ = ⋃n∈NAn and B∗ = ⋃n∈NBn, we get that A∗ ∼I B∗ since

Bn = gnAn.

Let A′ = A ∖A∗, B′ = B ∖B∗ and set P = [B′]G, Q =X ∖ P .

Claim. [A′]G ∩ [B′]G = ∅.

Proof of Claim. Assume for contradiction that ∃x ∈ A′ and n ∈ N such that gnx ∈ B′. It is

clear that A′ = ⋂k∈NA′
k, B

′ = ⋂k∈NB′
k; in particular, x ∈ A′

n and gnx ∈ B′
n. But then gnx ∈ Bn

and x ∈ An, contradicting x ∈ A′. ⊣

Let I be an A,B-sensitive partition. Then AP = (A∗)P and hence AP ≺I BP since

(A∗)P ∼I (B∗)P ⊆ BP and [BP ∖ (B∗)P ]G = [B′]G = P = [BP ]G. Similarly, BQ = (B∗)Q and

hence BQ ⪯I AQ since (B∗)Q ∼I (A∗)Q ⊆ AQ.
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Definition 8.6 (Divisibility). Let n ≤ ∞, A,B,C ∈ B(X) and I be a finite Borel partition

of X.

● Write A ∼I nB ⊕C if there are Borel sets Ak ⊆ A, k < n, such that {Ak}k<n ∪ {C} is a

partition of A, each Ak is FI-invariant relative to A and Ak ∼I B.

● Write nB ⪯I A if there is C ⊆ A with A ∼I nB ⊕ C, and write nB ≺I A if moreover

[C]G = [A]G.

● Write A ⪯I nB if there is a Borel partition {Ak}k<n of A such that each Ak is FI-

invariant relative to A and Ak ⪯I B. If moreover, Ak ≺I B for at least one k < n, we

write A ≺I nB.

For i ≥ 1, we use the above notation with I replaced by i if there is an A,B-sensitive partition

I generated by i sets for which the above conditions hold.

Proposition 8.7 (Euclidean decomposition). Let A,B ∈ B(X) and put R = [A]G ∩ [B]G.

There exists a partition {Pn}n≤∞ of R into G-invariant Borel sets such that for any A,B-

sensitive finite Borel partition I of X and n ≤ ∞, APn ∼I nBPn ⊕Cn for some Cn such that

Cn ≺I BPn, if n < ∞.

Proof. We repeatedly apply Lemma 8.5. For n < ∞, recursively define Rn, Pn,An,Cn satis-

fying the following:

(i) Rn are invariant decreasing Borel sets such that nBRn ⪯I ARn for any A,B-sensitive I;

(ii) Pn = Rn ∖Rn+1;

(iii) An ⊆ Rn+1 are pairwise disjoint Borel sets such that for any A,B-sensitive I, every An

respects I and An ∼I BRn+1 ;

(iv) Cn ⊆ Pn are Borel sets such that for any A,B-sensitive I, every Cn respects I and

Cn ≺I BPn .
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Set R0 = R. Given Rn, {Ak}k<n satisfying the above properties, let A′ = ARn∖⋃k<nAk. We

apply Lemma 8.5 to A′ and BRn , and get a partition Rn = Pn∪Rn+1 such that (A′)Pn ≺I BPn

and BRn+1 ⪯I (A′)Rn+1 . Set Cn = (A′)Pn . Let An ⊆ (A′)Rn+1 be such that BRn+1 ∼I An. It is

straightforward to check (i)-(iv) are satisfied.

Now let R∞ = ⋂n∈NRn and C∞ = (A∖⋃n∈NAn)Rω . Now it follows from (i)-(iv) that for all

n ≤ ∞, {APn

k }k<n ∪ {Cn} is a partition of APn witnessing APn ∼I nB ⊕Cn, and for all n < ∞,

Cn ≺ BPn .

For A,B ∈B(X), let {Pn}n≤∞ be as in the above proposition. Define

[A/B](x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n if x ∈ Pn, n < ∞

∞ if x ∈ P∞ or x ∈ [A]G ∖ [B]G
0 if x ∈ [B]G ∖ [A]G
−1 otherwise

.

Note that [A/B] ∶X → N ∪ {−1,∞} is a Borel function by definition.

8.2 Properties of [A/B]

Lemma 8.8 (Infinite divisibility ⇒ compressibility). Let A,B ∈ B(X) with [A]G = [B]G,

and let I be a finite Borel partition of X. If ∞B ⪯I A, then A ≺I A.

Proof. Let C ⊆ A be such that A ∼I ∞B ⊕C and let {Ak}k<∞ be as in Definition 8.6. Ak ∼I
B ∼I Ak+1 and hence Ak ∼I Ak+1. Also trivially C ∼I C. Thus, letting A′ = ⋃k<∞Ak+1∪C, we

apply (b) of 4.2 to A and A′, and get that A ∼I A′. Because [A∖A′]G = [A0]G = [B]G = [A]G,

we have A ≺I A.

Lemma 8.9 (Ambiguity ⇒ compressibility). Let A,B ∈ B(X) and I be a finite Borel

partition of X. If nB ⪯I A ≺I nB for some n ≥ 1, then A ≺I A.

Proof. Let C ⊆ A be such that A ∼I nB ⊕ C and let {Ak}k<n be a partitions of A ∖ C

witnessing A ∼I nB ⊕ C. Also let {A′
k}k<n be witnessing A ≺I nB with A′

0 ≺I B. Since
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A′
k ⪯I B ∼I Ak, A′

k ⪯I Ak, for all k < n and A′
0 ≺I A0. Note that it follows from the

hypothesis that [A]G = [B]G and hence [A0]G = [A]G since [A0]G = [B]G. Thus it follows

from (b) of 4.2 that A = ⋃k<nA′
k ≺I ⋃k<nAk ⊆ A.

Proposition 8.10. Let n ∈ N and A,A′,B,P ∈B(X), where P is invariant.

(a) [A/B] ∈ N on [B]G modulo C3.

(b) If A ⊆ A′, then [A/B] ≤ [A′/B].

(c) If [A/B] = n on P then nBP ⪯I AP ≺I (n+1)BP , for any finite Borel partition I that is

A,B-sensitive. In particular, nBP ⪯2 AP ≺2 (n + 1)BP by taking I = ⟨A,B⟩.

(d) For n ≥ 1, if AP ≺i nBP , then [A/B] < n on P modulo Ci+1;

(e) If AP ⊆ [B]G and nBP ⪯i AP , then [A/B] ≥ n on P modulo Ci+1.

Proof. For (a), notice that 8.8 and 5.6 imply that P∞ ∈ C3. (b) and (c) follow from the

definition of [A/B]. For (d), let I be an A,B-sensitive partition of X generated by i Borel

sets such that AP ≺I nBP , and put Q = {x ∈ P ∶ [A/B](x) ≥ n}. By (c), nBQ ⪯I AQ. Thus,

by Lemma 8.9, AQ ≺I AQ and hence, by Lemma 5.6, [AQ]G = Q ∈ Ci+1.

For (e), let I be an A,B-sensitive partition of X generated by i Borel sets such that

nBP ⪯I AP , and put Q = {x ∈ P ∶ [A/B](x) < n}. By (c), AQ ≺I nBQ. Thus, by Lemma 8.9,

AQ ≺I AQ and hence, by Lemma 5.6, [AQ]G = Q ∈ Ci+1.

Lemma 8.11 (Almost cancelation). For any A,B,C ∈X,

[A/B][B/C] ≤ [A/C] < ([A/B] + 1)([B/C] + 1)

on R ∶= [B]G ∩ [C]G modulo C4.

Proof. Let I = ⟨A,B,C⟩.

[A/B][B/C] ≤ [A/C]: Fix integers i, j > 0 and let P = {x ∈X ∶ [A/B](x) = i∧[B/C](x) = j}.

Since i, j > 0, P ⊆ [A]G∩[B]G∩[C]G and we work in P . By (c) of 8.10, iB ⪯I A and jC ⪯I B.

Thus it follows that ijC ⪯I A and hence [A/C] ≥ ij modulo C4 by (e) of 8.10.
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[A/C] < ([A/B] + 1)([B/C] + 1): By (a) of 8.10, [A/C], [A/B], [B/C] ∈ N on R modulo C3.

Fix i, j ∈ N and let Q = {x ∈ R ∶ [A/B](x) = i∧[B/C](x) = j}. We work in Q. By (c) of 8.10,

A ≺I (i+ 1)B and B ≺I (j + 1)C. Thus A ≺I (i+ 1)(j + 1)C and hence [A/C] < (i+ 1)(j + 1)

modulo C4 by (d) of 8.10.

Lemma 8.12 (Invariance). For A,F ∈B(X), ∀g ∈ G, [A/F ] = [gA/F ], modulo C3.

Proof. We may assume that X = [A]G ∩ [F ]G. Fix g ∈ G, n ∈ N, and put Q = {x ∈

X ∶ [gA/F ](x) = n}. We work in Q. Let I = ⟨A,F ⟩ and hence A,gA,F respect I. By

(c) of 8.10, nF ⪯I gA. But clearly gA ∼I A and hence nF ⪯I A. Thus, by (e) of 8.10,

[A/F ] ≥ n = [gA/F ], modulo C3. By symmetry, [gA/F ] ≥ [A/F ] (modulo C3) and the

lemma follows.

Lemma 8.13 (Almost additivity). For any A,B,F ∈ X with A ∩B = ∅, [A/F ] + [B/F ] ≤

[A ∪B/F ] ≤ [A/F ] + [B/F ] + 1 modulo C4.

Proof. Let I = ⟨A,B,F ⟩.

[A/F ]+[B/F ] ≤ [A∩B/F ]: Fix i, j ∈ N not both 0, say i > 0, and let S = {x ∈X ∶ [A/F ](x) =

i∧ [B/F ](x) = j}. Since i > 0, S ⊆ [A]G ∩ [F ]G and we work in S. By (c) of 8.10, iF S ⪯I AS

and jF S ⪯I BS. Hence (i + j)F S ⪯I (A ∪B)S and thus, by (e) of 8.10, [A ∪B/F ] ≥ i + j,

modulo C4.

[A ∩ B/F ] ≤ [A/F ] + [B/F ] + 1: Outside [F ]G, the inequality clearly holds. Fix i, j ∈ N

and let M = {x ∈ [F ]G ∶ [A/F ](x) = i ∧ [B/F ](x) = j}. We work in M . By (c) of 8.10,

A ≺I (i + 1)F and B ≺I (j + 1)F . Thus it is clear that A ∪ B ≺I (i + j + 2)F and hence

[A ∪B/F ] < i + j + 2, modulo C4, by (d) of 8.10.

8.3 Fundamental sequence

Definition 8.14. A sequence {Fn}n∈N of decreasing Borel complete sections with F0 =X and

[Fn/Fn+1] ≥ 2 modulo C3 is called fundamental.
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Proposition 8.15. There exists a fundamental sequence.

Proof. Take F0 = X. Given any complete Borel section F , its intersection with every orbit

is infinite modulo a smooth set (if the intersection of an orbit with a set is finite, then

we can choose an element from each such nonempty intersection in a Borel way and get

a Borel transversal). Thus, by 6.11, F is aperiodic modulo C1. Now use Lemma 13.1 to

write F = A ∪B,A ∩B = ∅, where A,B are also complete sections. Let now P,Q be as in

Lemma 8.5 for A,B, and hence AP ≺2 BP ,BQ ⪯2 AQ because we can take I = ⟨A,B⟩. Let

A′ = AP ∪BQ,B′ = BP ∪AQ. Then F = A′ ∪B′,A′ ∩B′ = ∅, A′ ⪯ B′ and A′ is also a complete

Borel section. By (e) of 8.10, [F /A′] ≥ 2 modulo C3. Iterate this process to inductively

define Fn.

8.4 The definition and properties of m(A,x)

Fix a fundamental sequence {Fn}n∈N and for any A ∈B(X), x ∈X, define

m(A,x) = lim
n→∞

[A/Fn](x)
[X/Fn](x)

, (�)

if the limit exists, and 0 otherwise. In the above fraction we define ∞
∞ = 1. We will prove in

Proposition 8.17 that this limit exists modulo C4. But first we need a lemma.

Lemma 8.16. For any A ∈B(A),

lim
n→∞[A/Fn] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∞ on [A]G
0 on X ∖ [A]G

, modulo C4.

Proof. The part about X ∖ [A]E is clear, so work in [A]E, i.e. assume X = [A]G. By (a) of

8.10 and 8.11, we have

∞ > [F1/A] ≥ [F1/Fn][Fn/A] ≥ 2n−1[Fn/A], modulo C4,

which holds for all n at once since C4 is a σ-ideal. Thus [Fn/A] → 0 modulo C4 and hence,

as [Fn/A] ∈ N, [Fn/A] is eventually 0, modulo C4. So if

Bk ∶= {x ∈ [A]G ∶ [F /A](x) = 0},

46



then Bk ↗ X, modulo C4. Now it follows from Lemma 8.5 that [A/Fk] > 0 on Bk modulo

C4. But

[A/Fk+n] ≥ [A/Fk][Fk/Fk+n] ≥ 2n[A/Fk], modulo C4,

so for every k, [A/Fn] → ∞ on Bk modulo C4. Since Bk ↗X modulo C4, we have [A/Fn] → ∞

on X, modulo C4.

Proposition 8.17. For any Borel set A ⊆X, the limit in (�) exists and is positive on [A]G,

modulo C4.

Proof.

Claim. Suppose B,C ∈B(X), i ∈ N and Di = {x ∈X ∶ [C/Fi](x) > 0}. Then

lim
[B/Fn]
[C/Fn]

≤ [B/Fi] + 1

[C/Fi]

on Di, modulo C4.

Proof of Claim. Working in Di and using Lemma 8.11, ∀j we have (modulo C4)

[B/Fi+j] ≤ ([B/Fi] + 1)([Fi/Fi+j] + 1)

[C/Fi+j] ≥ [C/Fi][Fi/Fi+j] > 0,

so

[B/Fi+j]
[C/Fi+j]

≤ [B/Fi] + 1

[C/Fi]
⋅ [Fi/Fi+j] + 1

[Fi/Fi+j]

≤ [B/Fi] + 1

[C/Fi]
⋅ (1 + 1

2j
),

from which the claim follows. ⊣

Applying the claim to B = A and C =X (hence Di =X), we get that for all i ∈ N

lim
n→∞

[A/Fn](x)
[X/Fn](x)

≤ [A/Fi](x) + 1

[X/Fi](x)
(modulo C4).

Thus

lim
n→∞

[A/Fn]
[X/Fn]

≤ lim
i→∞

[A/Fi] + 1

[X/Fi]
= lim
i→∞

[A/Fi]
[X/Fi]
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since limi→∞ 1
[X/Fi] = 0.

To see that m(A,x) is positive on [A]E modulo C4 we argue as follows. We work in [A]G.

Applying the above claim to B =X and C = A, we get

1

m(A,x) = lim
n→∞

[X/Fn]
[A/Fn]

≤ [X/Fi] + 1

[A/Fi]
< ∞ on Di (modulo C4).

Thus m(A,x) > 0 on ∪i∈NDi, modulo C4. But Di ↗ [A]G because [A/Fi] → ∞ as i→∞, and

hence m(A,x) > 0 on [A]G modulo C4.

8.5 Proof of Theorem 8.1

Fix A,B ∈ B(X). The fact that m(A,x) ∈ [0,1] and parts (b) and (d) follow directly from

the definition of m(A,x). Part (a) follows from the fact that [A/Fn] is Borel for all n ∈ N. (c)

follows from (b) of Lemma 8.10, and (e) and (f) are asserted by 8.17 and 8.12, respectively.

To show (g), we argue as follows. By Lemma 8.13, [A/Fn] + [B/Fn] ≤ [A ∪ B/Fn] ≤

[A/Fn] + [B/Fn] + 1, modulo C4, and thus

[A/Fn]
[X/Fn]

+ [B/Fn]
[X/Fn]

≤ [A ∪B/Fn]
[X/Fn]

≤ [A/Fn]
[X/Fn]

+ [B/Fn]
[X/Fn]

+ 1

[X/Fn]
,

for all n at once, modulo C4 (using the fact that C4 is a σ-ideal). Since [X/Fn] ≥ 2n,

passing to the limit in the inequalities above, we get m(A,x) +m(B,x) ≤ m(A ∪ B,x) ≤

m(A,x) +m(B,x). QED (Thm 8.1)
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CHAPTER III

Applications of the theory of i-compressibility

In this chapter we establish the existence of finite generators for compressible actions in

various cases using the developments of the previous chapter.

9 Finite generators in the case of σ-compact spaces

In this section we prove that the answer to Question 2.3 is positive in case X has a σ-compact

realization. To do this, we first prove Proposition 9.2, which shows how to construct a

countably additive invariant probability measure on X using a finitely additive one. We

then use 8.3 to conclude the result.

For the next two statements, let X be a second countable Hausdorff topological space

equipped with a continuous action of G.

Lemma 9.1. Let U ⊆ Pow(X) be a countable base for X closed under the G-action and

finite unions/intersections. Let ρ be a G-invariant finitely additive probability measure on

the G-algebra generated by U . For every A ⊆X, define

µ∗(A) = inf{∑
n∈N

ρ(Un) ∶ Un ∈ U ∧ A ⊆ ⋃
n∈N

Un}.

Then:

(a) µ∗ is a G-invariant outer measure.

(b) If K ⊆X is compact, then K is metrizable and µ∗ is a metric outer measure on K (with

respect to any compatible metric).
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Proof. It is a standard fact from measure theory that µ∗ is an outer measure. That µ∗ is

G-invariant follows immediately from G-invariance of ρ and the fact that U is closed under

the action of G.

For (b), first note that by Urysohn metrization theorem, K is metrizable, and fix a metric

on K. If E,F ⊆ K are a positive distance apart, then so are Ē and F̄ . Hence there exist

disjoint open sets U,V such that Ē ⊆ U , F̄ ⊆ V . Because Ē and F̄ are compact, U,V can be

taken to be finite unions of sets in U and therefore U,V ∈ U .

Now fix ε > 0 and let Wn ∈ U , be such that E ∪ F ⊆ ⋃nWn and

∑
n

ρ(Wn) ≤ µ∗(E ∪ F ) + ε ≤ µ∗(E) + µ∗(F ) + ε. (∗)

Note that {Wn ∩ U}n∈N covers E, {Wn ∩ V }n∈N covers F and Wn ∩ U,Wn ∩ V ∈ U . Also, by

finite additivity of ρ,

ρ(Wn ∩U) + ρ(Wn ∩ V ) = ρ(Wn ∩ (U ∪ V )) ≤ ρ(Wn).

Thus

µ∗(E) + µ∗(F ) ≤ ∑
n

ρ(Wn ∩U) +∑
n

ρ(Wn ∩ V ) ≤ ∑
n

ρ(Wn),

which, together with (∗), implies that µ∗(E ∪ F ) = µ∗(E) + µ∗(F ) since ε is arbitrary.

Proposition 9.2. Suppose there exist a countable base U ⊆ Pow(X) for X and a compact set

K ⊆ X such that the G-algebra generated by U ∪ {K} admits a finitely additive G-invariant

probability measure ρ with ρ(K) > 0. Then there exists a countably additive G-invariant

Borel probability measure on X.

Proof. Let K,U and ρ be as in the hypothesis. We may assume that U is closed under

the G-action and finite unions/intersections. Let µ∗ be the outer measure provided by

Lemma 9.1 applied to U , ρ. Thus µ∗ is a metric outer measure on K and hence all Borel

subsets of K are µ∗-measurable (see 13.2 in [Mun53]). This implies that all Borel subsets

of Y = [K]G = ⋃g∈G gK are µ∗-measurable because µ∗ is G-invariant. By Carathéodory’s

theorem, the restriction of µ∗ to the Borel subsets of Y is a countably additive Borel measure
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on Y , and we extend it to a Borel measure µ on X by setting µ(Y c) = 0. Note that µ is

G-invariant and µ(Y ) ≤ 1.

It remains to show that µ is nontrivial, which we do by showing that µ(K) ≥ ρ(K) and

hence µ(K) > 0. To this end, let {Un}n∈N ⊆ U cover K. Since K is compact, there is a finite

subcover {Un}n<N . Thus U ∶= ⋃n<N Un ∈ U and K ⊆ U . By finite additivity of ρ, we have

∑
n∈N

ρ(Un) ≥ ∑
n<N

ρ(Un) ≥ ρ(U) ≥ ρ(K),

and hence, it follows from the definition of µ∗ that µ∗(K) ≥ ρ(K). Thus µ(K) = µ∗(K) >

0.

Corollary 9.3. Let X be a second countable Hausdorff topological G-space whose Borel

structure is standard. For every compact set K ⊆ X not in C4, there is a G-invariant

countably additive Borel probability measure µ on X with µ(K) > 0.

Proof. Fix any countable base U for X and let B be the Boolean G-algebra generated by

U ∪ {K}. By Corollary 8.3, there exists a G-invariant finitely additive probability measure

ρ on B such that ρ(K) > 0. Now apply 9.2.

As a corollary, we derive the analogue of Nadkarni’s theorem for C4 in case of σ-compact

spaces.

Corollary 9.4. Let X be a Borel G-space that admits a σ-compact realization. X ∉ C4 if

and only if there exists a G-invariant countably additive Borel probability measure on X.

Proof. ⇐: If X ∈ C4, then it is compressible in the usual sense and hence does not admit a

G-invariant Borel probability measure.

⇒: Suppose that X is a σ-compact topological G-space and X ∉ C4. Then, since X is

σ-compact and C4 is a σ-ideal, there is a compact set K not in C4. Now apply 9.3.

Remark. For a Borel G-space X, let K denote the collection of all subsets of invariant Borel

sets that admit a σ-compact realization (when viewed as Borel G-spaces). Also, let C denote
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the collection of all subsets of invariant compressible Borel sets. It is clear that K and C are

σ-ideals, and what 9.4 implies is that C ∩K ⊆ C4.

Theorem 9.5. Let X be a Borel G-space that admits a σ-compact realization. If there is no

G-invariant Borel probability measure on X, then X admits a Borel 32-generator.

Proof. By 9.4, X ∈ C4 and hence, X is 4-compressible. Thus, by Proposition 7.2, X admits

a Borel 25-generator.

Example 9.6. Let LO ⊆ 2N2
denote the Polish space of all countable linear orderings and let

G be the group of finite permutations of elements of N. G is countable and acts continuously

on LO in the natural way. Put X = LO ∖DLO, where DLO denotes the set of all dense

linear orderings without endpoints (copies of Q). It is straightforward to see that DLO is a

Gδ subset of LO and hence, X is Fσ. Therefore, X is in fact σ-compact since LO is compact

being a closed subset of 2N2
. Also note that X is G-invariant.

Let µ be the unique measure on LO defined by µ(V(F,<)) = 1
n! , where (F,<) is a finite

linearly ordered subset of N of cardinality n and V(F,<) is the set of all linear orderings of N

extending the order < on F . As shown in [GW02], µ is the unique invariant measure for the

action of G on LO and µ(X) = 0. Thus there is no G-invariant Borel probability measure

on X and hence, by the above theorem, X admits a Borel 32-generator.

10 Finitely traveling sets

Let X be a Borel G-space.

Definition 10.1. Let A,B ∈B(X) be equidecomposable, i.e. there are N ≤ ∞, {gn}n<N ⊆ G

and Borel partitions {An}n<N and {Bn}n<N of A and B, respectively, such that gnAn = Bn

for all n < N . A,B are said to be

● locally finitely equidecomposable (denote by A ∼lfin B), if {An}n<N ,{Bn}n<N ,{gn}n<N
can be taken so that for every x ∈ A, An ∩ [x]G = ∅ for all but finitely many n < N ;
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● finitely equidecomposable (denote by A ∼fin B), if N can be taken to be finite.

The notation ≺fin, ≺lfin and the notions of finite and locally finite compressibility are

defined analogous to Definitions 2.9 and 2.11.

Definition 10.2. A Borel set A ⊆X is called (locally) finitely traveling if there exists pairwise

disjoint Borel sets {An}n∈N such that A0 = A and A ∼fin An (A ∼lfin An), ∀n ∈ N.

Proposition 10.3. If X is (locally) finitely compressible then X admits a (locally) finitely

traveling Borel complete section.

Proof. We prove for finitely compressible X, but note that everything below is also locally

valid (i.e. restricted to every orbit) for a locally compressible X.

Run the proof of the first part of Lemma 6.4 noting that a witnessing map γ ∶X → G of

finite compressibility of X has finite image and hence the image of each δn (in the notation

of the proof) is finite, which implies that the obtained traveling set A is actually finitely

traveling.

Proposition 10.4. If X admits a locally finitely traveling Borel complete section, then

X ∈ C4.

Proof. Let A be a locally finitely traveling Borel complete section and let {An}n∈N be as in

Definition 10.2. Let In = {Cn
k }k∈N, Jn = {Dn

k}k∈N be Borel partitions of A and An, respectively,

that together with {gnk}k∈N ⊆ G witness A ∼lfin An (as in Definition 10.1). Let B denote the

Boolean G-algebra generated by {X} ∪ ⋃n∈N(In ∪ Jn ∪ {An}).

Now assume for contradiction that X ∉ C4 and hence, A ∉ C4. Thus, applying Corollary

8.3 to A and B, we get a G-invariant finitely additive probability measure µ on B with

µ(A) > 0. Moreover, there is x ∈ A such that ∀B ∈ B with B ∩ [x]G = ∅, µ(B) = 0.

Claim. µ(An) = µ(A), for all n ∈ N.

Proof of Claim. For each n, let {Cn
ki
}i<Kn be the list of those Cn

k such that Cn
k ∩ [x]G ≠ ∅

(Kn < ∞ by the definition of locally finitely traveling). Set B = A ∖ (⋃i<Kn
Cn
ki
) and note
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that by finite additivity of µ,

µ(A) = µ(B) + ∑
i<Kn

µ(Cn
ki
).

Similarly, set B′ = An ∖ (⋃i<Kn
Dn
ki
) and hence

µ(An) = µ(B′) + ∑
i<Kn

µ(Dn
ki
).

But B ∩[x]G = ∅ and B′ ∩[x]G = ∅, and thus µ(B) = µ(B′) = 0. Also, since gnkiC
n
ki
=Dn

ki
and

µ is G-invariant, µ(Cn
ki
) = µ(Dn

ki
). Therefore

µ(A) = ∑
i<Kn

µ(Cn
ki
) = ∑

i<Kn

µ(Dn
ki
) = µ(An).

⊣

This claim contradicts µ being a probability measure since for large enoughN , µ(⋃n<N An) =

Nµ(A) > 1, contradicting µ(X) = 1.

This, together with 7.2, implies the following.

Corollary 10.5. Let X be a Borel G-space. If X admits a locally finitely traveling Borel

complete section, then there is a Borel 32-generator.

