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Abstraét

Quantitative three-dimensional distribution of isotopes in patients is de-

termined by digital reconstruction of data from many views taken by rotating

the subject at 10° intervals before the gamma camera. The superiority of

these techniques over conventional tomography is demonstrated by comparisons

between reconstruction algorithms such as back-projection, simultaneous

_iterative reconstruction, iterative least-squares, and back-projection of

filtered projection. The filtered back-projection technique (convolution
method) is superior in speed; however, for quantitative results that take
into account both noise and attenuation, the 1terat1ve least-squares method
gives the best approx1mat10n to the real source distributions. Resolution is
1.25 cm for detection of holes in 20-cm-diameter objects.

Mathematical basis and ' FORTRAN listings applicablebto transmission and

emission imaging are given, as well as phantom and patient studies.
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1.0 INTRODUCTION |

1.1 Scope and Previous Work ' o

Thi‘s study présents application of methods of ascertaining the three-
dimensional distribution of 1sotope concentration or density in nuclear medicine,
and differs from prev1ous three- d1mens1onal reconstruction efforts of astro-
physics, electron microscopy, and x-ray radiology in that statistically poor
‘measurements and photon attenuation are taken into account by the algorithm.
Truly quantitative nuclear medicine cannot be accorriplished from single views
in most cases (Budinger, 1974); thus a means of estimating isotope concen-

tration from data taken from multiple views is needed.. The methods discuss‘ed

here are applicable to photon or heavy ion transmission radiographx as well -

as emission imaging. ,
The methods of three-dimensional reconstruction from multiple two-

dimensional views can be dividied into thirteen categories:

1. Direct matrix techniques, generalized inverse and pseudo-
inverse (Sandler, 1972; Kashyap and Mittal, 1973).

2. Summation, linear superposition, back-projection, moiré, or
simple transverse-section scanning (Andrews, 1936; Edholm, 1960;
‘Kuhl and Edwards, 1963, 1966, 1968; Anger, 1967, 1974; R. G. Hart,
1968; Harper, 1968; Vainshtein, 1970; Reichmann, 1972; Gordon and

' Herman, 1974). : L .

~ '3. Algebraic reconstruction technique (Gordon et al., 1970; Schmidlin,
1972, 1973).

v 4. Algebraic reconstruction technique modified for noise (Herman
et al., in press; Johnson et al., 1973).

5. Simultaneous iterative .reconstruction technique (Gilbert, 1972a).
6. Orthogonal tangent correction (Kuhl et al., 1973).
7. Iterative least-squares technique (Goitein, 1971).

8. Summation of compensated pro;ectlons (Cho et al., , in press,
Vainshtein, 1973).

9. Summation of filtered back-projections, convolution technique
(Bracewell and Riddle, 1967; Gilbert, 1972b; Ramachandran and Lak-
shminarayanan, 1971; Smith et al., 1973; Peters, 1973; Chesler, 1972;
Shepp, in press; Lee et al., in press. : ‘ '

10. Geometric mean iterative technique (Schmidlin, in 'press).
11. - Rho filtered back-projection (Bates and Peters, 1971).

12. Fourier reconstruction (DeRosier and Klug, 1968; Crowther et
al., 1970; Budinger, 1971; Lake, 1971; Peters et al., 1973; Keyes and



Slmon, 1973)

13. Summation of the projections after Hilbert transform of the
derivative of the projection (Radon, 1917; John, 1955; Berry and Gibbs,
1970; Cormack, 1973; Peters, 1973).

' \ i :
Some of these techniques have been compared for accuracy, computer time,

number of views required, -and ability to handle noise (Frieder and Herma:n,
1971; Herman, 1972; Herman and Rowland, 1972; Herman et al., 1974).
alternative classification of methods into four categories: Summation (No. 1); -

Use of Fourier Transforms (Nos. 9, 11, 12); Analytic Solution of Integral.

