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Abstract 

Quantitati ve three -dimensional distribution of isotopes in patients is de

termined by digital reconstruction of data from many view s' taken by rotating 

the subject at 10° intervals before the gamma camera. The superiority of 

,these techniques over conventional tomography is demonstrated by comparisons 

between reconstruction algorithms such as back-projection, simultaneous 

iterative reconstruction, iterative least-squares, and back-projection of 

filtered projection. The filtered back-projection technique (convolution 

method) is superior in speed; however, for quantitative results that take 

into account both noise and attenuation, the iterative least-squares method 

gives the best approximation to the real sO-}lrce distributions. Resolution is 

1.25 cm for detection of holes in 20-cm-diameter objects. 

Mathematical basis and FOR TRAN listings applicable to transmi'ssion and 

emission imaging are 'given, as well as phantom an,d patient studies. 
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1. 0 INTRODUC TION 

1.1 Scope and Previous Work 

This study presents application of methods of ascertaining the three-
, 

dimensional distribution of isotope concentration or density in nuclear medicine, 
\ , 

and diff~rs from previous three -dimensional reconstruction efforts Qf astro-

physics, electron microscopy, and x-ray radiology in that statistically poor 

'measurements and photon atte,nuation are taken into account by the algorithm. 

,Truly quantitative nuclear medicine cannot be accomplished from single views 

in most cases (Budinger, 1974); thus a, means of estimating isotope concen

tration from data taken from multiple views is needed. The methods disc;:ussed 

here are applicable to photon or, heavy ion transmission radiography as well 

as emission imaging. 

The methods of three-dimensional reconstruction from multiple two

dimensional views can be dividied into thirteen categories: 

,1. Direct ,matrix techniques, generalized inverse arid pseudo
inverse (Sandler, 1972; Kashyap and Mittal, 1973). 

2. Summation, linear superposition, back..:projectiop, moire, or 
simple 'transverse-section scanning (Andrews, 1936; Edholm, 1960; 
Kuhl and Edwards, 1963, 1966, 1968; Anger, 1967,1974; R. G. Hart, 
1968; Harper, 1968; ,Vainshtein, 1970; Reichmann, 1972; Gordon and 
Herman, 1974). 

3. Algebraic reconstruction technique (Gordon et al., 1970; Schmidlin, 
1972; 1973). \ 

4. Algebraic reconstruction technique modified for noise (Herman 
et al., in press; Johnson et al., 1973). 

5. Simultaneous iterative reconstruction technique (Gilbert, 19 72a). 

6. Orthogonal tang<?nt correction (Kuhl et al., 1973). 

7. Iter,ative least-squares technique (Goitein, 1971). 

8. Summation of compensated projections (tho et al., in press; 
Vainshtein, 1973). 

9., Summation of filtered back-projections, convolution technique 
(Bracewell and Riddle, 1967; Gilbert, 1972b; Ramachandran and Lak
shminarayanan, 1971; Smith et a1., 1973; Peters, 1973; Chesler, 1972; 
Shepp, in press; Lee et al., in press. 

10. Geometric mean iterative technique (Schmidlin, in press). 

11.' Rho filtered back-projection (Bates and Peters,1971). 

12. Fourier reconstruction (DeRosier and Klug, 1968; Crowther et 
al., 1970; Budinger/, 1971; Lake, 1971; 'Peters et al., 1973; Keyes and 
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Simon, 1973). 

13. Summation of the projections after Hilbert transform. of the 
derivative of the projection (Radon, 1917; John, 1955; Berry and Gibbs, 
1970; Cormack, 1973; Peters, 1973). 

'-
Some of these techniques have been compared for accuracy, computer time, 

number of views required, and ability to handle noise (Frieder and Herman, 

1971; Herman, 1972; Herman and Rowland, 1972; Herman et al., 1974) .. An 

alternative classification of methods into four categor-ies: Summation (No.1); 

Use of Fourier Transforms (Nos. 9, 11, 12); Analytic Solution of Integral 

Equations (Nos. 9; 12, 13); and Series Expansion Approaches (Nos. 3, 4, 5, 6, 

7) has been presented with a review of literature by Gordon and Herman 

(1974). 

The various methods in general are equivalent under certain condi

tions of transf~rmation in that the result of the reconstructio~ is related to 

the true object by some integral transformation within the limitations of the 

st.atistic of the measuremerit. The direct methods involving matrix inversion' 

a,re usually discarded because the matrices ar~ too large or the system is 
,- . 

undetermined and the equations will be inconsistent. This is not necessarily 

true if the generalized inverse is used; however, no implementation has been 

made as yet. 

Many of the algorithms are m'echanisms of evaluating Radon I s relation 

between the value of each picture element in polar coordinates A(r, B) and the 

,projections for all angles P(x, B) where x denotes an element along the 
- , . 

projection corresponding to the line integral through the section to be recon-

structed. 'Thus Radon in 1917 and subsequently others-(Berry and Gibbs, 1970 

Cormack, 1973; and Peters, 1973) showed that 

A(r,B) '-
8P(x, BI) 

8x 
1 

dx dBI. 
rsin(B-B 1

)- x 
(1) 

IIi the practical s·ituation there is only a finite number of views and 

each measurement is subject to errors. Thus, over the last 15 years special

ized techniques have been developed for solving the problem of estimatIng the 

distribution of some property in three -dimensional space from many views or 

projections at various discrete angles. 

'" . 
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The text is divided into a discussion of the mathematical algorithms, 

results with phantoms and patients, and methods of handling attenuation. 

Aspects of computer implementation are given, along with FORTRAN listings, 

as App-endices. Appendix A gives proofs of the Fourier projection theorem 

and the relation between the back-projected image and the true image. 

\ 
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2.0 MATHEMATICAL TECHNIQUES 

2.1 Three-Dimensional Reconstruction by Stacked Two-Dimensional 

Reconstructions 

This section presents some of the algorithms implemented for three-

dimensional reconstruction of density of isotope distribution. F9r computa-

tional simplicity the object is divided into planes along the axis of rotation. 

Each plane is reconstructed from some mathematical operation on the corre-
I 

sponding one-dimensional projections, and the planes are stacked to reconsti-

tute the three-dimensional object. Thus we consider the problem of recon-

structing planes or transverse sections from multiple projections (Fig. 1). _ 

This simplification is not possible for cone beams or three-dimensional fan 

beams. The fan beam is a diverging beam, which by source or detector 

collimation samples a single transverse plane. Most of the algorithms given 

below can be modified to handle either parallel or fan beam situations. 

2.2 Relations Between Picture Elements and Projection Rays 

The digital techniques of c;lcquiring data and manipulating projections 

in order to obtain a two-dimensional reconstr}1ction by any of the above methods 

are given in more detail. All the methods require an algorithm for determining 

the ray k(e) for a particular projection e which passes through a given pic-

ture element (Fig. 2). In addition, we need an algorithm which gives all 

pixels (i, j) which intersect the given ray k(e). 

The appropriate recipe for relating the coordinate (x, y) of one array 

rotated some angle e from the reference array with coordinate (u, v) is usually 

given as 

x = u cose v sine u = x cose + y sine 
with the inverse (2) 

y = u sine + v cose v =-x sine + y cos~ . 



CONVENTIONAL VIEWS 

left lateral anterior right lateral posterior 

Figure 1. Reconstruction of transverse sections on a head phantom filled with 
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0.4 jlCi/cc 99m Tc. Two tumors are simulated by filling spheres with 0.8 jlCi/cc 99m Tc. 
Full three-dimensional reconstruction is effected by doing multiple two-dimensional 
section reconstruction and reconstituting the whole by stacking these sections. 
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Figure 2. Ray sums are formed by adding the activity from each picture element that 
falls within ray lines k-l and k. . 

From Eq. (2) one can derive a digital algorithm for determining which pixels 

<Df a rotated array correspond to the reference array; however, an alternate 

approach was taken as detailed in Appendix B. The preferred approach is 

based on the need to derive an algorithm which will give all picture elements 

lying within the boundaries of a specific projection ray as well as a recipe 

which gives all rays that intersect a particular pixel as a function of e. 

The projection of rays passing through the plane remains fixed rela-

tive to the detector, while the coordinate system rotates within the field of 

these fixed rays. This is done so that the formulation corresponds to the 

actual experiments wherein an object or patient is rotated in front of a fixed 

camera and thus differs from other formulations (e. g., see Gordon et al., 

1970). The practical results of these derivations are placed in convenient 

terms for the digital computer as follows: 
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Family of lines bounding the rays 

For angles e= 0°,90°, 180° and 270°, the family of lines is 

y = k + 1/2 k=0,1,2 .... N (3) 

For all angles other than integral m u ltiples of Tr/2, the family of lines is 

y = xtane+yo +k/lcosel, k = 0,1,2 ..... ne' ( 4) 

Where 

N+1 L N+1 
tane Yo =-- - Icosel -2 2 

, 

E + INT [N-1 ( I sine I + Icosel - 1) + 1/2J if [ . ] > INT[. ] 
L= 

2 2 

N + 
2 INT ~Ni1 ( I sine I + Icosel - 1) + 1/2J -1 if [ . ] = INT [ . ] 

= f N + 2INT 

IN + 2INT 

[Ni1 (I sine I + Icose I - 1) + 1/2] 

[N i1 (I sine I + Icose I - 1) + 1/2J - 1 

if [. ]>INT[·] 

if [. ] = INT [ . ] 

Using these equations, the minimum and maximum values for y ' or the j 

coordinates of the pixels that fall within a ray k (between lines k-1 and k) 

are determined for each projection angle. Then between these bounds all the 

i coordinates are determined by solving the respective equations for x. This 

gives a set {(i, j) I (i, j) € ray k(e)} where the coordinate pairs belong to the 

k th ray of protection e. If a coordinate pair falls on the line k, then the 

coordinate pair is placed in ray k + 1. 

For each given projection angle e, we determine the ray k(e) that 

passes through a particular coordinate pair (I, J) using the following formula 

for the distance between the pixel represented by the coordinate pair (I, J) 

and the line k = 0: 

• 
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I ~ + 

(N+1-2I) I' I ( 2J - N - 1 ) I I if 
0°< e < 90 0 

2 sme + 2 cose 180 0< e < 270 0 

D = 
L+ 

(21 - N -1) 
Isinel + (2J-N-1) I el if 90 0< e < 1800 

2 2 cos 270°< e < 360 0 

/ 

where L is given in Eq. B21 (Appendix B). The integer value of D+ 1 gives 

the ray number. Thus a one-statement operation for each projection e will 

yield the proper ray number for a given pixel. In the case of a simple back 

projection on a 64 X 64 array using Eq. (5) , the number of calculations is 

4096 times the number of projections; alternatively, the back - projection 

summation can be determined by assigning the value Pk(e) to each pixel 

through which the r9-Y passes, which means the number of calculations is the 

product: number of projections times the 64 rays times number of pixels in 

each ,ray. The latter method might be more costly in time, because each ray 

(5 ) 

must be bounded by a series of logical computer statements. This formulation 

does not take into account the fractional area of the pixel through which a ray 

passes. The fractional contribution each ray sum might make to a picture 

element varies between 0 and 1. For each pixel this weighting can be incor-

porated by calculating t?e fractional area of the pixel inters~cted by each ray, 

or the length of the ray through the pixel, or by a factor related to the distance 

between the ray and the pixel center. Another approach is to modify the ray 

width in accordance with the angle of projection relative to a square array. 

Incorporation of these weighting factors is costly in computer time, and is 

not essential if the number of rays and fineness of the ?-rray are appropriately 

matched to the data (Frieder and Herman, 1971). The weighting matrix 

discussed in the next section incorporates these weighting factors. 
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3.0 :;)ETAILS OF SOME RECONSTRUCTION METHODS 

3.1 Scope 

Of the thirteen methods listed in the introduction, we concentrate 

here on the implementation of the back proj ection, the simultaneous iterative 

reconstruction technique, the iterative teast-squa~ es technique, and back-

projection of filtered or compensated projections. The direct matrix approach 

" 

is presented not only as an introduction to the iterative techniques, but also 

to give the framework for possible future work. 

3.2 Direct-Matrix and Linear-Equation Methods 

In this section we examine the application of linear algebra to the 

problem of determining the concentration or density in each element of a two-

dimensional section from a number of projections. 

Consider the simple problem of reconstructing the four values in a 

2 X 2 array from two projections at 0° and 90° 

~= 3 

~= 7 

~=4 ~=6 

The feasible solutions are given by the following set of equations: 

Ai + A2 =p = 3 
1 

A3 + A4 =p = 7 
Z 

Ai + A3 = P = 4 
3 

( 6) 

A
Z 

+A 
4 

= P = 6 
4 

This system of equations has an infinite number of solutions because Eqs. (6) 



-12-

are not independent (the rank of the coefficient matrix and the augmented 

matrix is 3). The impossibility of a unique direct solution can be seen from 

the following attempt to solve the system Eqs.(6). In matrix notation the 

system is given as 

F· A = P, ( 7) 

where 

1 1 0 0 Ai Pi 

0 0 1 1 A2 P
2 

F = 1 0 1 0 A = A3 and P = P3 
0 1 0 1 A4 P4 

The matrix F can be considered a weighting matrix based on the geometry. 

Recall from matrix algebra the explicit solution of Eq. (7) is 

-1 A = F • p, (8) 

where the elements of F- 1 are related to the matrix F as follows: 

If 

f11 f12 f13 f14 f~ 1 f21 f' 
31 f~H 

f21 f22 f~2 f~2 

f31 then 
-1 1 

f~3 F = F = DetF 

f41 . . . . f44 f14 f44 

where f:. is the cofactor 6f f. .. 
1J 1J 

Note for the example above Det F = 0; thus, there is no unique solution to Eqs. 

(6). This is an example of four equations (inconsistent) and four unknowns with 

no solution by Eq. (8). It is pos sible to solve for a 2 X 2 square array with only 

two projections by either an iterative scheme or by changing the projection 
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angles; in this case, angles 0° and 45° will suffice. Consider the system of 

equations for views at 0° and 45° 

Ai +A3 = Pi 

A2 +A4 = P
2 

Ai = P
3 

(9) 

A
2

+A3 = P
4 

The solution of this system is given by Eq. (8), where now the inverse matrix 

can be evaluated 

o 
-1 

- 1 
F = 1 

1 

010 

o 1 1 

o -1 0 

1 -1 -1 

The extension of this problem to real data and large arrays involves serious 

complications; for example, suppose there are sufficient data that the values 

in a section of say N X N picture elements can be determined by a linear 

system of simultaneous equations. At first glance, it would seem for a 64 X 64 

array that 4096 simultaneous equations must be solved. Most investigations 

stop at this revelation and proceed to other methods discussed below; however, 
( 

it is important to investigate this problem in more detail before giving in to 

the 'notion that such a large matrix inversion is intractable. Indeed, as will 

be seen, the direct-matrix method involves a matrix size equal to approximat~ly 

(N X N) . (no. of projections) . (no. of elements per projection) 

Consider one projection composed of the ray sum or line integrals { P ke }, 

k = 1,ne. At 0°, 90°, or integral multiples of TI/2, each ray of width unity 
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intersects a row or column of the section (Fig. B1). However, for projections 

at some other angles, the rays will not intersect each picture element entirely 

that is, part of the ray width will encompass a picture element. Thus some 

weighting factor f.. is necessary to describe the contribution of a particular 
1) 

pixel A(i, j) to the ray sum P
ke

. The weighting factor f
ij 

can also be used to 

account for attenuation. The system of linear equations for one projection at 

0° is 

Pie = f11 A(1,1) t f 12 A(1,2)t 
1 

t fiN A(1, N) 

P 2e = f21 A(2, 1) t f22 A(2, 2) t ... t f2N A(2, N) 
1 

(10) 

P
Ne 

= f
N1

A(N,1) tfN2 A(N,2)t ... tfNNA(N,N) 
1 

For projections at angles of integral multiples of rr/2 for a square array where 

the ray is equal to the width of a picture element, all weighting factors are 1; 

however, for P kll , say at 3° from P
ke 

' the weighting factors will be less 
°2 1 

than one, and the terms of Eq. (10) will vary in accordance with the elements 

through which the rays pass, which is dependent on e. One can generalize to 

all proj ections 

Pi = f11 A(1, 1) t f12 A(1, 2) t t f1 w A(N,N) 

P
2 = f21 A(1, 1) t f22 A(1, 2) t . . . t f2 w A(N, N) 

(11 ) 

P = \niA(1,1) tfm2A(1,2)t. . . t f A(N, N) 
m mw 

2 where m is the total number of the rays for all projections, and w is equal to N 
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Written in matrix notation, the previous equation can be expressed as 

Pi f11 f12 . . . . f1 w A( 1,1) 

P
2 f12 f22 f

2w 
A( 1, 2) 

= 

P f 
m1 

f m2 .. f A(N, N) 
m mw 

In matrix notation P = F . A, and in the case where m = w = N 2 

as before, we solve for [A(i, j) ] by inverting the matrix F 

.... >:c 
A( 1, 1) = Pi f~1 + P 2 f12 + 

. ', .... 
A( 1, 2) = P f~1 + P2 f~2 + . , 1 

A(N,N) 

. . 
* + P f
1w m 
.... 

+ P f ..... 
m 2w 

.+P 
m 

f 
>.'< 

mw 

A = F - 1 . P 

-1 [ ':< ] Fare f. . . 
1J 

where the elements of the inverse matrix 

( 12) 

(13 ) 

If one can calculate the elements 
-1 of the matrix F , then the solution 

w ill be a simple multiplication and addition of these elements with all the ray 

sums for the projections. In the example above, this involves for each element, 

'(N 'X N)2 multiplications and (NX N)2 addition operations. In practice on a 

computing machine with 1 f.Lsec per complete operation, this means 

1 X 10- 6 sec X [(64X64)2 + (64 X 64)2] = 33 sec 
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6 7 -1 
The long computing time plus the need to store 1. 78 x 10 values for F 

have prompted a search for alternate approaches. Further, the problem of 

measurement errors and insufficient angular measurements to satisfy Eq. (13) 

have resulted in the 13 algorithms cited above and detailed below or in other 

reviews (Frank, 1973; Gordon and Herman, 1974). 

If there are potentially serious measurement errors, the problem 

can be formulated by reEJ.-uiring that an estimate of the array A in a trans-

verse section be a minimum to a least-squares function 

<R (A) = 

where the picture element values A(i, j) satisfy the relationship 

= " f~. A(i,j) L..i 1J 
(i,j) Eray(k.e) 

2 and G
kB 

is the variance of the measured projection P kB . 

( 14) 

(15 ) 

If <R of Eq. (14) is minimized after incorporating Eq. (15) we have a solution 

for A in matrix form (cf. Appendix C for details) 

(1. 6) 

where <1>-1 is the inverse of the covariance matrix and F is an mX N
2 

matrix composed of the weighting factors such as the fraction of the 

area of a particular picture element through which the ray passes as before; 
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and m is the tobl number of rays for all projections. 

For the situation where we are limited in the number of views, the 

matrix (F T ¢- 1 F) is likely to be singular, thus threatening the existence of 

a solution to Eq. (16). This seemingly intractable problem might find for its 

solution the generalized inverse FG of the matrix F, which in the formulism 

of Boullion and Odell (1971) gives the solution (see Appendix C for example) 

(17) 

Once the generalized inverse has been determined, the estimate ~ can be 

made by direct matrix multiplication as in Eq. (17). The generalized inverse 

is a function of the geometry of the object (imaging) space, the spatial change 

of the impulse response, ray divergence, if any, and photon attenuation. Thus 

in principle for a given imaging situation using projections at fixed but not 

necessarily equal angles, the generalized inverse matrix can be derived and 

used for digital or electronic hard-wired m u ltiplication of the projection data. 