11 Locally weakly wandering sets and other special cases

Assume throughout the section that X is a Borel G-space.

Definition 11.1. We say that A ⊆X is

● weakly wandering with respect to H ⊆ G if (hA) ∩ (h′A) = ∅, for all distinct h,h′ ∈H;

● weakly wandering, if it is weakly wandering with respect to an infinite subset H ⊆ G

(by shifting H, we can always assume 1G ∈H);

● locally weakly wandering if for every x ∈X, A[x]G is weakly wandering.
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For A ⊆X and x ∈ A, put

∆A(x) = {(gn)n∈N ∈ GN ∶ g0 = 1G ∧ ∀n ≠m(gnA[x]G ∩ gmA[x]G = ∅)},

and let F (GN) denote the Effros space of GN, i.e. the standard Borel space of closed subsets

of GN (see 12.C in [Kec95]).

Proposition 11.2. Let A ∈B(X).

(a) ∀x ∈X, ∆A(x) is a closed set in GN.

(b) ∆A ∶ A→ F (GN) is σ(Σ1
1)-measurable and hence universally measurable.

(c) ∆A is FA-invariant, i.e. ∀x, y ∈ A, if xFAy then ∆A(x) = ∆A(y).

(d) If s ∶ F (GN) → GN is a Borel selector (i.e. s(F ) ∈ F , ∀F ∈ F (GN)), then γ ∶= s ○∆A is

a σ(Σ1
1)-measurable FA- and G-invariant travel guide. In particular, A is a 1-traveling

set with σ(Σ1
1)-pieces.

Proof. (a) ∆A(x)c is open since being in it is witnessed by two coordinates.

(b) For s ∈ G<N, let Bs = {F ∈ F (GN) ∶ F ∩ Vs ≠ ∅}, where Vs = {α ∈ GN ∶ α ⊒ s}. Since

{Bs}s∈G<N generates the Borel structure of F (GN), it is enough to show that ∆−1
A (Bs)

is analytic, for every s ∈ G<N. But ∆−1
A (Bs) = {x ∈ X ∶ ∃(gn)n∈N ∈ Vs[g0 = 1G ∧ ∀n ≠

mgn(A[x]G ∩ gmA[x]G = ∅)]} is clearly analytic.

(c) Assume for contradiction that xFAy, but ∆A(x) ≠ ∆A(y) for some x, y ∈ A. We may

assume that there is (gn)n∈N ∈ ∆A(x) ∖ ∆A(y) and thus ∃n ≠ m such that gnA[y]G ∩

gmA[y]G ≠ ∅. HenceA[y]G∩g−1
n gmA

[y]G ≠ ∅ and let y′, y′′ ∈ A[y]G be such that y′′ = g−1
n gmy

′.

Let g ∈ G be such that y′ = gy.

Since y′ = gy, y′′ = g−1
n gmgy are in A, xFAy, and A is FA-invariant, gx, g−1

n gmgx are in

A as well. Thus A[x]G ∩ g−1
n gmA

[x]G ≠ ∅, contradicting gnA[y]G ∩ gmA[y]G = ∅ (this holds

since (gn)n∈N ∈ ∆A(x)).
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(d) Follows from parts (b) and (c), and the definition of ∆A.

Theorem 11.3. Let X be a Borel G-space. If there is a locally weakly wandering Borel

complete section for X, then X admits a Borel 4-generator.

Proof. By part (d) of 11.2 and 6.8, X is 1-compressible. Thus, by 7.2, X admits a Borel

22-finite generator.

Observation 11.4. Let A = ⋃n∈NWn, where each Wn is weakly wandering and put W ′
n =

Wn ∖⋃i<n[Wi]G. Then A′ ∶= ⋃n∈NW ′
n is locally weakly wandering and [A]G = [A′]G.

Corollary 11.5. Let X be a Borel G-space. If X is the saturation of a countable union of

weakly wandering Borel sets, X admits a Borel 3-generator.

Proof. Let A = ⋃n∈NWn, where each Wn is weakly wandering. By 11.4, we may assume

that [Wn]G are pairwise disjoint and hence A is locally weakly wandering. Using countable

choice, take a function p ∶ N → GN such that ∀n ∈ N, p(n) ∈ ⋂x∈Wn
∆Wn(x) (we know that

⋂x∈Wn
∆Wn(x) ≠ ∅ since Wn is weakly wandering).

Define γ ∶ A→ GN by

x↦ the smallest k such that p(k) ∈ ∆A(x).

The condition p(k) ∈ ∆A(x) is Borel because it is equivalent to ∀n,m ∈ N, y, z ∈ A ∩

[x]G, p(k)(n)y = p(k)(m)z ⇒ n = m ∧ x = y; thus γ is a Borel function. Note that γ is

a travel guide for A by definition. Moreover, it is FA-invariant because if ∆A(x) = ∆A(y)

for some x, y ∈ A, then conditions p(k) ∈ ∆A(x) and p(k) ∈ ∆A(y) hold or fail together.

Since ∆A is FA-invariant, so is γ. Hence, Lemma 7.1 applied to I = ⟨A⟩ gives a Borel

(2 ⋅ 2 − 1)-generator.

Remark. The above corollary in particular implies the existence of a 3-generator in the

presence of a weakly wandering Borel complete section. (For a direct proof of this, note that
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if W is a complete section that is weakly wandering with respect to {gn}n∈N with g0 = 1G and

{Un}n∈N is a family generating the Borel sets, then I =<W,⋃n≥1 gn(W ∩Un) > is a generator

and ∣I∣ = 3.) This can be viewed as a Borel version of the Krengel-Kuntz theorem (see 2.5)

in the sense that it implies a version of the latter (our result gives a 3-generator instead of a

2-generator). To see this, let X be a Borel G-space and µ be a quasi-invariant measure on

X such that there is no invariant measure absolutely continuous with respect to µ. Assume

first that the action is ergodic. Then by the Hajian-Kakutani-Itô theorem, there exists a

weakly wandering set W with µ(W ) > 0. Thus X ′ = [W ]G is conull and admits a 3-generator

by the above, so X admits a 3-generator modulo µ-NULL.

For the general case, one can use Ditzen’s Ergodic Decomposition Theorem for quasi-

invariant measures (Theorem 5.2 in [Mil08]), apply the previous result to µ-a.e. ergodic piece,

combine the generators obtained for each piece into a partition of X (modulo µ-NULL) and

finally apply Theorem 13.10 to obtain a finite generator for X. Each of these steps requires

a certain amount of work, but we will not go into the details.

Example 11.6. Let X = N (the Baire space) and Ẽ0 be the equivalence relation of eventual

agrement of sequences of natural numbers. We find a countable group G of homeomorphisms

of X such that EG = Ẽ0. For all s, t ∈ N<N with ∣s∣ = ∣t∣, let φs,t ∶X →X be defined as follows:

φs,t(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

t⌢y if x = s⌢y

s⌢y if x = t⌢y

x otherwise

,

and let G be the group generated by {φs,t ∶ s, t ∈ N<N, ∣s∣ = ∣t∣}. It is clear that each φs,t is

a homeomorphism of X and EG = Ẽ0. Now for n ∈ N, let Xn = {x ∈ X ∶ x(0) = n} and let

gn = φ0,n. Then Xn are pairwise disjoint and gnX0 = Xn. Hence X0 is a weakly wandering

set and thus X admits a Borel 3-generator by Corollary 11.5.

Example 11.7. Let X = 2N (the Cantor space) and Et be the tail equivalence relation on

X, that is xEty⇔ (∃n,m ∈ N)(∀k ∈ N)x(n + k) = y(m + k). Let G be the group generated
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by {φs,t ∶ s, t ∈ 2<N, s ⊥ t}, where φs,t are defined as above. To see that EG = Et fix x, y ∈ X

with xEty. Thus there are nonempty s, t ∈ 2<N and z ∈ X such that x = s⌢z and y = t⌢z. If

s ⊥ t, then y = φs,t(x). Otherwise, assume say s ⊑ t and let s′ ∈ 2<N be such that s ⊥ s′ (exists

since s ≠ ∅). Then s′ ⊥ t and y = φs′,t ○ φs,s′(x).

Now for n ∈ N, let sn = 11...1²
n

0 and Xn = {x ∈ X ∶ x = sn ⌢ y, for some y ∈ X}. Note

that sn are pairwise incompatible and hence Xn are pairwise disjoint. Letting gn = φs0,sn ,

we see that gnX0 = Xn. Thus X0 is a weakly wandering set and hence X admits a Borel

3-generator.

Using the function ∆ defined above, we give another proof of Proposition 6.10.

Proposition 6.10. Let X be an aperiodic Borel G-space and T ⊆ X be Borel. If T is a

partial transversal then T is ⟨T ⟩-traveling.

Proof. By definition, T is locally weakly wandering.

Claim. ∆T is Borel.

Proof of Claim. Using the notation of the proof of part (b) of 11.2, it is enough to show that

∆−1
T (Bs) is Borel for every s ∈ G<N. But since ∀x ∈ T , T ∩ [x]G is a singleton, ∆T (x) ∈ Bs is

equivalent to s(0) = 1G ∧ (∀n <m < ∣s∣) s(m)x ≠ s(n)x. The latter condition is Borel, hence

so is ∆−1
T (Bs). ⊣

By part (d) of 11.2, γ = s ○∆T is a Borel FT -invariant travel guide for T .

Corollary 11.8. Let X be a Borel G-space. If X is smooth and aperiodic, then it admits a

Borel 3-generator.

Proof. Since the G-action is smooth, there exists a Borel transversal T ⊆ X. By 6.10, T is

⟨T ⟩-traveling. Thus, by 7.1, there is a Borel (2 ⋅ 2 − 1)-generator.

Lastly, in case of smooth free actions, a direct construction gives the optimal result as

the following proposition shows.
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Proposition 11.9. Let X be a Borel G-space. If the G-action is free and smooth, then X

admits a Borel 2-generator.

Proof. Let T ⊆ X be a Borel transversal. Also let G ∖ {1G} = {gn}n∈N be such that gn ≠ gm
for n ≠m. Because the action is free, gnT ∩ gmT = ∅ for n ≠m.

Define π ∶ N→ N recursively as follows:

π(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min{m ∶ gm ∉ {gπ(i) ∶ i < n}} if n = 3k

min{m ∶ gm, gmgk ∉ {gπ(i) ∶ i < n}} if n = 3k + 1

the unique l s.t. gl = gπ(3k+1)gk if n = 3k + 2

.

Note that π is a bijection. Fix a countable family {Un}n∈N generating the Borel sets and

put A = ⋃k∈N gπ(3k)(T ∩ Uk) ∪ ⋃k∈N gπ(3k+1)T . Clearly, A is Borel, and we show that I = ⟨A⟩

is a generator. Fix distinct x, y ∈X. Note that since T is a complete section, we can assume

that x ∈ T .

First assume y ∈ T . Take k with x ∈ Uk and y ∉ Uk. Then gπ(3k)x ∈ gπ(3k)(T ∩Uk) ⊆ A and

gπ(3k)y ∈ gπ(3k)(T ∖Uk). However gπ(3k)(T ∖Uk) ∩A = ∅ and hence gπ(3k)y ∉ A.

Now suppose y ∉ T . Then there exists y′ ∈ T [y]G and k such that gky′ = y. Now gπ(3k+1)x ∈

gπ(3k+1)T ⊆ A and gπ(3k+1)y = gπ(3k+1)gky′ = gπ(3k+2)y′ ∈ gπ(3k+2)T . But gπ(3k+2)T ∩A = ∅, hence

gπ(3k+1)y ∉ A.

Corollary 11.10. Let H be a Polish group and G be a countable subgroup of H. If G admits

an infinite discrete subgroup, then the translation action of G on H admits a 2-generator.

Proof. Let G′ be an infinite discrete subgroup of G. Clearly, it is enough to show that the

translation action of G′ on H admits a 2-generator. Since G′ is discrete, it is closed. Indeed,

if d is a left-invariant compatible metric on H, then Bd(1H , ε) ∩G′ = {1H}, for some ε > 0.

Thus every d-Cauchy sequence in G′ is eventually constant and hence G′ is closed. This

implies that the translation action of G′ on H is smooth and free (see 12.17 in [Kec95]), and

hence 11.9 applies.
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CHAPTER IV

Other results

This chapter is self-contained. It establishes various results concerning finite generators, as

well as other kinds of partitions and weakly wandering sets.

12 Finite generators on comeager sets

Throughout this section let X be an aperiodic Polish G-space. We use the notation ∀∗ to

mean “for comeager many x”.

The following lemma proves the conclusion of Lemma 13.8 for any group on a comeager

set. Below, we use this lemma only to conclude that there is an aperiodically separable

comeager set, while we already know from 13.7 that X itself is aperiodically separable.

However, the proof of the latter is more involved, so we present this lemma to keep this

section essentially self-contained.

Lemma 12.1. There exists A ∈ B(X) such that G⟨A⟩ separates points in each orbit of a

comeager G-invariant set D, i.e. fA ⇂[x]G is one-to-one, for all x ∈D.

Proof. Fix a countable basis {Un}n∈N for X with U0 = ∅ and let {An}n∈N be a partition of X

provided by Lemma 13.1. For each α ∈ N (the Baire space), define

Bα = ⋃
n∈N

(An ∩Uα(n)).

Claim. ∀∗α ∈ N∀∗z ∈X∀x, y ∈ [z]G(x ≠ y⇒ ∃g ∈ G(gx ∈ Bα⇎ gy ∈ Bα)).

Proof of Claim. By Kuratowski-Ulam, it is enough to show the statement with places of

quantifiers ∀∗α ∈ N and ∀∗z ∈ X switched. Also, since orbits are countable and countable
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intersection of comeager sets is comeager, we can also switch the places of quantifiers ∀∗α ∈ N

and ∀x, y ∈ [z]G. Thus we fix z ∈ X and x, y ∈ [z]G with x ≠ y and show that C = {α ∈ N ∶

∃g ∈ G (gx ∈ Bα⇎ gy ∈ Bα)} is dense open.

To see that C is open, take α ∈ C and let g ∈ G be such that gx ∈ Bα ⇎ gy ∈ Bα. Let

n,m ∈ N be such that gx ∈ An and gy ∈ Am. Then for all β ∈ N with β(n) = α(n) and

β(m) = α(m), we have gx ∈ Bβ⇎ gy ∈ Bβ. But the set of such β is open in N and contained

in C.

For the density of C, let s ∈ N<N and set n = ∣s∣. Since An is a complete section, ∃g ∈ G

with gx ∈ An. Let m ∈ N be such that gy ∈ Am. Take any t ∈ Nmax{n,m}+1 with t ⊒ s satisfying

the following condition:

Case 1: n >m. If gy ∈ Us(m) then set t(n) = 0. If gy ∉ Us(m), then let k be such that gx ∈ Uk
and set t(n) = k.

Case 2: n ≤m. Let k be such that gx ∈ Uk but gy ∉ Uk and set t(n) = t(m) = k.

Now it is easy to check that in any case gx ∈ Bα ⇎ gy ∈ Bα, for any α ∈ N with α ⊒ t,

and so α ∈ C and α ⊒ s. Hence C is dense. ⊣

By the claim, ∃α ∈ N such thatD = {z ∈X ∶ ∀x, y ∈ [z]G with x ≠ y, G⟨Bα⟩separates x and y}

is comeager and clearly invariant, which completes the proof.

Theorem 12.2. Any aperiodic Polish G-space admits a 4-generator on an invariant comea-

ger set.

Proof. Let A and D be provided by Lemma 12.1. Throwing away an invariant meager set

from D, we may assume that D is dense Gδ and hence Polish in the relative topology.

Therefore, we may assume without loss of generality that X =D.

Thus A aperiodically separates X and hence, by 13.3, there is a partition {An}n∈N of X

into FA-invariant Borel complete sections (the latter could be inferred directly from Corollary

13.9 without using Lemma 12.1). Fix an enumeration G = {gn}n∈N and a countable basis
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{Un}n∈N for X. Denote N2 = (N2)N and for each α ∈ N2, define

Bα = ⋃
n≥1

(An ∩ g(α(n))0
U(α(n))1

).

Claim. ∀∗α ∈ N2∀∗x ∈X∀l ∈ N∃n, k ∈ N(α(n) = (k, l) ∧ gkx ∈ An).

Proof of Claim. By Kuratowski-Ulam, it is enough to show that ∀x ∈ X and ∀l ∈ N,

C = {α ∈ N2 ∶ ∃k,n ∈ N(α(n) = (k, l) ∧ gkx ∈ An)} is dense open.

To see that C is open, note that for fixed n, k, l ∈ N , α(n) = (k, l) is an open condition in

N2.

For the density of C, let s ∈ (N2)<N and set n = ∣s∣. Since An is a complete section, ∃k ∈ N

with gkx ∈ An. Any α ∈ N2 with α ⊒ s and α(n) = (k, l) belongs to C. Hence C is dense. ⊣

By the claim, there exists α ∈ N2 such that Y = {x ∈ X ∶ ∀l ∈ N ∃k,n ∈ N (α(n) =

(k, l) ∧ gkx ∈ An)} is comeager. Throwing away an invariant meager set from Y , we can

assume that Y is G-invariant dense Gδ.

Let I = ⟨A,Bα⟩, and so ∣I∣ ≤ 4. We show that I is a generator on Y . Fix distinct

x, y ∈ Y . If x and y are separated by G⟨A⟩ then we are done, so assume otherwise, that

is xFAy. Let l ∈ N be such that x ∈ Ul but y ∉ Ul. Then there exists k,n ∈ N such that

α(n) = (k, l) and gkx ∈ An. Since gkxFAgky and An is FA-invariant, gky ∈ An. Furthermore,

since gkx ∈ An ∩ gkUl and gky ∉ An ∩ gkUl, gkx ∈ Bα while gky ∉ Bα. Hence G⟨Bα⟩ separates

x and y, and thus so does GI. Therefore I is a generator.

Corollary 12.3. Let X be a Polish G-space. If X is aperiodic, then it is 2-compressible

modulo MEAGER.

Proof. By Theorem 13.1 in [KM04], X is compressible modulo MEAGER. Also, by the

above theorem, X admits a 4-generator modulo MEAGER. Thus 7.6 implies that X is

2-compressible modulo MEAGER.
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13 Separating smooth-many invariant sets

Assume throughout that X is a Borel G-space.

Lemma 13.1. If X is aperiodic then it admits a countably infinite partition into Borel

complete sections.

Proof. The following argument is also given in the proof of Theorem 13.1 in [KM04]. By the

marker lemma (see 6.7 in [KM04]), there exists a vanishing sequence {Bn}n∈N of decreasing

Borel complete sections, i.e. ⋂n∈NBn = ∅. For each n ∈ N, define kn ∶ X → N recursively as

follows: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

k0(x) = 0

kn+1(x) = min{k ∈ N ∶ Bkn(x) ∩ [x]G ⊈ Bk}
,

and define An ⊆X by

x ∈ An⇔ x ∈ Akn(x) ∖Akn+1(x).

It is straightforward to check that An are pairwise disjoint Borel complete sections.

For A ∈ B(X), if I = ⟨A⟩ then we use the notation FA and fA instead of FI and fI ,

respectively.

We now work towards strengthening the above lemma to yield a countably infinite par-

tition into FA-invariant Borel complete sections.

Definition 13.2 (Aperiodic separation). For Borel sets A,Y ⊆ X, we say that A aperiodi-

cally separates Y if fA([Y ]G) is aperiodic (as an invariant subset of the shift 2G). If such A

exists, we say that Y is aperiodically separable.

Proposition 13.3. For A ∈B(X), if A aperiodically separates X, then X admits a countably

infinite partition into Borel FA-invariant complete sections.

Proof. Let Y = {y ∈ 2G ∶ ∣[y]G∣ = ∞} and hence fA(X) is a G-invariant subset of Y . By

Lemma 13.1 applied to Y , there is a partition {Bn}n∈N of Y into Borel complete sections.
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Thus An = f−1
I (Bn) is a Borel FA-invariant complete section for X and {An}n∈N is a partition

of X.

Let A denote the collection of all subsets of aperiodically separable Borel sets.

Lemma 13.4. A is a σ-ideal.

Proof. We only have to show that if Yn are aperiodically separable Borel sets, then Y =

⋃n∈N Yn ∈ A. Let An be a Borel set aperiodically separating Yn. Since An also aperiodically

separates [Yn]G (by definition), we can assume that Yn isG-invariant. Furthermore, by taking

Y ′
n = Yn∖⋃k<n Yk, we can assume that Yn are pairwise disjoint. Now letting A = ⋃n∈N(An∩Yn),

it is easy to check that A aperiodically separates Y .

Let S denote the collection of all subsets of smooth sets. By a similar argument as the

one above, S is a σ-ideal.

Lemma 13.5. If X is aperiodic, then S ⊆ A.

Proof. Let S ∈ S and hence there is a Borel transversal T for [S]G. Fix x ∈ S and let

y ≠ z ∈ [x]G. Since T is a transversal, there is g ∈ G such that gy ∈ T , and hence gz ∉ T . Thus

fT (y) ≠ fT (z), and so fT ([x]G) is infinite. Therefore T aperiodically separates [S]G.

For the rest of the section, fix an enumeration G = {gn}n∈N and let F n
A be following

equivalence relation:

yF n
Az⇔∀k < n(gky ∈ A↔ gkz ∈ A).

Note that F n
A has no more than 2n equivalence classes and that yFAz if and only if ∀n(yF n

Az).

Lemma 13.6. For A,Y ∈B(X), A aperiodically separates Y if and only if (∀x ∈ Y )(∀n)(∃y, z ∈

Y [x]G)[yF n
Az ∧ ¬(yFAz)].

Proof. ⇒: Assume that for all x ∈ Y , fA([x]G) is infinite and thus FA ⇂[x]G has infinitely

many equivalence classes. Fix n ∈ N and recall that F n
A has only finitely many equivalence

64



classes. Thus, by the Pigeon Hole Principle, there are y, z ∈ Y [x]G such that yF n
Az yet

¬(yFAz).

⇐: Assume for contradiction that fA(Y [x]G) is finite for some x ∈ Y . Then it follows that

FA = F n
A, for some n, and hence for any y, z ∈ Y [x]G , yF n

Az implies yFAz, contradicting the

hypothesis.

Theorem 13.7. If X is an aperiodic Borel G-space, then X ∈ A.

Proof. By Lemma 13.1, there is a partition {An}n∈N of X into Borel complete sections. We

will inductively construct Borel sets Bn ⊆ Cn, where Cn should be thought of as the set of

points colored (black or white) at the nth step, and Bn as the set of points colored black

(thus Cn ∖Bn is colored white).

Define a function # ∶ X → N by x ↦ m, where m is such that x ∈ Am. Fix a countable

family {Un}n∈N of sets generating the Borel σ-algebra of X.

Assuming that for all k < n, Ck,Bk are defined, let C̄n = ⋃k<nCk and B̄n = ⋃k<nBk. Put

Pn = {x ∈ A0 ∶ ∀k < n(gkx ∈ C̄n) ∧ gnx ∉ C̄n} and set Fn = F n
B̄n
⇂Pn , that is for all x, y ∈ Pn,

yFnz⇔∀k < n(gky ∈ B̄n↔ gkz ∈ B̄n).

Now put C ′
n = {x ∈ Pn ∶ #(gnx) = min #((gnPn)[x]G)}, C ′′

n = {x ∈ C ′
n ∶ ∃y, z ∈ (C ′

n)[x]G(y ≠

z ∧ yFnz)} and Cn = gnC ′′
n . Note that it follows from the definition of Pn that Cn is disjoint

from C̄n.

Now in order to define Bn, first define a function n̄ ∶X → N by

x↦ the smallest m such that there are y, z ∈ C ′′
n ∩ [x]G with yFnz, y ∈ Um and z ∉ Um.

Note that n̄ is Borel and G-invariant. Lastly, let B′
n = {x ∈ C ′′

n ∶ x ∈ Un̄(x)} and Bn = gnB′
n.

Clearly, Bn ⊆ Cn. Now let B = ⋃n∈NBn and D = [⋃n∈N(C ′
n ∖C ′′

n)]G. We show that B

aperiodically separates Y ∶=X ∖D and D ∈S. Since S ⊆ A and A is an ideal, this will imply

that X ∈ A.

Claim 1. D ∈S.
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Proof of Claim. Since S is a σ-ideal, it is enough to show that for each n, [C ′
n ∖C ′′

n ]G ∈ S,

so fix n ∈ N. Clearly, (C ′
n ∖ C ′′

n)[x]G is finite, for all x ∈ X, since there can be at most 2n

pairwise Fn-nonequivalent points. Thus, fixing some Borel linear ordering of X and taking

the smallest element from (C ′
n∖C ′′

n)[x]G for each x ∈ C ′
n∖C ′′

n , we can define a Borel transversal

for [C ′
n ∖C ′′

n ]G. ⊣

By Lemma 13.6, to show that B aperiodically separates Y , it is enough to show that

(∀x ∈ Y )(∀n)(∃y, z ∈ [x]G)[yF n
Bz ∧ ¬(yFBz)]. Fix x ∈ Y .

Claim 2. (∃∞n)(C ′′
n)[x]G ≠ ∅.

Proof of Claim. Assume for contradiction that (∀∞n)(C ′′
n)[x]G = ∅. Since x ∉ D, it follows

that (∀∞n)P [x]G
n = ∅. Since A0 is a complete section and C̄0 = ∅, P

[x]G
0 ≠ ∅. Let N be the

largest number such that P
[x]G
N ≠ ∅. Thus for all n > N , C

[x]G
n = ∅ and hence for all n > N ,

C̄
[x]G
n = C̄[x]G

N+1 . Because C
[x]G
N ≠ ∅, there is y ∈ A[x]G

0 such that ∀k ≤ N(gky ∈ C̄N+1); but

because P
[x]G
N+1 = ∅, gN+1y must also fall into C̄N+1. By induction on n > N , we get that for

all n > N , gny ∈ C̄n and thus gny ∈ C̄N+1.

On the other hand, it follows from the definition of C ′
n that for each n, (C ′

n)[x]G intersects

exactly one of Ak. Thus C̄
[x]G
N+1 intersects at most N + 1 of Ak and hence there exists K ∈ N

such that for all k ≥ K, C̄
[x]G
N+1 ∩ Ak = ∅. Since ∃∞n(gny ∈ ⋃k≥K Ak), ∃∞n(gny ∉ C̄N+1), a

contradiction. ⊣

Now it remains to show that for all n ∈ N, (C ′′
n)[x]G ≠ ∅ implies that ∃y, z ∈ [x]G such

that yF n
Bz but ¬(yFBz). To this end, fix n ∈ N and assume (C ′′

n)[x]G ≠ ∅. Thus there are

y, z ∈ (C ′′
n)[x]G such that yFnz, y ∈ Un̄(x) and z ∉ Un̄(x); hence, gny ∈ Bn and gnz ∉ Bn, by

the definition of Bn. Since Ck are pairwise disjoint, Bn ⊆ Cn and gny, gnz ∈ Cn, it follows

that gny ∈ B and gnz ∉ B, and therefore ¬(yFBz). Finally, note that Fn = F n
B ⇂Pn and hence

yF n
Bz.