Equations (Nos. 9; 12, 13); and Series Expahsion Approaches (Nos. 3, 4, 5, 6,

7) has been presented with a review of literature by Gordon and Herman
(1974). | '

The various methods in general are equivalent under certain condi-
tions of transformation in that the result of the reconstruct1on is related to
the true obJect by some 1ntegra1 transformation within the limitations of the
statistic of the measuremert. The direct methods involving matrix inversion |
are usually discarded because the matrices are too large or the system is
undetermined a;r‘ld the equations will be inconsistent. This is not necessarily
‘true if the generalized inverse is used; however, no implementation has been
madé as yet. ‘ v

Many of the algorithms are m‘échanisms of evaluating Radén's relation
between the value of each picture element in polar coordinates A(r, 6) and the
projections for all angles P(x,0) where x denotes an element along the
prOJectmn correspondlng to the line integral through the sectlon to be recon-
structed. ‘Thus Radon in 1917 and subsequently others. (Berry and Gibbs, 1970
Cormack, 1973; and Peters, 1973) showed that

= 8P(x,9) . 1 "
A(r,0) = rsin(0-0') -x

' -'rr/Z

dx de* (1)

In the practical srituation“there is only a finite number of views and
each measurement is subject fo errors. Thus, over the last 15 years special-
ized techniques have been developed for solving the problem of estimating the
distribution of some property in three-dimensional space from many views 6r

~ projections at various discrete angles.
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The text'is divided into a discussion of the mathematical algorithms,
results with phantoms and patients, and methods of handling attenuation.
Aspects of computer implementation are given, along with FORTRAN listings,
as Appendices. Appendix A gives proofs of the Fourier projection theorem

and the relation between the back-projected image and the true image.



2.0 MATHEMATICAL TECHNIQUES

2.1 Three-Dimensional Reconstruction by Stacked Two-Dimensional

Reconstructions

This section presents some of the algorithms implemented for three-
dimensional reconstruction of density of isotope distribution. For computa-
tional simplicity the object is divided into planes along the axis of rotation.
Each plane is reconstructed from some mathematical operation on the corre-
sponding one-dimensional projections, and the planes are stacked to reconsti-
tute the three-dimensional object. Thus we consider the problem of recon-
structing planes or transverse sections from multiple projections (Fig. 1).
This simplification is not possible for cone beams or three-dimensional fan
beams. The fan beam is a diverging beam, which by source or detector
collimation samples a single transverse plane. Most of the algorithms given

below can be modified to handle either parallel or fan beam situations.

2.2 Relations Between Picture Elements and Projection Rays

The digital techniques of acquiring data and manipulating projections
in order to obtain a two-dimensional reconstruction by any of the above methods
are given in more detail. All the methods require an algorithm for determining
the ray k(0) for a particular projection 6 which passes through a given pic-
ture element (Fig. 2). In addition, we need an algorithm which gives all
pixels (i,j) which intersect the given ray k(6).

The appropriate recipe for relating the coordinate (x,y) of one array
rotated some angle 6 from the reference array with coordinate (u, v) is usually

given as

o]
1

ucosf - vsing u = xcosh + ysinf
with the inverse (2)
usinf + vcos6 v =-x sinf + ycosf.

<
I



RECONSTRUCTED
CONVENTIONAL VIEWS CROSS SECTIONS

left lateral anterior right lateral posterior

Figure 1. Reconstruction of transverse sections on a head phantom filled with

0.4 pCi/cc 99m Tc. Two tumors are simulated by filling spheres with 0.8 uCi/cc 99m Tc.
Full three-dimensional reconstruction is effected by doing multiple two-dimensional
section reconstruction and reconstituting the whole by stacking these sections.
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Figure 2. Ray sums are formed by adding the activity from each picture element that
falls within ray lines k-1 and k.

From Eq. (2) one can derive a digital algorithm for determining which pixels
of a rotated array correspond to the reference array; however, an alternate
approach was taken as detailed in Appendix B. The preferred approach is
based on the need to derive an algorithm which will give all picture elements
lying within the boundaries of a specific projection ray as well as a recipe
“which gives all rays that intersect a particular pixel as a function of 6.