The seemingly intractable problem of large matrix manipulations and 

insufficient number of projections available to give a unique solution, have 

led to iterative schemes for the approximation to a solution. To illustrate 

techniques developed further in Sections 3.3, 3.4, and 3 . 5, we solve Eq. (6) 

by an iterative approximation method whereby the value for each element A. 
1 

is guessed, and then modified by comparing the estimated proje'ction value to 

the measured value. We start with the measured projections 

~ = 3 

~ = 7 

~ = 4 ~=6 
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If we estimated each element had the mean value of 10/4, we would note that 

Ail + A
2
' = 5, which is 5/3 greater than the measured value, thus we make a 

second estimate at the value for Ai and A2 of 3/5 (10/4) = 6/4; this gives an 

array with the first row modified as 

Ai 
6/4 

A2 
6/4 ~ = 3 

A3 
10/4 

A4 
10/4 ~ = 5 

~=4 ~=4 

Clearly the values of A3 and A4 need to be increased, because their 

sum deviates from the measured value by 5/7. After adjusting these values by 

7/5 (10/4) = 14/4, we have 

6/4 6/4 ~ = 3 

14/4 14/4 ~ = 7 

~=5 ~ = 5-

./ 

The sums of the vertical rows need adjustment to coincide with the measured 

values; thus after the first iteration, we have 

6/5 9/5 ~ = 3 

14/5 21/5 ~ = 7 

~=4 ~ = 6 

which gives one solution. Even with the situation complicated by the noise of 

measurement, an approximation to the original distribution giving rise to the 

projections can be made by the iterative approach suggested above and other 
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algorithms outlined in this section. Before examining these schemes, let us 

:r.eview the simplest method of reconstruction. 

3.3 Linear superposition or back - projection 

The simplest and most rapid method of reconstituting a two-dimensional 

distribution from multiple o~e = dimensional projections is to merely project the 

views back to a common object region as' depicted in Fig. 3. This technique 

Figure 3. A transverse section is created by projecting the profiles from various views 
back through an image array. The technique is also known as superposition, summa
tion, or simple transverse section scanning. 

is basically that of conv~ntional tomography or laminography implemented by 

analog methods of moving the imaging system relative to the object. This 

technique has been explored extensively in nuclear medicine applications since 
, 

about 1956 under the name "transverse section scanning" (Kuhl and Edwards, 

1964). Kuhl and co-workers used rectilinear scanners to obtain photopeak 

events as a function of distance along the projected line Pk8 in Fig. 4. 
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Section A( i ,j ) 

x 

y 

Figure 4 . Relation between the section ray sums and a projection. 

The strings of data for the multiple views were superposed on film 

by changing the angle of display relative to the film corresponding to the 

change in angle of view from one scan to the next. The result is the super-

position of the projections . The first proposal for simple "transverse section 

scanning" using the gamma camera employed an optical technique for superpo-

sitioning the multiple camera views (Anger , 1967) . The digital implementation 
I 

of this technique was reported first by Kuhl (1966) for nuclear medicine, and 

more recently by Hart (/1968) and Vainshtein (1970), the Rus sian crystalogra-

pher for electron microscopy. R . Hart's technique is similar to circular 

tomography. Harper (1968) presented a feasible method of three-dimensional 

image synthesis where any plane can be viewed by inserting an opaque screen 

. in the field of back - projected three -dimensional images. 
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Though this technique is very simple, it cannot give the true radio-

nuclide concentration even for an infinite num.ber of projections. The resulting 

reconstruction will not equal the true im.age because each point in an im.age 

reconstructed using back- projection (Fig. 3) will be form.ed by the superposi-

tion of a set of straight lines corresponding to each projected ray from. the 

true object. The superposition of a continuous set of lines around the point 

is equivalent to the rotation over a circum.fe'rence of 2TTr for the two-dim.en

sional case and around a sphere of 4TTr2 for the three-dim.ensional case. 

Thus the blurring function is 1/r or 1/r
2 

respectively, and the relation 

between the true object and the back-projected opject is sim.ply 

Back-projection = True ~!< 1/ I r I ( 18) 

where ~:< denotes a convolution. t 

The operation of back-projection or linear superposition is described 

m.athem.atically for a continuous series of projections p(x, e) as 

TT 
B(r,<j» = f P[rcos(<j>- e), e] de, ( 19) 

o 

t Footnote: Proof of Eq. (18) 
The projection theorem. (see Appendix A and, Section 3.7) gives the relation 

between the fourier transform. A(R, e) of the im.age and the projections 

00 

P (x, e) = f A (R, e) e i 2 TT R . x dR. 

Using Eq. (19) we have, 

2TT 00 

B(r,<j» = f f 
o 0 

This can be rewritten 

_00 

-1 '" 
R A(R,e)exp [i2TT r· Rcos (<j>-8)] RdRde 

-1 -1 . 
The inverse transform. of R is r as detailed in Appendix A. 
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where B is the back ~projected image (Fig. 5). In almost every practical 

r COS cp 

-~-

2 

l_ 

______ ~..-4I~-

11' 

J 
o 

o \ 
\ \ 

~ 
r COS { cp - 8

1 
) 

P ~COS ( cp - 8 ),8 ] d 8 

Fig7Ire ? The valu~ of a picture element (r,4;) after back-projection of rays from 
proJectlOns at multIple angles. 

situation, we are dealing with a finite number of projections and for conven-

ience of digital computation we use Cartesian coordinates. Thus, we describe 

the back-projection as 

B'(i, j) = ; Pk(e) (20) 
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where, 'for each element (i, j), we sum the contribution of each ray k(e) t which 

passes 'through the element. We let the total density or concentration, for 

I 

the section or array being reconstructed, be estimated by 

(21) 

for any single projection. After back-projecting, the total density T' for the 

arraY' is 

n n 
T' = ,:2; :2; B'(i,j) . (22) 

i=1 j=1 

A normalization factor is, derived for reducing the value of each picture element 

so that the reconstructed array total density corresponds to the estimated 

total given in Eq. (21). rhus the corrected back-projected image is 

B(i,j) = B' (i,j) . ~, for all i, j . (23 ) 

A more exact background correction involves modifying the values by subtract= 

ing from each pixel the mean density or concentration multiplied by the number 

of views minus one (Vainshtein, 1971; Gilbert, 19 72b). Thus, 

B(i, j) B ' (' .. ) T(no. of views - 1) = 1, J - -.:-.-----,-----'-
no. Of pixels (24) 

t The subscript k(e) denotes a particular ray that passes through the particular 
pixel (i, j) that falls within the ray path,. This unconventional notation is used 
to signify we are dealing with specific ray sums. 
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3.4, Algebraic reconstruction technique (ART) 

A simple method of approaching a solution for the undetermined .system 

of linear equations was outlined in Section 3.2. Gordon et al. (1970) applied 

this method to the reconstruction of a 50 x 50 digitized image from computed 

projections. The excellent results obtaip.ed with only a few views encouraged 

them and oth~rs to pursue techniques of iter,ative solution of the projection 

equations. The EM! 'scanner (Fischgold, 1973) employes 'a form of ART,. The 

simple algorithm consists of guessing at a value for all the picture elements 

A(i, j), and then modifying each element along each ray bya factor that compen-
~ ~ . . 

sates for the discrepancy between the measured ray suJ? P k(e) and the calculated, 

ray sum Rk{O)" 

A
n+1(, .) _ An(, ') l,J - l,J (25 ) 

If the calculated ray sum is the sa~e as the measured value, it impli~s that the gues sed 

values are correct for a particular projection; however, for another projection there 

might be a large discrepancy, thus the picture elements of the last view which lie 

in the ray for the new view will be modified according to the discrepancy be-

tween the new ray sum and the measured value. Thus, each ray from each 
I 

projection'is examined and values of . A(i, j) falling wlthinthat ray are' 

changed iteratively Jor all the proj~ctions for 5 to 10 iterations. ·Equation (25) 

is called multiplicative ART. Another method of correcting the discrepancy 

between the measured projections consists of adding the difference between 

the measured ray sum and the estimated ray sum. This is called the additive 

form -of ART. 

(26) 
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Here Nk (8) is the number of pixels lying along the particular ray k(e) whi~h 

passes through pixel (i, j). 

There are two important modifications of ART. One" consists of 

'setting to zero those values in the array that are clearly zero because they 

correspond to a ray sum that was observed as zero. This effecively bounds 

the data and is an important bo_undary condition for any of the iterative tech-

niques. A third version of this technique known as ART3 incorporates noise 

and has been used effectively in transmission studies of phantoms and simula-

tions with added noise (Herman; 1973; Johnson, et al., 1973) . 

. 3. 5 Simultaneous iterative reconstruction technique (SIRT) 

The simultaneous iterati~e reconstruction technique was developed by 

Gilbert (1972a) and differs from ART in that at each iteration the densities 

A n(i, j) ar e altered· by us ing data from all of the projections simultaneously. 

Thus 

(27) 

where (i, j) represents the pixel which is an element of ray k(e); Lk(e) is 

the length of ray k(e); Pk(e) is the meas'l,lred projected density of ray k(e); 

Rk(e) is the projected density of ray k(e) after iteration n, i. e., 

, . I An(i, j).;, / 
(i, j) € ray k(e) 

and Nk(e) is the numberof points in ray k(e). This algorithm was used in 
. .' \ ' 

our comparative studies. Gilbert also gave a multiplicative algorithm which 

is 



A(i, j) , 0 I (28) 

After each iteration the total array is normalized such that for all (i, j), 

J 

where 

and 

Tt = ~ ~ A nt1(i, j) 
i j 

,(29) 

and where A n+1 (i, j) are the values before the normalization. This normali-

zation can be thought of as a type of damping las described in the next section 

for the least-sq,uares algorithm. 

For our implementation of SIRT, we' choose th~ line length, L k (8)' 

to be the m~irrrum length of all lines that subtend the array between the lines 

k - 1 and k. The length of these line segments is determined by consideration 

of Fig. E-2 in Appendix E where the implementation of SIRT, alon.g with a 

Fortran listing, is given. 

3.6 Least-squares iterative techniqu~ 

A least-squares iterative technique orginally proposed for determina-

tion of density ,distribution using proton or heavy-ion or conventional x-ray 

transmission scann.ing (Goitein, 1971; Boyd et al., 1974) has particularly 

appropriate attributes for emission studies. We emphasize this technique in 

.. 
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nuclear medicine because it accommodates noisy data, errors in data accumu-

lation, and can be modified to handle attenuation errors due to emission studies. 

The der!yation of this algorithm is based on minimizing the e~ror between the 

measured projections and the estimated projections at the nth iteration in a 

least- squares fashion-. First, note that 

f f) An+1 (' ') 
_ ' , 1 0 " J 0 10Jo, . = R~(e) - . 2 f~,A(i, j) 

(i,j) E: ray k(e) 1J 
e - 1, ... ,M 

not (io,jo) 

where f~, is a weighting factor for geometr~y and attenuation. The requirement 
1J 

we impose is that 

(30) 

be ,a minimum. Therefore, we are improving the densities given in the previous 

iteration in a least-~quares sense. The notation k(e) is to indicate that k is 

chosen such that (i o , jo) is an element of ray k(e). Equation (30) can be 
I 

rewritten as 

. Differentiating this . with respect to An+\io, jo ) and setting equal to zero, we have 

d<R = '" 
dA

n+1 (' ') ~ . 1D ,Jo f) 

ere n+1 2 f., Pk(e-) - f. , A (i'o,j 0) 
1 0 Jo 10Jo 

f () n(, ,)1 ) 2 - 0 . 
ij A 1, J~ Gk (())- . 
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S 1 · f An + 1 ( . .) h . th f 11 . ft' o v1ng or 10 , J 0 , we ave e 0 oW1ng sequence 0 equa 10ns: 

= {f ffJ • rk(9) -(i'i).4ay k(8) ffl n (i'i)] /"~(8)}/~:rfi~j/"k(8)r 
not (1 0 ,Jo) . . 

A
n+1(. .) 

10,J 0 

= { ~ ftj~ b( 8) - R~( 8) +ff J. A n(i., j .)J /,,~( 8) }IfIlL )"k( 8)]2 

= An (i.,j.) +{ i>f.j• ~k(8) - R~(8)]p~(8)}/fIlf. V AJk(8)]
2 

.:lnA(i.,j.) ={~ff.j. [Pk(8) - a;:(8)]/"~(8)}/f rL.Pk(8)]2 (32) 

.3 .. 6.1 Damping Factor 

If we now. use Eq. (32) to c,?rrect the densities for each iteration we 

will find that the densities do not converge, but oscillate, because Eq. (32) 

corrects the pre_vious density A n(io,j 0) based on the previous r.ay :sum R~UJ)" , 

A simple example of this Can pe illustrated by the following -4 X 4 array 

.!P 
4 

.!P 
4 P 

.!P 
4 

.!P 
4 P 

P P 

where ip is the estimated pixel de:g.sity for some iteration nand' P is the 

measu,red projection. Now, if we assume ffj = 1 for all (), i, j and a~() =Pk ()' 

then6.
n 

A(i, j) can be evaluated 

/ 
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= [(P - 1/2 P) I P t (:P ~ 1/2 P) I p] I (i/p t 1/p] 

= p/2 . 

Th· h· d·t Ant1 (l',J') -- 3p/4 d Ant1 A (· .) 1S t en glves a new enS1 y an L.J. 1, J : 

Llnt 1 A(i, j) = [(P _ 3/2 P) Ip t (P - 3/2 P) Ip] 1[1/p t 1/p] 

= - p/2 . 

Therefore, we have A nt2(i, j) = P 14. If we continue this we would have the 

alternating sequence for each pixel density: 

p/4, 3p/4 , p/4, 

A n( .. ) Anti (l·,J·) 1, J , , ... 

So a damping factor is required which will be a function of all changes for 

, each pixeL Therefore, once LlnA(i, j) ha~ been evaluated for all i, j, then 

a damping factor (), must be determ'ined such'that 

~'Ant1( ... ) = 1 0 ,J 0 

where 

If we require that 

<R( (» 

An(i o, jo) t 6 Lln A(io,jo) , 
( 

(33 ) 

(35) 
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be a minimum, then we are also choosing a damping factor in a least-squares 

sense. We can rewrite Eq. (~5) as 

<R(o) 

Differentiating <R with respect to tJ and setting the derivative equal to zero, 

we have the following equation: 

d<R( tJ) 
do = 22 2'P

ke 
- )' f~. [An(i, j) + 6tP A(i,j)l} /' I f~.tP A(i, j)/O ~e 

e k t (i,j) €rai1k,e) 1J J J (i,j) €ray(k,e) 1J 

This implies that 

2: ) [Pkl"l - " f~. e ~o .(:.) ~(k' l"l) 1J 1,] €ray ,0 

An (~,j)l ... - L __ f~. cP A(i,j)/a~e J (l,J)€ray(k,e) J -. 

- tJ2: 2: r . 2: . f~. 
e k ~i,jkray(k, e) 1J 

L!.~ A(i.j~2 ja~e 0 0 

Therefore, 

))' (Pke - R~e) [ . -.I ft. tPA(i;j)l /a~e 
o = :'e'i' (1, )€ra (k,e) J J 

L If - f~. b,n A(i,j)]2 /a~e 
_ (J k Ui,j)€r (k,e) 1J' -

Now, if one were to apply the damping factor to the previous example, the 

sequence of densities would be 

P 3P 
4" "-8-

7P 
fb"' 

P 
-+-

2 
i 

(36) 
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A n(i, j) , A
nt1 (" ") 1, J ' 

nt2(" ") A 1, J , ...... . 

3.6. 2 Statistical noise 

For our work, we have chosen the standard deviation 0ke to 1;>e the 

square root of the counts for each projected ray. Using the previous notation 

we can express this as 0ke 
2 = P

ke 
' and then Eqs (32) and (36) reduce to 

and 

o = 
~ ~r . ~ f~" b,.n A(id)12/Pk(e) 
e k Ui,j)E ay(k,e) 1J - J , 

r L 0 f.~ t:P A(i,j~ 
L(i,j) Eray(k,e) 1J J 

3. 7 0 Filtered back-projection or convolution techniques 

(37) 

Recall the relationship between the true image and the image obtained 

from the linear superposition or back-projection of an infinite number of 

\Tiews Eq. (18): 

-11 0' A(x', y') B(x,y) - / 
, {(x-x') t (y_y')} 1 2 

dx'dy' 

1 We seek a technique whereby - can be deconvoluted from B(x, y) = B(r,tp) 
r 

From the convolution theorem 

where . r.-1 
2TrJ r 

= R- 1 

J o (2Tr Rr) r dr 

(38) 

(39) 

(40) 
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where R is the reciprocal space radius or the measure in frequ~ncy spa-ceo 

Thus, the true image is related to the back-projection image as 

( 41) 

. 
A similar result is obtained by Bates and Peters (1971) using a perhaps more 

rigorous derivation that we circumvented by use of the identity Eq. (40). This 

shortcut does not recognize the r'eal situation in which there are finite bounds 

on the domain of integration where Eq. (40) does not hold. We will return to 

this problem later. For t~e present assume we have an infinite number of 

projections anq the data are not band-limited. The operations of Eq. (41) involve 

the follow:ing steps: 

(1) Obtain a series of projections. 

(2) Derive the back-projected image by simple linear superposition 

(Appendix D). 

(3) Fourier transform the two-dimensional image. 

(4) Multiply the Fourier coefficients by the spatial frequency radius: 

(5) Fourier transform (invert) the result of (4) to obt.ain the true image. 

This procedure can be done optically (Peters, 1973) or digitally. Two-dimen-

siona! Fourier transforms can be accomplished in less than one minute for 
~ . . 

64X64 arrays on sma1116-bit computers (Budinger and Harpootlian, 1973), 

but for 128X128 arrays, much more time is involved. The fa~t Fourier trans-

. form algorithm limits the arrax- size to integer powers of 2, thus we cannot do 

80X 80 or 100X100 arrays by this method unless zeroes a,re added to expand 

the array to 128 X 128. This is not a serious limitation for nuclear medicine, 

but becomes important for transverse-section radiography using transmission 

where the resolution is four or more times better than for emis sion studies. 

Thus we seek a method which is computationally more convenient. Methods of 
\ 
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ITlodifying the projection vectors before back-projecting are both convenient in 

terITlS of cOITlputer space, and very fast. 

The true value of each pixel is related to the Fourier coefficients as . 

2TT 00 J 

A(r,¢) =1 £ A(R,O).eXP [i2TTRr cos(¢-O) ] R dR de 
00/ 

Note that A(R.O) = A (-R,O + 'IT), thus Eq. (41) can be written as 

If we define 

, , 

then the true pixel values becoITle 

A(r.~) = 1~ P (r cos(~-9). 9) d9 

o 

( 42) 

(43) 

(44) 

(45) 
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But, recall the back-projection operation Eq. (19), which indicates the operation 

-of Eq. (45) is linear superposition of projections 'Po What are the physical 
,.., ,..,,.., 

interpretations of P, P, and A? A(R,'e) is the Fourier component at the 

reciprocal space position (R, e). The projection theorem t equates the inverse 

Fourier transform of A with respect to the real space values of the projection 

normal to the line, e = constant. Thus, it is easy to see that P is the pro-
- ,.., ,.., 

jection value associated with A, and P, therefore, is the result of modifying 

the projection by a ramp filter since 

( 46) 

With these considerations, th~ relation between the projections and the true 
, 

image can be deduced. Namely, the true image can be reconstructed by back-

projecting the projections after they have been modified in accordance with 

Eq. (46). 

t Fourier transform o'f the projection gives the components along the section 
in Fourier space normal to the projection: 

A(x, y. z) is a three-dimensional di~tribution, and the two-dimensional pro-
jection is defined as ~ 

P(x, y) = f A(x, y, z) dz 

The three-dimensional Fourier transform is 

A (X, Y, Z) -=fff A(x, y, z) exp [-i2TT (x . X + y. Y + z .-Z)] dx dy dz 

for Z = 0 we have 

A(X, Y, Z) = fft f A(x, y, z)dz} exp [-i2TT(x· X + y. Y)]dx dy 

== If P(x, y) exp [-i2TT(x'. X + y. Y)] dxdy 
Q.E. D. 