Corollary 13.8. Suppose all of the nontrivial subgroups of G have finite index (e.g. G = Z),

and let X be an aperiodic Borel G-space. Then there exists A ∈ B(X) such that G⟨A⟩

separates points in each orbit, i.e. fA ⇂[x]G is one-to-one, for all x ∈X.

66



Proof. Let A be a Borel set aperiodically separating X (exists by Theorem 13.7) and put

Y = fA(X). Then Y ⊆ 2G is aperiodic and hence the action of G on Y is free since the

stabilizer subgroup of every element must have infinite index and thus is trivial. But this

implies that for all y ∈ Y , f−1
A (y) intersects every orbit in X at no more than one point, and

hence fA is one-to-one on every orbit.

From 13.3 and 13.7 we immediately get the following strengthening of Lemma 13.1.

Corollary 13.9. If X is aperiodic, then for some A ∈B(X), X admits a countably infinite

partition into Borel FA-invariant complete sections.

Theorem 13.10. Let X be an aperiodic G-space and let E be a smooth equivalence relation

on X with EG ⊆ E. There exists a partition P of X into 4 Borel sets such that GP separates

any two E-nonequivalent points in X, i.e. ∀x, y ∈X(¬(xEy) → fP(x) ≠ fP(y)).

Proof. By Corollary 13.9, there is A ∈ B(X) and a Borel partition {An}n∈N of X into FA-

invariant complete sections. For each n ∈ N, define a function n̄ ∶X → N by

x↦ the smallest m such that ∃x′ ∈ A[x]G
0 with gmx

′ ∈ An.

Clearly, n̄ is Borel, and because all of Ak are FA-invariant, n̄ is also FA-invariant, i.e. for all

x, y ∈X, xFAy → n̄(x) = n̄(y). Also, n̄ is G-invariant by definition.

Put A′
n = {x ∈ A0 ∶ gn̄(x)x ∈ An} and note that A′

n is FA-invariant Borel since so are n̄,

A0 and An. Moreover, A′
n is clearly a complete section. Define γn ∶ A′

n → An by x ↦ gn̄(x)x.

Clearly, γn is Borel and one-to-one.

Since E is smooth, there is a Borel h ∶ X → R such that for all x, y ∈ X, xEy ↔ h(x) =

h(y). Let {Vn}n∈N be a countable family of subsets of R generating the Borel σ-algebra of R

and put Un = h−1(Vn). Because each equivalence class of E is G-invariant, so is h and hence

so is Un.

Now let Bn = γn(A′
n ∩ Un) and note that Bn is Borel being a one-to-one Borel image

of a Borel set. It follows from the definition of γn that Bn ⊆ An. Put B = ⋃n∈NBn and
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P = ⟨A,B⟩; in particular, ∣P∣ ≤ 4. We show that P is what we want. To this end, fix x, y ∈X

with ¬(xEy). If ¬(xFAy), then G⟨A⟩ (and hence GP) separates x and y.

Thus assume that xFAy. Since h(x) ≠ h(y), there is n such that h(x) ∈ Vn and h(y) ∉ Vn.

Hence, by invariance of Un, gx ∈ Un∧gy ∉ Un, for all g ∈ G. Because A′
n is a complete section,

there is g ∈ G such that gx ∈ A′
n and hence gy ∈ A′

n since A′
n is FA-invariant. Let m = n̄(gx)

(= n̄(gy)). Then gmgx ∈ Bn while gmgy ∉ Bn although gmgy ∈ γn(A′
n) ⊆ An. Thus gmgx ∈ B

but gmgy ∉ B and therefore GP separates x and y.

14 Potential dichotomy theorems

In this section we prove dichotomy theorems assuming Weiss’s question has a positive answer

for G = Z. In the proofs we use the Ergodic Decomposition Theorem (see [Far62], [Var63])

and a Borel/uniform version of Krieger’s finite generator theorem, so we first state both of

the theorems and sketch the proof of the latter.

For a Borel G-space X, let MG(X) denote the set of G-invariant Borel probability

measures on X and let EG(X) denote the set of ergodic ones among those. It is not hard

to show that MG(X) and EG(X) are Borel subsets of P (X) (the standard Borel space of

Borel probability measures on X) and thus are themselves standard Borel spaces.

Ergodic Decomposition Theorem 14.1 (Farrell, Varadarajan). Let X be a Borel G-

space. If MG(X) ≠ ∅ (and hence EG(X) ≠ ∅), then there is a Borel surjection x ↦ ex from

X onto EG(X) such that:

(i) xEGy⇒ ex = ey;

(ii) For each e ∈ EG(X), if Xe = {x ∈ X ∶ ex = e} (hence Xe is invariant Borel), then

e(Xe) = 1 and e⇂Xe is the unique ergodic invariant Borel probability measure on Xe;

(iii) For each µ ∈ MG(X) and A ∈B(X), we have µ(A) = ∫ ex(A)dµ(x).

For the rest of the section, let X be a Borel Z-space.
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For e ∈ EZ(X), if we let he denote the entropy of (X,Z, e), then the map e↦ he is Borel.

Indeed, if {Pk}k∈N is a refining sequence of partitions of X that generates the Borel σ-algebra

of X, then by 4.1.2 of [Dow11], he = limk→∞ he(Pk,Z), where he(Pk,Z) denotes the entropy

of Pk. By 17.21 of [Kec95], the function e↦ he(Pk) is Borel and thus so is the map e↦ he.

For all e ∈ EZ(X) with he < ∞, let Ne be the smallest integer such that logNe > he. The

map e↦ Ne is Borel because so is e↦ he.

Krieger’s Finite Generator Theorem 14.2 (Uniform version). Let X be a Borel Z-space.

Suppose MZ(X) ≠ ∅ and let ρ be the map x↦ ex as in the Ergodic Decomposition Theorem.

Assume also that all measures in EZ(X) have finite entropy and let e↦ Ne be the map defined

above. Then there is a partition {An}n≤∞ of X into Borel sets such that

(i) A∞ is invariant and does not admit an invariant Borel probability measure;

(ii) For each e ∈ EZ(X), {An ∩Xe}n<Ne is a generator for Xe ∖A∞, where Xe = ρ−1(e).

Sketch of Proof. Note that it is enough to find a Borel invariant set X ′ ⊆ X and a Borel

Z-map φ ∶X ′ → NZ, such that for each e ∈ EZ(X), we have

(I) e(X ∖X ′) = 0;

(II) φ⇂Xe∩X′ is one-to-one and φ(Xe ∩X ′) ⊆ (Ne)Z, where (Ne)Z is naturally viewed as a

subset of NZ.

Indeed, assume we had such X ′ and φ, and let A∞ =X ∖X ′ and An = φ−1(Vn) for all n ∈ N,

where Vn = {y ∈ NZ ∶ y(0) = n}. Then it is clear that {An}n∈N satisfies (ii). Also, (I) and part

(ii) of the Ergodic Decomposition Theorem imply that (i) holds for A∞.

To construct such a φ, we use the proof of Krieger’s theorem presented in [Dow11],

Theorem 4.2.3, and we refer to it as Downarowicz’s proof. For each e ∈ EZ(X), the proof

constructs a Borel Z-embedding φe ∶X ′ → NZ
e on an e-measure 1 set X ′. We claim that this

construction is uniform in e in a Borel way and hence would yield X ′ and φ as above.
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Our claim can be verified by inspection of Downarowicz’s proof. The proof uses the

existence of sets with certain properties and one has to check that such sets exist with the

properties satisfied for all e ∈ EZ(X) at once. For example, the set C used in the proof of

Lemma 4.2.5 in [Dow11] can be chosen so that for all e ∈ EZ(X), C ∩Xe has the required

properties for e (using the Shannon-McMillan-Brieman theorem). Another example is the set

B used in the proof of the same lemma, which is provided by Rohlin’s lemma. By inspection

of the proof of Rohlin’s lemma (see 2.1 in [Gla03]), one can verify that we can get a Borel B

such that for all e ∈ EZ(X), B ∩Xe has the required properties for e. The sets in these two

examples are the only kind of sets whose existence is used in the whole proof; the rest of the

proof constructs the required φ “by hand”.

Theorem 14.3 (Dichotomy I). Suppose the answer to Question 2.3 is positive and let X be

an aperiodic Borel Z-space. Then exactly one of the following holds:

(1) there exists an invariant ergodic Borel probability measure with infinite entropy;

(2) there exists a partition {Yn}n∈N of X into invariant Borel sets such that each Yn has a

finite generator.

Proof. We first show that the conditions above are mutually exclusive. Indeed, assume there

exist an invariant ergodic Borel probability measure e with infinite entropy and a partition

{Yn}n∈N of X into invariant Borel sets such that each Yn has a finite generator. By ergodicity,

e would have to be supported on one of the Yn. But Yn has a finite generator and hence

the dynamical system (Yn,Z, e) has finite entropy by the Kolmogorov-Sinai theorem (see

1.5). Thus so does (X,Z, e) since these two systems are isomorphic (modulo e-NULL),

contradicting the assumption on e.

Now we prove that at least one of the conditions holds. Assume that there is no invariant

ergodic measure with infinite entropy. Now, if there was no invariant Borel probability

measure at all, then, since the answer to Question 2.3 is assumed to be positive, X would

admit a finite generator, and we would be done. So assume that MZ(X) ≠ ∅ and let
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{An}n≤∞ be as in Theorem 14.2. Furthermore, let ρ be the map x ↦ ex as in the Ergodic

Decomposition Theorem. Set X ′ =X ∖A∞, Y∞ = A∞, and for all n ∈ N,

Yn = {x ∈X ′ ∶ Nex = n},

where the map e ↦ Ne is as above. Note that the sets Yn are invariant since ρ is invariant,

so {Yn}n≤∞ is a countable partition of X into invariant Borel sets. Since Y∞ does not admit

an invariant Borel probability measure, by our assumption, it has a finite generator.

Let E be the equivalence relation on X ′ defined by ρ, i.e. ∀x, y ∈X ′,

xEy⇔ ρ(x) = ρ(y).

By definition, E is a smooth Borel equivalence relation with E ⊇ EZ since ρ respects the

Z-action. Thus, by Theorem 13.10, there exists a partition P of X ′ into 4 Borel sets such

that ZP separates any two points in different E-classes.

Now fix n ∈ N and we will show that I = P ∨ {Ai}i<n is a generator for Yn. Indeed, take

distinct x, y ∈ Yn. If x and y are in different E-classes, then ZP separates them and hence

so does ZI. Thus we can assume that xEy. Then e ∶= ρ(x) = ρ(y), i.e. x, y ∈ Xe = ρ−1(e).

By the choice of {Ai}i∈N, {An ∩Xe}n<Ne is a generator for Xe and hence Z{Ai}i<Ne separates

x and y. But n = Ne by the definition of Yn, so ZI separates x and y.

Proposition 14.4. Let X be a Borel Z-space. If X admits invariant ergodic probability

measures of arbitrarily large entropy, then it admits an invariant probability measure of

infinite entropy.

Proof. For each n ≥ 1, let µn be an invariant ergodic probability measure of entropy hµn > n2n

such that µn ≠ µm for n ≠m, and put

µ = ∑
n≥1

1

2n
µn.

It is clear that µ is an invariant probability measure, and we show that its entropy hµ is

infinite. Fix n ≥ 1. Let ρ be the map x↦ ex as in the Ergodic Decomposition Theorem and

put Xn = ρ−1(µn). It is clear that µm(Xn) = 1 if m = n and 0 otherwise.
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For any finite Borel partition P = {Ai}ki=1 of Xn, put A0 =X ∖Xn and P̄ = P ∪ {A0}. Let

T be the Borel automorphism of X corresponding to the action of 1Z, and let hν(I) and

hν(I, T ) denote, respectively, the static and dynamic entropies of a finite Borel partition I

of X with respect to an invariant probability measure ν. Then, with the convention that

log(0) ⋅ 0 = 0, we have

hµ(P̄) = −
k

∑
i=0

log(µ(Ai))µ(Ai) ≥ −
k

∑
i=1

log(µ(Ai))µ(Ai) = −
k

∑
i=1

log( 1

2n
µn(Ai))

1

2n
µn(Ai)

≥ − 1

2n

k

∑
i=1

log(µn(Ai))µn(Ai) =
1

2n
hµn(P̄).

Since P is arbitrary and Xn is invariant, it follows that

hµ(P̄, T ) = lim
m→∞

1

m
hµ(⋁

j<m
T jP̄) ≥ 1

2n
lim
m→∞

1

m
hµn(⋁

j<m
T jP̄) = 1

2n
hµn(P̄, T ).

Now for any finite Borel partition I of X, it is clear that hµn(I) = hµn(P̄) (and hence

hµn(I, T ) = hµn(P̄, T )), for some P as above. This implies that

hµ ≥ sup
P
hµ(P̄, T ) ≥ 1

2n
sup
P
hµn(P̄, T ) = 1

2n
sup
I
hµn(I, T ) = 1

2n
hµn > n,

where P and I range over finite Borel partitions of Xn and X, respectively. Thus hµ= ∞.

Theorem 14.5 (Dichotomy II). Suppose the answer to Question 2.2 is positive and let X

be an aperiodic Borel Z-space. Then exactly one of the following holds:

(1) there exists an invariant Borel probability measure with infinite entropy;

(2) X admits a finite generator.

Proof. The Kolmogorov-Sinai theorem implies that the conditions are mutually exclusive,

and we prove that at least one of them holds. Assume that there is no invariant measure

with infinite entropy. If there was no invariant Borel probability measure at all, then, by

our assumption, X would admit a finite generator. So assume that MZ(X) ≠ ∅ and let

{An}n≤∞ be as in Theorem 14.2. Furthermore, let ρ be the map x ↦ ex as in the Ergodic

Decomposition Theorem. Set X ′ =X ∖A∞ and Xe = ρ−1(e), for all e ∈ EZ(X).
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By our assumption, A∞ admits a finite generator P. Also, by 14.4, there is N ≥ 1 such

that for all e ∈ EZ(X), Ne ≤ N and hence Q ∶= {An}n<N is a finite generator for Xe; in

particular, Q is a partition of X ′. Let E be the following equivalence relation on X:

xEy⇔ (x, y ∈ A∞) ∨ (x, y ∈X ′ ∧ ρ(x) = ρ(y)).

By definition, E is a smooth equivalence relation with E ⊇ EZ since ρ respects the Z-action

and A∞ is Z-invariant. Thus, by Theorem 13.10, there exists a partition J of X into 4 Borel

sets such that ZJ separates any two points in different E-classes.

We now show that I ∶= ⟨J ∪ P ∪ Q⟩ is a generator. Indeed, fix distinct x, y ∈ X. If x

and y are in different E-classes, then ZJ separates them. So we can assume that xEy. If

x, y ∈ A∞, then ZP separates x and y. Finally, if x, y ∈ X ′, then x, y ∈ Xe, where e = ρ(x)

(= ρ(y)), and hence ZQ separates x and y.

Remark. It is likely that the above dichotomies are also true for any amenable group using

a uniform version of Krieger’s theorem for amenable groups, cf. [DP02], but I have not

checked the details.

15 A condition for non-existence of non-meager weakly

wandering sets

Throughout this section let X be a Polish Z-space and T be the homeomorphism corre-

sponding to the action of 1 ∈ Z.

Observation 15.1. Let A ⊆X be weakly wandering with respect to H ⊆ Z. Then A is weakly

wandering with respect to

(a) any subset of H;

(b) r +H, ∀r ∈ Z;

(c) −H.
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Definition 15.2. Let d ≥ 1 and F = {ni}i<k ⊆ Z, where n0 < n1 < ... < nk−1 are increasing. F

is called d-syndetic if ni+1 − ni ≤ d for all i < k − 1. In this case we say that the length of F

is nk−1 − n0 and denote it by ∣∣F ∣∣.

Lemma 15.3. Let d ≥ 1 and F ⊆ Z be a d-syndetic set. For any H ⊆ Z, if ∣H ∣ = d + 1 and

max(H) −min(H) < ∣∣F ∣∣ + d, then F is not weakly wandering with respect to H (viewing Z

as a Z-space).

Proof. Using (b) and (c) of 15.1, we may assume that H is a set of non-negative numbers

containing 0. Let F = {ni}i<k with ni increasing.

Claim. ∀h ∈H, (h + F ) ∩ [nk−1, nk−1 + d) ≠ ∅.

Proof of Claim. Fix h ∈H. Since 0 ≤ h < ∣∣F ∣∣ + d,

n0 + h < n0 + (∣∣F ∣∣ + d) = nk−1 + d.

We prove that there is 0 ≤ i ≤ k − 1 such that ni + h ∈ [nk−1, nk−1 + d). Otherwise, because

ni+1 − ni ≤ d, one can show by induction on i that ni + h < nk−1,∀i < k, contradicting

nk−1 + h ≥ nk−1. ⊣

Now ∣H ∣ = d + 1 > d = ∣Z ∩ [nk−1, nk−1 + d)∣, so by the Pigeon Hole Principle there exists

h ≠ h′ ∈H such that (h+F )∩(h′+F ) ≠ ∅ and hence F is not weakly wandering with respect

to H.

Definition 15.4. Let d, l ≥ 1 and A ⊆X. We say that A contains a d-syndetic set of length

l if there exists x ∈ X such that {n ∈ Z ∶ T n(x) ∈ A} contains a d-syndetic set of length ≥ l.

This is equivalent to ⋂n∈F T n(A) ≠ ∅, for some d-syndetic set F ⊆ Z of length ≥ l.

For A ⊆X, define sA ∶ N→ N ∪ {∞} by

d↦ sup{l ∈ N ∶ A contains a d-syndetic set of length l}.

Also, for infinite H ⊆ Z, define a width function wH ∶ N→ N by

d↦min{max(H ′) −min(H ′) ∶H ′ ⊆H ∧ ∣H ′∣ = d + 1}.
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Proposition 15.5. If A ⊆ X is weakly wandering with respect to an infinite H ⊆ Z then

∀d ∈ N, sA(d) + d ≤ wH(d).

Proof. Let H be an infinite subset of Z and A ⊆ X, and assume that sA(d) + d > wH(d) for

some d ∈ N. Thus ∃x ∈X such that {n ∈ Z ∶ T n(x) ∈ A} contains a d-syndetic set F of length

l with l+d > wH(d) and ∃H ′ ⊆H such that ∣H ′∣ = d+1 and max(H ′)−min(H ′) = wH(d). By

Lemma 15.3 applied to F and H ′, F is not weakly wandering with respect to H ′ and hence

neither is A. Thus A is not weakly wandering with respect to H.

Corollary 15.6. If A ⊆ X contains arbitrarily long d-syndetic sets for some d ≥ 1, then it

is not weakly wandering.

Proof. If A and d are as in the hypothesis, then sA(d) = ∞ and hence, by Proposition 15.5,

A is not weakly wandering with respect to any infinite H ⊆ Z.

Theorem 15.7. Let X be a Polish G-space. Suppose for every nonempty open V ⊆ X

there exists d ≥ 1 such that V contains arbitrarily long d-syndetic sets, i.e. ⋂n∈F T n(V ) ≠ ∅

for arbitrarily long d-syndetic sets F ⊆ Z. Then X does not admit a non-meager Baire

measurable weakly wandering subset.

Proof. Let A be a non-meager Baire measurable subset of X. By the Baire property, there

exists a nonempty open V ⊆X such that A is comeager in V . By the hypothesis, there exists

arbitrarily long d-syndetic sets F ⊆ Z such that ⋂n∈F T n(V ) ≠ ∅. Since A is comeager in V

and T is a homeomorphism, ⋂n∈F T n(A) is comeager in ⋂n∈F T n(V ), and hence ⋂n∈F T n(A) ≠

∅ for any F for which ⋂n∈F T n(V ) ≠ ∅. Thus A also contains arbitrarily long d-syndetic sets

and hence, by Corollary 15.6, A is not weakly wandering.

Corollary 15.8. Let X be a Polish G-space. Suppose for every nonempty open V ⊆X there

exists d ≥ 1 such that {T nd(V )}n∈N has the finite intersection property. Then X does not

admit a non-meager Baire measurable weakly wandering subset.
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Proof. Fix nonempty open V ⊆ X and let d ≥ 1 such that {T nd(V )}n∈N has the finite inter-

section property. Then for every N , F = {kd ∶ k ≤ N} is a d-syndetic set of length Nd and

⋂n∈F T n(V ) ≠ ∅. Thus Theorem 15.7 applies.

Lemma 15.9. Let X be a generically ergodic Polish G-space. If there is a non-meager Baire

measurable locally weakly wandering subset then there is a non-meager Baire measurable

weakly wandering subset.

Proof. Let A be a non-meager Baire measurable locally weakly wandering subset. By generic

ergodicity, we may assume that X = [A]G. Throwing away a meager set from A we can

assume that A is Gδ. Then, by (d) of 11.2, there exists a σ(Σ1
1)-measurable (and hence

Baire measurable) G-invariant travel guide γ ∶ A → GN. By generic ergodicity, γ must be

constant on a comeager set, i.e. there is (gn)n∈N ∈ GN such that Y ∶= γ−1((gn)n∈N) is comeager.

But then W ∶= A ∩ Y is non-meager and is weakly wandering with respect to {gn}n∈N.

Let X = {α ∈ 2N ∶ α has infinitely many 0-s and 1-s} and T be the odometer transforma-

tion on X. We will refer to this Z-space as the odometer space.

Corollary 15.10. The odometer space does not admit a non-meager Baire measurable locally

weakly wandering subset.

Proof. Let {Us}s∈2<N be the standard basis. Then for any s ∈ 2<N, T d(Us) = Us for d = ∣s∣.

Thus {T nd(Us)}n∈N has the finite intersection property, in fact ⋂n∈N T nd(Us) = Us. Hence,

we are done by 15.8 and 15.9.

The following corollary shows the failure of the analogue of the Hajian-Kakutani-Itô

theorem in the context of Baire category as well as gives a negative answer to Question 2.6.

Corollary 15.11. There exists a generically ergodic Polish Z-space Y (namely an invariant

dense Gδ subset of the odometer space) with the following properties:

(i) there does not exist an invariant Borel probability measure on Y ;
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(ii) there does not exist a non-meager Baire measurable locally weakly wandering set;

(iii) there does not exist a Baire measurable countably generated partition of Y into invariant

sets, each of which admits a Baire measurable weakly wandering complete section.

Proof. By the Kechris-Miller theorem (see 2.8), there exists an invariant dense Gδ subset

Y of the odometer space that does not admit an invariant Borel probability measure. Now

(ii) is asserted by Corollary 15.10. By generic ergodicity of Y , for any Baire measurable

countably generated partition of Y into invariant sets, one of the pieces of the partition has

to be comeager. But then that piece does not admit a Baire measurable weakly wandering

complete section since otherwise it would be non-meager, contradicting (ii).
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Part 2

Finite index pairs of countable Borel

equivalence relations
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CHAPTER I

Introduction to countable equivalence relations and

the main results

1 Countable equivalence relations and subrelations

In this chapter, we give a brief survey of countable Borel equivalence relations and discuss

subequivalence relations, focusing on those of finite index. We also define classes of hyperfi-

nite and treeable equivalence relations, and discuss the question of whether they are closed

under finite index extensions. Along the way, we state the main results of this part as they

become relevant.

Before we begin, let us recall the basic definitions and notation of the theory of definable

equivalence relations.

Definition 1.1. A a standard Borel space X is an uncountable set X equipped with a σ-

algebra that is the Borel σ-algebra of some Polish topology on X.

Because any two uncountable Polish spaces are Borel isomorphic, it does not matter

which Polish topology is used in the above definition. Thus, we work with Borel spaces

when only the Borel structure is relevant.

Definition 1.2. Let E,F be equivalence relations on standard Borel spaces X,Y , respec-

tively. A Borel map f ∶X → Y is called a Borel reduction of E to F if for all x0, x1 ∈X, we

have

x0Ex1 ⇐⇒ f(x0)Ff(x1).

79



We say that E is Borel reducible to F , and write E ≤B F , if there is a Borel reduction f of

E to F . If there is an injective Borel reduction f , then we write E ⊑B F , and if moreover,

f(X) is an F -invariant subset of Y , then we write E ⊑∗B F .

Definition 1.3. A Borel equivalence relation on a standard Borel X is called countable

(finite) if each equivalence class is countable (finite).

For an equivalence relation E on a set X and x ∈X, let [x]E denote the equivalence class

of x. Also, for A ⊆X, put

[A]E = {x ∈X ∶ [x]E ∩A ≠ ∅}

(A)E = {x ∈X ∶ [x]E ⊆ A}.

We call [A]E the E-saturation of A and (A)E the E-hull of A. Note that if E is a countable

Borel equivalence relation on a standard Borel space X and A ⊆ X is a Borel set, then, by

the Luzin-Novikov theorem, [A]E and (A)E are also Borel. A subset A ⊆ is called a complete

section for E (or an E-complete section) if [A]E =X.

1.1 Borel actions of countable groups

Let X be a standard Borel space. Every Borel action Γ ↷ X of a countable group Γ on X

induces such an equivalence relation, namely the orbit equivalence relation EX
Γ , defined by

xEX
G y ⇐⇒ ∃γ ∈ Γ, γx = y,

for x, y ∈X. We often write EΓ for EX
Γ if X is clear from the context. The following theorem

shows that these are the only examples of countable Borel equivalence relations (see Theorem

1.3 of [KM04] or [FM77]).

Theorem 1.4 (Feldman-Moore). For every countable Borel equivalence relation E on a

standard Borel space X, there is a countable group Γ and a Borel action Γ ↷ X such that

E = EX
Γ . Moreover, Γ can be taken such that

xEy ⇐⇒ ∃γ ∈ G,γ2 = 1 and γx = y,
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for all x, y ∈X.

Using basic descriptive set theory, one can show that any Borel action Γ ↷ X of a

countable group Γ on X has a Polish realization, that is: there is a Polish topology on X,

whose Borel structure coincides with the Borel structure of X, and the action is continuous

with respect to this topology. Thus, given a Borel action Γ ↷ X, we may assume whenever

we need that X is a Polish space and the action is continuous.

For a countable group Γ, an important action is the shift action s ∶ Γ ↷ XΓ, where X is

a standard Borel space. It is defined as follows:

γ ⋅s u(α) = u(γ−1α),

for γ,α ∈ Γ and u ∈XΓ.