The projection of rays passing through the plane remains fixed rela-
tive to the detector, while the coordinate system rotates within the field of
these fixed rays. This is done so that the formulation corresponds to the
actual experiments wherein an object or patient is rotated in front of a fixed
camera and thus differs from other formulations (e.g., see Gordon et al.,
1970). The practical results of these derivations are placed in convenient

terms for the digital computer as follows:
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Family of lines bounding the rays

For angles 6=0° 90°, 180° and 270° the family of lines is
y = k+ 1/2 k=0,1,2....N (3)

For all angles other than integral multiples of w/2, the family of lines is

y = xtanf + y, k/|cost| , k=D, 420000 e (4)
Where
_N+#4 - L NH
Yo =727 " Tcosg| - " 2 EBY
N N-1 .. .
)= + INT [T (|sing| + |cosq]| - 1) + 1/2] if [-]> INT[. ]
%+INT[—N£—1(|sin9|+Icose|-1)+1/2]-1 if [.]=INT[.]
N-1 .. .
N + 2INT [——-—2—-([51n6|+ |coso | _1)+1/2] if [+ 1> INT[- ]
1’].6 =

N + 2INT [l\l-i,i (|sing| + |cosg| - 1) + 1/2] 4 i [-]=INT[-]

Using these equations, the minimum and maximum values for y or the j
coordinates of the pixels that fall within a ray k (between lines k-1 and k)
are determined for each projection angle. Then between these bounds all the
i coordinates are determined by solving the respective equations for x. This
gives a set {(i,]j) |(i,j) eray k(9)} where the coordinate pairs belong to the
kth ray of protection 6. If a coordinate pair falls on the line k, then the
coordinate pair is placed in ray k+1.

For each given projection angle f, we determine the ray k() that
passes through a particular coordinate pair (I,J) using the following formula
for the distance between the pixel represented by the coordinate pair (I, J)

and the line k=0:
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(N+1 - 2I) : 2J -N-1 . 0=@= 90°
L+ s o e |sm9| + 5 1w |cos6| if 180°% 6 < 270°
D = (5)
(21 -N-1) : (2T -N-1) = 70% 6 <480°
L e T |s1n6| T Icos@l if 270% 6 < 360°

where L is given in Eq. B21 (Appendix B). The integer value of D+ 1 gives
the ray number. Thus a one-statement operation for each projection 6 will
yield the proper ray number for a given pixel. In the case of a simple back
projection on a 64 X 64 array using Eq. (5) , the number of calculations is

4096 times the number of projections; alternatively, the back-projection
summation can be determined by assigning the value Pk(e) to each pixel
through which the ray passes, which means the number of calculations is the
product: number of projections times the 64 rays times number of pixels in
each ray. The latter method might be more costly in time, because each ray
must be bounded by a series of logical computer statements. This formulation
does not take into account the fractional area of the pixel through which a ray
passes. The fractional contribution each ray sum might make to a picture
element varies between 0 and 1. For each pixel this weighting can be incor-
porated by calculating the fractional area of the pixel intersected by each ray,
or the length of the ray through the pixel, or by a factor related to the distance
between the ray and the pixel center. Another approach is to modify the ray
width in accordance with the angle of projection relative to a square array.
Incorporation of these weighting factors is costly in computer time, and is

not essential if the number of rays and fineness of the array are appropriately
matched to the data (Frieder and Herman, 1971). The weighting matrix

discussed in the next section incorporates these weighting factors.



3.0 DETAILS OF SOME RECONSTRUCTION METHODS

3.4 . Scope

Of the thirteen methods listed in the introduction, we concentrate
here on the implementation of the back projection, the simultaneous iterative
reconstruction technique, the iterative least-squares technique, and back-
projection of filtered or compensated projections. The direct matrix approach
is presented not only as an introduction to the iterative techniques, but also

to give the framework for possible future work.

3.2 Direct-Matrix and Linear-Equation Methods

In this section we examine the application of linear algebra to the
problem of determining the concentration or density in each element 6f a two-
dimensional section from a number of projections.