See Appendix A for the two-dimensional projection theorem. 



• 

-35-

There are two ways of implementing Eqs. (44) and (45). One is known 

. as the convo~ution technique and the other as the filter technique. Both are 

equivalent as can be seen by the following: 

The Fourier transform of the function IRI is not defined unl~ss one 

imposes an upper bound Rm which is the maximum meaningful frequency which 

can be reconstructed: 

g(r) 'IR , m 
= IRI exp (i27T R r) dR . 

Integr~tion by parts gives 

= 

o 

R m 
7Tr 

sin (27T R r) 
m 

1 
-'--=-2 [1 - COS(27T Rm r)] 
2( 7Tr) 

( 47) 

( 48) 

The function g(r) convoluted with the projection: gives the modified projection. 

If the projection function is band limited to R ,then Eq. (48) becomes identical 
m 

to that derived by Bracewell and Riddle (1967)': 

(49) 

1 
If the data are sampled at equal intervals, :which a.re integer multiples of 2~' 

where 1/(2Rm ) = a is the sampling interval chosen small enough to avoid 

aliasing. The sampling theorem requir~s "RL = 2a. Ramachandran and 
m 

Lakshminarayanam (1971) arrive at a somewhat similar expression deduced 
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frOITl evaluation of the integral Eq. (47) between SOITle large values -RITl to 

+ RITl (s ee footnote t) 

1/4a
2 n = 0 

g(na) 
. 2 

odd -1/(na) n 

0 n even 

Thes.e techniques are equivalent to the direct application of a ramp 

( 50) 

filter to the Fourier cOITlponents of the projection values, which can be seen 

by recalling 'the convolution theoreITl, since 

t The Fourier series of the function I RI between' -R and R is ITl ITl 

where 

For n = 0 , 

otherwise 

Thus, 

00 

IRI ::;: r: C n exp (inrr'R/Rm) 
00 

1 fR ITl IRI ~".---- exp (-rriRn/R.", . .) dR 
2RITl U.L 

-R ITl 

Rm R _ ITl 

o 
--2-

RITl 
= --=--=-

2
22 

rr n 
(e~(-rrin) + exp ('I!in)) 

2 2 
-2RITl/rr n 

o 

if n = 0 

if n is odd 

if n is even 

Note froITl the saITlpling theoreITl g(na) = g(n/2RITl) = 2RITlC n . This givesEq. (50). 

-I 

• 
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Y(P) =L91(g) .J?(P) 

Y(1?) = I RI . J?TP) , 
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P =,g:t[J?(P)] =y1 [IRI .J?fP)] (51) 

Note the image reconstruction is completed by back-projection of the projec-

tions modified according to Eq. (51). 

• 
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3· 8 Studie s with phantoms and patients 

3.8.1 Scope 

\ 

The methods outlined in the preceding sections and, implemented in the 

appendix are 

Back-projection 

SIRT 

Least- square s iterative technique 

Filtered back-projection 

Appendix D 

Appendix E 

Appendix F 

Appendix G 

The results of both phantom and patient studies using these four techniques 

are p,resented in this section. Attenuation is discussed in Sec. 3.9 and 

Appendix H. 
" 

3.8.2 Methods of data acquisition 

3.8.2.1 Scintillation camera procedures 

.Studies were done by rotating the subject in front of the Anger scintill~tion 

camera (Anger, 196"7). The 16-inch scintillation camera was used with a 

technetium low-energy parallel-hole collimator and a special extended colli

.mator constructed at Donner Laboratory. The extended collimator consi sts 

of a rectangular array of aluminum tubes of 0.15 mm wall thickness and 

12.7 cm long. These 'tubes are stacked in the natural hexagonal close -packed 

fashion. 

The camera-collimator arrangement is positioned, vertically to accommo

date the rotation of the patient or phantom around a ver,tical axis in front of the 

camera. The subject is positioned as close to the collimator as possible, "be

cause the resolution deteriorates with distance from the collimator. In some 

trials the patient was fixed relative to the rotatiqri axis by a head holder c,:m

.nected to a chair, which is rotated on a stage and stopped at intervals of 10 0
• 

This was found to be cumbersome. A more satisfactory' procedure was head 

fixation by a mo~thpiece bite arrangement shown in Fig. 6. At present there 

is no conv,enient method'for rotating the patient around a fixed axis. The ideal 

method involves rotation of the camera around the patient, as suggested in 

Fig. 3. 
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Figure 6. The technique of rotating a patient before the scintillation camera: The 
patient is rotated manually with head support provided by a bite mouth piece which 
is mounted on the rotation stool. 

3.8.2.2 Digital data ITlanag eITlent 

At each angle, 50,000 to 100,000 events ar e co llected on the Hewlett-Packard 

digital systeITl HP-5407 (Budinger , 1973) . These events are digitized in 64 X6~ ar

rays, and stored as a histog ram for later processing. The viewing time is usual

ly 15 or 30 seconds, and each frame is stored sequentially around 36 0 0 at 10 0 

incr e ITlents . The 36 fraITles ar e h e ld on a disc fraITle file, which has a total 

capacity of 160 , 64X64 frames. We use a slight ZOOITl or gain on the analog

to-digital converter (ADC) so as to concentrate the digitizing process on that 

part of the crystal, whi ch sees the head. Thus the space b e tween raster points 

represents 5. 5 ITlITl. For the reconstruction, three rows (3X5 . 5 = 16.5 ITlITl) 

are selected froITl each of the 36 fraITles, and these becoITle the projections for 

reconstruction of slic e s or transve rse s ec tions. NorITlally e ight sections are 

taken at 16.5 -ITlITl inte rvals froITl the head ve rtex t o about the nasion-ITleatal 

level (8 X 16.5 ITlITl = 13.2 CITl). 

3.8.3 Reconstruction procedure s 

The procedures for back-projection (Appe ndix D), SIRT (Appendix E), 

and filtered (compensate d) back-projection (Appendix G) involve forming 18 pro

jections, which are the square roots of the product of the conjugate views, 
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(geometric mean), TT radians apart. This procedure in part compensates for 

attenuation and the change in impulse response with distance from the collima-

tor. Note that the true activity of a point source in the attenuation midline of 

thickness T is 

(52 ) 

where f-L is the attenuation coefficient; and the true activity of a distributed 

source IS given by 

(53) 

where 0 is the effective fraction of the thickness occupied by the source. This para

meter can vary from 0.1 to 0.9 without seriously affecting the result (Sorenson, 1971). 

Eighteen views derived as simple conjugate means or modified by correc

tion for attenuation are used as the input to the reconstruction program. The 

correction of Eqs. (52) or (53) is not adequate, because it requires ~ priori 

knowledge of the thicknes s and an as sumption about t?e attenuation coefficient. 

A refined technique for the attenuation correction has been incorporated in the 

l east -squares technique (Appendix H). 

The complete procedure for the attenuation correction iterative least

squares technique involves use of the 18 conjugate means for 3 to 5 iterations, 

after which the algorithm for ascertaining an outline of the object is applied. 

U sing this outline, the distance 1 ~. between each pixel and the object edge 
IJ e 

along a ray is calculated, and this give s the parameter f : . defined as 
IJ 

e e -f-Ll.. 
f .. = e IJ 

IJ 
(54) 

where f-L is the linear attenuation coefficient. The value s of f~. are then 
IJ 

incorporated into Eq. (32) and a few more iterations are completed using all 

36 views to give the solution as discussed again in the section on attenuation. 

3.8.4 Hot- spot d 'etection 

A compar ison of the ability of these techniques to reconstruct hot spots in 

an 18 -cm diameter lucite disc having a hot annulus around the periphery is 

shown in Fig. 7. Clearly the least- square s and filtered back-projection 

technique s are superior to the back-projection and SIRT techniques. T en -to 

20 iterations for both SIRT and the iterative least squares were made. The 
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ability of these technique s to reconstruct the original density is made by evalu

ating the root m e an square of the normalize d diffe renc e b e tween the true 

distribution and the reconstructed distribution after each iteration as 

{ 

l:[AI(i,j) _An (i,j)]2}1/2 
Discrepancy = ~l~!~J~ ________________ _ 

L[A'(i,j) _AO(i,j)]2 
i , j 

(55) 

where A'(i,j) is the true value, AO(i,j) is the value for the initial solution, 

and An(i, j) is the value afte r the nth ite ration. The results are shown in 

Fig. 8 for two objects. 

3.8.5 Cold- spot detection 

One of the problems of conventional tomography is det e ction of cold spots 

deep within hot tissue, for an example , d e t e ction of a tumor within the liver. 

The ability to reconstruct hole s with the same resolution as hot spots is dem

onstrate d in Fig . . 9, where a simulated liver slic e was r e constructe d. The 

hole 1.25 cm in diameter can b e s een above noise in the r e constructions using 

the techniques of iterative least squar e s and the filtered back-proj e ction. 

3.8.6 Patient studies 

Four patient studie s have b e en made including one adult with parietal

occipital abnormal accumulation (Fi g. 10), and one probable-normal 14-year-
, 

old child who could have a craniopharyngioma (Fig. 11). The abnormal accumu-

lation in Fig. 9 could b e from hemorr hage, tumor, or g ranulomatous disease. 
-

In the child with suspe cte d craniophar yngioma, the hot activity is in the region 

of the cavernous sinus and might b e a normal finding. Quantitative brain 

scanning by this t e chnique relies h e a v ily on the ability to corr e ct for attenua

tion, as alluded to e arlier and ex plor e d in d e tail in the nex t s e ction. 

3.9 Attenuation 

In emis sion studie s the contribution of e ach volume e l e m e nt to the pro

j e ction ray sum is not a simple additive f a ctor, as in the cas e in transmission 

studies. Each element cont~ibutes a photon emission conc e ntration, -y/sec-cm
3

, 

which is attenuate d by the path l e ngth b e twe en e ach point and the e dge of the ob

ject along a projection ray. Thus the activity m e asured along one projection 

view will be significantly differ e nt from the activity m e asur e d in the conjugate 

view 180" from the fir st view if the distribution of activity is asymmetric. For 

transmis sion studies the projected ray sum is 
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Figure 8. Comparison of the accuracy of reconstruction by back-projection, SIRT, 
least-squares, and filtered back-projection (BPFP) techniques for the phantoms as 
shown. 
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Figure 10. Patient study showing the transverse sections and on the left, the 
corresponding rows of data flagged from views taken at 10° increments. An abnormal 
accumulation of technetium is shown in the parietal-occipital area of this patient with 
an as yet undiagnosed pathology. 
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Figure 11 . Patient study revealing possible abnormal accumulation of technetium in 
midbrain or cavernous sinus region. 
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= . L P. .. /J- . . , 
i,j E rayk(B) 1J 1J 

(56) 

where 1... is the length of the element with attenuation coefficient /J- .. • However, 
1J 1J 

for emis sion studie s 

Pk(B) = . . L .f..(i, j) exp[ - L: /J-(a, [3)1. (a, [3)] . . (57) 
l'JEray k (B) , 

Thus the nuclear medicine reconstruction problem is more difficult than the 

transmission problem. The influence of the term exp [ - L: /J-(a, [3)] depends on 

the attenuation coefficient /J-, which unfortunat e ly is so large for all energies 

used in nuclear medicine that the reconstructed images are seriously affected. 

The effects of atte nuation can be seen from Fig. 12; where the effects of 

ORIGINAL 0.05 

0.11 0.15 

Figure 12. Comparison of the reconstructed transverse section for various photon 
energies (attenuation coefficients) if no attenuation compensation is made. 
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gamma rays of a few MeV(fJ. = 0.05) are compared to the effects of ganlnla rays 

of 511 keY (fJ. ;:::: 0.11) and 140 keY (fJ. = 0.15). The inlages in the lower row show 

the serious artifact that will result-for the usual isotopes used in nuclear nledi

cine If attenuation is not taken into account. The source is a disc of 23 -Cnl 

dianleter sinlilar in size to a section through the head. Another way of evalu

ating the seriousness of this problenl is shown in Fig. 13 ~here the profiles 

through the reconstructed disc are given. The deviation of the reconstructed 

image fronl the true inlage is shown (Fig. 14) in ternlS of the fraction of the 

total nUnlber of pixels that depart by nlultiples of the standard deviation frOnl 

the true value. Here the standard deviation is taken to be the square root of 

the true pixel value. 

The quantitative three -dinlensional reconstruction of ganlnla-enlitter 

distribution in the head and other parts of the body requires cOnlpensation for 

attenuation. The chest presents the extrenle case, and unfortunately cradles 

the heart, which is a nlost inlportant region for application of these techniques. 

We envision six nlethods for solving this problenl. 

1) The sinlplest technique involves application of a correction nlatrix to the 

results of the reconstruction. The correction matrix consists of correction 

factors determined fronl phantonl studi~ and aSSUnles a fixed geonletry for 

all studies and a constant or an assunled distribution of attenuation coefficients. 

2) We would like to be free of constraints on geonlefry, and have adapted 

the second nlethod, which entails as sUnlption of constant attenuation coefficient 

and calculation of the attenuation path length [ 1. _ of Eq. (54)] between each 
1J 

pixel and the edge ~f the object along each ray. The shape of the object is 

e stinlated after a few iterations by enlploying the subroutine SEARCH of 

Appendix H. This procedure gives good results for objects with a constant 

linear attenuation coefficient such as the brain. A cOnlparison of the least

squares procedure with and without attenuation is shown in Fig. 15. Without 

this or SOnle other techniques discussed below, the results of the reconstruc

tion will be nonquantitative and lead to artifacts such as the ring distribution 

derived from the disc section, as shown in Fig. 12. 
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3) Another method of attenuation correction that can b e applied to the last 

iteration of the iterative t e chniques or to the r e sults of the filter e d b_ack-pro

jection involves recalculating the proj e cted data that would have occurred if 

there were no attenuation. The outline of the region of inte rest is automatically 

determined by a simple computer search routine (Appendix H) . The correc

tion is made for each ray by multiplying the g e ometric mean of conjugate views 

by a factor, 

ejJ.T · . (fjJ.T/2)/sinh(fjJ.T/2), 

where jJ. is the linear attenuation co efficient, T is the thicknes s of the body 

section along the conjugate view ray, and f is some factor that varies be

tween 0 . 2 and 0 . 8, depending upon the fractional distribution of isotope. A 

large change in this estimate d parameter does not affe ct the solution signif

icantly. 

4) A fourth technique involve s iteration b e twe e n the algorithm for de

termination of the value of each pixel and the algorithm for determining f~., 
IJ 

which is the correction factor for attenuation. For exampl e , ART could be 

used to determine the estimate of the concentration in a section for a few 

iterations, then the concentration fixed for a f e w iterations where f~ . values 
IJ 

are determined. We have not yet pursued this interesting approach, which 

was suggested by Dr . Richard Gordon. 

5) The true distribution of attenuation coe fficients can be dete rmined by 

transmis sion measureme nts, as sugge sted by Eq. (56) . The usual t e chnique 

involves measuring the ratio of transmitted-to-incident photons. Thus, to 

estimate the distribution of bone and soft tissue in the chest, a transmission 

study would be done before the emission study with the Anger came ra. The 
57 99m . . 241 

source could be Co or Tc and, wIth prope r tumng, Am. 

6) The last technique involves us e of multiple isotopes where advantage 

is taken of the known different absorption coefficients of various tissues for 
. 210 241 

different photon ene rgie s. For example, If Pb (40 keY), Am (60 keY) 
99m and Tc (140 keY) were used, we can determine the distribution of tis sue 

such as lung, bone, and soft tissue by noting 
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I (241 Am) 
-log- = j-L"l + j-L" i. + 1J.l1i. 

10 lIs s . b b 
(58) 

I (99m
Tc ) 

-log - = j-L"li. + j-L"li. + j-L"li. = pIli 
10 lIs s b b k(e) , 

and where j-Ll' j-Ls' and f\ refer to known attenuation coefficients for lung, soft 

tissue, and bone respectively; and the primes denote the coefficient appropriate 

to the various energies. The system of equations, Eq. 58, can be applied to 

e ach ray sum and from this the distribution of lung, soft tissue, and bone can 

be determined using the algorithms of Secs. 3.3 to 3.7. 
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4.0 NUMBER OF VIEWS REQUIRED 

1£ a reconstructed image is to be uniformly resolved to a resolution d of 

a completely unsymmetrical object, the number of discrete views must be at 

least 

n:::::TT Did, ( 59) 

where D is the dimension of the object (Crowt:r~er et al., 1970; Klug and 

Crowther, 1972). Thus for a resolution of 1.5 cm in imaging a head 20 cm 

in diameter, we need 42 views. In practice, only 20 views are neces sary for 

the clas s of objects of importance to nuclear medicine. An explanation for 

this discrepancy is that 42 projections would be required for an object that has 

no symmetry and thus no regional correlation. This is not true for any image, 

as there is great departure from complete randomness just by the fact that a 

recognizable image exists. Thus it is not surprising to find that the number 

of views required for reconstructing a two-dimensional distribution with a 

resolution distance of 1.5 cm are far fewer than theoretically prescribed for 

images of no symmetry. Another way of understanding the reason for the 

discrepancy is that in the class of objects of concern, many different objects 

are essentially identical. The resolution and, to a great extent, appearance 

of artifacts are related to how close the axis of rotation is to a center of 

symmetry. For example, multiple views of a right cylinder taken around an 

axis that is displaced from the center of rotation will give a reconstruction that 

is distorted and contains" clutter'! outside the object region (Peters, 1973). 

Only a single view of the same right cylinder is necessary if the cylinder 

is in the assumed center of rotation for the reconstruction. However, no a 

priori as sumption can be made regarding the topology of a cros s section. 
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5.0 DISPLAY OF RESULTS 

The distribution of intensity that represents isotope concentration can be 

displayed readily on the HP-5407 (Budinger and Harpootlian, 1973) using 

either eight levels of gray on a CR T with resolution of 64 X 64 or even 

256 X 256 . Concentration relationships can also be shown by the isometric or 

"projection" view as shown in Fig. 16. 

For hard copy from the computer printer, we have worked out an over

printing routine for the CDC machines that gives levels of gray and has been 

very us eful in our detailed program development. The subroutine that gives 

images, as shown in Fig. 16(c), is explained and listed in Appendix 1. 
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Figure 16. Techniques of displaying transverse section images after reconstruction: 
(a) is a display of 64 X 64 image on a CRT with eight levels of gray; (b) is the 
isometric or profile display of the above figures; and (c) overprinting techniq ue for 
computer high-speed printer display. 