Proposition 1.5. For an uncountable standard Borel space X and a countable group Γ, the

shift action s ∶ Γ ↷ XΓ is universal among all Borel actions of Γ, that is: for any other

Borel action a ∶ Γ↷ Y on a standard Borel space Y , there is an equivariant Borel embedding

f ∶ Y ↪XΓ.

Proof. Without loss of generality we may assume that Y ⊆ X. Define f ∶ Y → XΓ by

y → (γ ⋅a y)γ∈Γ. It is straightforward to check that this f satisfies the conclusion of the

proposition.

1.2 Universal countable equivalence relations

Let Fn denote the free group on n generators, for n ≤ ∞. Using the Feldman-Moore theorem

and Proposition 1.5, one easily sees that the orbit equivalence relation F of the shift action of

F∞ on (2N)F∞ is a universal countable Borel equivalence relation. Indeed, let E is a countable

Borel equivalence relation on some standard Borel X. By the Feldman-Moore theorem, there

is a countable group Γ and a Borel action Γ ↷ X such that EX
Γ = E. Because F∞ surjects

onto Γ, we may lift this action of Γ to that of F∞ on X. Thus E is induced by a Borel action
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a ∶ F∞ ↷ X. Now Proposition 1.5 gives an injective equivariant map f ∶ X → (2N)F∞ and

thus E ⊑∗B F .

Using a bit more coding, it was shown in [DJK94] that the orbit equivalence relation E∞

of the shift action of F2 on 2F2 is also universal. More precisely:

Theorem 1.6 (Dougherty-Jackson-Kechris). For any countable Borel equivalence relation

E, E ⊑B E∞.

1.3 Notation and tools

For a standard Borel space X, let Aut(X) denote the group of Borel automorphisms of

X. For a countable Borel equivalence relation E on X, we denote by [E] the subgroup of

Aut(X) of automorphisms that act within the E-classes, i.e. f(x)Ex, for all x ∈ X. [E] is

referred to as the full group of E. For T ∈ [E], let ET (or EX
T ) denote the orbit equivalence

relation induced by the action of T , namely:

xETy ⇐⇒ ∃n ∈ Z(T n(x) = y),

for x, y ∈X.

Countable equivalence relations are often considered in the measure theoretic context,

namely, in the presence of a probability measure µ on X. We say that E is µ-measure

preserving or µ is E-invariant if every T ∈ [E] preserves µ. Equivalently, using Feldman-

Moore, if E = EX
Γ for some Borel action Γ ↷ X of a countable group Γ, then this action is

µ-measure preserving. We say that E is µ-ergodic (or equivalently, µ is E-ergodic) if any

E-invariant Borel set A ⊆X is either µ-null or µ-conull.

Presence of a probability measure (especially if it is invariant) serves as a powerful tool

for studying countable equivalence relations as it enables quantitative arguments, pigeon

hole principle, 0 − 1 law (in case of ergodicity), etc.

When X is a Polish space, a similar tool is Baire category, although, as we explain below,

it is not as useful for countable Borel equivalence relations.
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1.4 Subequivalence relations

For equivalence relations E,F on X, E is said to be a subequivalence relation of F if E ⊆ F

(as subsets of X2). Equivalently, we say that F is an extension of E. In this case, each

F -class is a union of E-classes.

If F is a countable equivalence relation, then there are at most countably many E-classes

within each F -class. When there are only finitely many E-classes in every F -class, we say

that E is a finite index subequivalence relation of F and denote this by [F ∶ E] < ∞. When

the number of E-classes on every F -class is exactly i ≤ ∞, we say that the index of E in F

is i and write [F ∶ E] = i. We also write [F ∶ E] ≤ i (< i) when the number of E-classes on

every F -class is ≤ i (< i). Thus [F ∶ E] ≤ i and [F ∶ E] = j for some j ≤ i mean two different

things.

Definition 1.7. A pair (E,F ) of countable Borel equivalence relations is called nested if

E ⊆ F . We say that (E,F ) is a finite index pair if E ⊆ F and [F ∶ E] < ∞.

Finite index pairs are the main objects of study of the current part of the thesis.

Example 1.8. Let X = 2N and recall from the introduction the equivalence relation E0 on

X defined by

xE0y ⇐⇒ ∃n ∈ N∀m ≥ n(x(m) = y(m)),

for x, y ∈ X. Define T ∶ X → X by T (x)(n) = 1 − x(n), for x ∈ X, n ∈ N. Clearly, T is an

involution and each ET -class has exactly two elements. Also note that T takes E0-classes to

E0-classes. Thus, the smallest equivalence relation F0 containing ET and E0 is an index-2

extension of E0.

Note that for every finite index pair (E,F ), there is a countable partition {Xn}n∈N of X

into F -invariant Borel sets such that [F ⇂Xn ∶ E ⇂Xn] = n: simply take

Xn = {x ∈X ∶ there are exactly n distinct E-classes in [x]F}.

Thus, questions about finite index pairs can be reduced to questions about index-i pairs for

i < ∞.
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1.4.1 A universal index-i pair

Definition 1.9. Let (E0, F0) and (E1, F1) be nested pairs with underlying standard Borel

spaces X and Y , respectively. We write (E0, F0) ≤B (E1, F1) if E0 ≤B E1 and F0 ≤B F1

simultaneously; more precisely, there is a Borel map f ∶ X → Y that is a reduction of E0 to

E1, as well as a reduction of F0 to F1. We write (E0, F0) ⊑B (E1, F1) if there is an injective

such f , and we write (E0, F0) ⊑∗B (E1, F1) if moreover f(X) is F1-invariant.

In Section 4, we give a construction of a universal index-i pair1, that is, a pair (Eu, Fu)

on some underlying space Xu such that for any other index-i pair (E,F ),

(E,F ) ⊑B (Eu, Fu).

Thus, when studying index-i pairs, it is enough to study (Eu, Fu).

1.4.2 Atomic decomposition for finite index pairs

When dealing with finite index pairs (E,F ) in the presence of a probability measure µ, the

proofs are simpler when µ is E-ergodic. If this is not the case, one often needs some sort

of ergodic decomposition theorem. In Section 6, we prove such a theorem, and call it the

F /E-atomic decomposition theorem. To state it, we need the following definition:

Definition 1.10. Let (E,F ) be a finite index pair on a standard probability space (X,µ).

A µ-measurable set A ⊆X is called F /E-atomic if any E ⇂A-invariant Borel subset B ⊆ A is

also F ⇂A-invariant modulo a µ-null set; more precisely, [B]F⇂A ∖B is µ-null.

This definition basically says that, modulo µ-null, there is no uniform way of splitting

an F ⇂A-orbit into two nonempty E ⇂A-invariant pieces. Note that if F is µ-ergodic, then X

being F /E-atomic is equivalent to E being µ-ergodic.

Now we can state the atomic decomposition theorem:

1After I presented my results in a seminar, Andrew Marks pointed out that Ben Miller has a more general
result, which implies the existence of such a universal pair.
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Theorem 6.2. Let (X,µ) be a standard probability space and let (E,F ) be a nested pair

on X with [F ∶ E] ≤ i, for some i ∈ N. Then, there is a partition X = ⊎j<kXj, k ≤ i, into

E-invariant F /E-atomic sets. Such a partition is unique up to a null set.

1.4.3 Normality

For a countable Borel equivalence relation E, put

N[E] = {T ∈ Aut(X) ∶ ∀x, y ∈X(xEy⇔ T (x)ET (y))}.

In other words, N[E] is the group of Borel automorphisms of E.

Definition 1.11. Let (E,F ) be a nested pair. E is said to be normal in F if there is a

countable subgroup Γ < N[E] whose natural action on X induces F , i.e. F = EΓ. We denote

this by E ⊲ F . In this case, we also say that (E,F ) is a normal pair.

In Example 1.8 above, T ∈ N[E] and thus F0 is normal over E0. In the end of Section 3,

we show that any index-2 pair is normal if we disregard a Borel set on which E and F are

equal.

Many interesting nested pairs (E,F ) are not normal. For example, it was shown in

[Tho09] that recursive isomorphism is not a normal subequivalence relation of Turing equiv-

alence.

In Section 7, we characterize the normal index-i subequivalence relations of a fixed ergodic

countable equivalence relation F . More precisely, we prove the following:

Theorem 7.2. Let (E,F ) be an index-i pair on a standard probability space (X,µ) and

suppose that F is measure preserving and ergodic. Then, the following are equivalent:

(1) E ⊲ F ;

(2) F is generated by a countable group ∆ < [F ] of the form H ×Γ such that ∣H ∣ = i and the

action of Γ induces E a.e.
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(3) F is generated by a Borel action of a countable group ∆ that admits a normal subgroup

Γ of finite index such that the action of Γ induces E a.e.

Using the convenient tool of links developed in Section 3, the proof of this theorem is

fairly easy in the case when µ is E-ergodic. The general case, however, is handled using the

F /E-atomic decomposition theorem mentioned above (Theorem 6.2).

1.4.4 Smooth pairs

Definition 1.12. Let (E,F ) be a nested pair on a standard Borel space X. F is said to be

smooth over E if there is a Borel reduction f ∶ X → X from F to E such that f(x)Fx, for

all x. In other words, f takes every F -class C into one E-class D within C, thus singling

out D among all E-class in C. We also call (E,F ) a smooth pair.

If (E,F ) is a smooth pair and f is a witnessing function as in the definition, then taking

Y = f(X), we see that Y is a complete section2 for F and F ⇂Y = E ⇂Y . Therefore, in

most situations (including those considered in the current part of the thesis), F inherits the

properties of E. This is the reason why many of the interesting nested pairs are not smooth.

For instance, the pair (E0, F0) considered in Example 1.8 is nonsmooth: indeed, suppose

it is smooth and let f be the witnessing reduction. E0 is generically ergodic, so Y = [f(X)]E0

is either meager or comeager. Note that the involution T (as in the example) is a homeo-

morphism. Thus, Y is meager (comeager) if and only if T (Y ) is meager (comeager). But 2N

is a disjoint union of Y and T (Y ) and this contradicts the Baire category theorem.

A more interesting example is given in [TW13], where the authors prove that the relation

of bi-embeddability for finitely generated groups is not smooth over the isomorphism relation.

2Complete section for F is a set that meets every F -class.
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2 Important subclasses of countable equivalence relations

2.1 Hyperfinite equivalence relations

Definition 2.1. A countable Borel equivalence relation is called hyperfinite if there is an

increasing sequence (En)n∈N of finite Borel equivalence relations such that E = ⋃n∈NEn.

The requirement of (En)n∈N being increasing is crucial in the definition since every count-

able Borel equivalence relation is a union of finite Borel equivalence relations.

The following theorem (see [DJK94]) shows that the notion of hyperfiniteness is very

robust.

Theorem 2.2 (Weiss, Slaman-Steel, Dougherty-Jackson-Kechris). For a countable Borel

equivalence relation E on a standard Borel space X, the following are equivalent:

(1) E is hyperfinite;

(2) E ⊑B E0;

(3) There is a Borel action of Z on X such that E = EX
Z .

Here we give various closure properties of the class of hyperfinite equivalence relations

listed in Proposition 1.3 of [JKL02].

Proposition 2.3. Let E,F be countable Borel equivalence relations on standard Borel spaces

X,Y , respectively.

(a) If E ⊆ F and F is hyperfinite, then so is E.

(b) If E ≤B F and F is hyperfinite, then so is E.

(c) If E is hyperfinite and A ⊆X, then E ⇂A is hyperfinite.

(d) If A ⊆X is a complete section for E and E ⇂A is hyperfinite, then so is E.

(e) If E,F are hyperfinite, then so is E × F .

87



(f) If E is hyperfinite and F is a finite index extension of E, then F is hyperfinite.

A lot is known about hyperfinite equivalence relations. However, there are still simple

questions about them, to which we do not yet know the answers. Here are two of the most

notorious ones:

1. (Dougherty-Jackson-Kechris [DJK94]) Is increasing union of hyperfinite equivalence rela-

tions hyperfinite?

2. (Weiss [Wei84]) Is the orbit equivalence relation induced by a Borel action of a countable

amenable group hyperfinite?

Concerning Question 2, it was proved by Jackson-Kechris-Louveau in [JKL02] that the

answer is positive for finitely generated groups of polynomial growth (which are nilpotent-

by-finite groups, by Gromov’s theorem). It was also proved by Gao-Jackson in [GJ12] that

the answer is yes for all abelian groups. Very recently, Seward and Schneider announced

that they can now show that the answer is positive for all nilpotent groups, but there is no

preprint available yet.

An interesting example of a hyperfinite equivalence relation is given in [JKL02]: let

GL2(Z) act on T by linear transformations, identifying T with rays through the origin.

Then the orbit equivalence relation induced by this action is hyperfinite.

In the measure theoretic context however, both of the above questions have positive

answers:

1. (Dye [Dye63], Krieger [Kri69]) Let (X,µ) be a probability space and suppose E is an

increasing union of hyperfinite equivalence relations on X. Then E is hyperfinite a.e.

2. (Ornstein-Weiss [OW80]) Orbit equivalence relations of measure preserving actions of

amenable groups are hyperfinite a.e.

As far as Baire category is concerned, the following theorem (see Theorem 12.1 of [KM04])

shows that every countable Borel equivalence relation is hyperfinite modulo a meager set:
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Theorem 2.4 (Hjorth-Kechris, Sullivan-Weiss-Wright, Woodin). Let E be a countable Borel

equivalence relation on a Polish space X. Then there is a comeager invariant set C ⊆X such

that E ⇂C is hyperfinite.

Thus, the technique of Baire category often does not apply when studying countable

Borel equivalence relations, although, of course, it depends on the property one is chasing

(for example, the Generic Compressibility Theorem 13.1 of [KM04] or Theorem 12.2 of Part

1 of the current thesis).

Finally, it is worth mentioning that there are lots of non-hyperfinite countable equivalence

relations. In particular, E∞ is non-hyperfinite (mainly because F2 is not amenable), even if

we disregard a null set (with respect to the natural product measure on 2F2).

2.2 Treeable equivalence relations

Let X be a standard Borel space. A Borel graph G on X is a Borel relation G ⊆ X2 that is

irreflexive and symmetric. Such a graph induces an analytic equivalence relation EG on X

defined by setting xEGy if x and y are in the same connected component of G, i.e. there is

a path in G from x to y, for x, y ∈X. In this case, G is called a graphing of EG.

Definition 2.5. A countable Borel equivalence relation E on X is called treeable if it admits

an acyclic Borel graphing G. In this case, G is necessarily locally countable (every vertex has

only countably many neighbors) and each connected component is a tree. Thus, G is called a

treeing of E.

Example 2.6.

(A) All hyperfinite equivalence relations are treeable.

(B) More generally, all equivalence relations induced by free actions of countable free groups

are treeable (use their Cayley graphs).
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(C) For n ≥ 2, consider the action of GLn(Z) on Tn = Rn/Zn by linear transformations and

let Fn denote the induced orbit equivalence relation. It was shown in [JKL02] that F2

is treeable, while for n ≥ 3, Fn is not treeable as GLn(Z) is a Kazhdan group [AS90].

The following theorem, proved in [JKL02], provides many more examples of treeable

equivalence relations:

Theorem 2.7 (Jackson-Kechris-Louveau). Let Γ be a countable group that admits an action

on a (graph-theoretic) tree by automorphisms, so that the stabilizer of every vertex is finite.

Then any orbit equivalence relation induced by a free Borel action of Γ is treeable.

Let Free(F2,2F2) ⊆ 2F2 denote the free part of the shift action of F2 on 2F2 . It was also

shown in [JKL02] that E∞T = E∞ ⇂Free(F2,2F2) is a universal treeable equivalence relation.

More precisely:

Theorem 2.8 (Jackson-Kechris-Louveau). For any countable treeable equivalence relation

E, E ⊑B E∞T .

Because Free(F2,2F2) is conull in 2F2 and E∞ is not hyperfinite even when restricted to

conull set, E∞T is not hyperfinite either. Thus, there are non-hyperfinite treeable equivalence

relations (actually, there are lots of them).

2.2.1 Closure properties and finite index extensions

Here we give various closure properties of the class of treeable equivalence relations listed in

Proposition 3.3 of [JKL02].

Proposition 2.9. Let E,F be countable Borel equivalence relations on standard Borel spaces

X,Y , respectively.

(a) If E ⊆ F and F is treeable, then so is E.

(b) If E ≤B F and F is treeable, then so is E.
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(c) If E is treeable and A ⊆X, then E ⇂A is treeable.

(d) If A ⊆X is a complete section for E and E ⇂A is treeable, then so is E.

This list of closure properties of the class of treeable equivalence relations is missing two

properties that the class of hyperfinite equivalence relations enjoys, namely, the closure under

products and finite index extensions. It was shown in [JKL02] and in [Ada90] for locally

finite case that the former property does not hold for treeable equivalence relations; in fact,

E0 ×E∞T and E∞T ×E∞T are not treeable, and hence E∞ is not treeable as well.

As for the closure under finite index extensions, it is still an open problem, even in the

measure-theoretic context and even for index-2. This question was first raised in [JKL02],

and it is what got the present author interested in studying finite index pairs in general.

Towards this question, the following corollary is drawn in [JKL02] from Theorem 2.7

(above) and a difficult result in geometric group theory (see Theorem 55 in [Coh89]) stating

that virtually free groups act on trees with finite (vertex) stabilizers:

Corollary 2.10 (Jackson-Kechris-Louveau). If a Borel equivalence relation F is induced by

a free Borel action of a virtually free countable group, then F is treeable.

In Chapter III, we study finite index extensions of treeable equivalence relations. In

particular, we give a converse (in terms of cost) to the above corollary in the presence of an

ergodic invariant measure (see [KM04] for the definition and theory of cost). More precisely,

we prove the following characterization theorem:

Theorem 11.2. Let F be an ergodic measure preserving countable Borel equivalence relation

on a probability space (X,µ). The following are equivalent:

(1) F is induced by a Borel almost free action of a virtually free countable group;

(2) F is treeable and admits a normal Borel subequivalence relation of finite index with

integer or ∞ cost;

91



(3) F is induced by a Borel almost free action of a countable group ∆ of the form H × Fn,

where ∣H ∣ = i and n ∈ N ∪ {∞}.

The proof of this theorem uses the characterization of normal finite index pairs mentioned

above (Theorem 7.2), a criterion for treeability of finite index extensions of treeable equiva-

lence relations given in Section 8, as well as the following theorem of Hjorth (see Corollary

1.2 of [Hjo02] or Theorems 28.2 and 28.5 of [KM04]):

Theorem 2.11 (Hjorth). Let E be an aperiodic3 treeable measure preserving ergodic equiv-

alence relation on a standard probability space (X,µ). If E has cost n ∈ N ∪ {∞}, then E is

induced by an almost free action of Fn.

2.2.2 Universal treeable-by-i pairs

We call a countable Borel equivalence relation F treeable-by-finite if it is a finite index

extension of a treeable equivalence relation E, and we refer to (E,F ) a treeable-by-finite

pair. If [F ∶ E] = i, then we call (E,F ) a treeable-by-i pair.

As mentioned above, in Section 4 we construct a universal index-i pair (Eu, Fu). This

Eu is defined as the orbit equivalence relation induced by a certain action of F2. In Section 9

we show that if we restrict Eu and Fu to the free part of this action of F2, then the resulting

pair (EuT , FuT ) is a universal treeable-by-i pair. In particular, we have the following:

Proposition 9.3. Every treeable-by-i equivalence relation is treeable if and only if FuT is

treeable.

The pair (EuT , FuT ) is somewhat hard to work with as the properties we want this pair

to have are basically postulated in its definition. However, in Section 14 we construct a

more concrete universal treeable-by-i pair. The construction of this pair is based on the

natural left action of F2 on the right coset space S∞(F2) ∖F2, where S∞(F2) is the group of

all bijections from F2 to F2 and F2 is naturally viewed as a subgroup of S∞(F2). Moreover,

3Aperiodic means that there are no finite orbits.
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using this action, in Section 12 we construct a simple example of a treeable-by-2 system

that I believe is a very good candidate for a counter-example to treeable-by-2 equivalence

relations being treeable.
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CHAPTER II

General and normal index-i pairs

3 Links

Throughout this section, fix i ∈ N and let (E,F ) denote an index i-pair on a standard Borel

space X.

Definition 3.1. A relation L ⊆ X2 is called a partial equivalence relation if there is Y ⊆ X

such that L is an equivalence relation on Y . We refer to this Y as the domain of L and

denote by dom(L). Similarly, we call Y c the codomain of L.

Note that if L as above is Borel, then domL = {x ∈X ∶ (x,x) ∈ L} is also Borel.

Definition 3.2. A Borel finite partial subequivalence equivalence relation L of F is called

a partial (E,F )-link if each L-equivalence class consists of i-many pairwise E-inequivalent

elements. Such L is called a full (E,F )-link or just an (E,F )-link if dom(L) =X.

Definition 3.3. We say that relations R,S ⊆X2 commute if R ○ S = S ○R, where

x(R ○ S)y ⇐⇒ ∃z ∈X(xRz and zSy),

for x, y ∈ X. If R and S are equivalence relations, we write R ∨ S for their join, that is,

the smallest equivalence relation containing R ∪S. Clearly, R and S commute if and only if

R ○ S = R ∨ S.

Note that for any (E,F )-link L, E and L commute and F = E ∨L.

Definition 3.4. A Borel set D ⊆ X is called (E,F )-negligible if [F ⇂D∶ E ⇂D] < i and Dc is

an E-complete section.
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Proposition 3.5. There exists a partial (E,F )-link L with (E,F )-negligible codomain.

Proof. Let [F ]i denote the standard Borel space of all subsets of X of cardinality i consisting

of pairwise F -equivalent elements, and put

Φ = {S ∈ [F ]i ∶ for any distinct x, y ∈ S,x��Ey}.

By Lemma 7.3 in [KM04], there is a Φ-maximal finite partial Borel subequivalence relation L

of F . It is clear from the definition of Φ that L is a partial (E,F )-link. Moreover, it follows

from the Φ-maximality of L that dom(L) is an F -complete section and thus an E-complete

section, by the virtue of being a partial (E,F )-link.

Now put Z = dom(L)c and let C ⊆ Z be an F ⇂Z-class. We show that C contains less

than i-many E ⇂Z-classes: otherwise, picking a point from each E ⇂Z-class within C, we

can form a set S ∈ Φ disjoint from dom(L), contradicting the Φ-maximality of L. Thus

[F ⇂Z ∶ E ⇂Z] < i.

For a Borel set Y ⊆ X, we call T ∈ Aut(Y ) a partial Borel automorphism of X with

domain Y and write dom(T ) = Y . We refer to dom(T )c as the codomain of T . We denote

by LT the partial equivalence relation induced by the action of T .

Definition 3.6. For a countable Borel equivalence relation E on X and T ∈ Aut(X), we

say that T has index i over E if

(i) T i = id,

(ii) T 0(x), T 1(x), ..., T i−1(x) are pairwise E-inequivalent, for all x ∈X,

(iii) for each E-class C, ⋃j<i T j(C) is a union of exactly i-many E-classes. In other words,

for every x, y ∈X and j < i, there is k < i such that T j(x) = T k(y).

Given a Borel linear order < on X, we would say in addition that T respects that order if

(iv) T j(x) < T j+1(x), for all j < i − 1 and x ∈X.
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Finally, we say that a partial Borel automorphism T of X has index i over E if T has index

i over E ⇂dom(T ).

For a Borel automorphism T of index i over E, we let F[E,T ] denote the join of LT and

E. Note that (E,F[E,T ]) is an index-i pair and LT is an (E,F[E,T ])-link. The following

proposition shows that modulo a negligible set, all index-i pairs arise in this fashion.

Proposition 3.7. For any index-i pair (E,F ), there is a partial Borel automorphism T of

X having index i over E and an (E,F )-negligible codomain. In fact, we can make sure that

T respects a given Borel linear order on X.

Proof. Let L be as in Proposition 3.5. Fix a Borel linear order < on X and define T on

dom(L) as follows:

T (x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

min[x]L if x = max[x]L
min{y ∈ [x]L ∶ y > x} otherwise

,

for x ∈ dom(L).

An immediate corollary of this is the following:

Corollary 3.8. If [F ∶ E] = 2, then F is normal over E modulo a set on which F is equal

to E.

Proof. Let T be as in Proposition 3.7 and put Y = dom(T ). Then Y c is (E,F )-negligible

and hence F ⇂Y c= E ⇂Y c . Also, T is an involution on Y and T ∈ N[E ⇂Y ]. Thus, F ⇂Y is

normal over E ⇂Y since F ⇂Y = LT ∨E ⇂Y .

Definition 3.9. If a Borel automorphism T of X has index-i over E and preserves some

fixed Borel linear order on X, we call [E,T ] an index-i system.

Lemma 3.10. Let A ⊆ X be a complete section for E. Then there is a Borel reduction

f ∶X → A of E to E ⇂A such that xEf(x) for all x ∈X.
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Proof. By the Feldman-Moore theorem, there is a Borel action of a countable group Γ on X

such that E = EΓ. Fix an enumeration Γ = (γn)n∈N and define f ∶ X → A by x ↦ γnx, where

n ∈ N is the least such that γnx ∈ A. It is clear that this f satisfies the conclusion of the

lemma.

From this lemma and Proposition 3.7, we immediately get:

Corollary 3.11. For any index-i pair (E,F ) on X, there is an index-i system [E′, T ] such

that (E,F ) ≤B (E′, F[E′,T ]). In fact, E′ = E ⇂A, for some Borel subset A ⊆X.

4 A universal index-i pair

Recall that E∞ is the orbit equivalence relation of the shift action of F2 on 2F2 , and it is

a universal countable Borel equivalence relation. The following proposition shows that in

any index-i pair (E,F ), we may assume without loss of generality that E = E∞ ⇂Y , for some

E∞-invariant Borel subset Y of 2F2 .

Proposition 4.1. For any index-i pair (E,F ), there is an E∞-invariant Borel subset Y of

2F2 and an index-i extension F ′ of E∞ ⇂Y on Y such that (E,F ) ⊑B (E∞ ⇂Y , F ′).

Proof. Take a Borel embedding f ∶ E ↪ E∞ and let D ⊆ 2F2 denote the image of this

embedding. Putting Y = [D]E∞ , let π ∶ E∞ ⇂Y→ E∞ ⇂D be a Borel reduction (using Lemma

3.10). Now define an equivalence relation F ′ on Y as follows: for all y1, y2 ∈ Y ,

y1F
′y2 ⇐⇒ f−1(π(y1))Ff−1(π(y2)).

Clearly [F ′ ∶ E∞ ⇂Y ] = [F ∶ E] = i and f is a Borel embedding of (E,F ) into (E∞ ⇂Y , F ′).

Proposition 3.7 gives a simple way of constructing a universal index-i pair (Eu, Fu).