Consider the simple problem of reconstructing the four values in a

2 X 2 array from two projections at 0° and 90°

A | A, e g
Ay | Ay =7
=4 =6 "

The feasible solutions are given by the following set of equations:

8y T =R =3
B ehs D oy

A, + A, =P, = 4 (6)
IR T T

This system of equations has an infinite number of solutions because Egs. (6)
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are not independent (the rank of the coefficient matrix and the augmented
matrix is 3). The impossibility of a unique direct solution can be seen from
the following attempt to solve the system Eqs.(6). In matrix notation the

system is given as

F. A=P, (7)
where
11 00 A1 P1
0 0 14 4 A2 P
F=1]101 0} , A = A3 , and P = P3
01 01 A4 P4

The matrix F can be considered a weighting matrix based on the geometry.

Recall from matrix algebra the explicit solution of Eq. (7) is

A=F3,p, (8)

where the elements of 17‘“1 are related to the matrix ¥ as follows:

If
&% _1 —l ! 1 !
f14 B3 f13 %44 f11 21 134 f41—1
1 1
B By & 5 9 3 By By x as
. _ Ao ,

F = f31 ....... ; then F = Dei T f13 .......

1

fa4 f4q Lf'14 faa

where f!. is the cofactor of f...

1) 1)
Note for the example above Det F = 0; thus, there is no unique solution to Egs.
(6). This is an example of four equations (inconsistent) and four unknowns with
no solution by Eq. (8). Itispossible to solve for a 2 X 2 square array with only

two projections by either an iterative scheme or by changing the projection
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angles; in this case, angles 0° and 45° will suffice. Consider the system of

equations for views at 0° and 45°

Ay +A, =B
A, . T

A, - B (9)
A, +A, = By

The solution of this system is given by Eq. (8), where now the inverse matrix

can be evaluated

o 0o 1 o]
L
e P W
44 et )

The extension of this problem to real data and large arrays involves serious
complications; for example, suppose there are sufficient data that the values
in a section of say NX N picture elements can be determined by a linear

system of simultaneous equations. At first glance, it would seem for a 64 X 64

array that 4096 simultaneous equations must be solved. Most investigations

stop at this revelation and proceed to other methods discussed below; however,

it is important to investigate this problem in more detail before giving in to

the notion that such a large matrix inversion is intractable. Indeed, as will

be seen, the direct-matrix method involves a matrix size equal to approximately

(N X N) - (no.of projections) - (no. of elements per projection)

Consider one projection composed of the ray sum or line integrals { Pk6 )

k = 1,n9. At 0°, 90°, or integral multiples of 17/2, each ray of width unity
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intersects a row or column of the section (Fig. B1). However, for projections -
at some other angles, the rays will not intersect each picture element entirely
that is, part of the ray width will encompass a picture element. Thus some
weighting factor fij is necessary to describe the contribution of a particular
pixel A(i,j) to the ray sum Pke' The weighting factor fij can also be used to
account for attenuation. The system of linear equations for one projection at
0° is

P16 = f11 A(1,1) + f12 Afl;2)+ = « « # fiN A(1,N) ,

B = £, A(2,1) + £,, Al2;2)+ « «

20 21 22 A(2,N)

o ¥ g
(10)

PNo

fyq AN, 1)+ AN 2) 4. L A(N, N)

+ £
1 NN

For projections at angles of integral multiples of m/2 for a square array where
the ray is equal to the width of a picture element, all weighting factors are 1;
however, for P

, say at 3° from Pk the weighting factors will be less

ko, 6y’
than one, and the terms of Eq. (10) will vary in accordance with the elements
through which the rays pass, which is dependent on 6. One can generalize to

all projections

U
I

A1,2)+. .. +f, wAN,N) ,

:‘.1,1 A(i,'1)+f1 1

2

P, = f , A(1,1) + f

2 21 2A(1,2)+...+f w A(N,N) ,

2 2

(11)

Pm: fmi A(isi) P fmZA(1’Z)+ e ® & me A(N,N) )

where m is the total number of the rays for all projections, and w is equal to NZ.
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- Written in matrix notation, the previous equation can be expressed as