• 



-59-

6.0 SUMMARY AND FUTURE DIRECTIONS 

M~thods of three-dimensional isotope distribution reconstruction'from 

multiple two-dimensional views are similar to those employed in astrophysic s, 

electron microscopy, and radiology; however, photon attenuation must be ' 

taken into account. Succe s sful quantitation of the thr'ee -dimensional distribution 

of isotopes has been achieved using the iterative least-squares technique, but 

not the Fourier technique. The iterative least-squares technique is superior 

to other techniques because it handles noise and has been successfully modified 

to incorporate attenuation. The method has been implemented on the CDC 

6600/7600 and on the small computer HP-2100A in Fortran. In our first imple

mentation, approximately 20 min of processing per section are required by the 

small machine. The AR T techniques do not account for noise, but can re

construct a sectiori in approximately 1 miri without attenuati<;m correction. 

'Fourier transform techniques are approximately 80 times faster than the 

least- squares method, but do' not handle noise or attenuation. 

Pati~nt studies for isotope distribution in the head, heart, and liver can 

be accomplished by rotating the patient before a scintillation camera in 10° 

increments. The study time is approximately 30 min, and the doses are no 

greater than routine studies of 100 to 400 mrad. 

" Application of these techniques to the heart and other organs involves gating 

the camera or the computer to overcome motion, as has been done in preliminary 

studi~s (Fig. 17). Generalized techniques of motion extraction (Schmidlin 

et al., 1973; Budinger and Harpootlian, 1973) are ~lso applicable to this 

tractable problem. In order to implement these techniques to heart work, a 

parallel-holed collimator that can h~ndle the high energies of 81 Rb (446-511 keY) 

should be used, and one of the suggested techniques for attenuation,correction 

should be employed. 

Transmission scanning for the direct determination of attenuation co-efficients 

suchasis done on the EM! scanner (Fischgold, 1973; Cho et al., 1973; Robb, e:t al., 

1973) cannot be done using the gamma camera in counting mode because about, 

10
7 

counts per picture element or ray sum are needed to determine a 'change in 
3 

tissue density of 0.5% to 1 %. The camera cannot operate over about 7 X 10 

counts/ sec overall or 20 counts/ ~ec/pixel. However, it is possible to combine 

transmission imagery with emission to give a comparison of density distribution 

to isotope -concentration, if the requirements are not greater than distinguishing 

between bone, muscle, fat, water, air, (lung = 0.2-0.6 sq. gr.). 



END SYSTOLE 

-60-

FIXED DElAY AND 
GATE ELECTRONICS 

Camera records---"~. CAMERA DISPLAY 

FIXED DElA Y ---...... ~cr+--ioi:~-;;---:-----:--
METHOD Camera not recording 

- I 
I 
I 
I 

Trigger---i 
. I 

CONTINUOUS - I Delay 
SCAN AND 

I 
Data window 

. COMPUTER METHOD 
retrospectively 

established 

EN D DIASTO LE 

COMPUTER RECORDING 1------' 

CONTINUOUSLY 

FIXED DELAY AND 
" GATE ELECTRONICS 

CAMERA 
Camera records --~. DISPLA Y 

FIXED DELAY ___ --+~-D-e I_a y_"_tl_·m_e_~~:----,, __ ---:-_ 
METHOD Camera not recording 

T 
. I 

flgger-I 
- End diastole 

CONTINUOUS I Data window 
S CAN AN D "---,----.... o---~---+:::~-- retrospec tively 

COM PUTER M ETHO D established 

COMPUTER RECORDING 
CONTINUOUSL Y 

~-----' 

DBL 741-4602 

Figure 17. Regions of the EKG that are used to select data for demonstrating images 
of end-systole and end-diastole. 
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The concept of a fan beam is under development, and it is pos sible to 

reconstitute fan-beam data, either transmission or emission, to the parallel 

beam for implementation of the algorithm used in this report. 

Proton radiography (Steward and Koehler, 1974) or radiography with 

heavier ions (Benton, et al., 1973) such as 4He , 160, or 40Ne has the potential 

of resolving density differences of 0.5 to 1 part in 1000; thus with these tech-

niques the small differences in density between normal and cancerous or 

infected tissues can give a new dimension to clinical diagnostic medicine. 
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Appendix A - Theorems for Four~er techniques 

, -
The back-projected image for a continuum of projections is equal to the 

true image convoluted with 1/r .. 

B(r,<j» =A(r,<j» ':< 1/r. 

Proof: The back-projected image'has the following relationship (see Fig. 5): 

. Tr 

B(r, $) = !p(rCOS($-e), e)d., (A 1) 

By the projection theorem we know that 

0() 

'f'" i2rrRx P(x, e) =- -0() A(R, e) e dR, (A2) 

giving 

. rr 0() 

B(r, <j» = If A(R, e) exp[2 rr irR cos(<j>-e)] dR de. 
o _0() , 

(A3) 

Now we can rewrite Eq. (A3) as 

2rr o(). 

B(r,<j» = 11 R-
1 

A(R"e)exp[2rrirR cos(<j>-e)] R dR de. (A.4) 

o -0() 

Equation (A4) is the inverse Fourier transfo~m of R -1 A(R~ e), which we can 

write as 

-1 
B(r,<j» =J {R-

1 
,A(R, e)} 

( 2) 

-1 
=3 ' {R - 1} ':< A (r , <j» 

(2) 

-1 
Now the inverse Fourier transform of R is 

-1 

Y 
_ (2) 

{R- 1} = [y2~ R -1 exp[2~irRcos- (<j>-e)] Rde dR 

=[12~ exp[2'ITirR cbs(<j>-e)] dedR 

(A5) 

(A6) 

(A7) 
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Expanding the integrand as a power series, we have 

k ' 
cos (¢-e) de dR 

[

CO ::: (21TirR)k ;:21T k 
= LJ k' .' 0 cos (¢-e) de dR 

() k=O' . 

Now, 

f.21T k', j21T (ei(¢-e)_e-i(¢-e»k 
, . cos (¢-e) de = '>";;""--""k~---'---de, 

0' . 0 , 2 

. i(¢-e) -i(¢-e) 'I 

and expanding the term (e-e )as' a power series, we can write 

l' 21Tk . 121T k 
cos (¢-e) de = :E 

o 0 ~=O 

k k! e in( ¢-e) e i(n-k)( ¢-e) de 

2 n! (k-n)! 

Therefore, 

/ 

k 
= :E 

n=O 

k! e(2n-k)i~ f!~ e(k-2n)iO dO, 

if 2nfk 

if 2n = k 

= 2'JT:E dR J co co (21TirR)2k 

o k=O 22k(k!)2 

(21TirR)2k 
(2k)! 

dR 

(AS) 



, " 

':65-

" Next let's investigate Eq. (A8). If we use the identity (Watson, 1966) 

. rr/2 . 

J o (t) = ~-1 e
itl 

sine de" (A9) 

, - ~rr/2 , 

we can express J (2rrrR) as 
o , l rr/2 

J (2rrrR) = .i.- ' 
o rr 

. -rr/2 

Let w = r sine and dw = r cose de = ,Jr2 - w 2 de, then 

- 1 l r 

J (2rrrR) = -o . rr 
-r 

i2rrRw 
e 

Equation (A 10) implies that' 

g {J (2 rr rR)} = £(w) 
o ' 

where 
1 

if 

£(w) = 

dw 

elsewhere 

-Nowweknow thaL 21~ J (2rrrR) dR =y {J (2rrrR)} = £ (0) , 
o o· w=o 

which implies that 

1
00 - . 

, . 2rr 
2rr J (2rrrR) dR =""'i"":: 

o 0 _ ~rr 

1 1. ---r r 

TherE1£ore, we can express Eq .. (AS) as 

B(r,<j» 
1 

>:~A(r,<j» --r 

(A10) 
-" 

(A 11) 

Q. E. D. 
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The p:z:oof of the projection theorem for two-dimensional space is 

given in Peters (1973) and is repeated here using our notation. 

Projection Theorem for R2: The Fourier transform of the projection gives 

the components along the section (Fig. A-1(a)] in Fourier space normal to 

the projection, i. e. , 

+00 
P(x', e) ~ .[00 A(R, e) exp(2rrix'R} dr 

(a) rb) 
y 

Xl 
y 

yl 

x, 

, 
\ . 

F OU rle r space Real space 

Figure A-I. Relation between components in Fourier space and projections in 
real space. 

Proof: First, note in Fig. A:-1(b) that the projections P(x', e) can be 

expressed as 

p(x', e) =f 00 A(x, y) dy' 
_00 

I 
X 

x 

where'the coordinate system (x', yi) is rotated at an angle e.Nowexpressing 

A(x, y) in terms of its Four~er transform, we have 

P(x', 9) =f~f~f~ A (X, Y) e 2rri (Xx+ Yy) dX d'Y dy' 

_00 _00 _00 
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Using the equations for rotation given in Eq. (2) of the text, we have 

00 00 00 
P{XI, e) . = 1o:J100f~{X' Y)exp{2rri [X{x l cose - yl sine) + Y{XI sine + y'cose)]idX dY dy' 

Rearranging, we have 

P(x'. 9) =frorof~froro A(X. Y) exp [2nix' (Xeos9 + Ysin9)] exp [2niy' (Xsin9 - Yeos9)]dy'dX dY 

(A-i2) 

Then integrating with respect to yl, we have 

P(x'.9) = Iroro1~ A(X. Y) exp [hix' (Xeos9 + Ysin9l] b(Xsin9 - Yeos9) dX dY 

Next, let U = Ycose, which implies dU = cose dY or dY = sece dU. Substi

tuting these relations in Eq. (Ai2), we have 

P(x'.9) = fro
ro 

fro
ro 

A(X. U see9) exp [2nix' (Xeos9 + utan9)] b(Xsin9 - U) see9 dU dX 

= 1~ A(X. Xtan9) exp[2nix' (Xeos9+ Xsin9 tan9)] see9 dX 

=1: A(X. Xtan9) exp(2nix' Xsee9) see9 dX 

If we let R = X sece, then dR = sece dX giving us 

P{x l , e) = 100
00 

A{R cose, R sine) exp{2rrix ' R) dR 

or 

P(x'.9) = f: A(R.9) exp(2nix'R) dR Q.E.D. 
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Appendix B. ,The Relationship Between the Array Pixels 
and the Projection Rays -

Figure B-1 illustrates the relationship between the N X N array of pixel's 

and the family of lines which bound the projection rays. Note that the pro

jection rays ,remain fixed corre sponding to a fixed camera, and the coo-rdinate 

system rotates relative to these fixed rays. The development of the equations 

relating the array pixels and projection rays is separated into four categories 

corresponding to the rotat'ed angle e. Subsection V generalize~ these 'equations 

for all angle s. 

1. e = 0° 

For e = 0° the family of lines which define the projection rays is 

y = k+ 1/2 k = 0,1,2, .. ·, N. (B1) 

II. 0° < e < 90° 

A. " The family of lines 

For 0' < e < 90° the family of lines which define the projec'tion rays 

y = (tane)x + yo ''+ k/ cos e, k = 0, 1,2, . , .. , n e, (B2) 
I 

.where tane is the slope of the family of lines, Yo is the y intercept for the line 

k = 0, 1/ cos e is the increaSe in the y intercept for each succeeding line and ' 

ne is the total number of rays necess,ary to cover the NXN array. This varies 

from N to "-12 N if the width of each ray is identical to the distance between 

pixels. 

Before developing the equation for yO and n e, first compare Fig. B-1(a) 

for e = OOto Fig. B-1 (b) for 0°< e < 90° and notice that additional lines are 

added so that the NX N array is bound above and below by line s. The neces sity 

for adding additional lines is that ,the d~stance betwee~ the points (N, 1) and 

(1, N) and the line x has increased as the coordinate system is rotated. The c ' ' 
distance between x and (N, 1) is developed in the following sequence of 

c 
equations: 

Distance between x arid (N,1) = 
c--

N-1 

",f2 
sin(e+45° ) 

N-1 r 

= (sinecos 45° + cos e sin45°) 
",f2 

N-1 = -2- (sine + cos e). (B3) 
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y 

-

• • • • • • • • 

• • .. • • • • • 
-

• • • • • • • • , 
-

(0 ) \ • • • • ,. • • • 
xe 

• • • • • • • • 

k=2 • • • • • • • • 

k =1 • • • • • • • • . 
1 k=O • • • • • • • • (N,I ) 
2 I 

/ x 

y= k+~ k =O,I ... ,N 

k=n8 
.(I,N) 

(b) 
• • • • 

• • 

;:::NI· . 
: ,: i:: i (sin8 +cos 8) 

:. . 
k = 1 

(N,I) 1<=0 

.X 

Y =(ton8)x+yo+ k /eos8 k =0,1,2 ...• ne 
XBL741-2177 . 

Figure B-1. Relationship between the picture elements and coordinate system for the 
derivation of the family of lines, which delineate the parallel rays. 
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Due to symmetrv, I:q. (B3) holds for the point (1, N) as well as (N,1). When 

e = 45 ° this distance will be at 'a maximum. 

From Eq. (B3) we can develop an expression for the distance between 

,the point (N, 1) at e = 0 ° and the point (N, 1) at 0° < e < 90°. 

Distance between (N ,1) 1 e= 00 and (N, 1) 1 o~< e < 900 

=(Distancebetween Xc an~ (N, 1) 100< e < 900 ) - (Distance betweenxc and (N, 1)1 e=oo) 

N-1" "N-1 'N-1 " 
.~ -2- (sme + cose) - (-2-) = -2- (SIne + cose-1). (B4) 

Now at e :;; 0° the first line corresponding to k = 0 is at y = 1/2 and,the dis

tance between' it and the point (N,"1) is 1/2. Therefore the distance expressed 

in Eq. (B4) can increase by 1/2 before more lines are necessary. To deter

mine the distance between the line k = 0 at e = 0° and the line k = 0 at 

0° < e < 90°, one needs to add 1/2 to Eq. (B4) and take the largest integer 

less than this since the family of lines are separated by integral widths. 

Therefore, 

Distance between line-k = 0 10°< e < 900 and line k = ole = 00 

. [N-1 / ] =INT -2- (sine + cose - 1) + 1 2 (B5) 

For the special case when ~. ] = INT [ • ] in Eq. (B5), we adopt the rule 

that if a point lies on one of the family of lines, let's say the line corresponding 

to k, then the point (pixel) belongs to the ray k + 1. ' Ther.efore when 

[ .] = INT[ ,.] a ray will be added for the point (1, N) but not for the point 

(N, 1). Therefore, from Eq. (B5), we ~see that the total number of additional 

rays necessary to cover an array for 0°< e <: 90° is given in the following 

equation: 

Additionalr ay s 

1

2 INT[N21 (sine+cose-1)+1/2] 

= 2 INT[ N 21 (sine +cose-1) + 1/2] -1 

if [. ] > INT[· J 

(B6) 

if [ .' ] = INT[ • ] 

Adding Eq. (B6) to N which is the number of rays for e, = 0° we get thE' total 

number of rays ne for the angle 0°< e < 90°: 
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[ N-1. / ] Nt 2INT -2- (sme t cose-1) + 1 2 if [ • ] -> . INT [ • ] 

(B7) 

[ N -1 / ] Nt 2INT -2- (sinetcos8-1) t 1 2 -1 : if [,. ] = INT [. ] 

For e = OQ the distance from x to the line k = 0 is N/2. Therefore, the 
c 

distan:e to ,the line k = 0 for 0°< e < 90° is N/2 plus the inc~eased integral 

ray widths 'such that the point (N, 1) is bounded below by a line: Using 

Eq. (BS) with provision for the placement of a point if it lies on a line, we have 

Distance between line k = 0 lo~< ~ < 900 and Xc equals 

N tINT [N-1 (sine t cose-1) + 1/2] 
2 . 2 if [ • '] INT[ • ] 

'L = (BS) 

~ t INT [N~1(Sine t cose-1) + 1/2] -1 if [.,] = INT[. 

Now with Eq. (BS) we can use triangles II and III (Fig. B-1(b)) to develop 

an expre s sian for the y intercept, yo' for the line k = o. The line segments 

on the V axis corresponding to triangles II and III have values L/cos(} and 

,N;1 tan(}, respectively. Thus the y intercept, yO; for the line k = 0, has the 

equation 

Nt1 L N+1 
YO = -2- - case - -2- tane . (B9) 

B. The -set of rays {k(e)} corresponding to a given pixel (I, J). 

For each pixel 'in the NX N array with' coordinates (I,.J), an expression 

can be developed which immediately determines the ray for which ,it is an 

element. Fir st, notice in the following figure that we already have an ex- , 

pres sion for the distance between the point (N, 1) and the line Xc and the dis

tance between the line k = 0 and the line x as given in Eq. (B3) and (BS) re-, c 
spectively. 
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f' 

k=O 

x 

Figure B-2. Distance between the first line, of the family of lines delineating the rays, 
and a line through the center of the array for proje~tion angles between 0° and 90° . 

For the point corresponding to the coordinates (I, J), the leg adjacent to 

e for triangle A will have the value J -1, which implie s that the hypotenuse 

h~s the value (J-1)/cose and the leg opposite 'e has the- value (J-1)tan~. There

fore, the hypotenuse of triangle B has the value N-I - (J-1)tane, which implies 

that the leg opposite e has the value [N-I - (J-1)tane] sine. Hence, 

Distance between (I, J) and x 
, -- c 

, N-1 / [ = -2- (sinB + cos B) - (J-1) cosB + (N-I) (J -1 )tan8] sine ,._ 

Combini:ng terms we have 

, N+1-'2I. 2J-N-1 , 
2' SIne + 2 cosB. (Bi0) 

Using Eq. (B10) the distance D between (I, J) and the line' k = 0 is 

D = L+ N+i;2I sine + 2J-~-i case. (B1i) 
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From Eq. (B11) vye can calculate the particular ray for a projection e that goes 

through the point (I, J) as 

k(8) = INT{ D} + 1. 

III. 8 = 90° 

For () = 90° the family of line s that define the projection rays is 

x=:=k+1/? k=0,1,2, '" N. 

IV. 90° < e < 180° 

A. The family of lines 

(B12) 

(B13) 

For 90° < e < 180 0
, the family of line s which defines the proj~ction rays is 

. y = (tane) x + Yo + k/ I cose I k = 0,1,2,.· .ne, (B14) 

- " 

where tane is the slope of the family of lines, yO is ~he y intercept for the line 

k = 0, 1/ I cose I is the increase in they intercept for each succeeding line, 

"and ne is the total number of rays. 
" , 

The developm'ent of the expression for Yo and ne is similar for th~t given 

for 0°< e < 90(,. Notice in Fig. B-3 that the family of lines increases down 

the plane, whereas for 0° < e < 90 0 the family of lines increases up the plane. - , 

Also another thing must be kept in mind; as illustrated-in Fig: B-3,. 
, - ., 

'{ = 180° - e, therefore cos'{ = I cos e I . 
Due to symmetry, the distance, L', between Xc and the line k = 0 for 

90° < e <180° will have the same expression as given for, L in Eq. (B8), . , 

L' = ! ~ + INT[ N~1 (sine + 

~ + INT[N~1 (sine + I 

cose I -1) + 1/2] 

cose I -,1) + 1/2] -1 

H [ • ] > INT[ • ] 

if [ • ] = INT [ • 

and the number of rays will also have a similar expression, 

! 
N +/2 INT[ N~1 (sine + Icose 1-1) + 1/2] 

De = N + 2 INT[N;1 (sine + 1 cosO 1-1 )+1/21-1 

if [ • ] > 'INT [ • ] 

if [ • ] = INT [ • ] 

(B1S) 

, (B16) 
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y=(tone) x+Yo+k/cos e k=O,I,2 ... ,ne 

k=O 

• • 
• • 

• • 
• 

• 
• • 

(N, I) 
• • • • y 

• • 
• • 

• • 
• ( • • ., • 

• k =ne .. 