Indeed, let ∆ = Zi ∗ F2 and let g denote the generator 1 ∈ Zi. Let EF2 and E∆ denote the
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orbit equivalence relations of the shift actions of F2 and ∆ on X ′ = (2F2)∆, respectively. Put

X ′′ = {y ∈X ′ ∶ the set ⋃
n<i
g[y]E∆

is equal to a union

of exactly i-many EF2-classes}.

Finally, put Xu = (X ′′)EF2
, Fu = E∆ ⇂Y and Eu = EF2 ⇂Y . It is clear from the definitions that

(Eu, Fu) is an index-i pair.

Proposition 4.2. For any index-i pair (E,F ), (E,F ) ⊑B (Eu, Fu).

Proof. By Proposition 4.1, we may assume that E = E∞ ⇂Y , for some E∞-invariant Borel

subset Y of 2F2 . Thus, E is the orbit equivalence relation of the shift action of F2 on Y .

Now let T be a partial Borel automorphism of Y given by Proposition 3.7 and extend it to

a (full) Borel automorphism S of Y by setting S be the identity on Y ∖ dom(T ). Thus we

can extend the action of F2 on Y to that of ∆ by letting g act as S. By the choice of T , this

action generates F .

Now define a map π ∶ Y → (2F2)∆ by y ↦ (γy)γ∈∆. Clearly, this is a ∆-equivariant

Borel embedding. Using the defining properties of T (in particular, the fact that dom(T )c

is (E,F )-negligible), it is straightforward to check that the image of π is contained in Xu.

Thus, f witnesses (E,F ) ⊑B (Eu, Fu).

5 An important example of an index-2 system

In this section we define a pivotal example of an index-2 system that will be used below in

constructing various index-i systems with treeable equivalence relations.

Fix a countable group Γ and denote by S∞(Γ) the group of all bijections from Γ to

Γ. The group operation is just the composition and we denote it by ○. S∞(Γ) is a Polish

group under the pointwise convergence topology being a Gδ subset of the Polish space of all

functions from Γ to Γ. We naturally view Γ as a subgroup of S∞(Γ) by letting γ(α) = γα,

for γ,α ∈ Γ.
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Let Γ ∖ S∞(Γ) be the space of right Γ-cosets and consider the natural action ρ ∶ Γ ↷

Γ ∖ S∞(Γ) of Γ on Γ ∖ S∞(Γ) defined by:

γ ⋅ρ Γg = Γ(g ○ γ−1),

for γ ∈ Γ, g ∈ S∞(Γ).

Let R(Γ) < S∞(Γ) be the subgroup of all bijections Γ→ Γ that fix the identity e of Γ (R

stands for rotations). We will just write R if Γ is understood.

Lemma 5.1. S∞(Γ) = ΓR = RΓ.

Proof. We will prove only S∞(Γ) = ΓR since the other statement is proved similarly. Fix

g ∈ S∞(Γ) and put r = g(e)−1 ○ g. Then g = g(e) ○ r.

Thus R is a transversal for Γ ∖ S∞(Γ) and we identify Γ ∖ S∞(Γ) with R via the map

π ∶ Γ ∖ S∞(Γ) → R defined by

π(Γg) = g(e)−1 ○ g,

for g ∈ S∞(Γ). Let θ ∶ Γ↷ R denote the π-pushforward of the action ρ ∶ Γ↷ Γ∖S∞(Γ). It is

defined as follows:

γ ⋅θ r = π(γ ⋅ρ Γr) = π(Γ(r ○ γ−1)) = r(γ−1)−1 ○ r ○ γ−1,

for γ ∈ Γ and r ∈ R. Thus,

γ ⋅θ r(α) = r(γ)−1 ○ r(γ−1α),

for α ∈ Γ.

Note that R is a Polish subgroup of S∞(Γ), the action θ is continuous and (R, θ) is

isomorphic to (Γ∖S∞(Γ), ρ) as Polish Γ-spaces. Let Eθ denote the orbit equivalence relation

on R induced by the action θ.

We now define a homeomorphism Tinv ∶ R → R by r ↦ r−1. Clearly Tinv is an involution,

and here is how it interacts with the action of Γ:

Lemma 5.2. For all γ ∈ Γ and r ∈ R, Tinv(γ ⋅θ r) = δ ⋅θ Tinv(r), where δ = r(γ−1)−1.
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Proof. We simply compute:

Tinv(γ ⋅θ r) = Tinv(r(γ−1)−1 ○ r ○ γ−1)

= γ ○ r−1 ○ r(γ−1)

= r−1(δ−1)−1 ○ r−1 ○ δ−1

= δ ⋅θ Tinv(r).

This immediately gives:

Proposition 5.3. Tinv ∈ N[Eθ].

Proof. Fix r1, r2 ∈ R such that r2 = γ ⋅θ r1 for some γ ∈ Γ. By Lemma 5.2, we have

Tinv(r2) = Tinv(γ ⋅θ r1) = δ ⋅θ Tinv(r1),

for δ = r(γ−1)−1, and thus Tinv(r1)EθTinv(r2).

Taking Fθ = Eθ ∨ LTinv
, we get a pair (Eθ, Fθ) with [Fθ ∶ Eθ] ≤ 2. Strictly speaking,

[Eθ, Tinv] is not an index-2 system as Tinv may be fixing some Eθ-classes. However, we can

always restrict to an Eθ-invariant Borel subset R′ of R so that [Fθ ⇂R′ ∶ Eθ ⇂R′] = 2.

6 F /E-atomic decomposition

In this section we establish the F /E-atomic decomposition theorem mentioned in Chapter

I.

Let (E,F ) be a finite index pair defined on a standard probability space (X,µ). Recall

the definition of an F /E-atomic set and note that all null sets are automatically F /E-atomic.

Thus, the complete section obtained in the conclusion of the following lemma may simply be

a null set. However, we will use this lemma only for F -invariant µ, in which case F -complete

sections cannot be null.
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Lemma 6.1. There is an E-invariant µ-measurable F -complete section Y ⊆X that is F /E-

atomic.

Proof. Recursively define a decreasing sequence of E-invariant Borel F -complete sections

Yn and an increasing sequence dn of reals as follows: put Y0 = X and assuming that Yn is

defined, put

An = {A ⊆ Yn ∶ A is a µ-measurable E-invariant F -complete section}

and

dn = inf
A∈An

µ(A).

Let Yn+1 ∈ An be such that µ(Yn+1) < dn+n−1. By definition, Yn decreases, while dn increases

(not necessarily strictly). Put Y = ⋂n∈N Yn. Clearly Y is E-invariant.

Claim. Y is an F -complete section.

Proof of Claim. Let C be an F -class and Cn be the set of E-classes in C that are contained

in Yn. Thus each Cn is finite and nonempty, which implies that (Cn)n∈N eventually stabilizes

since it is decreasing. Hence, Y contains the union of the E-classes in Cn, for some n; and

therefore, Y ∩C ≠ ∅. ⊣

It remains to show that Y is F /E-atomic. Assume it isn’t, i.e. there is a non-null µ-

measurable A ⊆ Y that is E-invariant but B = [A]F⇂Y ∖A is not null. We assume without

loss of generality that A is an F -complete section since otherwise, we could replace A with

(Y ∖ [A]F⇂Y )∪A. Let n ∈ N be large enough to ensure µ(B) > n−1. Since Y = A⊎B, we have

µ(A) = µ(Y ) − µ(B) < µ(Yn) − n−1 < dn,

contradicting the definition of dn as it is easy to see that A ∈ An.

Theorem 6.2. Let (X,µ) be a standard probability space and let (E,F ) be a nested pair

on X with [F ∶ E] ≤ i, for some i ∈ N. Then, there is a partition X = ⊎j<kXj, k ≤ i, into

E-invariant F /E-atomic sets. Such a partition is unique up to a null set.
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Proof. The uniqueness is clear since for any other such partition X = ⊎l<mX ′
l , Xj ∩X ′

l is

E-invariant and hence is either null or conull in both Xj and X ′
l . Thus, modulo a null set,

Xj and X ′
l are either disjoint or equal, and therefore, m = k and the partitions are the same

up to a permutation of indices.

We prove the existence by induction on i. Let Y be as in Lemma 6.1. If Y is conull,

then we are done, so suppose it is not. Because Y is an E-invariant F -complete section, we

have [F ⇂Y c ∶ E ⇂Y c] < i. Hence, by induction, there is a partition of Y c into less than i-many

E-invariant measurable F /E-atomic sets. Combining this with Y gives the desired partition

of X.

We call this partition the F /E-atomic decomposition of X. Here are some properties of

it in case F is µ-ergodic:

Lemma 6.3. Suppose [F ∶ E] = i, F is µ-ergodic and let X = ⊎j<kXj, k ≤ i, be the F /E-

atomic decomposition. Then each Xj is an F -complete section modulo µ-null, and E ⇂Xj
is

µ⇂Xj
-ergodic. If moreover E ⊲ F , then [F ⇂Xj

∶ E ⇂Xj
] = i/k, for all j < k.

Proof. The first statement follows immediately from the definitions. For the second, let

j, l < k and we show that [F ⇂Xj
∶ E ⇂Xj

] = [F ⇂Xl
∶ E ⇂Xl

]. By normality of E in F , there

exists h ∈ N[E] ∩ [F ] such that h(Xj) ∩Xl is non-null. But, {h(Xj)}j<k is an F /E-atomic

decomposition as well, so by the uniqueness of the latter, we have h(Xj) =Xl. Since h takes

E-classes to E-classes, it is clear that [F ⇂Xj
∶ E ⇂Xj

] = [F ⇂Xl
∶ E ⇂Xl

].

7 Normal subequivalence relations

Throughout this section let (E,F ) be an index-i pair. In case when (E,F ) is normal, we

have the following strengthening of Proposition 3.5:

Proposition 7.1. If (E,F ) is normal, then there is a partial (E,F )-link with (E,F )-

negligible codomain such that [dom(L)c]E is F -compressible (hence so is [dom(L)c]F ).
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Proof. Let L be a partial (E,F )-link given by Proposition 3.5. Put

A = (dom(L))E ∩ [dom(L)c]F .

Thus A is the union of those E-classes that are fully covered by dom(L) but lie inside

an F -class that is not fully covered by dom(L). Because dom(L)c is (E,F )-negligible,

[A]F = [dom(L)c]F .

Fix Γ = {γn}n∈N ⊆ N[E] that generates F and define π ∶ A → N by x ↦ the least n such

that γn(A∩ [x]F )∩Ac ≠ ∅. Note that such n exists for every x ∈ A because by the definition

of A, Ac ∩ [x]F ≠ ∅ and the action of Γ on [x]F is transitive. Also, π is F -invariant, i.e.

constant on every F -class.

Now define g ∶ A→X by x↦ γπ(x)x. Since within each F -class g is equal to γn for some

n ∈ N and γn ∈ N[E], g is a bijection and g(A) is E-invariant. Thus, also B ∶= g(A) ∩ Ac

is E-invariant since so is A. Moreover, B intersects every F -orbit of [A]F = [dom(L)]F and

B ⊆ [dom(L)c]E. Thus it is enough to show that B is F -compressible, and in fact, we show

that it is E-compressible.

Define the compressing function ρ ∶ B → B by x ↦ the unique y ∈ [x]F such that

g−1(x)Ly and xEy. It is easy to see that ρ is one-to-one and Borel. It is also immediate

from the definition that ρ(B) ⊆ dom(L), while for every x ∈ B, [x]E ∖ dom(L) ≠ ∅ because

B ⊆ [dom(L)c]E. Thus, indeed, ρ is compressing, and we are done.

For the rest of this section, assume that the pair (E,F ) is defined on a standard proba-

bility space (X,µ). We will work towards proving the following characterization of when E

is normal in F , in case F is ergodic:

Theorem 7.2. Let (E,F ) be an index-i pair on a standard probability space (X,µ) and

suppose that F is measure preserving and ergodic. Then, the following are equivalent:

(1) E ⊲ F ;

(2) F is generated by countable group ∆ < [F ] of the form H × Γ such that ∣H ∣ = i and the

action of Γ induces E a.e.
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(3) F is generated by a Borel action of a countable group ∆ that admits a normal subgroup

Γ of finite index such that the action of Γ induces E a.e.

Because groups admitting finite index subgroups also admit further subgroups that are

normal and still of finite index, we immediately get the following:

Corollary 7.3. Suppose F is ergodic. Then, modulo a null set, F is generated by a Borel

action of a countable group that admits a proper finite index subgroup if and only if F admits

a proper normal subequivalence relation of finite index.

Lemma 7.4. Suppose E ⊲ F and E is µ-ergodic. Then, for any full (E,F )-link L, there

exists a group G < N[E] ∩ [L] of order i that generates L.

Proof. For each h ∈ N[E], define ĥ ∶X →X by x↦ the unique element in [x]L ∩ [h(x)]E.

Claim. ĥ ∈ [L] ∩N[E], for all h ∈ N[E].

Proof of Claim. ĥ is invertible as it is easy to check that the map

y ↦ the unique x ∈ [y]L with h(x)Ey

is its inverse. Hence ĥ ∈ [L]. To check that ĥ ∈ N[E], fix x, y ∈ X with xEy. Then

h(x)Eh(y), i.e. [h(x)]E = [h(y)]E, and hence ĥ(x)Eĥ(y), by the definition of ĥ. ⊣

By the normality of E in F , there is H < N[E] that generates F . By the above claim,

G = ⟨ĥ ∶ h ∈ H⟩ < [L] ∩N[E]. The action of G on X is almost free since for any 1G ≠ g ∈ G,

the set {x ∈X ∶ g(x) = x} is E-invariant and hence null, by the ergodicity of E. To see that

G generates L, fix x, y ∈ X with xLy. Thus xFy and hence y = h(x), for some h ∈ H. But

then ĥ(x) = y and ĥ ∈ G. It remains to show that ∣G∣ = i. Since the action of G is almost

free and generates L, there is x ∈ X such that the action of G restricted to [x]L is free and

transitive. This implies that ∣G∣ = i since ∣[x]L∣ = i.

When E is not ergodic, we use the F /E-atomic decomposition to decompose X into

finitely many E-invariant pieces, on each of which E is ergodic.
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Lemma 7.5. Suppose E ⊲ F and F is ergodic, and let X = ⊎j<kXj be the F /E-atomic

decomposition. For any full (E,F )-link L, there is T ∈ N[E] ∩ [L] of order k such that

T (Xj) =Xj+1 (mod k), for all j < k.

Proof. For h ∈ N[E] ∩ [F ], let ĥ ∈ N[E] ∩ [L] be defined as in the proof of Lemma 7.4.

For every j < k, as in the proof of Lemma 6.3, let hj ∈ N[E] ∩ [F ] be such that hj(Xj) =

Xj+1 (mod k) and define T ∶ X → X as follows: for x ∈ Xj, put T (x) = ĥj(x). It is clear that

T satisfies the condition of the lemma.

Proposition 7.6. Suppose E ⊲ F and F is ergodic. Then, for any full (E,F )-link L, there

exists a group H < N[E] ∩ [L] of order i that generates L.

Proof. Let X = ⊎j<kXj be the F /E-atomic decomposition and let T ∈ N[E] ∩ [L] be as

in Lemma 7.5. Since E ⇂X0 is ergodic, we can apply Lemma 7.4 and get a group G <

N[E ⇂X0] ∩ [L ⇂X0] of order i/k. Now for each g ∈ G, define φ(g) ∶ X → X as follows: for

x ∈ Xj, φ(g)(x) = T j ○ g ○ T −j(x). Note that for g1, g2 ∈ G, φ(g1g2) = φ(g1)φ(g2) and hence

φ is a group isomorphism between G and φ(G). Also it is clear from the definitions that

φ(G) ∈ N[E] ∩ [L] and that T commutes with φ(G). Thus H = ⟨T,φ(G)⟩ < N[E] ∩ [L] is of

order k ⋅ i/k = i and generates L.

Definition 7.7. For a full (E,F )-link L and γ ∈ [E], we say that γ commutes with L if so

does the graph of γ. For Γ < [E], we say that Γ commutes with L if so does every element

of Γ.

Lemma 7.8. Let L be a full (E,F )-link, s ∶ X → X be a Borel selector for L, and α ∶ Γ ↷

s(X) be a Borel action of a countable group Γ that induces F ⇂s(X). Then there is a Borel

action β ∶ Γ ↷ X that induces E, commutes with L, and makes s an equivariant map. In

particular, if α is free, then so is β.

Proof. We define a Borel action β ∶ Γ ×X →X of Γ on X as follows: for x ∈X and γ ∈ Γ,

β(γ, x) = the unique y such that yEx and s(y) = α(γ, s(x)).
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To show that this action generates E fix x, y ∈ X with xEy. Then s(x)F ⇂s(X) s(y) and

hence there is γ ∈ Γ such that s(y) = α(γ, s(x)). Thus β(γ, x) = y.

Proof of Theorem 7.2. (1) ⇒ (2): Let L be a partial (E,F )-link as in Proposition 7.1. Since

compressible sets are null, we may assume without loss of generality that L is a full link.

Let s ∶X →X be a Borel selector for L. Take a faithful Borel action α ∶ Γ↷ s(X) of some

countable group Γ that induces F ⇂s(X). By Lemma 7.8, there is a Borel action β ∶ Γ↷X of

Γ generating E, commuting with L and making s equivariant. Since the action β is faithful,

we can identify Γ with a subgroup of [E].

Now let H < N[E] ∩ [L] be as in Lemma 7.6. Because Γ commutes with L, it also

commutes with H and thus ∆ = ⟨H,Γ⟩ =H × Γ. It is clear that ∆ generates F .

(2) ⇒ (3): Trivial.

(3) ⇒ (1): It is enough to show that each element of ∆ acts as an automorphism in N[E].

Fix δ ∈ ∆ and x, y ∈ X such that y = γx for some γ ∈ Γ. We need to show that δy = γ′(δx)

for some γ′ ∈ Γ. But because Γ ⊲ ∆, δγ = γ′δ for some γ′ ∈ Γ. Hence, δy = δγx = γ′δx and we

are done.

We close this section with the following questions.

Question 7.9 . Let (E,F ) be an index-i pair on a standard Borel space X. Is there a

countable group ∆ with a finite index subgroup Γ and a Borel action ∆ ↷ X such that

E∆ = F and EΓ = E?

Because groups admitting finite index subgroups also admit further subgroups that are

normal and still of finite index, a positive answer to the above question implies a positive

answer to the following:

Question 7.10. With the hypothesis of the previous question, is there a Borel subequivalence

relation E′ ⊆ E such that E′ ⊲ F and [E ∶ E′] = n for some n < ∞?
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CHAPTER III

Treeable-by-finite equivalence relations

In this chapter, we investigate the question of whether a treeable-by-finite equivalence rela-

tion is treeable (see [JKL02]). Unless stated otherwise, let (E,F ) denote an index-i pair on

some standard Borel space.

8 A useful criterion

For a partial (E,F )-link L, put XL ∶= dom(L)/L and let FL denote the push-forward of

F ⇂dom(L) under the natural projection map πL ∶ dom(L) → XL; thus F ⇂dom(L)≤B FL. Since

each L-class is finite, there is a Borel right-inverse of πL and hence FL ≤B F ⇂dom(L). There-

fore, FL ∼B F ⇂dom(L).

Lemma 8.1. The following are equivalent:

(1) F is treeable;

(2) For any partial (E,F )-link L, FL is treeable;

(3) There exists a partial (E,F )-link L with (E,F )-negligible codomain such that FL is

treeable.

Proof. (1)⇒(2): follows from the fact that FL ≤B F .

(2)⇒(3): by Proposition 3.5.

(3)⇒(1): Because dom(L) is an F -complete section, F ≤B F ⇂dom(L)≤B FL and hence F itself

is treeable since treeability is closed downward under Borel reductions.
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Definition 8.2. For a countable equivalence relation E on a standard Borel space X, a

subgraphing G of E is a Borel graph on X such that EG ⊆ E.

For a partial (E,F )-link L and a subgraphing G of E, we spell out what it means for L

and G to commute: for all x0, x1, y0, y1 ∈ X, whenever x0Lx1, y0Ly1 and xkEyk for k = 0,1,

we have

(x0, y0) ∈ G ⇐⇒ (x1, y1) ∈ G.

Thus, if G is a graphing of E that commutes with L, then within every F -class the

G-connected components are isomorphic and the isomorphism is realized via the link L.

Proposition 8.3. For any index-i pair (E,F ), the following are equivalent:

(1) F is treeable;

(2) For any partial (E,F )-link L, there is a treeing of E ⇂dom(L) that commutes with L;

(3) There exists a partial (E,F )-link L with (E,F )-negligible codomain and a treeing G of

E ⇂dom(L) that commutes with L.

Proof. (1)⇒(2): If F is treeable, so is FL. Let GL be a treeing of FL. Then, taking the

pull-back of GL under πL and deleting the edges between E-inequivalent points, we get a

desired treeing G for E ⇂dom(L).

(2)⇒(3): by Proposition 3.5.

(3)⇒(1): If G is a treeing of E ⇂dom(L) commuting with L, we define a Borel graph GL on XL

as follows: for C0,C1 ∈ XL, put (C0,C1) ∈ GL if there are x ∈ C0 and y ∈ C1 with (x, y) ∈ G.

Because G commutes with L, GL is a treeing of FL. Thus, by Lemma 8.1, F is treeable.

9 A universal treeable-by-i pair

Recall that E∞T is the orbit equivalence relation on Free(F2,2F2) of the shift action of F2.

Just like Proposition 4.1, the following proposition shows that in any treeable-by-i pair
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(E,F ), we may assume without loss of generality that E = E∞T ⇂Y for some E∞T -invariant

Borel subset Y of Free(F2,2F2).

Proposition 9.1. For any treeable-by-i pair (E,F ), there is an E∞T -invariant Borel sub-

set Y of Free(F2,2F2) and an index-i extension F ′ of E∞T ⇂Y on Y such that (E,F ) ⊑B
(E∞T ⇂Y , F ′).

Proof. Same as the proof of Proposition 4.1, using E∞T instead of E∞.

Using this and Proposition 3.7, we construct a universal treeable-by-i pair as follows:

recall that (Eu, Fu) is defined on a certain Γ-invariant subset Xu of (2F2)Γ, where Γ = Zi∗F2.

Put XuT = Free(F2, (2F2)Γ), i.e. the free part of the action of F2 on (2F2)Γ, and let EuT =

Eu ⇂XuT
, FuT = Fu ⇂XuT

.

Proposition 9.2. For any treeable-by-i pair (E,F ), (E,F ) ⊑B (EuT , FuT ).

Proof. Same as the proof of Proposition 4.2, using Proposition 9.1 instead of 4.1.

Thus, we reduce the problem of whether treeable-by-i is treeable, to just verifying it for

FuT ; more precisely:

Proposition 9.3. Every treeable-by-i equivalence relation is treeable if and only if FuT is

treeable.

Lastly, we consider the case i = 2. It is somewhat special because in this case F coincides

with E on F /E-negligible sets. Thus, we have:

Lemma 9.4. Let (E,F ) be a treeable-by-2 pair on a standard Borel space X and let A ⊆X

be a Borel F /E-negligible set. Then F ⇂[A]F is treeable.

Proof. F ⇂A= E ⇂A and hence is treeable. But A is an F -complete section for [A]F , so by (d)

of Proposition 2.9, F ⇂[A]F is treeable as well.
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Note that for any involution T ∈ N[E], each LT -equivalence class has either one or two

elements, so [E ∨LT ∶ E] ≤ 2.

Proposition 9.5. Every treeable-by-2 equivalence relation is treeable if and only if for every

T ∈ N[E∞T ], E∞T ∨LT is treeable.

Proof. We only prove the right-to-left direction as the other is trivial. Let (E,F ) be an

index-2 pair. By Proposition 9.1, we may assume that E = E∞T ⇂Y for some E∞T -invariant

Borel subset Y of X = Free(F2,2F2). Let T be a partial Borel automorphism of Y having

index-2 over E as in Proposition 3.7. Hence T is an involution and Y ∖ dom(T ) is F /E-

negligible. Thus, by Lemma 9.4, F ⇂Y0 is treeable, where Y0 = [Y ∖ dom(T )]F . Therefore, it

is enough to show that F ⇂Z is treeable, where Z = Y ∖ Y0.

Note that T ⇂Z is a (full) involution defined on Z and T ⇂Z∈ N[E ⇂Z]. Define T ′ ∶X →X

by setting T ′ ⇂Z= T ⇂Z and T ′ ⇂X∖Z= idX∖Z . It is clear that T ′ ∈ N[E∞T ] and thus E∞T ∨LT ′

is treeable. But F ⇂Z= (E∞T ∨LT ′)⇂Z and hence F ⇂Z is treeable as well.

10 Sufficient conditions

Definition 10.1. Consider a Borel action of a countable group Γ on X and let T be a

Borel automorphism of X. We say that the action of T normalizes that of Γ if viewing each

element of Γ as a Borel automorphism of X, we have that for all γ ∈ Γ, there is γ′ ∈ Γ such

that T ○ γ ○ T −1 = γ′. Similarly, we say that the action of T commutes with that of Γ, if

T ○ γ = γ ○ T , for all γ ∈ Γ.

Proposition 8.3 gives the following sufficient condition for treeability:

Proposition 10.2. Consider a Borel free action of a countable free group Γ on a standard

Borel space X and let T ∈ N(EΓ) be such that T i = id for some i ∈ N. If T commutes with

the action of Γ, then EX
Γ ∨LT is treeable.

Proof. Let G be the standard treeing for EX
Γ , i.e. G is equal to the union of the graphs of
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the free generators of Γ and their inverses, viewed as elements of Aut(X). The fact that T

commutes with Γ implies that T commutes with G. Thus, it follows from Proposition 8.3

that EX
Γ ∨LT is treeable.

Example 10.3. Let T be the switching 0-1 involution defined on Free(F2,2F2), i.e.

T (x)(γ) = 1 − x(γ),

for x ∈ Free(F2,2F2) and γ ∈ F2. It is clear that T commutes with the action of F2 and hence,

by the previous proposition, E∞T ∨LT is treeable.

Recall the following result of Jackson-Kechris-Louveau mentioned in Chapter I:

Corollary 2.10. If a Borel equivalence relation F is induced by a free Borel action of a

virtually free countable group, then F is treeable.

This generalizes the previous proposition and in fact implies a stronger version of it:

Corollary 10.4. Consider a Borel free action of a countable free group Γ on a standard

Borel space X and let T ∈ N(EΓ) be such that T i = id for some i ∈ N. If T normalizes the

action of Γ, then EX
Γ ∨LT is treeable.

Proof. Since the action of Γ is faithful, we may consider it as a subgroup of Aut(X) and let

∆ = ⟨Γ, T ⟩ < Aut(X). Since T is in the normalizer of Γ inside ∆, we have that Γ ⊲ ∆ and

[∆ ∶ Γ] = i. Now apply Corollary 2.10.

