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ABSTRACT 

The mathematical and physical meaning of the commutation relations 

of nor]relativistic quantum mechanics is discussed in terms of the representation 

of. translations, Galilean transformations, and rotations of the coordinate 

system by unitary transformations acting on the unitary vector space of 

quantum states. 
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INTRODUCTION 

The discussion of this paper is confined to statements concerning 

part of the conceptual structure of the nonrelativistic quantum mechanics 

of particles, even though the arguments may be extended to the discussion 

of relativistic quantum field theories. This restriction makes it possible 

to study the essential points that are involved withOut the use of cumbersome 

formulae. 

Most treatises on quantum mechanics include among the various 

postulates of the theory a statement of the fundamental commutation relations 

between the Cartesian components of the coordinate and the canonical 

momentum of a particle: 

(xi, 	= i -- bij . 	 (1) 

Quite naturally, a great deal of attention is paid to the physical 

consequences of these relations as expressed by the Heisenberg uncertainty 

1,2 principle. However, with few exceptions, 	there is little discussion 

of the mathematical and physical ideas which underlie them. These ideas 

are concerned with the representation of translations, Galilian transformations, 

and rotations of the coordinate system by unitary transformations acting on 

the unitary vector space of quantum states. 
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•The author has discussed the commutation relations with many physicists 

during the past few years and has fQund that only the most sophisticated 

among them are familiar with the ideas involved. The present review is 

concerned with an attempt to present, them in a simple and concise fashion 

to a wider audience. It should be remarked here that this situation has been 

clearly,  recognized by Schwinger,3  who has given a concise and complete statement 

of the laws of quantum physics in terms of his general dynamical principle, 
/ 

the quantum analogue of Hamilton's principle. His discussion has not appeared 

in textbook form, however. Furthermore, Schwinger deals with the most general 

situation appropriate to relativistic, localizable field theories. Consequently, 

it is not easy to divide his arguments into their various parts in order to 

clearly recognize the concepts that are involved because the generality of 

the problem that he attacks requires the use of elaborate mathematical 

techniques, •which are not necessary for the analysis of the simpler problem 

to be discussed here. 

TEE RELATION BEEWEEN THE COORDINATE SYSTEM AND 

TEE UNITARY VECTOR SPACE OF QUANTUM STATES 

The basic postulates of, quantum mechanics assert that a physical 

system is described by a vector which is an element of a linear unitary 

vector space and that observables are represented by Hermitian operators 

whose eigenvectors may be used to define a coordinate system in this space. 

They also assert that if A')  is an eigenvector corresponding to the 

eigenvalue A' of an observable A, then the probability that a measurement 

of A will lead to A' when the system is in the state J\j) is the 

absolute square of the scalar product (A' I '). This leads to the 

requirement that (iV I tjr) be unity and is, in fact, the reason why the 
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transformations of quantum theory must be unitary. It also shows that states 

	

*) which differ by a phase factor e 	are equivalent0 

To describe motion one must be able to represent the basic motions of 

the physical coordinate system, i.e. translations, 5  Galilean transformations, 

and rotations, by corresponding unitary transformations acting on the space 

of quantum states0 Once this kinematical problem has been solved, the 

transitionto dynamics may be made by relating the infinitesimal generators 

of these transformations to the Lagrangian of the system. 

ThANSIATIONS 

First consider the representation of displacements of the coordinate 

system by a fixed amount ao  The elgenvalues of.the coordinate operatbr x. 

label the position of a particle, and therefore, under this displacement, 

corresponding elgenvalues must be related by 

(2) x 
1. 	

= x 	
1 1 	

- a. , 	 (2) 
.  

where the labels 1 and 2 refer to the two different systems. If the system 

was described by a state vector 4') , this changes into kit) .  under the 

transformation, and ki') is related to N') by a unitary transformation 

k's) 	U hi') 	 (3) 

This transformation may be determined by the condition: 

x N's) = 	( l x 	a.  