XBL741-2178 

Figure B-3. Relationship between the picture elements and the family of lines for 
proj ection angle between 90 and 180Q

• 
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Now using triangles I and II indicated in Fig. B~3, we can develop an ex

pression for YO' For triangle ~ the side adjace;nt to" has the value (N+1)/2, 

which implies that the side opposite" is [(N+1)/2)] tan". Also,' knowing the 

value ior L', we have L' / COS" as the value for the hypotenuse of triangle III. 

Therefore, utilizing these line segments on the y axis, we have 

N+1 L' N+1 
YO' = -2- - -- + -2- tan" cosy 

N+1 L' N+1 = -2- - I cose I - -2- tane. 

B. The set of rays {k(e)} carre sponding to a gi~en pixel (I, J). 

(B17) 

As was done 'for 0° < e < 90° in Section lIB, we can develop an'expression 
, , 

that gives the ray for a particular projection that goes-through a pixel (I, J). 

The distance between the point (1,1) and the line x and the distance between 
, . c 

the line k = 0 and the line Xc is given in Eq. (B3) and (B15) respectively. 

., . 

----------~~~~~--------~k=O 

x • 
y 

• 
• • 

• • 
• • 

• 

Figure B-4. Distance between the first lin~,-of the family of lines delineating the rays, 
and a line through the center of the array for projection angles between 900 and 1800

• 

In Fig.B-4 the side adjacent to triangle D has the value J-~ which implies 

that the hypotenuse has the value (J -1)/cos" and the, side opposite" has the 

value ,(J-1)tan". Now the hypotenuse of triangle C is I-1-(J-1)tan,,; therefore 

the side opposite" has the value [I-1-(J-1)tan,,] sin". This gives 
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Distance between (I, J) and x 
-- c 

. N-1 
= I [ 1-1- (J -1 )tan),] sin)' + (~-1)/ cos)' - -2 (sin)' + cos)') 

= I (2I-N
z

-1) (2J-N-1)' I sin), + z. cos)' , (B18) 

which implies that the distance D' between (1, J) and line k = 0 is 

D' = L' + (2I-N -1) sine + (2J -N -1) I cose I 
.' 2 2 . (B19) 

FromEq. (B19) we can determine the ray corresponding to' the pixel (I, J) for 

agi ven angle e, 
k(e) = INT{D' } + 1. (BZO) 

V. e::::: 1800 

Figure B-5 illustrates the corresponding relationships for angles greater 

than 1800
• Therefore, from the equations given in sections Hand IV we c,an 

1 

summarize the equations for the family of lines determining rays for all angles 

other than projectives for integral multiples of TI/2, 

y = (tane)x+yo + k/ I cose I ' k = 0, 1, 2, ... , ne (B21 ) 

where 
N+1 L N+1 

Yo =-2- - Icosel - """"'2 tane 

and 

N [N-1 I I "2 + INT -2- ( sine + I cose 1-1) + 1/2] if [ • ] > INT [ • ] 

L.= 

~ + INT [N 2,1 (I sin@ 1+ Icosel-1) + 1/2]-1 if [ • ] = INT[ 0 

N-1 ' 
N + 2INT/[ -2- ( Isine 1+ Ic 0 s e 1-1) + 1/2] if[o]> INT[ • ] 

n = e 

N + ZINT [ N 21 (Isine 1+ Ic 0 s e I -1) + 1/ Z] - 1 if [ • ] = INT[ • ] . 
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y= (tan e)x+Yo+k/lcosel 

k=0,1,2,"',n8 

90 0 < e< 180 0 
. . 

x 
. . . . 

k = I 
k=O 

x 
y= (tan e) x + Yo + k Ilcas e I k=0,1/ 2;-', n8 

y= (tan e)x + Yo + k/lcos e I 
k=OI 2 .,. n8 x " , , 

. . . " . . 
. .' 

y 

k= ° 
k = I 

.. ' . 
y 

y= (tan B) x + y + k/lcos I 
, 0 

k= 0, ,,2,· ... ns 

k=O 

k = I 

x 

XBL 741-2021 

Figure B-5. Relationship between the equations for the family of lines delineating rays. 

y 
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, Whereas the angles e = 0° , 1'80° the family of lines is 

y ~ k + 1/2 k = 0,1,2, ..• ,N, (B22) 

and for angle s e = 90 0
, 270 0 the family of lines is 

x=k+1/2 - k'=0,1,2,···,N. . (B23) 

Equations (B11) and (B12) give the' ray corresponding to a pixel (I, J) for 
\ 

0° < e < 90° and 180°< e < 2.70 ° whereas Eqs. (B19) and (B20) give the ray 

corresponding to a pixel (I, J) for 90°< e < 180" ahd 2700 < e < 360 0
• This can 

be summarized as 

where 

~;D = 

k (e) = 1NT {D} , 

rL + 
(N+1-21) I I (2J-N-1) I . 

2 . s~ne . +2 cose if 00 < e < 900 

1800 <, e < 2700 

L + (21-r- 1 ) I sine I + (2J-r- 1 ) I cose I if 900 < e < 1800 
• 

, 270 0 < e < 3600 

A Subroutine Determining the Projection Values for Each'Ray 

(B24) 

Equations (B21)- (B24) give the family of lines which defines the rays for 

each angle. Using these equations the following subroutine generates the pro
n 

jection values R
klr 

by 

CALL SUM(B,XR) 

where B is a NXN array. The array XR contains the projections of B, which 

is returned upon execution of the above subroutine. These projections are de

noted by XR (M, KK) where. M is the index for the angle and KK is the index 

for, the ray. It is assumed that the projection R
ke 

has the functional r.elation-" 

ship RkB = ~ A(i, j). See Appendix H for the case where 
(i, j)Erayk(lj) 

R ke = ~ f~,A(i, j) and ff
J
, is some factor other than 1-

(i, j)Erayk(e) 1J 

Note that the listing for SUM calls the following two s\lbroutines: 

CALL YM1N(KK, M, 1Y1, 1Y2) 

CALL XM1N(KK, M, JY,!X1, !X2) 
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where KK is the index for the ray and M is the index for the angle. The re-

'turned values IYi and IY2 are respectively the minimum and maximum y 
coordinates for pixels in the ray KK at the angle M. The returned values 

IXi and IX2 are respectiv,ely the minimum and maximum x coordinates for 

pixels in ray KK at the angle M and having a y coordinate of JY. 'An example 

of the variables IYi, IY2, IXi and IX2 for an 8 X8 array are shown in Fig. B-6 . 

• • • • • • • • • • • • • ., 
• • • • • • , . 

• • • IY2=5 • • • • • • • 
IYI=2 • • ROY k(8) • • • 

• • .' • • • • for JY=4, IX I 4 and IX2=6 • • • = • • • • • • • • '" 

Figure B-6. Parameters calculated by a subroutine CALL XMIN. 

The above subroutines require a COMMON block which contains the cosine; 
• " I 

sine, and tangent of each projection angle and other constants which remain 

fixed for each iteration. These trigonometric functions can be evaluated and 

'stored ~n the block COMMON by 

CALL CQNST 

where the block COMMON has the following values 

SCI) = ABS[ SIN(e
I
)] 

C(I) = ABS[COS(e
I
)] 

T(I) =T~N5eI) 

IR(I)=The number of rays for the angle e
I
. See Eq. (B2i). 

XL(I)=The variable L given in Eq~ (B2i). 
\ 

IA(I)= The angle e
I 

in degrees 
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XN = FLOAT (N) 

XN1 = FLOAT (N-1) 

XN2= FLOAT (N1) 

N = The NXNarray size being reconstructed. 

N1 = N+1 

M1 = The number of projections 

The variable IAA in SUBROUTINE CONST is the angle in degrees in which the 

subject is rotated for each succeeding projection. 

SUBROUTINE SUM(B~XKt 
DIMENSION B(46,46),XR(36,64J 
COMI"!ON S(36),C(36),T(36), IR(36) ,XL(J6) ,IA(36),XN,XNl,XN2,N,Nl,Ml 
DO 18 M= 1 , .M 1 
MR=I'R(.M) 
IF(I~(Mr.EQ.O.OR.IA(M).EQ.180)52,51 

51 IF1IA(M).EQ.90.0R.IA(Ml.FQ.270)S4,53 
52 on 19 K=1,MR 

XR(~,K)=O. 

DC 66 I=l,N 
XR(M,K)=XR(M,~)+B(I,K) 

66 CONTINUE 
19 CONTINUE 

GO TO 18 
54 DO 61' K= 1, MR 

XR(M,K'=O. 
00 6.1 J=I,N 
XR (M "K l= XR 04, K) + B (K, J , 

67 CUNTINUF 
61 CONTINUE 

GO Tn 18 
53 DO 63 K=l,MR 

XR(M,K}=O. 
CALL YMIN(K,M,IYl,IY2) 
DO 68 J= I 'H , I Y 2 
CALL XMIN(K,M,J,IXl,IX2) 
Dq 68 I=IXl,IX2 
XR(M,K)=XR(M,K)+B(I,J) 

68 CONTINUE 
63 CONTINUE 
18 CONTINUE 

RETURN 
END 
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SUBROUTINE YMINtKK,M,IYl,IY2) 
C OMMClN S ( 36) ,C ( 36) , T( 36 ), I R ( 3.6) ,XL ( 36) , I A (36) , XN , XN 1, X N2 ,N ,N 1, M 1 
X K= F LOAf ( KK ) 
XKl=FLOAT (KK-1) 
DO 7 1= 1, N 
X I =FLOA T( 1) 
X=(XI-XN2*.5*(1.-T(M»+(XL(M)-XK1)/C(M~)/T(M) 
IF(IAtM).Lf.90.0R.ltCM).GT.180.AND.IAtM).LT.270)8,9 

8 IF(X-l.)7,lO,lO 
9 IF(X-XN)lO,lO,7 
7 CONTINUE 

10 IYl=l 
IF ( I R P·1)'-KK) 11 ,12,11 

12 IY2=N 
GO TO 13 

11 M1=1+1 
DO 14 J=MI, N1 
XJ=FLOAT(J) 
~=tXJ-XN2~.5*(I.-T(M)J+(X(M)-XK)/C(M)~/T(M1 
IF(IA(Ml.LE.90.0R.IA(M).GT.180.AND.IA(M).LT.210)15,16 

15IF(X-XN)l4,1-7,'17 ' 
161FtX-l.)17,17,14 
14 CONTINUE 
17 IY2=J-l 
13 CONTINUE 

RETURN 
END 

SUBROUTINE XMIN(KK,M,JY,IX1,IX2) 
COMMON 'S(J6),C(~~6},T(36),IR(36) ,XL(36),IA(36),'XN,XNl,XN2,N,Nl,Ml 
XK-=FLOAT(K/<) 
XKl=FLOAT(KK-l' 
XJ=FLOAT(JY) 
X 1-= ( X J - X N 2 * ~ 5* ( 1 • - T (M) ) + ( XL H\}-X K U I C ( M ) ) IT ( M ) 
X2=(XJ-XN2*.5*(1.-T(M»+(XL(M)~XK)/C(Mj)/T(M) 

1Ft I A ( M ) • L E. 9'0 .0 R .1 A ( M ) • G T • 180. AN D. I A ( M ) ~ LT. 270) 19, 20 
19 IE(XI-XN)31,32,32 
31' IX2=INT(Xl) 

GO TO 33 
32 IX2=N 
33 IF(X2-1.)34,35,35 
35 IX 1= I NT (X 2 )i-I 

GO TO 30 
34 IXL=l 

GO TO 30 
20 'IF(Xl-1.)21,22,22 
22 IXl=INT<Xl>+l 

\ GO TO 25 
21 IXl=l 
25 IF(X2-XN)26,26,27 
26 IX2=INT(X2) 

_GO TO 30 
27 I X2=N 
30 RETURN 

END 
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SUBROUTINE CONST 
COM MON S ( 36 ) ,C ( 36 ) , T( 36) , I R (36) t Xl ( 36 ) , 1 A ( 36 ) , XN , XN 1 , X N 2 f N, N 1, M 1 
k~AO FMT1,N -
READ FiIl!T2,Ml 
RFtlO FMT3,II\A 
Nl=N+1 
XN=FLOAT(N) 
XN1=FLOAT(N-1) 
XN2=FUlAT (NIl 
00 I l=l,Ml 
IA( 1 )=( I-l)*IAA 
AA=',fLOAT( IAt 1,1 )*3.1415G211180. 
S( I )=AI:3S(SIN(AA) I 
C( I )=ABS(COStAA)>> 
T ( I ) =T 1\ N( AA I 
ARG=.5*XN1*( S( I) +C( I )-1. )+.5 
Il=INT(Af<G) 
Z=FLUATJIZ) 
IF(ARG-ZIl1,22,21 

21 XltJI=XN*.5+1 
GO TO 2 \ 

22 XL(I)=XN*.5+l-1. 
2 I F ( I A ( I ) • F.Q .0.0 R • I A ( I ) • E Q. ') C. OR. I A (I ) • E Q. 180.0 R.I A (1 ) • E Q. 270 ) 6 , 8 
(, IR(I)=N 

GO TD I 
8 IF(ARG-l)11,12,11 

11 IR.(I)=N+2*Il 
GO TO 1 

12 lR ( I ) = N + 2 * I Z-1 
1 CON1INUE 

RETURN 
END 

) 
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A Subroutine for Determining the Rays Corresponding to Each Pixel 

Equation (B24) ghres a relationship for determining the rays corresponding 

to each pixel with coordinates (I, J). This ,relationship is achieved on the 

digital computer by 

.CALL RAy (I, J, M, K) 

where (I, J) are the coordinates for the pixel, M is the index for the angle, 
I 

and K is the 'index for the ray which is returned after the above, subroutine is 

executed. 

SU8ROUTINE RAY(I,J,M,K), 
COMMON S(36),CC36),T(36),IK(36J,XL(36t,IA(l6),XN,XNl,XN2,N,Nl ,Ml 
IF ( I A ( 1"1 ) • E l~. 0 • I)R • 1 A ( M ) • F. Q • 180 ) 22, 23 

23 IF(IA(M).EQ.90.0R.IA(M).~Q.270)25,35 . 
.3 5 T F ( I A ( jill ) • l T .90 .0 R • I A ( /VI ) • G T • 18 () • AN o. 1 A ( !Vi ) .L T • 270 , 24 t 26 
22 K=J 

GO TO 29 
24 XX=FlOAT(N-2*I+l) 

YY=FlOAT(2*J-N~I) 

GO TO 27 
25 K=l 

GO TO 29 
26 XX=FLOAT(2*I-N-l' 

YY=FlOAT(2*J-N-l) 
27 K=INT«XX*S(MJ+YV*C(M»*.5.Xl(M»+1 
29 RETUKN 

END 
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Appendix C. Using Generalized Inverse for 
( Three -Dimensional Reconstruction 

I 

. Techniques of solving for the unknown values at each picture element 

(i, j) from both an adequate, and inadequate number of views u$ing direct 

. matrix methods are detaile'd in this appendix. 

The criterion for the reconstruction of an image frOID; multiple projections 

P
k8 

is that the best estimate, [A(i, j)] ,be a minimum to the least-squares 

function 

'<R(A) = ~ ;e (C1 ) 
e k=1 

where the densities A(i, j) satisfy the functional relationship 

R
ke

= ~ f~.A(i,j), e=1,' ••• ,M; k=1" ... ,ne, (C2) 
(i, j)€ ray (k,e) IJ 

and <TkO is the standard deviation in the measured projecti~n P
ke

• The factor 

f~. represents the fracti~n of density that we assume is being measured by the 
IJ 

ray R kO ' This factor can incorporate the expected re suIts due to attenuation ~ 

and spread of an emitting source as measured by a gamma camera. Note e ' . 
that the factors f .. are also a function ,of the angle O. . IJ 
Generalized Inverse 

Equation (C1) can be expressed in matrix notation as 

<R(A) ,= (P - FA)T <I?-1 (P - FA) 

The row matrix, 

(C3 ) 

is (PK e)' a matrix of measured projections where K designates the particular 

ray and 0 the projection. The row matrix AT is 

T / 2 
A =[A(1,1)A(2,1) ..... A(N,1) ..... A(1.N)A(2,N) ... ;.A(N,N)] (1Xn), 

where A(i, j) are the values for the elements of the section to be reconstructed. 

'-

The matrix <I? -1 is the in~erse of the covariance matrix for' the errors in the measured 

projections p. where we assume that the measured projections are independent: 

, \ 
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-1 
cI> = 

2 
The matrix F is an m. X N matrix where the row (k, e) is composed of 0' sand e .. 
f .. , depending on whether the point (i, j) is an.element of ray (k, e). The 

1J . 
variable m is the sum total of rays for all projections such that 

An example of the matrix.F is illustrated by the follo~ing 4X4 array with 

projections for"O° and 90°. 

-
A( 1,2) A(2,2) '. • • • -

-
A(1, 1) A(2, 1) 

! 
'A(3,1) A(4, 1) 

" 

~.= 

e 
If we as SUlTIe that f .. = 

1J 
1 for all i, j, e then for this particular example the 

matrix F is 



1 0 0 0 1 0 0 0 1 0 0 0 1 '0 0 0 

0 1 O. 0 0 1 0 0 0 1 0 0 0 1 0 0 

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 

F =', 0 0 0 1 0 0, 0 1 0 0 0 1 0 0 0 1 

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 ;0 0 1 1 1 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 

The best estimate A which minimizes Eq. (C3) must satisfy the equation 

(C5) 

wh~re \7 A is a ,matrix differential operator (See Deutsch, 1965). By ex- ' 

pandirig (C3) we can write (C5) as 

and simplifying we have 

_2F T <1>-1 P+2FT <1>-1 FA= O. 

" Solving for A we obtain 

(C6) 

if the inverse matrix (FT <1>-1 F)-1 exists. Goitein (1971) claims this is true 

if (m_N2 -M+1) > o. However, if the matrix F T <1> -1 F is singular, we can 

express A in terms of the generalized inverse, FG, of the matrix F, 

(C7) 

-1 If we assume that <1> = I and F is the matrix given in the previous ex-

ample, (C4), then A can, be solved by multiplying the generalized inverse FG 

by the'measured value s P: 

(C4) 



~ 
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0.21875 -0.03125 -0.03125 -0.03125 0.21-875 -0.03125 -0.03125 -0.03125 

-0.03125 0.21875 -0.03125 -0.03125 0.21875 -0.03125 -0.03'125 -0.03125, 

-0.03125 -0.03125 0.21875 -0.03125 0.21875 -0.03125 -0.03125 -0.03125 

-0.03125 -0.03125 -0.03125 0.21875 0.21875 -0.03125 -0.03125 -0.03125 

O. 21 875 "70. 031 2 5 - 0 . 031 2 5 - 0 . 03125 - o. 031,25 O. 21 875 - O. 03125 - O. 03125 

-0.03125 0.21875 -0.03125 -0.03125 -0.03125 0.21875 -0.03125 -0.03125 

-0.03125 -0.03125 0.21875 -0.03125 -0.03125 0.21875 ~0.03125 -0.03125 

A= -0.03125 -0.03125 -0.03125 0.21875 -0.03125 0.21875 -0.03125 -0.03125 . XP 

0.21875 -0.03125 -0.03125 -0.03125 :"0.03125 -0.03125 0.21875 -0.03.125 

-0.03125 0.21875 -0.03125 -0.03125 -0.03125 -0.03125 0.21875 -0.03125 ' 

-0.03125 -0.03125 0.21875 -0.03125 -0.03125 -0.03125 0.21875 -0.03125 

-0.03125 -0.03125 -0.0·3125 0.21875 -0.03125 -0.03125 0.21875 -0.03125 

0.21875 -0.03125 -0.03125 -0.03125 -0.03125 -0.03125 -0.03125 0.21875 

-0.03125 0.21875 -0.03125 -0.-03125 -0.03125 -0.03125 -0.03125 0.21875 

-0.03125 -0.03125 0.21875 -0.03125 -0.03125 -0.03125 -0.03125 0.21875 

-0.03125 -0.03125 -0.03125 0.21875 -,0.03125 -0.03125 -0.03125 0.21875 

This is the unweighted best estima~e for the densities A(i, j). T'he appealing 

thing about the generalized inverse is that once the generalized inverse has 

been determined, then the estimate A can be deter~ined by direct matrix 

multiplication. Also the computer storage space necessary for the matrix 

FG can be reduced by noticing that the fa~tor multiplying each prpjection 

I?kB is only a function of the number of elements in the ray (K, B). However, 

usually the generalized inverse for a large array is not easy to determine. 
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Appendix D. Subr.outine for Back-Projection Algorithm 

/ The reconstructed back-projection image can be obtained by 

CALL BCKPROJ (B, P) 

where B is the reconstructed array, and the array P cont~ins the sampled 

projection data. Each projection valu~ is denoted by P(M,:Eq where M is the 

. index of the angle and K is the index of the ray. The ray corresponding to 

a particular back-projection pixel is found by the subroutine 

CALL RAY(I, J,M,K), 

which is listed in Appendix B. 