In Theorem 11.2 below, we prove a converse to Corollary 2.10 in the measure-theoretic

context, in the case when F is ergodic.

Lastly, consider the index-2 case. Recall that E∞T is the orbit equivalence relation

induced by the shift action of F2 on Free(F2,2F2). In light of Proposition 9.5 and Corollary

10.4, we ask the following:

Question 10.5 . Does there exists an involution T ∈ N[E∞T ] that does not normalize the

shift action of F2 on Free(F2,2F2)?
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Proposition 9.5 and Corollary 10.4 imply that a negative answer to this question will im-

ply that all treeable-by-2 equivalence relations are treeable. However, the analogous question

asked for the free part of the shift on XF2 instead of 2F2 has a positive answer:

Proposition 10.6. Let X be an uncountable standard Borel space. Consider the shift action

s ∶ F2 ↷XF2 and denote the induced orbit equivalence relation on Free(F2,XF2) by E. There

is an involution T ∈ N[E] that neither normalizes the shift action of F2, nor commutes with

the standard treeing of E (induced by the Cayley graph of F2).

Proof. Let a ∶ F2 ↷ Y be a free Borel action of F2 on a standard Borel space Y and denote by

Ea the induced orbit equivalence relation on Y . By Proposition 1.5, there is an equivariant

embedding f ∶ Y → Free(F2,XF2).

Now if TY ∈ N[Ea] is an involution, then we can define an involution T ∈ N[E] on

Free(F2,XF2) as follows: let T be the identity on Free(F2,XF2) ∖ f(Y ), and define T on

f(Y ) by T (f(y)) = f(TY (y)). It is clear that TY normalizes the action a of F2 on Y if and

only if T normalizes the shift action of F2 on Free(F2,XF2). Similarly, TY commutes with

the standard treeing of Ea if and only if T commutes with the standard treeing of E.

Therefore, it is enough to construct an example of a free Borel action of a ∶ F2 ↷ Y with

an involution TY ∈ N[Ea] that does not normalize the action a and does not commute with

the standard treeing of Ea. Such an example is given below in Corollary 12.7.

11 A characterization of ergodic free actions of virtually

free groups

Lemma 11.1. Let (E,F ) be an index-i pair on a standard probability space (X,µ) such that

F is measure preserving and ergodic. If F is treeable a.e. and Cµ(E) = n ∈ N ∪ {∞}, then

for any (E,F )-link L, there exists an almost free Borel action of Fn on X that induces E

and commutes with L.

Proof. Let s ∶ X → X be a Borel selector for L and put Y = s(X). Note that Y is a Borel
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transversal for L and put ν = µ⇂Y
µ(Y ) . Clearly, ν is F ⇂Y -invariant.

Claim. µ(Y ) = 1/i and Cν(F ⇂Y ) = n.

Proof of Claim. For the first statement, let T ∈ [F ] be defined as in the proof of Proposition

3.7. Then {T k(Y )}k<i is a partition of X and µ(T k(Y )) = µ(Y ) since µ is T -invariant. Thus

µ(Y ) = 1/i.

For the second statement, apply the cost formula for a complete section (see Theorem

21.1 of [KM04]) to Y and get

Cµ⇂Y (F ⇂Y ) = Cµ(F ) − µ(X ∖ Y ) = Cµ(F ) − (1 − 1

i
).

By Proposition 25.6 of [KM04], since F is treeable and E is an index-i subequivalence relation

of F , we can express the cost of F in terms of the cost of E as follows:

Cµ(F ) = 1

i
(Cµ(E) − µ(X)) + µ(X) = n − 1

i
+ 1 = n

i
+ (1 − 1

i
).

Plugging this into the previous equality, we get Cµ⇂Y (F ⇂Y ) = n/i. Finally,

Cν =
Cµ⇂Y (F ⇂Y )
µ(Y ) = iCµ⇂Y (F ⇂Y ) = n.

Note that the calculations are still valid for the case n = ∞. ⊣

Because F is µ-ergodic, F ⇂Y is ν-ergodic. Thus, by Theorem 2.11 (of Hjorth), there is

an almost free Borel action α ∶ Fn ↷ Y that generates F ⇂Y . Thus, by Lemma 7.8, there is

an almost free action of Fn on X that generates E and commutes with L.

Theorem 11.2. Let F be an ergodic measure preserving countable Borel equivalence relation

on a probability space (X,µ). The following are equivalent:

(1) F is induced by a Borel almost free action of a virtually free countable group;

(2) F is treeable and admits a normal Borel subequivalence relation of finite index with

integer or ∞ cost;
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(3) F is induced by a Borel almost free action of a countable group ∆ of the form H × Fn,

where ∣H ∣ = i and n ∈ N ∪ {∞}.

Proof. (1)⇒(2): Suppose that F is induced by a Borel almost free action of a countable group

∆ that admits a finite index free subgroup Γ. Then, the treeability of F is the conclusion of

Corollary 2.10.

Let Γ′ < Γ be such that [∆ ∶ Γ′] = i < ∞ and Γ′ ⊲ ∆. Since subgroups of a free group are

free, Γ′ is free. Let E = EΓ′ . By (3)⇒(1) of Theorem 7.2, E ⊲ F . Also, because the action of

∆ is free, we have [F ∶ E] = i. Finally, if n ∈ N ∪ {∞} is the number of the free generators of

Γ′, then Cµ(E) = n.

(2)⇒(3): Let E ⊲ F be of finite index. By the ergodicity of F , we may assume that

[F ∶ E] = i < ∞. Let L be a partial (E,F )-link as in Proposition 7.1. Since [dom(L)c]F is

F -compressible, it is µ-null, and hence, we can assume without loss of generality that L is a

full link. By Proposition 7.6, there is H < N[E] ∩ [L] of order i that generates L.

Put n = Cµ(E) ∈ N ∪ {∞}. By Lemma 11.1, there is an almost free action of Fn on X

that generates E and commutes with L. Thus the actions of Fn and H commute and induce

an almost free action of H × Fn on X that generates F .

(3)⇒(1): Trivial.

12 The action θ ∶ Fn ↷ R(Fn)

Throughout this section, let Γ be a countable free group, i.e. Γ = Fn for some n ≤ ∞. Also

let S denote the set of free generators of Γ together with their inverses.

Recall from Section 5 that R = R(Γ) = {g ∈ S∞(Γ) ∶ g(e) = e}. Let Eθ denote the orbit

equivalence relation induced by the action θ of Γ on R. Also recall that Tinv ∶ R → R is the

involution r ↦ r−1 and Fθ = Eθ ∨LTinv
. Let R′ = Free(Γ,R) denote the free part of the action

θ ∶ Γ↷ R.
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Thus, E′
θ ∶= Eθ ⇂R′ is treeable, and we let G′ be its standard treeing; that is:

(r1, r2) ∈ G′ ⇐⇒ ∃γ ∈ S(γ ⋅θ r1 = r2).

for r1, r2 ∈ R′.

It is an open question whether F ′
θ ∶= Fθ ⇂R′ is treeable, and this is the simplest and most

natural example of a treeable-by-2 equivalence relation1 that I am aware of, for which the

answer is unknown.

For a relation D ⊆ R2, put D−1 = {(r−1
1 , r−1

2 ) ∶ (r1, r2) ∈ D}. In this notation, Proposition

8.3 translates to the following:

Proposition 12.1. F ′
θ is treeable if and only if there is a treeing G of E′

θ such that G−1 = G.

We now consider different subgroups of R and investigate the interaction of Tinv and the

action θ on these subgroups.

12.1 Group-automorphisms of Γ

Let H =H(Γ) denote the subgroup of R of all group-automorphisms of Γ, i.e. those bijections

that are group homomorphisms. Note that if Γ is finitely generated, then H is countable.

Lemma 12.2. H is equal to the set of fixed points of the action θ ∶ Γ↷ R.

Proof. For r ∈ R,

r is a fixed point of the action θ ⇐⇒ ∀γ ∈ Γ, γ ⋅θ r = r

⇐⇒ ∀γ,α ∈ Γ, r(γ−1)−1r(γ−1α) = r(α)

⇐⇒ ∀γ,α ∈ Γ, r(γ−1α) = r(γ−1)r(α)

⇐⇒ ∀β,α ∈ Γ, r(βα) = r(β)r(α)

⇐⇒ r ∈H.

1Technically, it is not treeable-by-2 since some Fθ-classes may contain only one Eθ-class, but Fθ restricted
to the union of these classes is treeable, so we may discard it.
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Proposition 12.3. There is no Fθ-class B ⊆ R′ such that Tinv ⇂B normalizes the action

θ⇂B ∶ Γ↷ B.

Proof. Assume for contradiction that Tinv ⇂B normalizes the action θ⇂B. Since this action is

free (and hence faithful), we may view Γ as a group of homeomorphism of B. Thus T is in

the normalizer of Γ inside the group ∆ =< T,Γ >, and hence T ○ γ = δ ○ T for some unique

δ ∈ Γ. Therefore, for r ∈ B, we have

T (γ ⋅θ r) = δ ⋅θ T (r).

By Lemma 5.2 and freeness of the action θ ⇂B, δ−1 = r(γ−1). Since r ∈ B is arbitrary, the

same is true for α ⋅θ r, for all α ∈ Γ, i.e.

δ−1 = (α ⋅θ r)(γ−1) = r(α−1)−1r(α−1γ−1).

Hence, we have

r(α−1γ−1) = r(α−1)r(γ−1).

Because this is true for all γ,α ∈ Γ, r is a group-homomorphism and hence r ∈H. Thus, r is

a fixed point of the action θ, contradicting r being in the free part of this action.

12.2 Graph-automorphisms of Cay(Γ, S)

Let Cay(Γ, S) denote the Cayley graph of (Γ, S) and denote by Aut(Cay(Γ, S)) the group

of automorphisms of Cay(Γ, S)) (as a graph). Put RC(Γ) = R∩Aut(Cay(Γ, S)) and we just

write RC below when Γ is understood. Clearly, RC is a subgroup and hence, Tinv(RC) =

RC . Moreover, since Γ < Aut(Cay(Γ, S)) and RC is a transversal for the right coset space

Γ ∖Aut(Cay(Γ, S)), RC is invariant under the action θ of Γ. Put

● R′
C = R′ ∩RC ,

● E′
C = E′

θ ⇂R′C ,

● F ′
C = F ′

θ ⇂R′C ,
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● T ′
C = Tinv ⇂R′C ,

● G′C ∶= G′ ⇂R′C .

Note that G′C is a treeing of E′
C , and in fact, we have the following:

Proposition 12.4. T ′
C commutes with G′C.

Proof. Fix (r1, r2) ∈ G′C and hence r2 = γ ⋅θ r1 for some γ ∈ S. By Lemma 5.2, T ′
C(r2) =

δ ⋅θ T ′
C(r1), where δ = r1(γ−1)−1. Because r1 is in RC , r1(S) = S and thus δ ∈ S. Therefore,

(T ′
C(r1), TC(r2)) ∈ G′C .

This and (2)⇒(1) of Proposition 8.3 immediately imply:

Corollary 12.5. F ′
C is treeable.

Note that because of Proposition 12.3, the treeability of F ′
C does not follow from Corollary

10.4.

It is worth mentioning that we also have a converse to Proposition 12.4:

Proposition 12.6. If B ⊆ R′ is an Fθ-equivalence class such that Tinv ⇂B commutes with

G′ ⇂B, then B ⊆ R′
C.

Proof. Fix r ∈ B, γ ∈ Γ and u ∈ S. We need to show that for some v ∈ S, r(γu) = r(γ)v.

Let r1 = γ−1 ⋅θ r. Because Tinv ⇂B commutes with G′ ⇂B, and (r1, u−1 ⋅θ r1) ∈ G′, there is v ∈ S

such that v−1 ⋅θ Tinv(r1) = Tinv(u−1 ⋅θ r1). By Lemma 5.2 and the freeness of the action θ ⇂R′ ,

v = r1(u). Since r1(u) = r(γ)−1r(γu), we get r(γ)v = r(γu).

In Section 13, we consider the case when Γ = F2 and define an Fθ-invariant probability

measure on RC(F2).
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12.3 Summary

Put R′′ = R′ ∖RC , E′′
θ = Eθ ⇂R′′ and F ′′

θ = Fθ ⇂R′′ . By Proposition 12.5, F ′
θ is treeable if and

only if F ′′
θ is treeable.

From Propositions 12.3 and 12.6, we immediately get

Corollary 12.7. The action of Tinv ⇂R′′ does not normalize the action θ ⇂R′′ and does not

commute with the standard treeing G′ ⇂R′′ of E′′
θ .

Thus, we cannot apply either of Corollary 10.4 or Proposition 8.3, to deduce the tree-

ability of F ′′
θ .

Speculation. I believe that F ′′
θ is not treeable and I suggest the following strategy for

proving it: fix a treeing G of E′′
θ . By playing games on the Cayley graph of Γ and using

Borel determinacy2, construct r ∈ R′∖RC , for which there is γ ∈ Γ such that (r, γ ⋅θ r) ∈ G but

(r−1, (γ ⋅θ r)−1) ∉ G. Thus, G−1 ≠ G, and since G was an arbitrary treeing of E′′
θ , Proposition

12.1 implies that F ′′
θ is not treeable.

13 A measure-theoretic example

In this section, we consider the case Γ = F2 and define an Fθ-invariant probability measure

on RC = RC(F2), obtaining a measure-theoretic example of a treeable-by-2 system [E′
C , T

′
C].

This example is due to Alex Furman.

By Corollary 12.5, F ′
C = E′

C ∨LT ′C is treeable. We will show below that the action of T ′
C

is not finite index over the action θ⇂R′C of Γ on R′
C , and thus the treeability of F ′

C does not

follow from Corollary 2.10.

Let a, b be the free generators of F2 and put S = {a, a−1, b, b−1}. Because Γ = F2 is finitely

generated, Aut(Cay(Γ, S)) is locally compact and hence admits a unique left-invariant Haar

2These kinds of games have been recently used by Andrew Marks in [Mar13], providing very elegant
solutions to well-known open problems in Borel combinatorics.
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measure ν. RC is a compact subgroup of Aut(Cay(Γ, S)) and thus ν(RC) < ∞. Also,

since ΓRC = Aut(Cay(Γ, S)), ν(RC) > 0. Therefore, taking µ = ν⇂RC

ν(RC) , we get a Γ-invariant

probability measure on RC . In other words, Γ is a lattice in Aut(Cay(Γ, S)) and this implies

that Aut(Cay(Γ, S)) is unimodular, i.e. the left and right Haar measures are equal (see, for

example, Proposition 9.20 in [EW11]).

Let EC denote the orbit equivalence relation induced by the action θ ⇂RC
of Γ on RC .

Recall the involution Tinv ∶ R → R defined by r ↦ r−1, and take TC = Tinv ⇂RC
. Because G is

unimodular, ν is preserved under the action of TC , and hence so is µ. By Proposition 5.3,

TC ∈ N[EC]. Thus, denoting by FC the join of EC and LTC , we have that [FC ∶ EC] ≤ 2 and

µ is FC-invariant.

The Haar measure µ on RC is easy to calculate (implicitly using the uniqueness of the

latter). The basic open sets in RC are finite intersections of the sets of the form

Uγ,δ = {r ∈ RC ∶ r(γ) = δ},

where γ, δ ∈ Γ. We denote by ∣γ∣ the length of the reduced word γ. By the definition of RC ,

if ∣γ∣ ≠ ∣δ∣, Uγ,δ = ∅.

Lemma 13.1. For γ, δ ∈ Γ with ∣γ∣ = ∣δ∣ = n, µ(Uγ,δ) = 4−1 ⋅ 31−n.

Proof. Simply note that for r ∈ RC , the value of r(γ) can be any word in F2 of length n, and

the number of such words is 4 ⋅ 3n−1.

Proposition 13.2. The action of Γ on RC is almost free. In particular, EC is treeable a.e.

Proof. Fix a nontrivial element γ ∈ Γ, and suppose γ ⋅θ r = r, for some r ∈ RC . Thus, for all

α ∈ Γ, we have:

r(γ−1)−1r(γ−1α) = r(α),

and hence

r(γ−1α) = r(γ−1)r(α).
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Inductively applying this to powers of γ−1 in lieu of α, we get:

r(γ−n) = r(γ−1)n. (13.1)

By above, the set of fixed points of γ is contained in

⋃
δ∈Γ,∣δ∣=∣γ∣

Bγ,δ,

where

Bγ,δ = ⋂
n∈N

Uγ−n,δn .

But Bγ,δ is clearly null due to Lemma 13.1 since ∣γ−n∣ ≥ n.

We will show that TC is index-2 over EC a.e., but first we prove the following technical

lemma. For γ, δ, α ∈ Γ, put

Aγ,δ,α = {r ∈ Uγ,δ ∶ r(γα) = δr−1(α)},

and we write δ ⊥ α if there is j < min{∣δ∣, ∣α∣} δ(j) ≠ α(j).

Lemma 13.3. If γ, δ, α ∈ Γ are such that ∣γα∣ = ∣γ∣ + ∣α∣ and δ ⊥ α, then µ(Aγ,δ,α) = µ(Uγ,δ) ⋅

3−∣α∣.

Proof. We may assume that ∣γ∣ = ∣δ∣ since otherwise Uγ,δ = ∅ and the statement is trivial.

The condition ∣γα∣ = ∣γ∣ + ∣α∣ means that the last symbol in γ doesn’t cancel with the first

symbol of α. Thus, for any r ∈ Uγ,δ, the value of r(γα) is equal to δα′ for some α′ ∈ Γ

with ∣α′∣ = ∣α∣. The condition α ⊥ δ ensures that r−1(α) ⊥ γ and hence the value of α′ is

independent from that of r−1(α), i.e. whatever r−1(α) is, there are exactly 3∣α∣ possibilities

for the value of α′. Hence the lemma follows.

Proposition 13.4. For a.e. r ∈ RC, TC(r) and r are not EC-equivalent. In particular,

[FC ∶ EC] = 2 a.e.
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Proof. Let A = {r ∈ RC ∶ TC(r)Er}. For fixed r ∈ A, there is γ ∈ Γ such that TC(r) = γ ⋅θ r.

Thus, for all α ∈ Γ, we have r(γ−1)−1r(γ−1α) = r−1(α), and hence, r(γ−1α) = r(γ−1)r−1(α).

Therefore, r ∈ ⋂α∈ΓAγ−1,δ,α, where δ = r(γ−1). Thus,

A ⊆ ⋃
γ,δ∈Γ

⋂
α∈Γ

Aγ,δ,α,

so it is enough to show that for fixed γ, δ ∈ Γ, ⋂α∈ΓAγ,δ,α is null. To this end, take c ∈

{a, a−1, b, b−1} ∖ {δ(0), γ(∣γ∣ − 1)}, and put αn = cn. This ensures that α = αn satisfies the

hypothesis of Lemma 13.3 and hence µ(Aγ,δ,αn) ≤ 3−n, which implies that ⋂α∈ΓAγ,δ,α is

null.

Viewing Γ as a group of measure preserving Borel automorphisms of RC , we let ∆ be

the group generated by Γ∪ {TC}. We will see shortly that Γ has infinite index inside ∆ and

hence the action of ∆ does not satisfy the hypothesis of Corollary 2.10.

Lemma 13.5. For any nontrivial δ ∈ Γ, TCδTC ∉ Γ < Aut(RC , µ). In other words, for all

γ ∈ Γ, the set Bγ,δ = {r ∈ RC ∶ δ ⋅θ TC(r) = TC(γ ⋅θ r)} is not conull.

Proof. Fix γ, δ ∈ Γ. By Lemma 5.2 and the fact that the action θ⇂RC
is almost free,

r ∈ Bγ,δ ⇐⇒ δ = r(γ−1)−1 ⇐⇒ r(γ−1) = δ−1 ⇐⇒ r ∈ Uγ−1,δ−1 .

Thus, Bγ,δ = Uγ−1,δ−1 and hence is not conull.

Proposition 13.6. For nontrivial α ∈ Γ, the cosets (TCαTC)Γ in ∆/Γ are pairwise distinct.

In particular, [∆ ∶ Γ] = ∞.

Proof. Just note that for α ≠ β, (TCαTC)−1(TCβTC) = TCα−1βTC ∉ Γ, by the previous

proposition.

Nevertheless, by Corollary 12.5, F is treeable a.e.

Lastly, we note that E is ergodic as it follows from Theorem 1 in [LM92]. Thus, since

Cµ(E) = 2 and L = ETC is a full (E,F )-link, we get the following (somewhat surprising)

corollary from Lemma 11.1:
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Corollary 13.7. There is an almost free action α ∶ F2 ↷ RC that generates EC and commutes

with TC.

14 A more natural universal treeable-by-i pair

The universal treeable-by-i pair constructed in Section 9 is somewhat hard to work with as

it is just a restriction of a shift action to a set satisfying some conditions. In this section, we

give a more concrete and illuminating example of such a pair.

For every i ≥ 2 and every countable group Γ, we will define a Polish space XΓ,i with a

continuous free action λ ∶ Γ ↷ XΓ,i and a homeomorphism TΓ,i ∶ XΓ,i → XΓ,i that is index-

i over the orbit equivalence relation EΓ,i of the action λ. The system [EΓ,i, TΓ,i] will be

universal among its peers in the following sense:

Theorem 14.1. Let Z be a standard Borel space equipped with a free Borel action of Γ and

let T be a Borel automorphism of Z that is index-i over EX
Γ , where EX

Γ is the orbit equivalence

relation of the action of Γ on Z. Then there is a Γ-equivariant embedding ε ∶ Z ↪ XΓ,i such

that TΓ,i ○ ε = ε ○ T .

Let FΓ,i be the join of EΓ,i and LTΓ,i
. Thus (EΓ,i, FΓ,i) is an index-i pair. Let

⊎
j≤i

(EΓ,j, FΓ,j) = (⊎
j≤i
EΓ,j,⊎

j≤i
FΓ,j)

denote the disjoint union of the pairs (EΓ,j, FΓ,j), j < i. Note that if Γ is a free group, then

EΓ,i is treeable since the action λ is free. Thus, ⊎j≤iEΓ,j is treeable as well. Moreover,

Theorem 14.1 implies the following

Theorem 14.2. For any treeable-by-i pair (E,F ), (E,F ) ⊑B ⊎j≤i(EF2,j, FF2,j).

We will prove both of these theorems below after we construct XΓ,i, λ ∶ Γ↷XΓ,i and TΓ,i.

First we give an outline of the construction. Take X = 2F2 , although it is not essential for

the construction which uncountable standard Borel space we take since any two are Borel
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isomorphic. Let < be a lexicographic order on X; it is a linear order and is open as a subset

of X2. Put

(X)i = {(xj)j<i ∈X i ∶ xj ≠ xk if j ≠ k}.

Recall the group R = R(Γ) and the action θ ∶ Γ↷ R. We will abuse the notation and denote

the product action of Γ on Ri−1 by θ as well; that is,

γ ⋅θ r⃗ = (γ ⋅θ r1, γ ⋅θ r2, ..., γ ⋅θ ri−1),

for γ ∈ Γ and r⃗ = (r1, r2, ..., ri−1) ∈ Ri−1.

Here are the steps of the construction:

1. Define a continuous action τ ∶ Γ↷ ((X)i)Γ that combines the shift action with a “twist”.

2. Using the actions τ and θ, define a continuous action λ ∶ Γ↷ (((X)i)Γ ×Ri−1) and let Eλ

denote the induced orbit equivalence relation.

3. Define a homeomorphism S of ((X)i)Γ ×Ri−1.

4. Take a certain Gδ subset Y of ((X)i)Γ invariant under the action τ , and set XΓ,i = Y ×Ri−1.

5. Finally, put EΓ,i = Eλ ⇂XΓ,i
and TΓ,i = S ⇂XΓ,i

.

Before proceeding with the construction, we define an embedding ε ∶ Z ↪ ((X)i)Γ ×

Ri−1 for a given free Borel action of Γ on a standard Borel space Z together with a Borel

automorphism T of Z that is index-i over E = EZ
Γ . This will show how to define the

action λ ∶ Γ ↷ (((X)i)Γ × Ri−1) and the homeomorphism S of ((X)i)Γ × Ri−1, so that ε is

Γ-equivariant and S ○ ε = ε ○ T , i.e. satisfies the conclusion of Theorem 14.1.

First, assume without loss of generality that Z = X. As usual let LT denote the equiva-

lence relation on X induced by the action of T , and let F denote the join of E and LT . The

following are auxiliary functions needed to define the desired embedding ε:

(i) t ∶ F →X defined by (x, y) ↦ the unique element in [x]LT
∩ [y]EX

Γ
.
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(ii) l ∶ X → (X)i defined by x ↦ (x,x1, x2, ..., xi−1), where {x,x1, x2, ..., xi−1} = [x]LT
and

x1, x2, ..., xi−1 are in the increasing <-order. Thus, l(x)(0) = x and l(x)(j) = xj, for

j = 1,2, ..., i − 1.

(iii) q ∶ E → (X)i by putting q(x, y)(j) = t(y, l(x)(j)), for j < i. Note that q(x,x) = l(x).

(iv) g ∶X → ((X)i)Γ by x↦ (q(x, γ ⋅ x))γ∈Γ.

(v) h ∶X → Ri−1 by putting x→ (r1, r2, ..., ri−1), where rj(γ) = the unique δ ∈ Γ such that

δ ⋅ l(x)(j) = t(γ ⋅ x, l(x)(j)),

for γ ∈ Γ. The uniqueness here is because the action of Γ on X is free.

Finally define ε ∶ X → (((X)i)Γ ×Ri−1) by x ↦ (g(x), h(x)). Clearly ε is injective since

g(x)(e)(0) = x, where e ∈ Γ is the identity of Γ.

Now we proceed with the construction of λΓ ↷ (((X)i)Γ ×Ri−1) and S ∈ Aut(((X)i)Γ ×

Ri−1).

14.1 Defining τ ∶ Γ↷ ((X)i)Γ

Let s ∶ S∞(Γ) ↷ ((X)i)Γ denote the generalized shift action of S∞(Γ) on ((X)i)Γ defined by

g ⋅s f(α) = f(g−1(α)),

for g ∈ S∞(Γ), f ∈ ((X)i)Γ and α ∈ Γ. As previous sections, we consider Γ as a subgroup of

S∞(Γ) by letting γ(α) = γα, for γ,α ∈ Γ. Thus, if g = γ ∈ Γ in the above definition, we get

the usual shift action

γ ⋅s f(α) = f(γ−1α).