This leads to 

U 1 x U = x - a, 	 () 



Now, one may expres,s .0 as the exponential of an liermitian operator D which 

is clearly a function of the displacement a 

I D(a.) 
U = e 	1 	 (6) 

One must have 

a 

and consequently the Taylor expansion of D has the form 

03 a. n  d n D(a.) 
D(a.) = 	E 	n 	da 	 (7) 

n=l 	 i 	a.1=O 

For infinitesimal displacements, only the first term is important, and so it 

	

is convenient to set 	 , 

	

dD(a.) 	 , 
1 

1 	da. 

	

1 	a.=O 	 ' 
1 

and to write 

U.=.l + id1 a.  

Consequently, one has 

(1 - i d1  a1 ) x.(l + i d ai) = 	
- a. 	' 	(10) 

or 

(xi , d1 ) 

This relation defines the infinitesimal generator d 1  which was desired 

and shows that when x1  is diagonal, d may be represented as 
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• 	
d.= 	 (12) 

It may be shown that the generaiform [Eq. (7)1 is not required to yield all 

displacements that may be achieved by a continuous change from the identity 

(no displacement at all), but that an arbitrary displacement may be written 

as 

•i a d. 
U(a.) 	e 	1 

	

(13) 

As mentioned previously, Eq. (13) is a purely kinematical statement0 The 

transition to dynamics takes place when one makes the fundamental hypothesis 

that the momentum operator p1  is given by 	 U  

p. = 1d. =  
1 	 1 

where L is the Lagrangian function. 

Clearly a similar argument might be used to discuss the representation 

of time displacements0 This would, however, be incorrect since the time is 

merely a parameter and may not be regarded as a dynamical variable of the 

system. It is interesting to note that this situation which mars the 

structure of nonrelativistic quantum mechanics is not present in relativistic 

quantum field theory, where particles are described by field operators that 

are functions of position relative to the coordinate system. T1ese 

• positional coordinates (which include time) are therefore only parameters. 

From the foregoing remarks it should be clear that. the state vector 

in nonrelativistic quantum mechanics is to be regarded as a function of 

time which changes according to dynamical laws. The dynamical law must 
c 

be expressed as a unitary transformation by postulating Schroedinger's 

equation 
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iJt) 	H It 	. 	 (15) 

Thus the time does not express any kinematical features of the sysbem. 

GALILEAI TRANSFORMATIONS 

Nonrelativistic quantum mechanics satisfies a principle of relativity 

with respect to Galilean transformations0 If one considers two inertial 

coordinate systems moving relative to each other withvelocity v. , which 

were coincident at t = 0, it is clear that the eigenvalues of the momentum 

operator p which give the momentum of the particle relative to the two 

inertial frames must be re1ate by 

	

(2) = 	(1) 	
m v 	, 	 ( 16) 

where m is the mass of.the particle, and the labels 1 and 2 refer to the 

two different inertial coordinate systems. Itis also necessary to 

recognize. that the eigenvalues of the coordinate operator x
i 
 are related 

by 

	

= 	,(l) - V t • 	 (17) 

The transformation between the two inertial frames is now to be represented 

by a unitary.transformation acting on the state .vector IiV) of the system: 

u 	) 	 ( 18) 

The conditions which determine U are 

p 	J 	') = ( 	- rn v 	J 	) 	 (19) 

and 
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x 	'> = ( 	I x. - 	t 	) . 	 (20) 

Equations (19) and (20) lead immediately to 

p. U 	= 	p. - M. v. 	 (21) 

and 

u = 	x. - v. t 	 (22) 

SuppOse that one first studies Eq. (21) by temporarily ignoring 

condition (22). One may then write U in the form 

igmv. 
1 U = e 	 (23) 

where g1  is the infinitesimal generator of the transformation. Upon passing 

to the case of infinitesimal V. one finds from Eq. (21) that 

= -i 0 	 (24) 

Consequently, the infinitesimal generator may be expressed as 

g = -i d i 	d p 	 (25) 

Now Eq. (25) is a purely kinematical statement so that the connection with 

dynamics must be made by the assertion that the generator g 1  is identical 

with the negative of the coordinate operator 

x = - 	g 	. 	 (26) 

One may now return to the problem of representing the Galilean 

transformation. One must exhibit a unitary transformation U which is 

determined by Eqs. (21) and (22). Since Eq. (21) by itself would lead to 
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a unitary transformation U1  of the form 

1 
- V.