The flow chartior the back-projection algorithm is presented in Fig. D-1. 

SUBROUTINE BCKPROJ(B,P) 
DI~~NSION B(46,461,P(36,64) 
COMMON S (36 ) ,(.( 36) , f( 36) , IR (36) ,XL (36) , I A (36) , XN, XN 1, XN2, N, N 1, ~H 
XT=O. 
MR=lR{l) 
on lI:;::l,MR 
XT=XT+P( 1, [) 

1 'CONTINUE 
DO 20 1= 1, N 
DO 20 J:l,N 
XP2=O. 
DO 30 M=l,Ml 
CAll R.AY( I,J,M,K). cf Appendix B 
XP2=XP2+P(M,K) 

30 CONTINUE 
B( I,J)=XP2 

20 CONTINUE 
XTT=O. 
no 80 I=l,N 
on 80 J=l,N 
XTT=XTT+8(I,J) 

80 CONTI NUE 
00 83 I=l,N 
00 83 J=l,N 
B( I ,J)=XT*B( I ,J) /XTT 

83 CONTINUF 
RETURN 
END 



) 

CALL BCKPROJ(B,P) 

\ 

. - 90-

Input projection 

values P(M,K) 

~ 

I CALL CONST 

Evaluate XT 

IR(1) 
XT= L P(1,K) 

K=l 
\ 

For all I,J evaluate 

M1 , 

BO,]) = L P(M,K') 
M=1 , 

Evaluate XTT 

N N 
XTT = L L: BO,]) 

1=1 J=1 

For all I,J evaluate 

BO,]) = XT *BO,])/XTT 
\ 

i 

STOP 

/comment: 

For each M, K' is determined . 

by CALL RA YO,J ,M,K:) 

Figure D-1. Flow' chart fo~ back-projection algorithim . 

. \ 
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Appendix E. Subroutine for SIRT Algorithm 

The simultaneous iterative reconstruction technique (SIRT) is discussed , 
\ 

in Section (3.5). The flow chart is presented in Fig.E-1. The image B is 

reconstructed by the SIR T algor'ithm by 

CALL SIRT (B, p, ITER) 

where B is the reconstructed array,' P is the sampled projection data, and 

ITER is the number of iterations desired. Each projection value is denoted 

by P(M, K) where M is the index for the angle and K is the index for the ray.' 

The number of pixels for each ray is stored in NN(M, K) and the length of each 

ray is stored in XLENGTH(M, K). Ray lengths are evaluated by 

CALL XLENGH(M, K, X) 

where M is the index for the angle, Kis the index for the ray, and X is. the 

ray length which' is returned. 

Figure E-2 gives tJ:e equations for the length of the line segments which 

intersect the NX N array. The variable x is the vertical distance as measured 

from the point (N, 1). The, graphs given in the figure are for angles less than 

90°, but these same results hold for angles greater than 90° and one is directed 

to the listing of SUBROUTINE XLENGH(M, R, X) for the implementation' . . ' 

thereQf. We have taken the length of the ray K to be the maximum lengt~ of 

all lines which subtend the array between the lines K-1 and K.' 
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II1Put projection 

values P(M,K) 

1 
CALL CONST 

For every M,K 'evaluate 

, XLENGTH (M,K) and NN (M,K) 

~ , 

Let initial solution for B be , 
, B(I,]) = XT/N 2 

IR(1) -

where TT = 2: P( 1 K) 
K=l " 
, 

For every M,K evaluate XR(M,K) 

XR(M,K) =: 2:B(I,J) 
(l,J)€ ray (K,M) 

by CALLSUM(B,XR) 

For all I,l, evaluate B(I,J) 

where 

BO,]) ~max, B(I,]) + 2:P(M,K') LXLENGTH(M,K) -LXR(M,K) LNN(M,K), 0 { 
M1 IM1 ' M1 IM1 ~ 

, M=l M=l M=l M=l 

1 
Evaluate XIT where 

N N 
X IT = 2: 2: B(I,]) 

1=1 ]=1 , ' 
For all I,] evaluate new values 

of B(I,]) = TT*B(I,J)/XIT 

,"-comment: In the sums 
for each M, the 
values for K are 
determined by 
CALL RAY (I,] ,M,K). 

~ ____ y_e_s __ -______ '~~~ __ N __ O _____ STOP 

Figure E-l. Flow chait for the SIRT algorithm. 

" 

, I 
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"I FOR a <8< 45° I 
L k(O) 

-(N-1) , 

-cos 0 ) 

J (N-1 )(sin 0 + cos 0) - x 

sin 0 cos 0 

/ 
Distance from point (N,1) x 
+ ~+ 

x = (N-l)sin 0 x = (N-l)cos 0 

I FOR 45°<8,< 90°1 

L k( 0) 

(N-1) 

sin 0 

sin O:os iJ~\.:.-..,. 
\ :' I 

I 
I 
I 
I 

(N-1)(sin 0 + cos 0) - x 

sinO cos 0 

/ 

Distance from point (N,1) x 
++ 

x = (N-l)cosO x =, (N-l)sin 0 

DBL 741-4629 
Figure E-2. The length of ray segments. \ ' 
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SUBROUTINE SIRT(B,P,ITER) . 
DIM ENS ION i3 ( It 6,46) , XL FNG HH 36,64 j , NN ( 36 t (4) t XR ( 36 t 6 4) , P ( 36,64» 
COM MON S (36 ) ,C ( 36) , T( 3 6) , I R (36 j ,X L ( 36 ) , I A ( 36 ) , XN, XN 1, XN2 ,N , N 1, M 1 
DO 11 M=I,Ml 
MR=IRO·" 
DO 11 K= 1, MR 
CALL XLENGH(M,K~XLENGTH(M,K» 

11 CUNTINUE 
00 1 I-=l,f\J 
DO 1 J=l,N 
A(I,J)=I. 

1 CONTINUE 
CALL SUM(B,XR) 
DO 2 M= 1, Ml 
MR= I R eM) 
00 2 K-=I,MR 
NN(M,K)=INT(XR(M,K» 

2 CONTINUE 
TT=O. 
MR=IR( 1) 

on 5 1=1, MR 
TT=TT+P(1,1) 

5 CONTINUE 
DO 7 1= 1, N 
DO 7 J=l,N 
B( l;J,=TT/FLOAT(N**Z) 

7 CONTINUE 
K 1= 1 

79 CALL SUM(B,XR) 
DO 20 11=1,N 
DU 20 J 1= l, N 
IP2=O, 
XL=O. 
R=O. 
N2=O 
00 30 M=l,Ml 
CALL RAY( 11 ,J1 ,M,K) 
XP2=XPZ+P(M,K) 
XL=XL+XlENGTH(M,K' 
N2=N2+NN (M" K) 
R=R+XR(M,Kl 

30 CONTINUF . 
B( 11,Jl)=8( 11,Jl)+)(,P2/Xl-R/FLOAT(N2) 
IF(B(Il,J1»43,20,2C 

43 B(I1,JU=0. 
20 CONTINUE 

XIT=O. 
on 80 l=l,N 
DO 80 J-=l,N 
XIT=XIT+B( {,J) 

80 CONTINUE 
00 83 1= 1, N 
on 83 J=;l,N 
B ( I , J, , = T T * B ( I , J ) I X I T 

83 CONTINUE . 
. Kl=Kl+l 

IF: (KI-ITER)79,T9,81 
81 RETURN 

END 



-95-

SUdROUTI~E XlENGH(M,K,X) 
C (MMON S ( 36) , C ( 36) , T( 36 ) , I R( 36) ,X L( 36) , I At36 ) , X N ,X ~11 , XNL ,N , N 1 , M 1 
If ( 11\( M ) • E Q. 0 .0 R. I " (M ) • EQ. YO. OR • lA ( M » • E Q. 180. (J P. I A (t.1) • E(~. 270) 15, 17 

15 X=FlOAT(Nl) 
(;,1 Tn 99 

17 IF (K. E Q. 1 ) 44,45 
44 XKK=O. 

G a TO 4-' 
45 X K K ~ FLO A T( K - 1 ) - XL (M ) + X N 1 r' • 5~<: ( S ( M) +C ( M ) I 
47 XK=F~OAT(K)-Xl(M)+XNl*.5*(S(M)+C(M) I 

I F ( ( I A t M' • LT. 45 ) • 0 R • ( I A OH. G T .1 3 5 • A 1\4 0 • I A 0-1 ) • l T • 1 8 () • 0 R • ( I A ( tv! ) • G T • 1 
Cd 0 • AND. I A ( M) • l T .2? 5 ) • OR. ( I 1\ ( M) • G T .3 15 .A NO • I A ( M ) • L T .~ 60) , 1 ,3 

1 XKl=XNl*S(M) 
XK2=XN1*C(M) 
IFlXK.Lf.XKlI2,4 

4 IF(XKK.GT.XK2116,6 
7 X= XK I S ( M )f C 01 , 

GO TO 99 
6 X=XNI/C(M' 

GO TO 9q 
16 X=IXNl*(S(M)+C(M)-XKK1/S(M'/(M) 

GO TO 99 
3 XK1=XNl*C(M' 

XK2=XN1*S(t>1) 
IF(XK.lE.XKlI2,70 

20 IF(XKK.GT.XK2'16,22 
72 X=l(Nl/S(M) 
9q RETURN 

ENJ 
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Appendix F. Subroutine for Iterative Least-Squares Algorithm 

Section (3.6) of the discussion gives the development and theory for the 

iterative least-squares algorithm; Fig.F-1 gives the flow chart. The computer 

listing given in this section ~ssumes that each of the factors, f~ 0' is equal to 
1 J 

1. Therefore, for any emis sion study where the, projection data is taken to be 

the conjugate mean of opposing vie~s'- the reconstructed image will not repre

sent quantitatively the true image because of attenuation. However, for trans

mission studies where the projection data is taken to be, the log of the ratio of 

the incident beam over the measured beam, the reconstructed image will be a 

true measure of the density distribution. See Appendix 'H for the de scription of 
-

the least-squares algorithm usedfor emission studies. 

The image B is reconstructed by 

CALL LESQ(B, P, ITER), 

where B is the reconstructed array, P is the sampled projection data, and 

ITER is the number of iterations desired. Each projection value is denoted 

by P(M, K) where M is the index for the angle and K is the index for the ray. 
/ 

,DE'L(I, J) is the delta change for the pixel n, J) as given by Eq. (32). The 
, 

array XDEL contains tlle. projections of the array DEL. It is assumed that the 

variance for each sampled projection is the value of that projection; 
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~----------------,' 

Input the projection 

values P(M,K) 

CALL CONST 

Let the initial solution for B be 

B(I,J) = XT/N 2 
I . . 

IR(l) 
where XT = L: P( 1 ,K) 

K=1 

For every M,K evaluate XR(M,K) 

XR(M,K) = ~B(I,J), 
(i,J)€ ray (K,M) 

by CALL SUM(B,XR) 

J 
For all I,J evaluate DEL(I,J) 

M1 IM1 
DEL(I,J) = [M1- L: XR(M,K)/P(M,K)] L: lIP(M,K)' 

M=1 M=1 

~ . ~ 
, ,,) Comment: In the sums For every M,K, evaluate XDEL(M,K ' 

, XDEL(M,K) = LDEL(I,J) 
. (I.J)€ ray (K,M) 

by CALL SUM(DEL,XDEL) 

Evaluate DAMP where 

, for each M, the 

values for K are 

determined by 
. CALL RAY (I,J,M,K). . 

'~M1 IR(M)' . liM1 IR(M) . 
DAMP = L, ~ lP(M,K) - XR(M,K)] . XDEL(M,K)/P(M,K) L: L:XDEL(M,K)2/P(M,K) 

M=1 K.=1 . M=1 K=1 

For all I,J, evaluate the new values for B(I,J) 

where B(I,J) = max {B(I,J) + DAMP * DEL (I,J),O} 

~ No STOP 
\...'------------------------~~. o. of iterations ~ ITER -:>-----

Yes 

Figure F -1. Flow chart for the iterative least-squares algorithm. 
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SUBROUTINE LESQ(R,P,ITER) 
DIMENSION B(46,46),OEL(46,4t),P(36,64) ,XRt36,64),XDEL(36,64) 
COMMON SeJ6),(C36J,T(361,IR(36),XL(36),]A(36),XN,XN1,XN2,N,Nl,1'11 
XMl:::FlOAT(M1) 
T"I=O. 
MR=II«1J 
DO 5 I=l,MR 
TT=TT+P(1,1) 

5 CONTINUE 
DO 7 1= 1 , N 
DO 7 J=l,N 
B( I,J)=TTIFLOAT(N)!'*2) 

7 CONTINUF 
K 1= 1 

79 CALL SUMCB,XR) 
DO 20 I=I,N 
DO 20 ,)=l,N 
XIP2=0. 
R=O. 
Dn 3;) M=l,Ml 
CAl L RAY ( I , J ,t'4, K ) 
XX=P(M,K)+1. 
XIP2=XIP2+1./XX 
R=I<+XP,(M,KI/XX 

30 CONTINUF 
DEl( I,J)=(XMI-R)/XIP2 

20 CONTINUF 
CALL SUM(OEl,XDEL) 
XNUM=O. 
DH1=O. 
DO 80 N1=I,Ml 
MR=JR(M) 
on 8.0 K = 1, M R 
XX-=P(M,K)+l. 
XNUM=XNUM+XDEL(M,K)*(1.-XR(~,K)/XX) 

DEM=OE~+XDEL(M,K)**2IXX 

80 CCNTINUE 
DAMP=XNUM/DEM 
DO 83 I=l,N 
DO 83 ,J=l,N 
B(I,J)=B(I,J)+OAMP*OELCI,J) 
If(B( I,J) )10,83,83 

10 B(I,J)=O. 
83 CONTINUE 

Kl-=Kl+1 
IF(KI-ITER)79,79,81 

81 RFTURN 
END 
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Appendix G. Subroutine for Filtered Back-Projection Algorithm 

TheimageB is reconstructed by the filtered back-projection algorithm 

(Fig. G-1) by 

CALL FILTER(B, P) 

where B is the reconstructed NXN array, and the array P contains the 

sampled projection data. Each projection value is denoted by P(M, K) where 

M is the index of the angle and K is the index of the ray. 

In the list~,ng of SUBROUTINE FILTER, one will notice that the projection 

data for each angle is first transferred to array A which has a, fixed dimension. 

Therefore, for a particular projection P(M, K),K = 1, ... ,IR (M), the array A 

has the following values 

A(1) 

A(2) 

A(3 ) 

A(4) 
• 
• 
• 
• 

A(I) 

A(I+1 ) 

A(I+2) 

A(I+3 ) 
• 
• 
• 
• 
• 

A(I+2*IR(M)-1) 

A(I +2 '!<IR (M)) 

A (1+2 ':<IR (M)+1 ) 

A(I+2 ':<IR (M)+2) 
• 
• 
• 

A (12 7) 

A(128) 

real 

imaginary' 

real 

imaginary 

real 

imaginary 

real 

imaginary 

real· 

imaginary 

real 

imaginary 

real 

imaginary 

o 
o 
o 
o 

8 

0 

10 

0 

20 

·0 
,0 

0 

o 
o 

} P(M,1) 

} P(M.2) 

} p[ M, IR'(M)] 
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! 

The array A is filled inso that the projection values of P are centered 

around a fixed center point of A. The array A is !arge enough to incorporate 

the values of the projection P(M, .) with the largest number of rays.· Then 

the Fourier trans'form of A is taken by 

CALL CFFT(MM, A, 'INV; 55,1, ITER) 

The returned matrix A wili now have the real and imaginary components of the 

Fourier transform. These components are then multiplied by the appropriate 

measure in Fourier space (the reciprocal £pace radius) and stored again in A. * 
~ 

A(1 ) 

A(2) 

A(3 ) 

A(4) 

2* A(5) 

2':C A(6) 
• 
• 
• 
• 31':<A(63) 

31 ':< A(64) 

32':< A(65) 

32 *A(66) 

31':<A(67) 

31 *A(68) 
• 
• 
• .. , 

2>'< A(125) 

2>''<A(126) 

A(127) 

, A(128) 

c- . A(1) 
\ ' 

A(2) 

A(3) 

A(4) 

A(5) 

A(6) 
• 
• 
• 
• A(63) 

A(64) 

A(65) 

A(66) 

A(67) 

A(68) 
• 
• 
• 
• A(125) 

A(126) 

A(127) 

.' A(128) 

* At present this routine does not include a truncation at the maximum reason-
, . 

able frequency though in our application the maximum frequency is close to the 

highest frequency component in the discrete Fourier transform. This trunca

tion with a roll-;f£ is being investigated at the time of this writing.' The quantita

tive and noise amplification aspects of this algorithm. reside in proper selection 

of the filter shape. 
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Then the inverse Fourier transform of A is' obtained 'by 

CALL CFFT(MM, A, INV, SS, -1, IFER) .. 

where now the components of the inverse transform are stored in A. Then the 

components of A are mapped into the projection array P(K, M) by converting 

the real and imaginary parts of each term to the modulus: 

A(1) 

A(2) 
• .. 

. . 
A(I) 

A(I+1) 
• 
• 
• 

A(I+2 *IR(M) -1) 

A(I+2 *IR (M» 

A(I+2 *IR (M)+1) 

A(I+2 >'.cIR (M)+2) 
• 
• 
• 

A(127 ) 

A(128) 

real 

imaginary = 0 

real 

imaginary 

real 

imaginary 

real 

jmaginary 

-
real 

imaginary 

P(M, 1) = J A(I)2 + A(I+1)2 

P(M, IR(M» = Modulus 

After this has been done for all angles, the new projection values are then 

back-projected by 

CALL BCKPROJ(B, P) 

Remark: This technique gives good qualitCl:tive results', but is not quantitative_ 

and will seriously amplify noise because statistically weak Fourier coefficients 

are amplified and the ramp filter is not truncated at the maximum allowable 

frequency. 
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Input. projection 

values P(M,K) .. ". 