First, for each σ ∈ Σ{0,1,2, ..., i − 1} and x⃗ = (xj)j<i ∈ (X)i, put

σ′(x0, x1, ..., xi−1) = (xσ(0), xσ(1), xσ(2), ..., xσ(i−1)).
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We also apply the above definition of σ′ to σ ∈ Σ{1,2, ..., i − 1} treating it as an element of

Σ{0,1,2, ..., i − 1} that fixes 0. We further define σ′′ ∶ ((X)i)Γ → ((X)i)Γ by

σ′′(f)(α) = σ′f(α),

for f ∈ ((X)i)Γ and α ∈ Γ.

Next, for each x⃗ = (xj)j<i ∈ (X)i, let π(x⃗) denote the unique permutation σ ∈ Σ{1,2, ..., i−

1} for which (xσ(1), xσ(2), ..., xσ(i−1)) is increasing (with respect to the order <). Note that the

value of π(x⃗) does not depend on x0. Also note that π ∶ (X)i → Σ{1,2, ..., i−1} is continuous

because < is an open subset of X2.

Finally, define the action τ ∶ Γ↷ ((X)i)Γ by setting

γ ⋅τ f = π(γ ⋅s f(e))′′(γ ⋅s f) = π(f(γ−1))′′(γ ⋅s f),

for each γ ∈ Γ and f ∈ ((X)i)Γ. To see that this is indeed an action, first note that for any

σ ∈ Σ{1,2, ..., i − 1}, f ∈ ((X)i)Γ and x⃗ ∈ (X)i, we have:

(a) σ′′ and the shift action of γ on f commute, i.e. σ′′(γ ⋅s f) = γ ⋅s σ′′(f);

(b) π(σ′x⃗) = π(x⃗)σ−1.

Now fix γ, δ ∈ Γ, f ∈ ((X)i)Γ, denote σ = π(f(γ−1)), and compute

δ ⋅τ (γ ⋅τ f) = π(γ ⋅τ f(δ−1))′′(δ ⋅s (γ ⋅τ f))

= π(σ′f(γ−1δ−1))′′(δ ⋅s (σ′′(γ ⋅s f)))

= (π(f((δγ)−1))σ−1)′′(σ′′(δ ⋅s γ ⋅s f))

= (π(f((δγ)−1))σ−1σ)′′((δγ) ⋅s f)

= π(f((δγ)−1))′′((δγ) ⋅s f)

= (δγ) ⋅τ f(α).

Clearly, this action is continuous since so are all of the functions involved. When i ≤ 2, the

action τ coincides with the shift action of Γ on ((X)2)Γ.
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14.2 Defining λ ∶ Γ↷ ((X)i)Γ ×Ri−1

For σ ∈ Σ{1,2, ..., i − 1} and r⃗ = (r1, r2, ..., ri−1) ∈ Ri−1, we abuse the notation σ′ and apply it

to r⃗ as well:

σ′(r1, r2, ..., ri−1) = (rσ(1), rσ(2), ..., rσ(i−1)).

Define the action λ ∶ Γ↷ (((X)i)Γ ×Ri−1) by setting

γ ⋅λ (f, r⃗) = (γ ⋅τ f, π(γ ⋅s f(e))′r⃗),

for f ∈ ((X)i)Γ and r⃗ ∈ Ri−1 (assuming that the indices of r⃗ start with 1). Unraveling the

definitions, we get

γ ⋅λ (f, r⃗) = (σ′′(γ ⋅s f), σ′r⃗),

where σ = π(f(γ−1)).

To verify that this is an action, fix γ ∈ Γ, (f, r⃗) ∈ ((X)i)Γ ×Ri−1, denote σ = π(f(γ−1)),

and compute

δ ⋅λ (γ ⋅λ (f, r⃗)) = δ ⋅λ (γ ⋅τ f, σ′r⃗)

= (δ ⋅τ (γ ⋅τ f), π((γ ⋅τ f)(δ−1))′σ′r⃗))

= ((δγ) ⋅τ f, (π(σ′f(γ−1δ−1))σ)′r⃗)

= ((δγ) ⋅τ f, (π(f(γ−1δ−1))σ−1σ)′r⃗)

= ((δγ) ⋅τ f, π(f((δγ)−1))′r⃗)

= (δγ) ⋅λ (f, r⃗).

We denote by Eλ the orbit equivalence relation induced by the action λ.

14.3 Defining S ∶ ((X)i)Γ ×Ri−1 → ((X)i)Γ ×Ri−1

For x⃗ = (xj)j<i ∈ (X)i, let j(x⃗) be equal to unique j < i such that

xj =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

min{xk ∶ k < i} if x0 = max{xk ∶ k < i}

min{xk ∶ xk > x0,0 < k < i} otherwise
.
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Furthermore, for every j < i, let σj ∈ Σ{0,1, ..., i − 1} be the transposition that swaps 0 and

j, and put

ρ(x⃗) = π(σ′j(x⃗)x⃗).

Thus, when the permutation ρ(x⃗) is applied to some y⃗ ∈ (X)i, it permutes the coordi-

nates 1,2, ..., i − 1 of y⃗ by the unique permutation that is necessary to order the vector

(x′1, x′2, ..., x′i−1) = (x1, x2, ..., xj(x⃗)−1, x0, xj(x⃗)+1, ..., xi−1) in the increasing order with respect to

<.

We need one more gadget before we can define S. For fixed r⃗ = (r1, r2, ..., ri−1) ∈ Ri−1, put

(i) r0 = idΓ;

(ii) rjk = rk ○ r−1
j , for all j, k < i.

Furthermore, define

swapj(r⃗) = (rj1, rj2, ..., rj(j−1), rj0, rj(j+1), ..., rj(i−1)),

for j = 1,2, ..., i − 1.

Finally, we define S ∶ ((X)i)Γ ×Ri−1 → ((X)i)Γ ×Ri−1 by setting

S(f, r⃗) = ((ρ(f(e))σj(f(e)))′′(rj ⋅s f), ρ(f(e))′swapj(f(e))(r⃗)),

for (f, r⃗) ∈ ((X)i)Γ ×Ri−1.

It is tedious to check that Si = id and thus S is a homeomorphism of ((X)i)Γ ×Ri−1.

14.4 Finalizing the construction

It remains to shrink the space ((X)i)Γ to make the action τ free and S index-i over Eλ (and

not less). Put

Y = {f ∈ ((X)i)Γ ∶ ∀ distinct (γ, j), (δ, k) ∈ Γ × i (f(γ)(j) ≠ f(δ)(k))}.
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and

XΓ,i = Y ×Ri−1,

EΓ,i = Eλ ⇂XΓ,i
,

TΓ,i = S ⇂XΓ,i
.

Note that the action τ ⇂Y ∶ Γ↷ Y is free and hence so is the action λ⇂XΓ,i
∶ Γ↷ XΓ,i. Also, it

is obvious that TΓ,i is index-i over EΓ,i. Thus, we are finally ready to prove Theorems 14.1

and 14.2.

Proof of Theorem 14.1. Given a free Borel action of Γ on X together with a Borel automor-

phism T of X that is index-i over EX
Γ , we define the embedding ε ∶ X ↪ ((X)i)Γ ×Ri−1 as

above. Note that ε(X) ⊆ XΓ,i. The fact that ε is equivariant and that ε ○ T = TΓ,i ○ ε is

a tedious verification that we will leave out as the action λ and the automorphism S were

defined exactly so that this would happen.

Proof of Theorem 14.2. We prove by induction on i. The case i = 1 is trivial, so assume

that i > 1 and the statement is true for all j < i. Let (E,F ) be a treeable-by-i pair. By

Proposition 9.1, we may assume that E = E∞T ⇂Z for some E∞T -invariant Borel subset Z of

Free(F2,2F2). Let T be as in Proposition 3.7 for (E,F ) and put

● Z1 = [Z ∖ dom(T )]E,

● Z2 = [Z1]F ∖Z1,

● Z0 = Z ∖ [Z1]F ,

● Ek = E ⇂Zk
, for k = 0,1,2,

● Fk = F ⇂Zk
, for k = 0,1,2.

● T0 = T ⇂Z0 .

128



Each Zk is E-invariant, and Z0 is F -invariant. Thus T0 is a (full) Borel automorphism of

Z0 that has index-i over E0, and E0 is induced by a Borel free action of F2 (simply the shift

action). Therefore, Theorem 14.1 provides an embedding ε ∶ (E0, F0) ⊑∗B (EΓ,i, FΓ,i).

As for the pairs (E1, F1) and (E2, F2), note that [Fk ∶ Ek] < i, for k = 1,2, and thus, by

induction, we have

(Ek, Fk) ⊑B ⊎
j≤i−1

(EF2,j, FF2,j).

It also follows from the construction that

(Ek, Fk) ⊑∗B ⊎
j≤i−1

(EF2,j, FF2,j)

and the images of (E1, F1) and (E2, F2) in ⊎j≤i−1(EF2,j, FF2,j) are disjoint. Combining all

three embeddings, we get

(E,F ) ⊑∗B ⊎
j≤i

(EF2,j, FF2,j),

as desired. Note that we get ⊑∗B only after assuming that E is defined on some invariant

subset of Free(F2,2F2), and that’s why the general statement of the theorem is merely with

⊑B.

15 The case i = 2

It is worth considering the special case of i = 2 separately, as the construction of (EΓ,2, TΓ,2)

is considerably simpler in this case and hence easier to investigate. Recall that XΓ,2 = Y ×R,

where Y is a certain Gδ subset of ((X)2)Γ, invariant under the action τ ∶ Γ↷ ((X)2)Γ. Note

that the action τ coincides with the shift action s ∶ Γ↷ ((X)2)Γ and thus

γ ⋅λ (f, r) = (γ ⋅s f, γ ⋅θ r),

for γ ∈ Γ, f ∈ ((X)2)Γ and r ∈ R(Γ).

Also, for all f = (xγ, yγ)γ∈Γ ∈ Y and r ∈ R(Γ), we have

TΓ,2(f, r) = (r ⋅s f̃ , r−1), (∗)
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where f̃ = (yγ, xγ)γ∈Γ. In particular, TΓ,2 is an involution.

From now on, we fix Γ = F2. As an immediate corollary of Theorem 14.2, we get that the

following:

Corollary 15.1. All treeable-by-2 equivalence relations are treeable if and only if FF2,2 is

treeable.

Thus, when working on the question of weather treeable-by-finite equivalence relations

are treeable, one has to understand what happens to FF2,2.

To simplify the notation below, we use Γ for F2, E for EΓ,2, F for FΓ,2 and T for TΓ,2.

Recall that XF2,2 = Y ×R, for a certain subset Y of ((X)2)Γ.

Similar to Lemma 5.2, we have the following interaction between the action λ of Γ and

the action of T on XF2,2:

Lemma 15.2. For all γ ∈ Γ and (f, r) ∈ Y ×R, T (γ ⋅λ(f, r)) = δ ⋅λT (f, r), where δ = r(γ−1)−1.

Proof. Using Lemma 5.2, we compute:

T (γ ⋅λ (f, r)) = T (γ ⋅s f, γ ⋅θ r)

= ((γ ⋅θ r) ⋅s (γ ⋅s f̃), (γ ⋅θ r)−1)

= ((r(γ−1)−1 ○ r ○ γ−1 ○ γ) ⋅s f̃ , δ ⋅θ r−1)

= (δ ⋅s (r ⋅s f̃), δ ⋅θ r−1)

= δ ⋅λ (r ⋅s f̃ , r−1)

= δ ⋅λ T (f, r).

Below we consider the familiar subgroups H(F2) and RC(F2) of R(F2) and investigate

the question of whether the restrictions of FF2,2 to Y ×H(F2) and Y ×RC(F2) are treeable.

Below, we omit writing F2 and simply write H, RC and R.
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15.1 The treeability of FF2,2 on Y ×H

First note that H is countable since F2 is finitely generated. For fixed h ∈ H, note that

Yh = Y × {h} is Γ-invariant since h is a fixed point of the action θ ∶ Γ ↷ R by Lemma 12.2.

Thus, Zh = Yh ∪ Yh−1 is Γ-invariant and also T -invariant.

Lemma 15.3. For h ∈H such that h−1 ≠ h, F ⇂Zh
is smooth over E ⇂Zh

, and hence treeable.

Proof. For h−1 ≠ h, F ⇂Yh= E ⇂Yh because T (Yh) = Yh−1 and Yh ∩ Yh−1 = ∅. Thus, the set Yh

selects exactly one E-class from each F -class in Zh, and hence, F ⇂Zh
is smooth over E ⇂Zh

.

In particular, F ⇂Zh
≤B E ⇂Zh

, and therefore, F ⇂Zh
is treeable since so is E ⇂Zh

.

If h ∈H is an involution, i.e. h−1 = h, then Yh = Zh. Let Th = T ⇂Yh .

Lemma 15.4. If h ∈H is an involution, then the action of Th normalizes that of Γ on Yh.

Proof. Viewing Γ as a group of homeomorphisms of Yh, we show that Th ○ γ = h(γ) ○ Th, for

every γ ∈ Γ. Indeed, for f ∈ Y , Lemma 15.2 implies that

Th(γ ⋅λ (f, h)) = δ ⋅λ Th(f, h),

where δ = h(γ−1)−1 = h(γ).

Proposition 15.5. F ⇂Y ×H is treeable.

Proof. Since H is countable, it is enough to show that F ⇂Zh
for each h ∈ H. If h ≠ h−1,

then F ⇂Zh
is treeable by Lemma 15.3. If h = h−1, then by Lemma 15.4, Th normalizes the

action λ ⇂Zh
∶ Γ ↷ Zh. Thus, since F ⇂Zh

= E ⇂Zh
∨LTh , Corollary 10.4 implies that F ⇂Zh

is

treeable.

15.2 The treeability of FF2,2 on Y ×RC

Put EC = E ⇂Y ×RC
, FC = F ⇂Y ×RC

and TC = T ⇂Y ×RC
.
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Let a, b be the free generators of Γ = F2 and put S = {a±1, b±1}. Let G be the standard

treeing of E induced by the free action λ ∶ Γ↷ Y ×R; that is: for u, v ∈ Y ×R,

(u, v) ∈ G ⇐⇒ ∃γ ∈ S(γ ⋅λ u = v).

Put GC = G ⇂Y ×RC
and hence GC is a treeing of EC .

Lemma 15.6. TC commutes with GC.

Proof. Fix (u, v) ∈ GC and hence v = γ ⋅λ u for some γ ∈ S. We need to show that

(TC(u), TC(v)) ∈ GC . Let u = (f, r) and note that by Lemma 15.2, TC(v) = δ ⋅λ TC(u), where

δ = r(γ−1)−1. But r ∈ RC , so r(S) = S, and thus, δ ∈ S. Hence, (TC(u), TC(v)) ∈ GC .

Proposition 15.7. FC is treeable.

Proof. Let LTC be the (EC , FC)-link induced by TC . Lemma 15.6 implies that LTC commutes

with GC . Thus, by our criterion for treeability, namely: (2)⇒(1) of Proposition 8.3, FC is

treeable.

15.3 Summary

Let R0 = R ∖ (H ∪RC). Putting together Corollary 15.1 and Propositions 15.5 and 15.7, we

get

Corollary 15.8. All treeable-by-2 equivalence relations are treeable if and only if FF2,2 ⇂Y ×R0

is treeable.

Speculation. The question as to whether FF2,2 ⇂Y ×R0 is treeable is open even measure-

theoretically. In fact, I do not know whether there is a λ-invariant probability measure

on Y × R0. Clearly Y has one, namely the product measure, and thus, the existence of

a λ-invariant probability measure on Y ×R0 is equivalent to the existence of a θ-invariant

probability measure on R0. Denoting by E0
θ the orbit equivalence relation induced by the

action θ⇂R0 ∶ Γ↷ R0, the latter statement is equivalent to the incompressibility of E0
θ , which

seems plausible.
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Part 3

Complexity measures for recursive

programs
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CHAPTER I

Main definitions and results

1 Introduction to recursive programs and the main result

Recursive programs are a model of computation introduced by McCarthy in [McC63]. The

syntax and semantics of these programs are essentially the same as that of the programming

language C. These programs come with a specified list Φ of primitive functions (may be

constant) such as Φa = {0,1,+, ⋅} or ΦP = {0, S,+}, so we refer to the programs with primitives

from Φ as Φ-programs. It was shown in [McC63] that the partial functions that can be

realized by Φa-programs are exactly the Turing computable partial functions. Each Φ-

program E consists of the main function f0(x1, ..., xk0) (the head of the program) and various

other functions fj(x1, ..., xkj), j ≤ m. In the body of each function, one can recursively

perform the following operations:

(i) if ... then ... else ...,

(ii) call fj(x1, ..., xkj), for j ≤m,

(iii) call φ(x1, ..., xn), for φ ∈ Φ.

In this part of the thesis, we consider different measures of complexity for Φ-programs,

introduced in [Mos], and explore the relations between them. One such measure is the

sequential logical complexity lsE(a⃗) of a Φ-program E on input a⃗ on which E halts (write

E(a⃗) ↓). Roughly speaking, lsE(a⃗) is the number of operations performed by the program E

on input a⃗. Another such measure is the sequential call complexity csE(a⃗) of a Φ-program E

on input a⃗ with E(a⃗) ↓; it is equal to the number of calls to primitives (i.e. functions from Φ)
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during the run of E(a⃗) (disregarding the operations (i)-(ii)). By definition, csE(a⃗) ≤ lsE(a⃗),

and it was asked by Moschovakis in [Mos] whether this inequality can be reversed for a fixed

program, up to some constants that depend only on the code of the program. The main

result of this part of the thesis is a positive answer to this question, and here is (a somewhat

informal version of) the statement of the main theorem:

Theorem. Let E be a Φ-program. There exists a constant K (depending only on E) such

that for every input a⃗, we have

lsE(a⃗) ≤KcsE(a⃗) +K,

provided that E(a⃗) ↓.

This theorem basically says that one cannot do much without having to call a primitive

function, and thus, the actual complexity of an algorithm comes from the number of calls

to primitives and not the logical operations. So it is no surprise that many of the methods

for obtaining complexity lower bounds actually provide bounds for the number of calls to

primitives. Such examples are given in [MvdD04] and [MvdD09].

The key to the proof of the above theorem is introducing a new (auxiliary) measure of

complexity (see Section 7). Using the same technique, we also obtain (in Section 9) the

analog of the above theorem for the parallel logical and parallel call complexity measures.

In this chapter, we rigorously define the syntax and semantics of recursive programs, as

well as the relevant complexity measures, and we leave the statements of the results and

their proofs for Chapter II.

This work stemmed out of a seminar run by Yiannis Moschovakis and it is also presented

in [Mos]. It will appear as a section in Moschovakis’s projected book on Recursion and

Complexity. The exposition here closely follows [Mos].
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2 The definition of recursive programs

Below we will define the notions of vocabulary, term, structure and interpretation as we do

in second order logic, using partial functions instead of total functions.

Recall that a partial function from a set A to a set B is a usual function from a subset

of A to B. We denote this by f ∶ A ⇀ B, and we denote the domain of f by dom(f). We

also write f(x) ↓ to mean that x ∈ dom(f). Denote by Partial(A,B) the set of all partial

functions from A to B (including the empty function).

2.1 Syntax

We first fix a (second order) vocabulary:

● Let 0 denote a special constant symbol (to be interpreted by structures);

● Let v0,v1, ... be the symbols for (ordinary) variables;

● For every k ∈ N, let fk0,f
k
1, ... be the symbols for variable partial functions of arity k.

Definition 2.1. A Φ-term M is defined recursively as follows:

M ∶= 0 ∣ vi ∣ fki (M1, ...,Mk) ∣ φ(M1, ...,Mk) ∣ (if M0 = 0 then M1 else M2),

where vi is an ordinary variable, fki is a function variable, φ ∈ Φ is of arity k, M0,M1, ...,Mk

are terms, and i, k ≥ 1.

For a term M , we write

M(vi0 ,vi1 , ...,vil ,fk0
j0
,fk1

j1
, ...,fkmjm )

to mean that the ordinary and function variables that appear in M are among vi0 ,vi1 , ...,vil ,

fk0
j0
,fk1

j1
, ...,fkmjm .
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A recursive Φ-program is a system of recursive equations

E ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fE(v⃗0) = fk0
0 (v⃗0) = E0(v⃗0,f

k0
0 ,f

k1
1 , ...,f

km
m )

fk1
1 (v⃗1) = E1(v⃗1,f

k0
0 ,f

k1
1 , ...,f

km
m )

⋮

fkmm (v⃗m) = Em(v⃗m,fk0
0 ,f

k1
1 , ...,f

km
m )

,

where

● fE is a special function symbol called the head of the program and we consider it equal

to f0,

● f0,f1, ...,fm are distinct function variables called the recursive variables of E, and we

will denote the vector (fk0
0 ,f

k1
1 , ...,f

km
m ) by f⃗,

● each Ej(v⃗j, f⃗) is a Φ-term.

Example 2.2. The following recursive program encodes Bezout’s algorithm for computing

α(x, y) and β(x, y) for x, y ∈ Z such that α(x, y)x + β(x, y)y = gcd(x, y):

E ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

fE(x, y) = α(x, y) = (if rem(x, y) = 0 then 0 else β(y, rem(x, y)))

β(x, y) = (if rem(x, y) = 0 then 1

else α(y, rem(x, y)) − iq(x, y)β(y, rem(x, y)))

,

where Φ consists of the binary function symbols 1, rem, iq and −.

For a Φ-term M , let Subterms(M) denote the set of all subterms of M (i.e. substrings

that are Φ-terms themselves). Now fix E as above and let f⃗ = (fk0
0 ,f

k1
1 , ...,f

km
m ) denote the

vector of recursive variables of E. Put

Subterms(E) =
m

⋃
j=0

Subterms(Ej(v⃗j, f⃗)),

and let t(E) = ∣Subterms(E)∣. For Φ-term M(v⃗, f⃗) ∈ Subterms(E), v⃗ can be assumed to be

a subvector of v⃗j for some j ≤m, and we will assume so below. Thus, the length n of v⃗ is at

most max
0≤j≤m

kj. This will be important later.
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2.2 Semantics

Definition 2.3. Given a signature Φ consisting of function symbols, a Φ-algebra is a struc-

ture A = (A,0A,{φA}φ∈Φ) in the signature (0,Φ) that interprets 0 as an element 0A ∈ A and

every φ ∈ Φ as a partial function φA ∶ A⇀ A.

We refer to the functions in ΦA as the primitives of the Φ-algebra A.

We now define interpretation of Φ-terms. For a Φ-term M(v⃗,fk0
0 ,f

k1
1 , ...,f

km
m ), where

v⃗ = (v1, ...,vn), and a structure A = (A,0A,{φA}φ∈Φ). Then the interpretation of M by A is

a partial function (map)

MA ∶ An ×Partial(Ak0 ,A) ×Partial(Ak1 ,A) × ... ×Partial(Akm ,A) → A

defined in the usual way by recursion on the complexity of M : we will spare the reader the

rigorous definition as it is enough say that MA(a⃗, f0, f1, ..., fm) is the value one obtains when

substituting v⃗ with a⃗ and f
kj
j with fj in M(v⃗,fk0

0 ,f
k1
1 , ...,f

km
m ), for a⃗ ∈ An, fj ∈ Partial(Akj ,A)

and j ≤m.

We also define a functional

FA
M ∶ Partial(Ak0 ,A) ×Partial(Ak1 ,A) × ... ×Partial(Akm ,A) ⇀ Partial(An,A)

by setting

FA
M(f0, f1, ..., fm) =MA( ⋅ , f0, f1, ..., fm),

for fj ∈ Partial(Akj ,A), j ≤m.

Intuitively, it is clear that a Φ-program E defines a partial function, whose domain is the

set of inputs on which E halts. Here we give a rigorous definition of this. Given a program

E as above and a Φ-algebra A, define a system of recursive equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f0 = FA
E0

(f0, f1, ..., fm)

f1 = FA
E1

(f0, f1, ..., fm)

⋮

fm = FA
Em

(f0, f1, ..., fm)

,
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a solution to which is a tuple

(f0, f1, ..., fm) ∈ Partial(Ak0 ,A) ×Partial(Ak1 ,A) × ... ×Partial(Akm ,A).

By Lemma 1B.1 (the Fixed Point Lemma) of [Mos], this system has a least (with respect

to inclusion of partial functions) solution f⃗∗ = (f∗0 , f∗1 , ..., f∗m) since the functionals FA
Ej

are

monotone and continuous. We declare f∗0 the partial function that E computes with respect

to the Φ-algebra A, and we denote it by fA
E . For a⃗ ∈ Ak0 , we write EA(a⃗) ↓ to mean that

fA
E(a⃗) ↓.

Fix E and A as above and let f⃗ = (fk0
0 ,f

k1
1 , ...,f

km
m ) denote the vector of recursive variables

of E. Given a M(v⃗, f⃗) ∈ Subterms(E) and a⃗ ∈ An, we call the term M(a⃗, f⃗), obtained by

substituting v⃗ with a⃗, an (A,E)-term. We say that an (A,E)-term M =M(a⃗, f⃗) converges

(or is convergent) if MA(a⃗, f⃗∗) ↓, where f⃗∗ is as above. We denote the value MA(a⃗, f⃗∗) ∈ A

by MA
E (or just M , if A and E are understood). Finally, we denote the set of all convergent

(A,E)-terms by Conv(A,E).
For an (A,E)-term M =M(a⃗, f⃗), a⃗ = (a1, ..., an) ∈ An, we call a1, ..., an the parameters of

M and denote Param(M) = {a1, ..., an}. We also put Param0(M) = Param(M) ∪ {0A}. For

a subset B ⊆ A, we say that M is a (B,E)-term if Param0(M) ⊆ B.

3 Computation tree

For a set X and u, v ∈X<∞ ∖ {∅}, we say that u is below v, and write u ⪯ v, if u is an initial

segment of v; that is, v = (v1, v2, ..., vl) and u = (v1, v2, ..., vm) for some m ≤ l (note that

l,m ≥ 1). A tree T on a set X is a subset of X<∞ ∖ {∅} that is closed downward, i.e. for all

u, v ∈X<∞ ∖ {∅}, v ∈ T ∧ u ⪯ v implies u ∈ T . For a tree T on X and x ∈X, we put

x⌢T = {(x)} ∪ {(x,x1, ..., xl) ∈X<∞ ∶ (x1, ..., xl) ∈ T}.

Also, for finite T , we define its depth depth(T ) by setting

depth(T ) = max{∣u∣ ∶ u ∈ T} − 1,

where ∣u∣ denotes the length of u, i.e. for u ∈X l, ∣u∣ = l.
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Now fix a Φ-algebra A and a Φ-program E. With each M ∈ Conv(A,E), we associate a

tree T (M) = T A
E (M) on Conv(A,E) called the computation tree of M , which helps visual-

izing the process of computation (see Figure 1).