1 
 t p. 

- 	 1 U1  = e 	 (27) 

one is lead to a study of the composite transformation U U 1 . 2 : 

i 	i 

	

— ± ap 	—.bx 1i i - 	i i U1  U2  = e 	e 	, 	 (28) 

	

whei'e - a. =.v t.andb. =: -in v 	If thisis applied to:Eq, (21),one finds 

	

I 	i 
-1 	-1 	 b. x. 	- 	a, 	 a. p. 	b. x. 

	

U2  U1  p. U1  U2  = e 	 e 	 e 	e 

(29) 

p .'-. mv 
1 	 1 

Now checking Eq (22), one can write 

b 

	

U2  u1 1  g u1  u2  = e 	
i x1 

e 	
a1 

1 	
a1  P1 	b x1  

	

= x. 	V. t 

	

1 	1 

Thus the unitary. transformation 	 •' 

U = u1u2 	 (31) 

does indeed represent the Galilean transformation, 

It isat this point that one comes upon an interesting and somewhat 

surprizing situation, for if one considers, the unitary transformation 

U' 	=U u' ,' 	 ' 	" 	' 	( 32) 
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it may be inediate1y verified that U 1  also satisfies the conditions 

/ 	 required by Eqs. (21) and (22). One is therefore leadto the conclusion 

that the state vectors 	
') 

and Ni") defined by 

	

= U I ijr ) 	 (33) 

and 

u 	
) 

actually represent the same physical situation0 This possibility can exist 

only because of the probability hypothesis of quantum mechanics which asserts 

that only the modulus of the state vector has a physical meaniiig. Weyl 

described this situation by saying only the rays of the vector space were 

physically significant0 1  A ray is defined by 

	

Irk) = e Ia 
	

(35) 

where a is an arbitrary real number. All state vectors which satisfy 

Eq0 (35) lie on the same ray0 

Upon returning to Eqs. (33) and 34), one may therefore conclude 

that 	 . 

	

e1 a I 	' ) 	, 	 . 	. 	.. 	. (.36) 

or that 	) and 	4tt •) lie on the same ray. Consequently the unitary 

transformations are commutative in the sense that 

	

U1(a) U2(b) = e1 i(a, b) u2(b) U1(a) . 	 ., ( 37) 

Weyl asserted that quantum kinematics is described by an Abelian group of 

11 rotations" of the rays associated with the vector space. With this 
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hypothesis, he then showed that one is led to the fundamental commutation 

relations.. This is easily seen by letting a., b, be infinitesimal. In 

this case . . . 

i(a, b) = a.b. 	 . 	 ( 38)
aa 

1 	1 	a=O 
b=O 

sin i(O, 0) = 1. Consequently, one finds 

(i.+ 	a. p1 )(i + 	b.x1) = (1 + i a.b1  Ttt)(1 ± 	b. g.)(l +a. p.), 

or 

	

a1b1 (x., p.) = .. i a. b i" 	 . 	 . 	() 

If T it is chosen as 	l , one may conclude 

(x., p 1 ) 	= 	. 	 . 	 . 	 . 	( 1) 

From a purely physical point of view the situation may be summed up 

by saying that one may make the translation first and then the momentum change, 

or vice versa. It seems evident that either way should lead to the same 

physical properties 

As the reader will have noticed, many salient points have been . 

omitted from the foregoing discussion. Some of them will be discussed in 

a later section, since they do not at this point fall into the scheme of this 

paper. 	 . 
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ROTA.TIONS 

In order to complete the study of nonrelativistic quantum kinematics, 

it is necessary to represent the only other possible type of motion that can 

occur--rotation. While it is clear from the foregoing discussion that one 

might immediately infer that the infinitesimal generator of rotations is the 

usual angular-momentum operator, it seems more in the spirit of this paper 

to treat rotations in the same way as translations and Galilean transformations. 