CALL CONST 
r 

M=l 

For angle IA(M) map projection 

values P(M,K) into array A(I) , 
Tak~ Fourier transform of A(I) by 

CALL CFFT(MM,A,INV,SS,l,IFER) 

Multiply array' A by appropriate 

measure in Fourier space 
, 

, 

Take Fourier inverse transform of A(I) by 

CALL CFFT(MM,A,INV,SS,-l,IFER) 

~ 

Map corresponding values of A 

back into the projection P(M,.) 

, 
-

M=M+l Yes Is -
M~Ml 

\ 

No 

Obtain the reconstructed image by 

) 
CALL BCKPROJ (B,P) 

Figure G- ~. Flow chart for the filtered back-projection algorithm. 
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S LJ5R UlJT 1 NE F lL. T t R ( d , P ) 
DIMENSION B(46,46' ,P(36,64l ,tlM(3) ,AU2.8), INY(128),SSfl28) 
COM MON ~ (36 ) ,C ( :<'6) , T ( 36 ) , H~ (36) ,XL' 36 ) , I A ( 36) , XN , XN 1 , XN 2, N, N 1, Ml 
MM(1'=6 
MM(2'=O 
M~'H 3 )=0 
ID=lO 
PRINT 200 
DD b ~1=1,1'1l 

DO 5 1= 1,128 
A ( I ):=0. 

5 ClJN T INUl: 
1-1R=IR(MI 
If ( tA( M I 1310,314,31 C 

310 If(TA(~}-90)315,314,315 
315 I l = nlT ( • 5 * X N 1 * ( S ( M) + C ( M ) -1 • )+.5) 

IU=ID-Il-l 
GO 10 305 

314 I U= J 0-1 
305 I=2*IU+l 

DU 7 K= 1, MR 
A( J )=P(M,KI 
1=1+2 

7 CUNTINUE: 
CA~l CFFT(MM,A,INV,SS,l,IFER) 
NN= 128 
K= 1 
DO 8 1-=3,63,2 I 

A(I }=A( I)*FLOAT(KI 
AlJ+ll=A(I+l)*fLOAT(K) 
A(NN+3-J)=A(NN+3-I)*FLOAT(K) 
A(NN-I+2)=A(NN-I~2)*FLCAT(K) 

K=K+l 
, 8 CUNT INUE 

A(65.=A(65)*32. 
A(661=A(661*32. 
CALL CffT(MM,A,INY,SS,-I,iFER) 
1=2*IU+1 
no 9 K=1,Mk 
IF(A( II .'55,56,')6 

55 A( 1)=0. 
A( 1+1)=0. 

56 P(M,KI =SQRT (At I }**.2+A( 1+1 )**2) 
1=1 +2 

q CONT Ir-IUI: 
6 CUNTINUE 

CAll BCKPRUJ(H,P) 
RETURN 
END 

( 
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SUBROUTINE CFfT(M,A,INV,S,IFSET,IfERR) 
DIM F N S IO N A ( 1 ) , I N V ( 1 ) ,S ( 1 ) , 1\ ( 3) ,M ( 3') , N P ( 3 , ,~H 2 ) , W 2 ( 2 , f WJ ( 2 ) 
E QU I VAL E NC E (N 1, N ( 1 ) ) , (N 2 ,N ( 2) , , ( N.3 ,N ( 3) ) 

10 I F ( I A B S ( [F $,E f) - U c:; C C , C; 0 C , U ' 
12 MTT=MAXO(M(l),M(2),M(3»-2 

IF(MTT.lT~1) GO TO 13 
MSUM=M(1'+M(Z)+M(3) 
IF(M$UM.GT.15) GO TO lY 
RODT2 = SQRT(2.1 ' 
IF (MTT-MT ) 14,14,13 

13 IF ERR= 1 
RETURN 

14 IFFRR=O 
M L='M (l) 

M2=M(2) 
M3=M(3) 

Nl=2'l<*Ml 
N2=2**MZ 
N3-=2**!II13 

16IF(IFSET)ZO,18,18 
18 NX= N1*N2*N3 

FN = NX 
00 19 I = 1,NX 
A(2*1-l) == A(2*I-U/FN 

19 A(2*I) == -A(2*1'/FN 
20 NP(1)=Nl*2 

NP(21-= NP(U*NZ 
NP(3'-=NP(Z)*N3 
00 250 to=1,3 
Il :: NP(3)-NP(.I0) 
ILL = Il+l 
MI = M(ID) 
IF (MI)250,250,3C 

30 IDIF=NP(IO) 
KBTT=NP({OI 
MEV = 2*(MI/2) 
IF (Mf - MEV )60,60,40 

40 KBIT='KBIT/2 
KL=KBIT-2 
00 50 1;=l,Ill',IDIF 
KLAST=KL+I , 
DO 50 K=I,KlAST,2 
KD=K+KH IT 
T=A(KD) 
A(KC)=A(KI-f 
A(K)=A(KI+f 
T=A(Ko+ll 
A(KD+1 )=A(K+t)-T 

50 AtK+1)=A(K+ll+T 
IF (MI - 1)250,250,52 

52 LFIRST =3 
JLAST=l 
GO TO 10 

From IBM program HARM 

cf. Bu~inger (1971). 

) , 

, r 



60 LFTRST= 2 
JLAST=~O 

70 DO 240 L=LFIRST,MI,2 
JJOIF=i<.f:31T 
KBIT=KBTT/4 

/ KL=Kt:llT-Z 
DC 80 1= 1 , ILL, UH F 
KLAST=I+KL 
DO 80 K=I,KLAST,2 
Kl=K+KBIT 
K2=Kl+KBIT 
K3=K2+KtlIT 
T=A(K2) 
A(K2)=A(K'-T 
A(K)=A(K,+t 

. T=A(K2+1}. 
A(K2+1'=A(K+l)-T 
A(K+i)=A(K+l)+T 
T=A(K31 
A(K3,=A(KU-T 
A(Kll=A(Kl}+T 
T=A (K3f·l) 
A(K3+1)=A(Kl+11-T 
A(Kl+l)=A(Kl+l)+T 
T=A (K1> 
A(Kl)=A(K)-T 
A(K)=A(K)tT 
T=A(Kl+l) 
A(Kl+l'=A(K+ll~T 

A(K+l)=A(K+l'tT 
R=-A(K3+1) 
T = A(lO' 
A(K3)-=A(K2)-R 
A(K2'=A(KZ'+R. 
A(K3+11=A(K2+1)-T 

80 A(K2+1)=A(K2+1,tT 
IF (JLAST) 235,235,82 

82 JJ=JJOIF +1 
Il.AST= I L +JJ 
DO- 85 I = JJ,ILAST,IDIF 
KlAST= KL+I· 
DU 85 K=I,KLAST,2 
Kl = K+KBIT 
K2 = Kl+KBIT 
K3 = K2+KBIT 
R =-A(1<2+1) 
T = A(K2) 
A(K2) = A(K)-R 
A(K) = A(K)+q 
A(K2+1)=A(K+l)-T 
A(K+l'=A(K+l)+T 
AWR~A(Kl)-A(Kl+l) 

AWl::: A(Kl+l)+A(Kl' 
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R=-ACK3)-ACK3+1j 
T=ACK3J-A(K3H J 
A(K3)=(AWR-R)/ROOT2 
A(K3+1)=(AW~-T)/ROOT2 

A(K1)=(AWR+R)/RCOT2. 
A(Kl+1)=CAW[+T)/ROOT2 
T= ACK1) I 

A(KU=A(K)-T 
A(K}=A(K)+T 
T=A(K1+U 
A( 1<1+1 )=A( 1<+1)-T 
A{K+l}=A( K+1 I+T 

.R'=-ACK3+1 ) 
T=A(K3) 
A (K 3) = A ( K 2) -R 
'A (K2 )=/'1( K2 )+R 
A(K3+1)=A(K2+~J-T, 

85 A(K2+1}=A(K2+1}+T 
IF(JlAST-I) 235,235,90 

90 JJ= JJ + JJDIF 
DO 230 J=2,JlAST 

961=INV(J+U 
98 IC=NT-I 

vHI)=SnC) 
W(2'=S(I) 
12=2*1 
12C=NT-I2 
I,f( I 2C ) 1Z C, 11 C, 1 C C 

100 W2(U=S(I2C) 
W2(2)=S(I21 
GO TO 130 

110 W2(ll=D. 
W2(Z)=1. 
'GO TO 130 

120 12(C = 12C+NT 
12C=~I2C 

W2( U=-S( 12C) 
W2 (2 )=$'( 12CC) 

13·:) 13 = I + I 2 
I 3C=NT - 13, 
IF(13C)16Q,150,140 

1. 4 0 W 3 ( 1) -= S ( 1 3C ) 
W3(2)=S(13) 
GO TO 200 

150 W3(1)=O. 
W3(21=1. 
GD TO ZOO 

160, 13CC,=13C+NT 
IF( I3CCH90, 18C, 170 

170 13C=-I3C 
W3( U=-S( 13C) 
W 3 ( 2 ) = S ( I3C C ) 
GO TU ZOO 
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180~W3(1)=-1. 

W,,(2,)=i). 
'GO TO 200 

19Q I3CCC=NT+13CC' 
Dec = - I 3CC 
W3 ( 1) =-$ ( I3CCC) 
W3(2)=-S{UCC) 

200 ILAST=IL+JJ 
no 220 I=JJ,ILAST,IDIf 
KlAST=Kl+I 
DO 220 K=I,KLAST,2 ' 
Kl=K+KBIT 
K2=Kl+KBIT 
K 3=K'2+K13 IT 
R=A(K2'*W2tl,-A(KZ+ll*W2(Z) 
T=A(K2'*W2(2)+A(K2+1l*WZ(1) 
A ( K 2 ) =' A ( K ) ... R 
A(K)=A(K'+R 
A(K2+1)=A(K+l}-T 
A(K+U=A(K+l)+T 
R,= A ( K3 ) *w 3 ( 1) - A (K 3+ 1) *w 3 ( 2) 

~=A~K3)*W3(2'~A(K3+1)*W3(1' 
A~R=A(Kl)*~(l'-A(K(+1)*W(2) 
AWI=A(Kl)*W(Z)+A(Kl+l'*W(l} 
A(K3,=AWR-R 
A(K3+1)=AWI-f 
A(Kl)=AWR+R ! 

,A(Kl+ll=AWI+T ' 
T=A(Kl), 
A(Kll=A(K)-T' 
A(K)=ACK)+T 
T=A(K!+l) 
A{Kl+1J=A(K+lJ-T 
A(K+i)=A(K+l '+T 
R=-A(K3+1) 
T=A(K3) 
A(K3'=A(K2)-R 
A(K2)=:-A(K2)+R 
A(K3+1)=A(K2+1)-T 

220 A(K2+1'=A(K2+1'+T 
230 JJ=JJDIF+JJ 
235 JLAST=4*JlAST+3 
24r) CONTINUE 
250 CONTINUE. 

N T S Q.:: N T ~, N T· 
M3MT=M)-MT 

350 If(MJMT) 370,36C,360 
360 IGO)=! 

N 3VNT= N3! NT 
. MINN3=NT 

GO TO 380 
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370 lC;03-=2 
'N3VNT=1 
NTVN3=NT/N3 
M I NN3=N3 

380 JJU3 :: NTSQ/NJ 
M2MT=M2-MT 

450 IF (M2MTl470,460,460 
460 IG(,)2'=1 

, N2VNT-=N2/NT 
MINN2=NT 
GfJ TO 480 

470 IC02:: 2 
N2VNT=1 
NTVN2=NT/N2 
MINN2=N2 

480 J ~10 2= N f S Q I N;~ 
MIM1=MI-MT 

550 IF{M1MT)570,560,560 
560 IGOl::1 

N 1 VNT=N1/ NT 
MINNl=NT 
GO TO 580 

57p IGOl=2 
NIVNT::1 

, NTVNl==NT/N1 
MINNl=Nl 

580 JJDl=NfSQ/Nl 
900 JJ3=1 

J=l 
, on 880 JPP3==1,N3VNT 

IPP3=INV(JJ3) 
on 870 JP3=1,MINN3 
GO TCl (610,620),IG03 

610 [P 3= I N V ( J P 3 ) * N 3 V N T 
GO,TO 630 

620 IP3=INVtJP3)/NTVN3 
630 13=( IPP3+IP3)*N2 
700 JJ2==1 

DO 870 JPP2=1,N2VNT 
IPP2=INV(JJ2)+I3 
00 860 JP2=1,MINN2 
GO TO (710,720),1:G02 

710 IP2~INV(JP2)*N2VNT 
GO TO 730 

720 IP2=INV(JP2)/NTVN2 
730· 12= (IPP2+[P2 )*N1 , 
800 JJl=l 

00 860 JPPl=l,NlVNT 
IPP1=INV(JJl)+12 
00 ~50 JP1=1,MINNl 

,GO TO (810,820)dGUl 
810 IPl=INV(JPl)*NlVNT 

GU Tn 830 
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*. 

820 IPl=INV(JPl)/NTVNl 
830 I'=2*(IPPl+IPl)+1 

IF (J-I1 840,845,8't5 
840T=A([) 

A(I)=A(JI 
A(J)=T 
T=A(I+l) 
A( I+i)=A( J+1) 
A (.l+-l)=T 

845 CDNTINUE 
850 J=J+2 
860 JJ1=~J1+JJOl 
810 JJ2=JJ2tJJf)2 
880 JJ3 -= JJ3+JJDJ 

890 IF(IFSET) e~5,8g5,a91 

891 00 892 J :: 1,NX 
892.A(2*I) = -A(2*I) 
895 RETURN 
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900 MT=MAXQ(M(l),M(2),M(3n -2, 
IF UH .l T.ll GU, TO 905 
MT = MAXO(2,MT) 

904 (F ( M T -13 J 9 C 6, C; C 6 , 9 05 
905 . IF E P R = 1 

GO TO 895 
906 IFERR=O 

NT=2**r--T' 
NTV2=NT/2 

.910 THETA=.7853981634 
JSTEP=NT 
JOIF=NTV2 , 
S(JDIF)=SIN(THETA) 
DC 950 l=2,MT 
THETA=THETA/2. 
JSTFP2=JSTEP 
JSTFP=JDIF 
J 0 I F= J S T F P /2 '-, 
S(JOIF)~~IN(THETA) 

JC1=NT-JDIF 
S(JCl)=COS(THETA) 
JlAST=NT-JS TEP2 
IF(JlAST - JSTEP) 950,Q2C,92Q 

920 DO 940 J=JSTEP,JLAST,JSTEP 
JC=NT-J 
JU=J+JOIF 

940 S{JOl=S(J'*S(JCl)+S(JDIF)*S(JC) 
950 CONTINUE 



960 MTlEXP=NTV2 
LfJIFXP=l' 
INV( U=O 
DO 980 L=l,MT 
INV(LMIEXP+l) = ~TLEXP 

00 970 J=2,LMIEXP 
JJ·=J+LMIEXP 

970 INV(JJ)=INV(J).+MTlEXP 
f.1TlEXP=MTlEXP/2 

980 lMiEXP~~MIEXP*2 
982 IF(IFSET)l2,895,12 

END 
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Appendix H. Subroutines for the 
Attenuation':'Corrected Iterative Least-Squares Algorithm 

The reconstruction of objects by using an emis sion source will have a 

density lower than the true itnage, due to attenuation, ,if the projection data 

are as sumed to be 

Rk8 = . L A(i,j) (Hi) 
(i, j)Eray(k,8) 

The results of this are discussed and shown in Section (3.9). To correct for 

this we have developed a least-squares iterative algorithm (Fig. H-1) which 

assumes that 
" . 

Rk8 =' L f~. A,(i,j), 
(i, j)Eray(k, 8) 1J 

(H2) 

e ' " e 
where f .. are the attenuation factors. In order to evaluate the factors f .. 

1J . ' 'lJ 
the object is first re'constructed by CALL LESQ (B, P, ITER) for a few iterations, 

ITER, and where the projections P (M, K) are the geometric mean of opposing 
• views. Then the. shape of the object is outlined by assuming a particular 

threshold, XLEVAL, by 

CALL SEARCH(B, BX, BOUNI, BOUNJ,XLEVAL, L) 

where B is the NX N reconstructed array after implementating LESQ;BX, 

is an NXN array used to define wh~ther a pixel with values given by B is an 

interior, boundary, or exterior point; BOUNI, BOUNJ, give the x and y co-

ordinates respectively for the boundary points; XLEVAL is a threshold value 

such that the boundary is determined if B(I, J) > MAX/XLEVAL, where MAX 

is the maximum value for B; and L is the total number of boundary points. 

Therefore, if the matrix B is 

0 0 0 0 0 0 0 0 ,0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 20 21 0 0 0 0 

6 0 -0 20 10 15 25 0 0 0 

0 0 20 15 6 10 21 0 0 0 

0 0 20 15 5 10 20 0 0 0 

0 0 0 21 22 20 0 0 ,0 0 

0 0 0 0 0 0 0 0 0 0 
; 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 o -
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then the matrix BX returned will be 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 l' 0- ,0 0 0 

0 0 -0 1 -2 -2 1 0 0 0 

0 0 1 -2 -2 -2 1 0 0 0 

0 0 1 -2 -2 -2 1 0 0 ,0 

0 0 0 1 1 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0, 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 .J . 
Note that the searching occurs first from each side, then from the top and 

bottom. It is as sumed ,that the opject is convex as will be the case for any 

bra~:ri scan. 

Next the values f~. are' determined by 
1J 

CALL DIST(BX, BOUNI, BOUNJ, 11, J1, M, L, ATC, FACTOR,XD) 

where BX is the NXN array described above; BOUNI and BOUNJ are the 

arrays containing the x,and y coordinates respectively for the boundary points; 

11 is the x coordinate and J1 is the y coordinate for th,e pixelwhos.eFACTOR=f~j 
is desired; M is the index of the angle, L is the total number of boundary 

poip.ts, and ATC 1s the assumed attenuation coefficient; arid XD is the distance 

of ,the, pixel from the boundary if it is an interior point (XD = 0 if the pixel i~ an 

exteri'or point). , , e 
For interior points the factor , FACTOR =J .. " will be 

1J 
FACTOR = EXP (-ATC*XD) 

wher~ XD is the distanc,e of the pixel from the boundary, arid where the dis

tance is measured' along a line at the angle IA(M) and in the directiono£ the 
- " 

projection. For exterior points , FACTOR will be zero since there is no density 

at these points for' an emission study. _ This saves computer 'time in not having 

to determine the factors for exterior points. 

Next the reconstruc~ed array corrected for attenuation is determined by 

CALL LESQC (B, PP, FACT. ITER) 

where B is the reconstructed array. PP is the sample projection data, ITER 

is the number of iterations, and FACT (I, J. M) is the array storing the factors 
e 

f. .0 

1J 
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In executing' this subroutine on the CDC 7600 at Lawrence Berkeley Labs, 

we had to use. Large Core Memory in order to store the 46 X 46 X 36 array 

FACT; thus the dimension declaration, LARGE is used to allocate storage. 

The sums for the projection data given by Eq. (HZ) are obtained by 

CALL SUMM (B,XR, FACT) 

where B is an NXN array, XR is an array ~ontaining the projections of B, 

and FACT is the array storing the factorsf~.. Each projection is denoted by 
1J 

XR (M, K) where M is the index of the angle and K is the inde~ of the ray. 
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Input projection 

values P(M,K) 

t 
CALL, CONST J 

1 ' , 
(

, I/comment: See Appendix F for 
CALL LESQ B,P ,ITER) flow chart for LESQ. Note' 

, thatP' is the g eometric mean. 
ews of opposing vi 

Determine shape of object by 

CALL SEARCH (B,BX, BOUNI,BOUNJ ,XLEVAL,L) 

~ 

For all I,J ,M determine factors F ACT(I,J ,M) 

by 

CALL DIST(BX,BOUNI,BOUNJ ,Il,Jl,M,L,ATC, FACT(I,J,M),XD). 

t 
Reconstruct the image corrected for attenuation 

by 
- CALL LESQC(B ,P ,FACT ,ITERR) 

Comment: The flow chart for LESQC is similar to that given for LESQ in Appendix F. 