Figure 1: Computation tree

Definition 3.1. For M ∈ Conv(A,E), we define T (M) by induction on the construction of

M as follows:

(T 1) if M = 0 or M = a for some a ∈ A, then T (M) = {(M)};

(T 2) if M = (if M0 = 0 then M1 else M2), for some (A,E)-terms M0,M1,M2, then ei-

ther M0 = 0A and

T (M) =M⌢T (M0) ∪M⌢T (M1),
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or else M0 ≠ 0A and

T (M) =M⌢T (M0) ∪M⌢T (M2);

(T 3) if M = φ(M1, ...,Mn), then T (M) = ⋃ni=1M
⌢T (Mi);

(T 4) if M = f
kj
j (M1, ...,Mkj), then

T (M) =
kj

⋃
i=1

M⌢T (Mi) ∪M⌢T (Ej(M1, ...,Mkj)).

We say that an (A,E)-term N is in T (M) if (N1, ...,Nl,N) ∈ T (M) for some (A,E)-terms

N1, ...,Nl, where l can be 0.

4 Complexity measures

In this section we define various complexity measures of convergent (A,E)-terms, for fixed

Φ-algebra A and a Φ-program E.

4.1 Tree-depth complexity

For a convergent (A,E)-term M , T (M) is finite, and we define the tree-depth complexity

D(M) =D(A,E)(M) of M as the depth of T (M):

D(M) =D(A,E)(M) = depth(T (M)).

We also define the tree-depth complexity d(A,E)(a⃗) of the program E on input a⃗ ∈ FA
E by

d(A,E)(a⃗) =D(fE(a⃗)).

This complexity measure is not of practical importance as in (T 4) of Definition 3.1 it

corresponds to the complexity of an unrealistic parallel computation, where the input of a

function is computed in parallel to the computation of the function on that input. However,

it is a useful tool for analyzing various properties of recursive programs, and the following

is a simple example of its use.

Definition 4.1. For a program E, we define its total arity a = a(E) as the maximum of the

arities of its recursive variables and function symbols in Φ. That is:

a = a(E) = max{max
1≤j≤m

kj,max
φ∈Φ

arity(φ)}.
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Note that a(E) ≥ 1 and each node in T (M) has at most a(E) + 1 successors. Thus,

denoting by ∣T (M)∣ the cardinality (number of nodes) of T (M), we immediately get:

Proposition 4.2. For all M ∈ Conv(A,E), ∣T (M)∣ ≤ (a(E) + 1)D(M).

4.2 Sequential logical complexity

For M ∈ Conv(A,E), we define its sequential logical complexity L
s (M) = L

s

(A,E)(M) by

induction on the construction of M as follows:

(L
s
1) if M = 0 or M = a for some a ∈ A, then L

s (M) = 0;

(L
s
2) if M = (if M0 = 0 then M1 else M2), for some (A,E)-terms M0,M1,M2, then

either M0 = 0A and

L
s (M) = 1 +Ls (M0) +L

s (M1),

or else M0 ≠ 0A and

L
s (M) = 1 +Ls (M0) +L

s (M2);

(L
s
3) if M = φ(M1, ...,Mn), then L

s (M) = 1 +∑n
i=1L

s (Mi);

(L
s
4) if M = f

kj
j (M1, ...,Mkj), then

L
s (M) = 1 +

kj

∑
i=1

L
s (Mi) +L

s (Ej(M1, ...,Mkj)).

We also define the sequential logical complexity ls(A,E)(a⃗) of the program E on input

a⃗ ∈ dom(fA
E) by

ls(A,E)(a⃗) = L
s (fE(a⃗)).

This notion of complexity counts every step made by the program during the computation

without any parallelism involved. We also have:

Proposition 4.3. For all M ∈ Conv(A,E), L
s(M) ≤ ∣T (M)∣.

Proof. Straightforward induction on the construction of M .
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4.3 Parallel logical complexity

For M ∈ Conv(A,E), we define its parallel logical complexity L
p(M) = Lp

(A,E)(M) by induc-

tion on the construction of M as follows:

(L
p
1) if M = 0 or M = a for some a ∈ A, then L

p(M) = 0;

(L
p
2) if M = (if M0 = 0 then M1 else M2), for some (A,E)-terms M0,M1,M2, then

either M0 = 0A and

L
p(M) = 1 +max{Lp(M0), L

p(M1)},

or else M0 ≠ 0A and

L
p(M) = 1 +max{Lp(M0), L

p(M2)};

(L
p
3) if M = φ(M1, ...,Mn), then L

p(M) = 1 +max1≤i≤nL
p(Mi);

(L
p
4) if M = f

kj
j (M1, ...,Mkj), then

L
p(M) = 1 + max

1≤i≤kj
L

p(Mi) +L
p(Ej(M1, ...,Mkj)).

We also define the sequential logical complexity lp(A,E)(a⃗) of the program E on input

a⃗ ∈ dom(fA
E) by

lp(A,E)(a⃗) = L
p(fE(a⃗)).

This notion of complexity corresponds to the time-complexity of a realistic parallel com-

putation, and this is clear for all clauses of the above definition, except maybe for (L
p
3) and

(L
p
4). Here is the justification for these clauses:

For (L
p
3), the question may be that how can we choose to compute M1 or M2 before

knowing whether M0 = 0A or not. It is even possible that M0 = 0A and M2 does not converge;

thus, it seems that to have a convergent computation, we have to first check whether or not

M0 = 0A, so that we know which of M1 and M2 to compute. However, we can do the

following trick: start computing M0,M1 and M2 in parallel, and go until M0 halts. Now

if M0 = 0A, stop the computation of M2 and resume the computation of M1 if it hadn’t
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halted yet. Otherwise, stop the computation of M1 and resume the computation of M2 if it

hadn’t halted yet. In this manner, we make only max{LP (M0), LP (M1)} steps in the first

case, and max{LP (M0), LP (M2)} in the second, in addition to the step corresponding to

processing the (if . . . = 0 then . . . else . . .) operation.

The justification for (L
p
4) is more straightforward: we need to first compute the input

M1,M2, ...,Mkj of the function, before computing the function. Hence, we add max1≤i≤kj L
p(Mi)

to L
p(Ej(M1, ...,Mkj)) instead of taking the maximum of the two. The additional 1 is there

to count the call of the function f
kj
j .

Lastly we note the following:

Proposition 4.4. For all M ∈ Conv(A,E), D(M) = depth(T (M)) ≤ Lp(M).

Proof. Straightforward induction on the construction of M .

4.4 Sequential call complexity

For M ∈ Conv(A,E), we define its sequential call complexity C
s (M) = Cs

(A,E)(M) by induc-

tion on the construction of M as follows:

(C
s
1) if M = 0 or M = a for some a ∈ A, then C

s (M) = 0;

(C
s
2) if M = (if M0 = 0 then M1 else M2), for some (A,E)-terms M0,M1,M2, then

either M0 = 0A and

C
s (M) = Cs (M0) +C

s (M1),

or else M0 ≠ 0A and

C
s (M) = Cs (M0) +C

s (M2);

(C
s
3) if M = φ(M1, ...,Mn), then C

s (M) = 1 +∑n
i=1C

s (Mi);

(C
s
4) if M = f

kj
j (M1, ...,Mkj), then

C
s (M) =

kj

∑
i=1

C
s (Mi) +C

s (Ej(M1, ...,Mkj)).

We also define the sequential call complexity cs(A,E)(a⃗) of the program E on input a⃗ ∈

dom(fA
E) by

cs(A,E)(a⃗) = C
s (fE(a⃗)).
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This complexity measure registers the number of times the program calls a primitive

(function in ΦA) during a sequential computation.

4.5 Parallel call complexity

For M ∈ Conv(A,E), we define its parallel call complexity C
p(M) = Cp

(A,E)(M) by induction

on the construction of M as follows:

(C
p
1) if M = 0 or M = a for some a ∈ A, then C

p(M) = 0;

(C
p
2) if M = (if M0 = 0 then M1 else M2), for some (A,E)-terms M0,M1,M2, then

either M0 = 0A and

C
p(M) = max{Cp(M0),C

p(M1)},

or else M0 ≠ 0A and

C
p(M) = max{Cp(M0),C

p(M2)};

(C
p
3) if M = φ(M1, ...,Mn), then C

p(M) = 1 +max1≤i≤nC
p(Mi);

(C
p
4) if M = f

kj
j (M1, ...,Mkj), then

C
p(M) = max

1≤i≤kj
C

p(Mi) +C
p(Ej(M1, ...,Mkj)).

We also define the sequential logical complexity cp(A,E)(a⃗) of the program E on input

a⃗ ∈ dom(fA
E) by

cp(A,E)(a⃗) = C
p(fE(a⃗)).

This complexity measure counts the maximum number of times the program calls a

primitive function during a parallel computation in the sense of the discussion in the end of

Subsection 4.3.
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CHAPTER II

Inequalities and proofs

In this chapter we explore the relations between the complexity measures defined in the

previous chapter. Throughout, we fix a Φ-algebra A and a program

E ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fE(v⃗0) = fk0
0 (v⃗0) = E0(v⃗0,f

k0
0 ,f

k1
1 , ...,f

km
m )

fk1
1 (v⃗1) = E1(v⃗1,f

k0
0 ,f

k1
1 , ...,f

km
m )

⋮

fkmm (v⃗m) = Em(v⃗m,fk0
0 ,f

k1
1 , ...,f

km
m )

,

5 The complete picture of inequalities

For a convergent (A,E)-term M , the following inequalities are obvious from the definitions:

C
s (M)

≤ ≤

C
p(M) L

s (M),

≤ ≤

L
p(M)

This part of the current thesis concerns reversing this inequalities.

Let µ, ν be complexity measures (e.g. µ = Ls
and ν = Lp

). We write:

● µ ≤lin ν if there exist constants B0,B1 that depend only on the program E such that

for all Φ-algebras A and M ∈ Conv(A,E), we have

µ(M) ≤ B1ν(M) +B0.

● µ ≤exp ν if there exists a constant B that depends only on the program E such that

for all Φ-algebras A and M ∈ Conv(A,E), we have

µ(M) ≤ Bν(M).
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The following proposition was proven in [Mos]:

Proposition 5.1 (Moschovakis). L
s ≤exp L

p
. In fact, we have L

s(M) ≤ (1+ a(E))L
p(M) for

all M ∈ Conv(A,E).

Proof. Follows directly from Propositions 4.3, 4.2 and 4.4 put together.

It was then asked in [Mos], whether the following hold:

(A) L
s ≤lin C

s
;

(B) L
p ≤lin C

p
;

(C) C
s ≤exp C

p
.

The main result of this part of the thesis is establishing positive answers to all these

questions, and thus, we have the following picture:

C
s (M)

≤ lin ≤
exp

L
s (M) C

p(M),

≤
exp

≤ lin

L
p(M)

Note that (C) follows from (A), (B) and Proposition 5.1, so we only prove (A) and (B)

below, in Sections 8 and 9, respectively. However, using similar methods, one could prove

(C) directly and obtain a better constant.

6 Main idea

The first thing to notice is that if M is a convergent (A,E)-term, then its computation tree

T (M) doesn’t have a branch containing two equal terms, i.e. there is no (M1,M2, ...,Ml) ∈

T (M) with Mi =Mj for some i ≠ j. Thus, if we obtain a bound on the number of possible

(A,E)-terms that can appear in the computation tree of fE(a⃗), for a⃗ ∈ dom(fA
E), then we

would get a bound on the length of the branches of the tree and thus on its size (using

Proposition 4.2).
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How do we find a bound on the number of possible (A,E)-terms that can appear in

T (fE(a⃗))? Here we give an outline of how.

Lemma 6.1. For a finite subset B ⊆ A, there are at most t(E) ⋅ ∣B∣a(E)-many (B,E)-terms.

Proof. Each M ∈ Subterms(E) uses at most a(E) variables. Thus, substituting these vari-

ables with elements from B, we obtain ∣B∣a(E)-many (B,E)-terms.

In light of this lemma, we put

H =H(E) = t(E)(a(E) + 1)a(E). (6.2)

The letter H stands for height (calling this constant height is justified by Lemma 7.2 below).

For a⃗ ∈ dom(fA
E), the computation of fA

E on a⃗ starts with processing the (A,E)-term

M = E0(a⃗, f⃗). Setting B = Param0(fE(a⃗)) = {ai ∶ 1 ≤ i ≤ k0} ∪ {0A}, we see that the

computation tree of M starts with (B,E)-terms and continues this way until some branch

of it hits a recursive call. By Lemma 6.1, the length of the branches containing only (B,E)-

terms is at most

t(E) ⋅ (k0 + 1)a(E) ≤H.

How do new elements of A enter the computation?

Lemma 6.3. If M ∈ Conv(A,E) and C
p(M) = 0 (equivalently C

s(M) = 0), then M ∈

Param0(M).

Proof. Straightforward induction on the construction of M .

This lemma says that during the computation, we only obtain new elements of A by call-

ing a primitive φ ∈ Φ, and these new elements enter the computation tree via a recursive call.

We isolate certain (A,E)-terms that correspond to this situation (called splitting below),

and bounding the number of these terms is how we prove the desired inequalities.

7 Splitting

Definition 7.1. An (A,E)-term M is called splitting if M = f
kj
j (M1, ...,Mkj), for some j ≤m

and (A,E)-terms M1, ...,Mkj such that max1≤kj C
s(Mi) > 0 and C

s(Ej(M1, ...,Mkj)) > 0.
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In this definition, we can replace C
s

with C
p

as one being nonzero is equivalent to the

other being nonzero.

For M ∈ Conv(A,E), we isolate the part of its computation tree that does not involve a

splitting term; that is:

T ′(M) = {(M1, ...,Ml) ∈ T (M) ∶ ∀i,1 ≤ i ≤ l(Mi is not splitting)}.

The following lemma shows that the computation can only make a constant (depending

only on E) number of steps before it has to encounter a splitting term:

Lemma 7.2. For M =M1 ∈ Conv(A,E), if (M1, ...,Ml) ∈ T ′(M), then l ≤ 2H. In particular,

the depth of T ′(M) is at most 2H − 1.

Proof. Since M converges, M1, ...,Ml are distinct. Put B = Param0(M). If all of Mi are

(B,E)-terms, then we are done since ∣B∣ ≤ 1+ a(E) and thus, by Lemma 6.1, the number of

distinct (B,E)-terms is bounded above by H.

Otherwise, let n < l be the least number such that Mn+1 is not a (B,E)-term; by Lemma

6.1 again,

n ≤H. (∗)

Since Mn+1 is not a (B,E)-term, it must be that Mn = f
kj
j (N1, ...,Nkj) and Mn+1 =

Ej(N1, ...,Nkj), for some j ≤m and (A,E)-termsN1, ...,Nkj . By the choice of n, {N1, ...,Nkj} ⊈

B, and thus, Lemma 6.3 implies:
kj

∑
i=1

C
s (Ni) > 0.

But Mn is not splitting, so it must be that

C
s (Mn+1) = C

s (Ej(N1, ...,Nkj)) = 0.

Hence, by Lemma 6.3, all of Mn+1, ...,Ml are (B′,E)-terms, where B′ = Param0(Mn+1).

Thus, by Lemma 6.1,

l − n ≤ t(E) ⋅ ∣B′∣a(E) ≤ t(E) ⋅ (a(E) + 1)a(E) =H.

This and (∗) together imply l ≤ 2H.
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Put

V = V (E) = (a(E) + 1)2H , (7.3)

and, for a convergent (A,E)-term M , put

v(M) = ∣T ′(M)∣.

The above lemma implies:

Corollary 7.4. v(M) ≤ V .

8 Sequential logical vs. sequential call complexities

We now define an auxiliary complexity measure that makes the exposition of the proof of

Theorem 8.5 conceptually clear.

Definition 8.1. For M ∈ Conv(A,E), we define its sequential splitting complexity S
s(M) =

S
s

(A,E)(M) as the number of splitting terms in T (M).

Lemma 8.2. For all M ∈ Conv(A,E), S
s(M) ≤ Cs(M) � 1.

Proof. The proof is by induction on the construction of M as usual, and we only write it for

the case when M is splitting as S
s (M) does not increase in other cases. So suppose that

M = f
kj
j (M1, ...,Mkj) for some j ≤m and M is splitting. Then

kj

∑
i=1

C
s (Mi) > 0 and C

s (Ej(M1, ...,Mkj)) > 0.

Hence, by induction, we have

S
s (M) = 1 +

kj

∑
i=1

S
s (Mi) + S

s (Ej(M1, ...,Mkj))

≤ 1 + (
kj

∑
i=1

C
s (Mi) − 1) + (Cs (Ej(M1, ...,Mkj)) − 1)

=
kj

∑
i=1

C
s (Mi) +C

s (Ej(M1, ...,Mkj)) − 1

= Cs (M) − 1.
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Lemma 8.3. If M ∈ Conv(A,E), then there is a (possibly empty) sequence of splitting terms

N0, ...,Nl−1 in T (M) such that

S
s(M) = ∑

i<l
S

s(Ni) and L
s(M) ≤ ∑

i<l
L

s(Ni) + v(M).

Proof. We prove by induction on the construction of M as usual. If M itself is splitting, just

take N0 =M . If there are no splitting nodes in T (M), then T ′(M) = T (M), and the lemma

trivially holds by taking l = 0 and using Lemma 4.3. The rest of the cases (T 2), (T 3), and

(T 4) of Definition 3.1 are handled in the same manner, and we only write the proof for case

(T 4) for a non-splitting M . So suppose M is non-splitting and

M = f
kj
j (M1, ...,Mkj).

Put l = kj + 1 and Ml = Ej(M1, ...,Mkj). By the induction hypothesis, there are splitting

terms N i
1, ...,N

i
ni

in T (M) such that

S
s (M) = ∑

1≤i≤l
S

s (Mi) = ∑
1≤i≤l

1≤p≤ni

S
s (N i

p),

and also

L
s (M) = 1 + ∑

1≤i≤l
L

s (Mi)

≤ 1 + ∑
1≤i≤l

( ∑
1≤p≤ni

L
s (N i

p) + v(Mi))

= ∑
1≤i≤l

1≤p≤ni

L
s (N i

p) + 1 + ∑
1≤i≤l

v(Mi)

= ∑
1≤i≤l

1≤p≤ni

L
s (N i

p) + v(M).

We are finally ready to prove the main lemma.

Lemma 8.4. For every M ∈ Conv(A,E), we have:

(a) If M is splitting, then L
s(M) ≤ ((a + 1)V + 1) ⋅ Ss(M);

(b) If M is not splitting, then L
s(M) ≤ ((a + 1)V + 1) ⋅ Ss(M) + V ;
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where a = a(E) and V = V (E).

Proof. We prove (a) and (b) together by induction on the construction of M , noting that (b)

is a weaker inequality than (a) and so we can use it when we invoke the induction hypothesis

regardless of whether M is splitting or not.

Case 1 : M is splitting. Then M = f
kj
j (M1, ...,Mkj). Set l = kj + 1 and Ml = Ej(M1, ...,Mkj).

By the definition of a = a(E), l ≤ a + 1. Thus, using the induction hypothesis, we compute:

L
s (M) = Ls (M1) + ... +L

s (Ml) + 1

≤ ((a + 1)V + 1) ⋅ [Ss (M1) + ... + S
s (Ml)] + (lV + 1)

≤ ((a + 1)V + 1) ⋅ [Ss (M1) + ... + S
s (Ml)] + ((a + 1)V + 1)

= ((a + 1)V + 1) ⋅ [Ss (M1) + ... + S
s (Ml) + 1]

= ((a + 1)V + 1) ⋅ Ss (M).

Case 2 : M is not splitting. Then, by Lemma 8.3, there are splitting terms N0, ...,Nl−1 in

T (M) such that

S
s (M) = ∑

i<l
S

s (Ni) and L
s (M) ≤ ∑

i<l
L

s (Ni) + v(M).

Thus, using Corollary 7.4 and the induction hypothesis, we compute:

L
s (M) ≤ Ls (N1) + ... +L

s (Nl) + v(M)

≤ ((a + 1)V + 1) ⋅ [Ss (N1) + ... + S
s (Nl)] + v(M)

≤ ((a + 1)V + 1) ⋅ Ss (M) + V.

Theorem 8.5. For every Φ-program E, L
s ≤lin C

s
. In particular, there exists constants

B0,B1 depending on E such that for every Φ-algebra A and every a⃗ ∈ dom(fA
E), we have:

ls(A,E)(a⃗) ≤ B1 ⋅ cs(A,E)(a⃗) +B0.

Proof. Follows from Lemmas 8.4 and 8.2 by taking B0 = V (E) and B1 = (a(E) + 1)V (E) + 1.
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9 Parallel logical vs. parallel call complexities

In this section, we obtain the analogue of Theorem 8.5 for L
p

and C
p
. The proof follows the

same outline as in the previous section.

Definition 9.1. For M ∈ Conv(A,E), we define its parallel splitting complexity S
p(M) =

S
p

(A,E)(M) by induction on the construction of M as follows:

(S
p
1) if M = 0 or M = a for some a ∈ A, then S

p(M) = 0;

(S
p
2) if M = (if M0 = 0 then M1 else M2), for some (A,E)-terms M0,M1,M2,

then either M0 = 0A and

S
p(M) = max{Sp(M0), S

p(M1)},

or else M0 ≠ 0A and

S
p(M) = max{Sp(M0), S

p(M2)};

(S
p
3) if M = φ(M1, ...,Mn), then S

p(M) = max1≤i≤n S
p(Mi);

(S
p
4) if M = f

kj
j (M1, ...,Mkj), then either M is not splitting and

S
p(M) = max

1≤i≤kj
S

p(Mi) + S
p(Ej(M1, ...,Mkj)),

or else M is splitting and

S
p(M) = 1 + max

1≤i≤kj
S

p(Mi) + S
p(Ej(M1, ...,Mkj)).

Lemma 9.2. For all M ∈ Conv(A,E), S
p(M) ≤ Cp(M) � 1.

Proof. The proof is by induction on the construction of M as usual, and we only write it for

the case when M is splitting as S
p(M) does not increase in other cases. So suppose that

M = f
kj
j (M1, ...,Mkj) for some j ≤m and M is splitting. Then

max
1≤i≤kj

C
p(Mi) > 0 and C

p(Ej(M1, ...,Mkj)) > 0.
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Hence, by induction, we have

S
p(M) = 1 +

kj
max
i=1

S
p(Mi) + S

p(Ej(M1, ...,Mkj))

≤ 1 + (
kj

max
i=1

C
p(Mi) − 1) + (Cp(Ej(M1, ...,Mkj)) − 1)

=
kj

max
i=1

C
p(Mi) +C

p(Ej(M1, ...,Mkj)) − 1

= Cp(M) − 1.

Definition 9.3. Call an (A,E)-term M a leaf if M = 0 or M = a for some a ∈ A.

Lemma 9.4. If M ∈ Conv(A,E), then there is an (A,E)-term N in T (M) that is either a

leaf or splitting and is such that

L
p(M) ≤ Lp(N) + v(M).

Proof. We prove by induction on the construction of M as usual. If M itself is a leaf or

splitting, then take N =M . Otherwise, we consider cases:

Case 1 : M = φ(M1, ...,Mn). Then L
p(M) = Lp(Mi) + 1 for some i, 1 ≤ i ≤ n, and the

induction hypothesis gives us a leaf or splitting term N in T (Mi) such that

L
p(Mi) ≤ Lp(N) + v(Mi).

Since M is not splitting,

T ′(M) =
n

⋃
i=1

M⌢T ′(M)

and so v(M) ≥ v(Mi) + 1. Thus, it follows that

L
p(M) = Lp(Mi) + 1 ≤ Lp(N) + v(Mi) + 1 ≤ Lp(N) + v(M).

Case 2 : M = (if M0 = 0 then M1 else M2). The argument for this case is similar to that

for Case 1, so we will skip it.

Case 3 : M is not splitting and M = f
kj
j (M1, ...,Mkj). Set M ′ = Ej(M1, ...,Mkj) and choose

i such that L
p(Mi) = max{Lp(M1), ..., Lp(Mkj)}.

154



If C
p(Mi) = 0, then L

p(Mi) ≤ Ls (Mi) ≤ ∣T (Mi)∣ = v(Mi) because T (M) = T ′(M). By

the induction hypothesis applied to M ′, there is an (A,E)-term N in T (M ′) that is a leaf

or splitting and is such that

L
p(M ′) ≤ Lp(N) + v(M ′).

Hence:

L
p(M) = Lp(Mi) +L

p(M ′) + 1 ≤ v(Mi) +L
p(N) + v(M ′) + 1.

Since M is not splitting, we have v(M) ≥ v(Mi) + v(M ′) + 1, so

L
p(M) ≤ Lp(N) + v(M).

If C
p(Mi) > 0, then C

p(M ′) = 0 since M is non-splitting, and we can repeat the same

argument with the roles of Mi and M ′ swapped.

Lemma 9.5. For every M ∈ Conv(A,E), we have:

(a) If M is splitting, then L
p(M) ≤ (2V + 1) ⋅ Sp(M);

(b) If M is not splitting, then L
p(M) ≤ (2V + 1) ⋅ Sp(M) + V ;

where V = V (E).

Proof. We prove (a) and (b) together by induction on the construction of M , noting that (b)

is a weaker inequality than (a) and so we can use it when we invoke the induction hypothesis

regardless of whether M is splitting or not.

Case 1 : M is splitting. Then M = f
kj
j (M1, ...,Mkj). Set M ′ = Ej(M1, ...,Mkj) and compute:

L
p(M) = max

1≤i≤kj
L

p(Mi) +L
p(M ′) + 1

≤ (2V + 1) ⋅ max
1≤i≤kj

S
p(Mi) + V + (2V + 1) ⋅ Sp(M ′) + V + 1

= (2V + 1) ⋅ [max
1≤i≤kj

S
p(Mi) + S

p(M ′) + 1]

= (2V + 1) ⋅ Sp(M).
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Case 2 : M is not splitting. Then, by Lemma 9.4, there is an (A,E)-term N in T (M) that

is a leaf or splitting and is such that

L
p(M) ≤ Lp(N) + v(M).

Using the obvious fact that S
p(N) ≤ Sp(M), together with Corollary 7.4 and the induction

hypothesis, we compute:

L
p(M) ≤ Lp(N) + v(M)

≤ (2V + 1) ⋅ Sp(N) + v(M)

≤ (2V + 1) ⋅ Sp(M) + V.

Theorem 9.6. For every Φ-program E, L
p ≤lin C

p
. In particular, there exists constants

B0,B1 depending on E such that for every Φ-algebra A and every a⃗ ∈ dom(fA
E), we have:

lp(A,E)(a⃗) ≤ B1 ⋅ cp(A,E)(a⃗) +B0.

Proof. Follows from Lemmas 9.5 and 9.2 by taking B0 = V (E) and B1 = 2V (E) + 1.
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