Consider, therefore, a rotation of the coordinate system by an 

amount specified by the rotation matrix S 	The effect of this rotation 

is to alter the eigenvalues of the.coordinate operator x 1  according to 

the relation 

	

=
J 1

,• 
	

('ti) 
1 	. 	. 	3 

Accordingly, this transformation induces a change of the state vector of the. 

system N') given by 

= 	U J ii ) 	, 	. 	 . 	 . 	. 	( I12) 

where the unitary transformation TI is determined by 

x. 	r) 	= 	S. 	x. J r) 	. 	. 	 . 	( 3) 

Consequently, one finds 	 . 	. 	. 

-1 	. 	 . U 	x U = S 	x. .o 	
(111. 

i 	133 

If, as in the foregoing sections, one considers only infiniteimal rotations, 

one may write 	 .. 

sli  . = 
	81j 	+ 	2ij , 	.. 	. 	. 	. 	(14.5) 
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where 2 	is an antisyimnetric matrix 

= 	
]. 	 (16) ij 	J 

This matrix is related to the infinitesimal angle of rotation 8. (. = 
1 	1 

by the relation 

ij = 	ijk 8k 	 (47) 

where e 	 is the usual alternating symbol of tensor analysis.ijk  

The unitary transformation U , on the other hand, may be written 

in terms of its infinitesimal generator as 

i1 8 
u = e k k 	 (18) 

where summation over I is now intended. For infinitesimal 8. 1  one 

therefore finds 

U = 1 + iT.8 	. 	 ( 49) 

Upon using this relation in conjunction with Eqs. (L)  and (45),  one finds 

that 	 - 

• 	-i(T19 1 .9 x.) ="kix, 	, 	 ( o) 

and from Eq. (29), one obtains 

-i (T1 	x) = -e ijk c 8 	. 	 ( 51) 

Since the angle of rotation 0 is arbitrary, one may conclude that 

CT1 , x) = 	C ijk xk.  . 	 (52) 
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Since this is a kinematical statement only,'one must make the connection with 

d.ynamics by comparing it with Eqs. (ui-) and (24) or by making independently, 

the hypothesis that 

and 	 () 

= _iekjiXjPi • 

in either case, one finds that the generator of infinitesimal rotations is 

Lk 	kji x 	1 ' 

which is just the angular-momentum operator. An elementary calculation leads 

to the commutation rules between various components of the angular momentum 

(L., L) = 1(€1.k Lk 

It is instructive to discuss three simple cases which illustrate the 

typical problems with which nonrelativistic quantum mechanics is concerned. 

These are concerned with scalar, spinor, and vector functions of the position 

operator. Under a rotation, S , these scalar functions transform as 

0(x) 	') = (v I Ø(s' x) I 	) 	. 	 ( 6) 

The corresponding transformation for spinors is 

I 	I 	= (* J A '  r(S 	x) I 

(57) 

A 1  •a1  A = S 	a 
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where 	a 	is the Pauli spin operator. 	For vectors the transformation is 

I A(x) 	= 	S 	( 	A(S 	x) ij  (58) 

For the scalar case, the unitary transformation is- 

U_i  0(x) U 	= 0(s 	x) 	. (9) 

Thus when the rotation is infinitesimal, one finds, upon writing 

= (i 	+ j.e) 	, 	 •. (6o) 

that 

- [J1 .e., 	0] = 	 x. 	 .  

or . .. 	 .. 	 . 	.. 	 . 	 .. 

0] 	= 	-i e 	 k Xj p 	 . 	 . 	.  

In this case one finds J. = L. . 	Thus, the angular momentum carried by a 

scalar field is purely orbital. 

Thespinorcas.e is more interesting. 	One writes 

i 	+ -h. 