However, CALL SUMM(B,XR) replaces CALL SUM(B,XR) where in SUMMit is 

assumed that XR(M,K)= LFACT(I,J ,M)' if- B(I,J), 'ano the equations for DEL 
(I,J)€ ray(K,M) 

and DAMP are 
, 

DEL(I,J) ~l~l FACT(I,J,M) * II-XR(M,K)/P(M,K)If/:f:l FACf(I,J,M)2/P(M,K) 

~ Ml IR(M) l j,Ml IR(M) , 
DAMP = l~l~=i XDEL(M,K)*[l-XR(M,K)ip(M,K)] VM~~l Xri~L(M,K)2/p(M,K) 

/ 

Figure H-l. Flow chart for the attenuation corrected iterative least-squares algorithm_ 
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SUBRUUfINE SEAKCH(B,BX,BDUNI,BUUNJ,XLEVAL,L) 
DIMENSION O(46,46),BX(46,46} . ' 
IN1EGER ROUNJ(200),BOUNJ(20C) 

COMMON S(36),C(36),T(36),IR(361,XL~36),IA(J6),XN,XNl,XN2,N,Nl,Ml 

MAX=O. 
Nf'J =N/2+ 1 
L=O 
DU 11 l=l,N 
no 11 .1= 1 , N 
IF(B(I,JJ-~AX)11,11,12 

12 MAX=B(I,J) 
11 CONTINUE 

DO 13 1=I,N 
00 1.3 J=I,N 
I3X(I,J'=O. 

13 CONTINUE 
DO 1 J=I,N 
11=0 
12=N+l 
TTL=1 
IT2=1 
OCJ 2 K=I,NN 
-11=11+1 
12=T2-1 
IF (I Tl) 3,3,1t 

1t IF(B( Il,J)-MAXIXLEVAL)9,<1,6 
'0 BX(Il,J)=I. 

IT 1=0 
l-=L+l 
BOUNI(L)=ll 
BOUNJ{L'=J 
GO TO q 

3 BX( Il, J )=-2. 
<1 IF(IT2tlO,LO,7 
7 IF(B( 12tJ)-MAX/XLEVAU2,2,8 

- 8 HX ( I 2 ~ J )= 1. 
L=L+l 
BUUNI(L)=I2 
AOUNJ(l)=J 
IT2=0 
Gfl TO 2 

10 BX(12,J)=-2. 
2 CONTINUE 
1 CONTINUE 

on 21 1=1, N 
Jl=O 
J2=N+l 
IT1=1 
IT 2=1 
DO 22 K=I,NN 
Jl=Jl+l 
J2=J2-1 
IF(IT1l23,23,24 

24IF(RX(I,Jl))35,25,33 
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25 IF(B(I,Jl)-~AX/X(EVAl)23,2j,2b 
26 AX( I ,Jl )=1. 

- l= L+ 1 
BOUN l( l)= I 
BCUNJ(l)=Jl 

33 IT1=O 
GO TO 23 

35 IF(B(I,Jl)-MAX/XlEVAL'36,36,37 
37 BX(I,Jl)=l. 

l'==l+l 
BnliNI(L)=I, 
BOUNJ( L)-= Jl 
IT1=O 
GU TO 23 

36 BX( I,Jl)-=O. 
23 If(IT2)22,22,21 
27 IF(BXlI,J2»30,28,31· 
2 8, I F ( B ( I, J 2 ) - M A X I Xl E V A l j 22 , 22 , 29 
29 f3X(I,J2)=1. 

L=t+l 
BCUNI IL )-=1 
RDUNJ(L)=J2 

31 JT2=O 
GO TO 22 

JOIHB( I,J2)-MAX/X(EVAL)46,46,41 
47 RX( hJ2)-=1. 

L=L+l 
BOUNI (L )=1 
BClJNJ(L)-=J2 
IT2=O 
GO TO 22 

46 AX( I,J2)=O. 
22 CCNT[NUE 
21 CllNT INUE 

RETURN 
END 

. ( 
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SUBRUUTINE CIST(I:3X,BOlJNI,BOUNJ,Il,Jl,M,L,ATC,FACTOR,XO) 
DIMENSIO~ BX(46,46J'· 
COf.'1MON S(36) ,e( 36)', T(36}, IR (36) ,XL( J6), IA(36), XN,XNl,XN2,N,Nl,M1 
INTEGER BCUNl(200),tlCUNJ(200) 
FACTnR~1. 

·XD=O. 
Xll=FUlAT (11 r 
X.Jl=FlOAT(Jl) 
IF(HX(Jl,Jl»ZQQ,201,2CO 

200 IF(IA(M»203,204,2J3 -
203 IF( IA(M)-90)205,206,207 
2 a 7 I F ( I A 00 - 180 ) 208 ,z 0<; , 2 10 
210 IF( IA(M)-270)2l1,212,213 
204 1=11 

1 1=1+1 
IF(BX(I,JIJ)1,9GS,2 

2 Xf)=FLOAT(I-IU 
GO TO 9qq 

205 XlL=64. 
DO 3,K=1,L 
1 F ( Il.L T • B au N I ( 1<.,) • A N f). J 1. LT • B OUN J ( K ) ) 4, 3 

4 BT=Fl(iAT(BOlJNI(K» . 
BJ=flOAT(BOUNJ(K}) 
Xl X = A B S ( B J - X J 1 - ( B I - X I 1 ) * T( M ) ) * C ( M·' 
IF(XLl-XLX)3,3,5 

5 XlL=XLX 
XD=SQRT«XII-BI)**2+(XJI-BJ)**2) 

3 CONTINUF-
GO TO 999 

206 J=Jl 
11 J= J+l 

IF( BX( I1,J)) 11 ,9<;9, 12 
12 XD=FLOAT(J-Jl) 

GO.TO 999 
208 XLL=64. 

DO 33 K=l,l 
[ F ( I h G T • B 0 U N I ( t< ) • AND. J 1 • LT. B OU N J ( K ) J 34, 3 3 

34 BI=FlOAT(BOUNI(K}} 
BJ=FLOAT(BOUNJ(K») 
XLX=ABS(BJ-XJl+(XIl~BI)*T(M»*C(M) 

IF(Xll-XLX133,33,35 
35 Xll=XLX 

XO=SQRT«XI1-BI)**2+(XJ1-~J)**2i 
33 CONTINUE 

GO TO <199 
209 1=11 

41 I=I-1 
IF(BX( I,JU)41,9<1<1,42 

42 XD=FLOAT(II-I) 
GO TO 999 

211 XLL=64. 
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Dll 53 K=l,L 
If( Il.GT.BOUNI(K).ANO.Jl.GT.BOUNJ(K»54,53 

54 BI=FlOATtBOUNI(K» . 
8J=flOAT(BCUNJ(K)} 
XLX=ABS(XJI-BJ-(XII-BI)*T(M)'·C(M) 
IF(Xll-XlX'53,53,55 

55 Xll=XlX 
X8=SQRT«XII-BI)**2+(XJI-OJ)*.Z) 

53 CONTINUE 
GO TO 999 

Z12 J=Jl 
61 J=J-l 

If(BX(Il,J»61,9g9,62 
62 XD=fLOATCJI-J) 

GO TO 999 . 
213 XlL=64. 

DO 73 K=l,L , 
IF(Il.lT.BOUNl(K).AND.Jl.GT.BOUNJ(K»74,73 

. 74 BI=flCAT(BOUNI(K» 
BJ=FlOAT(BOUNJ(K» 
XLX~ABS{XJ1-eJ+(BI-Xll)*T(M»*C(MJ 
(F(Xll-XLXJ73,73,75 

75 XLL=XLX 
XO~SQRT«~[1-BI}**2+(XJI-BJJ**2J 

73 CONTINUF 
g99 FACTOR=FXP(-ATC*XD) 
201 ,RETURN 

END 
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SUBRGUTINELESQCCB,PP,FACT,ITERR) 
QIMENSION U(46,46),OEL(46,46),PP(36,64»)XR(36,64),XDEl(36,64) 
CO~MON S(36),C(36),T(36),IR(36),XlC36),IA(36),XN,XNl,XN2,N,Nl 1M! 

. lAHGE FACT(46,46,}6) 
Kl=l 

79 CALL SUMM('Ij,XR,FACT) 
DO 20 I=I,N 
DO 20 J=l,N 
XIP2=0 • 
R =(). 

DO 30 M= 1 , ~H, 
CAll RAY(I,J,M,K) 
XX=PP(~1,K)+1. 

X[P2=XIP2+FACT( I,J,M)**2/XX 
R=R+FACT([,J,M)*(1.-XR{M,K1JXXl 

30 C ONT HIUE 
DEl( I,J)=R/XIP2 

20CDNTINUE 
CAll SUMM(OEL,XCEL,FACT) 
XNUM=O. 
OEM=O. 
DO 8a M=l,Ml 
MR~IR'M) 

DO BO K=l,MR 
X X= P ( M, K ) +l • 
XNUM=XNUM+XDEL(M,K)*(l.-XR(M,KJ/XX) 
DEt-l=DEM+XDH (M,K)**2IXX' ~ , 

80 C li NT [N U E 
DAr"~P=XNUM/Df ~ 
0(1 83 [=l,N 
0[1 83 J=l,N 
B( I,J)=B( I,J)+OAMP*DEL( I,J) 
IHB( 1 ,J) )10,83,83 

10 B(I,J~=O. 
83 CUNTINUE 

Kl=Kl+1 
IF(Ki-ITERR)19,79,81 

81 RETURN 
END 

,-



SUBROUTINE SUMM(R,XR,FACT) 
DIMENSION S(46,46),XR(36,64) 

/ 
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COr.' MON S ( 36 ) ,C ( 36) , T ( 36) , [R ( 36' , XL( 36) , I A (36 ) , XN, XN 1 ,X N2 ,N, N 1,M 1 
LARGE FACT(46,46,36) 
DO It3 M:l-;Ml 
MR=[RC'<1) 
IF (IA(:'4) .EQ.O.UR.IA (1'>1) .EQ.180)52,51 

51 IF( lA([';1).EQ.YO.OR.IA(Ml.EQ.2TOJ54,53 
52 DO 19 K=l,MR 

XR(M,K'l=O. 
00 66 l=l,N 
XR(M,K)=XR(M,K).FACT(I,K,M)*~(I;K) 

66 CONT INUF 
19 CONTINUE 

GU TO 18 
54 DO 61 K=l,MR 

XR(M,K)=O. 
DO 67 .1=1,(\1 
XR(M,K)=XR(M,K)+B(K,J)*FACT(K,J,M) 

{)T CONT INUE 
61 CONTINUE 

GO Hl 18 
53 DD 63 K=I,MR 

XR(M,K)=O. 
CALL YMIN(K,M,IY1,IY2) 
on 68 J=IV1,IY2 
CALle XMIN(K,II1,J,IXl,IX2) 
DO 68 I = I Xl, I X 2 
XR(M,K)=XR(M,K)+B(I,J)*FACTt),J,M) 

60 CONTINUE 
63 CONTIf\lUf 
18 CONTINUE 

RETURN 
END 
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Appendix 1. S,ubroutine for Array Imaging 

The reconstructed array can be imaged, as in Fig. 1-,1, on the computer 

p:rin.tout ,by 
( 

CALL. ARAYPLT(B, N) 

where B is an NXN array. 

This subroutine utilizes the over-printing capability on the, line printer at 

Lawrence Berkeley Laborator'y. The line printer has ten characters per inch 

and six lines per inch. Therefore, the subroutine interpolates between the 

lin,es in order for the array to appear square. Some printers have eight lines 

per inch for which the subroutine would have to be changed ac~ordingly,. A 

printer with eight lines per inch is considerably more desirable. McLeod (1970) 

describes the particular algorithm used here. 
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j 

.. ****************************************** 
* * ~* ----- - * 
* --==------- * * - ---===========+====--- * * ~ --==++=+++++++)~+===-- - * * ~ -=+++++++)++++++)++++==- * 
* --=+)=+++)+=++++==+)+)+++~--- * * - -~~=++++++++==+=+++)-).+++~==-- * - , * - ---==+++++=++======++++++++++==--' * 
* --=~+~~+~++~+====+++=+»)++++++=-- -~ * --~=+++++=+===+==+++)11ZAXZ1)+++=-- * * - - -=+)+++++=++=+=++++lXa •••• MZ»+---- * 
* -=-++)++++===++++++)la •••••• MZ»=- --* 
* ---===++++=+=+++=++)lM ••••• OAZ1+=-- * 
* --=+=+=+=+++++++=+»XM •••• M1»==- * * - ---=++=++++++++++++++)XAAAZ11+==-- * 
* - --=+"1-++++++++++=++»)11»f»==-- * 
*--=++++++».)++++)+»)+)+)+==- - * 
* ---~=++++)+)+=+»»»»»+++=-- - * 
* ---=+++++++»»»)1»+)+=----- * 
* --==+++++)+)++»)+)+==-- * * ~ ---=-==+++++++++~=-- * 
* * * 

-
* 
* -* 

************************.******************* 
XBL 741-228 

Figure I-I, Example of overprinting technique used for CDt or IBM high-speed 
printer output display of images, 

I " 
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SUBROUf[NE ARAYPlT(B,N) 
DIMFNSION 8(46,46) ,LNt( 128) ,LN2(128J ,LN3( 128) ,lN4(128) ,LNS( 128) ,IN 

26(l28),lN7(128),lN8(l28),DEN(ZlJ 
INTEGER GRAYl(Zl) ,GRAY2(21) ,GPAY3(21) ,GRAl'4(21) ,GRAY5(2U ,GRAY6(2l 

2J,GRAY7(2Ll,GRAY8(21) . 
DATA (GRAY1(I"I=1,21)/1~ ,1~-,lH=,lH+,IH),lHl,lHl,lHX,lHA~lHM,lHO 

2,lHC,lHO,lHO,IHO,lHO,lHO,IHC,IHO,lHO,lHOI 
OAT A (G RAY 2 ( I ) , I = 1 , 2 1 } I 1 H ' , 1 I-< ,1 H ,1 H ,1 H , 1 H ,1 H ,1 H ,l H ,1 H ,l H-

.' 2, IH=, IH+, IH+,lH+, IH+,lhX, IH)r,lHX,lHX,lHXI 
DATA tGRAY3(1),I=l,21)/IH ,11-< ;lH ,1H ,lH ,lH ,lH ,1H ,1H ,IH ,IH 

2,1h ,IH ,IH ,lH ,lH ,lH',lH ,1HtlH ,lH'1 
DATA (GRAY4(J),[=l,2U/ll-' ,1H ,1H "lH"lH ,lH ,lH ,IH tlH"lH ,1H 

2 , 1 H , 1 H ,l H. ,1 H- , 1 H ~ , 1 H. , 1 H. , tH. , 1 H • , 1 H. I 
[) A T A (G R A V 5 ( 1 ) , 1= 1, 21) I 1 H ,1 H ,lrl ,l H , 1 H ,1 H , 1 H ,1 H / , 1 H ,1 H ,1 H 

.2,IH ,,lH ,lH ,IH ,lH=,lH-,U-'hLHH,lHH,lHHI 
DATA (GRAV6(U,I=l,2U/IH ,1H ,lH ,1H ,lH,lH dH ',lH ,lH ,IH dH 

2,lH ,IH ,IH ,IH ,lH ,tH ,1~C,lHB,lHd,lHBI 

DATA (GRAY7(1),I=l,211/1H ,lH ,lH ,lH ,1H,1H ,lH ,lH ,lH ,lH tlH 
2 ,1 H ,1 H ,1 H ,1 I-< ,1 H ,l h ,1t-< tid ,1I-lV, U-lV I 

DATA (GRAV8(I),I=l,2U/IH,lH ,1H ,1H, ,lH ,lH tlH ,lH ,lH ,lH ,lH 
2,lH ,lH ,1H ,lH ,IH ,lH ,lH ,lH,lH ,lHAI 

OA T A (DEN ( t) ,1= 1,21 ) 1.0,. 15, .22., .25 t • 29 ,.33,.37', .40, .42,.45, .53, .5 
26,.60,.64,.67, .79,.85,.89,.G3,.97,l./ 

XMA X=O. 
DU 500 l=l,N 
DO 500. J= 1 , N 
IF{B( I,J) '501,50C,500 

501 EHt,J)=0. 
500 CONTINUF 

DD 1 I=l,N 
on 1 J-= 1, N 
IF(X1>"AX-B( I,J) )33,1,1 

33 XMAX=8(I,J) 
1 CONTINUE 

IF(N.Gf.100)23,24 
24 N1=N*6/10 

NN-=(60-NU/4-1 
DO 22 I-=I,f\lN 
PRINT 101· 

101 FORMAT(/} 
22 CONTINUE 
23 on 2 1=1,128 

LNl( 1)= 1H 
LN2(I)'=lH 
LN3(I)=IH 
LN4( I )=lH 
LN5(I}=lH 

/"' LN6 ( I )= 1 H 
LN7{I)=lH 
LN8 ( 1)-=114 

2 CUNTINUE 
I 1= ( 128 -N ) 12 
12= I l+N-l 
111=11-1 
1 I 2= 12+ 1 



0012 [=111,112 
LN1(I)=lH* 

12 CCNTINUE 
PRINT l002,LNl 

1002 FORMAT(lX,128(Al» 
N 1=N*6/ 1.0 
DO 3 K= 1, Nl 
Jl=N-(K-U*10/6 

-126-

J2=Jl-1 \ 
XJ=FLOAT(N)-FLOAT(K-l)*lO./t. 
11=(' 
004'1=11,[2 
II=II+1 

, 

( 

0= IH I I~J 1 ) +, B ([ I, J2 ) -8 ( I I ,J 1 n * (F LOAT ( J 1) -XJ) / FLOAT( J I-J2) 
O=O/XMAX 
DO 5,M=1,21 
IF(O-DEN(M) )6,7,5 

5 CONTINUE 
6' Ml=M-l 

1-12=M 
T=(GEN(M2)+OEN(MIJ)/2. 
R=DEN{M2J-DEN(Ml) 
D=O+R/Z.-R*RANF(O.) 
I F ( [1- T ) 9,9', 10 

9 L=M1 
Gll ·TO .20 

LO L=M2 
GO TO 20 

7 L=M 
20 LNltJ)-=GRAYl{L) 

LN2 ( [)=GRAY2 (L) 

LN3( I'l=GRAYJ( L} 
LN4(I)=GRAY4(L) 
LN5( I )=GRAY5(L) 
LN6( I ),=GRAY6(L) 
LN7 ( I )=GRAY7 eu 
LN8 ( I )=GRAY3 (l.) 

4 CONTINUE 

1000 
1001 

3, 

PRINT lOOl,lNl 
PRINT lOOl,lN2 
PRINT 1001,LN3 
PRINT lOOl,LN4 
PRINT 10Cl,LN5 
PR[NT 100l,lN6 
PRINT lOOl,lN7 
PRINT 1000,LN8 
FORMAT(lH ,128(Al» 
FORMAT(lH+,128(Al» 
cOIn I NU E 
00 13 1= I I 1 ,I 12 
lN1(I)=1H* 

13 CONTINUE 
PRINT l002,lNl / 
RETURN 
END 

. " 

.' 
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This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 
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