	

J. 	e.  

	

1 	1 

(6) 

A 	= 1 	+ 
2 a. 	e. 1 	. 

i  

Consequently, one has 

= 	-c 	
+ 	k•• 	x. (64) 

or  
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[J1, ijk x 	+ i 	] 	 ( 65) 

In other words, one has 

J. = L 	+ 	 ( ) 

A number of details regarding the explicit construction of the spin matrices 

have been omitted from this argument for the sake of brevity. They may be 

obtained however by an application of the methods of this paper. 

For the case of the vectOr field, one finds that 

3i A] = [Li 6m.€ 	 imeg • 	 (67) 

Consequently, one can write 

J= L, + Si , 	 ( 68) 

where 

Si) 	= - i-i ijk
jk 	

c 	 (69) 

One easily verifies that 

( 	s 	= 2 	k 	' 	 (70) 
1 	 jk 

which is the standard result that the vector field describes an intrinsic 

spinof 

The foregoing discussion may be extended to the case of higher-rank 

tensor fields provided that sufficient attention is paid to the question of 

irreducibility of the acquired representations. It does not seem profitable 

to discuss more complicated situations in this paper. 
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WEYL'S ThEORY OF QUANTUM 1CLNEMTICS 1  

Weyl's theory of quantum kinematics shows the close connection between 

the probability hypothesis of quantum mechanics and the commutation rules. 

The probability hypothesis leads to the conclusion that one is not concerned 

with the vectors of the representation space, but only with the rays of this 

space. Weyl observed that the commutation rules of quantum mechanics imply 

that the operators x. and p, are the. infinitesimal generators of an 

Abelian group... of "rotations" of the rays of the state vector .spaäe. He then 

investigated the general conditions that are required in order to set up an 

irreducible unitary representation of an Abelian group of ray rotations. 

Suppose that Ii') belongs to the ray JR) and that one considers 

two "rotations"and 	• Since 	. and 	are coimnutative 

the ray obtained after the "rotations" is 

JR') = 	I B) 	 I R) 	 (71) 

If one now represents these "rotations" in terms of unitary transformations 

acting on the vector space, 

Ul 	 .. 

• 	 . 	 (72) 

one realizes that U 1  and U2  must satisfy 

• 	
. 	I') 	U1  U2 	I 	) 	. 	 . 	.. 	.• 	., 	. 

() 

• . 	. •I") 	.= 	U2  U1 	) 	. 
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and also 

e 	si") 	 (74) 

Consequently, the relation (., J' ) = 0 is represented by 
U1. U2  = e 	U2  U1 	 . 	. 	. 	. 	( 75) 

It is clear from this equation that a unitary representation of an Abelian 

group of ray rotations can never be set up in a finite dimensional vector 

space, for this would require that 

ia det(U1  U2) = det(e U2  u) , 	 (76) 

and, consequently., 

emn a 
	(77) 

That is, e ia  would have to be an nth root of unity, where n is the 

dimensionality of the space. Moreover, one would have the additional 

requirement that . . 

tr U1  U2  = tr e U2  U1 	 . 	. 	 ( 78) 

orthat 	 . 	. 	. 	. 

ia e= 	. 	 () 

It is therefore necessary to consider a space of infinite dimensionality 

where Eqs. (77) and  (79) need not hold true. 

To investigatethis probIm further, one supposes that there exist 

infinitesimal Cenerations, c, which are appropriate to the problem so that U1 
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and U2  may be expressed as 

u1(r) = e 

(80) 

U2(X); 	e 

The r. and X. are parameters which define U and U , and summation 
1 	 j 	 1 	2 

in the exponent is implied over the assumed finite set of m infinitesimal 

generators cr 1,...a . Upon substituting Eqs. (.80) into Eq. (75), one finds 

i T. 	. 	I 	a. 	I a(r, ?) I .. a. 	i T. Cr 
e 	1 'e 	= e 	e 	e 	1 1 	 (81) 

where the explicit dependence of a on the T. and X. has been noted. 

Upon passing to the case of infinitesimal T. and X., one may 

write 

i T. a. 
:e .  

1 1 

.iX.. 	a. 	. 	. 	. 	. 
= 1 +  

3 	J 	. 

e 	= 1 + ia('r,x) 	. 	. 

and also, to sufficient accuracy, 	. 

a(T, ) = a(0, 0) +
+ 	

+ 	
2 	

+ .,. 

(83). 

Clearly only the last term can be present, for if. either T. or' 	is 

set equal to zero, Eq. (81).reducesto an identity. 	. . 
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It is convenient to set 

2 
1 	a 
. ---;;-• p 	. 	= 	- ij 

1 	3 

Upon substituting Eqs. (82) into Eq. (81), one finds 

t. X.(cJ.1 , a 	13 .)- = 	iC.. 
Ti

x. 	 -. 	(85)- 
13 	3 	 3 

or, since Tip 	are arbitrary , 	 -- 

' a,) 	= 	i C. . 	 - 	( 86) 

There is a strong restriction on the matrix C 1  which is imposed by the 

requirénient that our representation be irreducible.. From Schurs lemma the 

only matrix'which may áormnute with all the matrices of such-a representation 

is the unit matrix. Consequently, one must assume that the -equation- 

= o 	 (87) 
13 -1 3 

never has a solution X. for a given set r. 1 
 except X. = 0. Thus one 

3 	 .1 

can write 	 - 

det C.. 	 - 	 - 	-- 	( 88) 

Furthermore, -from Eq. (86) one sees that C is antisymmetric: ---- - 
	 - 

c3 = 	
( 89) 

- 	
Now such a matrixt.can exist only in a space of an even number 'o 

6 	 - dimensions. - This' implies that the number -' -of 'infinitesimal''  generators 
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must be even: 

In = 2f 	,.• 

where f is an integer0 

One sees that this point how the representation is adapted to the 

occurrence of pairs of infinitesimal generators that occur in a canonical 

formalism0 Furthermore, it may be shown that any matrix Cwith the 
iJ 

properties described by the last three equations may be brought into the form 

of blocks along the main diagonal made up from units of 

	

0 	1 

(91) 

	

-1 	0 

by a linear change of basis, a i -' a' 	. 	If - one imagines this has been 

done, one arrives at the commutation relations by identifying the new 

generators 	a' 1  Co obtained as follows: 

=Xil-K , 	 a' 3  = 

, etc0 	(92) 

a 2  = 	 a' 	= 

It seems to the author that the main point of Weyl's investigation 

has been dealt with0 The foregoing argument shows clearly how clseiy the 

commutation relations are connected with the probability hypothesis of 

quantum mechanics0 The author realizes that many important mathematical 

questions have been heuristically treated in this paper0 It is hoped that 

this manner of treatment will be satisfactory to the average physicist.0 

-21- 

(90) 
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SU1vIABY 

A discussion of the fundamental commutation relations in nonrelativistjc 

quantum mechanics has been presented. which shows how closely they are connected 

with simple physical  and mathematical requirements imposed on the theory. 

The method of presentation is intend.ed to amplify and clarify arguments that 

lead to them by more formal means. The restriction to nonrelat.vistic quantum 

mechanics which allows a simplified discussion in terms of translations, 

Galilean transformations, and rotations may be removed by the following 

scheme: 

• 	 (a) translations - translations 

(b) Galilean transformations and rotations - Lorentz transformations 

(c). pointparticle mechanics field thory. 

This program, which is treated in the paper by Schwinger, 3  leads to the 

• 	fundamental commutation relations between field operators when augmented by 

the demand of time-reversal invariance. The very simplicity of the requirements 

• leading to these commutation relations suggests that an attempt to modify 

the commutation relations between field operators must be based on a 

modification of the field equations of the theory. 

AOOWtDGMEWL 

The author is Indebted to the late Professor W. Pauli, who expressed 

in a conversation the conviction that the fundamental commutation relations 

were perfect, that there was nothing to be changed. 
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il-, This remark does not apuly to time reversal. 
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break up the discussion in such a way that it paxallels, the correpondinJ 

relativistic oneS 	 - 

Sec réferencel, appendix 5, p 397. 
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