™ 7l ¥ 7
FP1 i T A A(1,1)
P2 f12 f22 fZW A(1,2)
(12)
me L_fmi fm2 o frnw A(N, N)
In matrix notation P = F - A, and in the case where m = w = N2
as before, we solve for [ A(i,j) ] by inverting the matrix F
E3 sk b3
A(1,1) =P1 1‘.11-I-P2 f12+. +Pm fiw
sk £ 5
A(1,2) = P1 f21 + PZ fz2 + . + Pm wa
(13)
* * *
A(N,N)—P1f1+P2f 2+ +memw
A=r1.p

where the elements of the inverse matrix F-1 are [f;kj] :

If one can calculate the elements of the matrix F-'1 , then the solution
will be a simple multiplication and addition of these elements with all the ray
sums for the projections. In the example above, this involves for each element,
V(N’X N)2 multiplications and (N X N)2 addition operations. In practice on a

computing machine with 1 usec per complete operation, this means

1 ><10-6 sec X [(64)(64)Z + (64 % 64)2] = 33 sec



=41.6=

The long computing time plus the need to store 1.678 x 107 values for F-1

have prompted a search for alternate approaches. Further, the problem of
measurement errors and insufficient angular measurements to satisfy Eq. (13)
have resulted in the 13 algorithms cited above and detailed below or in other
reviews (Frank, 1973; Gordon and Herman, 1974).

If there are potentially serious measurement errors, the problem
can be formulated by requiring that an estimate of the array A in a trans-

verse section be a minimum to a least-squares function

B (P % )2
R (A) = ZZ k6 2- k6, (14)

6 k=1 Oxe

where the picture element values A(i,j) satisfy the relationship

e y o
Ryo = Z TR (15)
(1,j) eray(k,0)
and 012<6 is the variance of the measured projection Pk@'

If ® of Eq. (14) is minimized after incorporating Eq. (15) we have a solution

for A in matrix form (cf. Appendix C for details)

A = (FT<1>'1 F)'1 rl ¢t B, (16)

where <1>_1 is the inverse of the covariance matrix and F is an m¥X N2

matrix composed of the weighting factors such as the fraction of the

area of a particular picture element through which the ray passes as before;
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and m is the totail number of rays for all projections.

For the situation where we are limited in the number of views, the
matrix (FT d>-1 F) is likely to be singular, thus threatening the existence of
a solution to Eq. (16). This seemingly intractable problem might find for its

solution the generalized inverse FG of the matrix F, which in the formulism

of Boullion and Odell (1971) gives the solution (see Appendix C for example)
A -1.1/2 (@ S |
A= [eH2ef Y2 p | (17)

Once the generalized inverse has been determined, the estimate A can be
made by direct matrix multiplication as in Eq. (17). The generalized inverse
is a function of the geometry of the object (imaging) space, the spatial change
of the impulse response, ray divergence, if any, and photon attenuation. Thus
in principle for a given imaging situation using projections at fixed but not
necessarily equal angles, the generalized inverse matrix can be derived and
used for digital or electronic hard-wired multiplication of the projection data.
The seemingly intractable problem of large matrix manipulations and
insufficient number of projections available to give a unique solution, have
led to iterative schemes for the approximation to a solution. To illustrate
techniques developed further in Sections 3.3, 3.4, and 3.5, we solve Eq. (6)
by an iterative approximation method whereby the value for each element Ai
is guessed, and then modified by comparing the estimated projection value to

the measured value. We start with the measured projections
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If we estimated each element had the mean value of 10/4, we would note that
A1' + AZ' = 5, which is 5/3 greater than the measured value, thus we make a

second estimate at the value for Ay and A2 of 3/5 (10/4) = 6/4; this gives an

array with the first row modified as

Clearly the values of A3 and A4 need to be increased, because their

sum deviates from the measured value by 5/7. After adjusting these values by

7/5 (10/4) = 14/4, we have

6/4 6/4 E =3
14/4 14/4 =7
Z=5 Z=5

The sums of the vertical rows need adjustment to coincide with the measured

values; thus after the first iteration, we have

6/5 9/5 =3
14/5 21/5 EeY
2 = 4 2 ='6

which gives one solution. Even with the situation complicated by the noise of
measurement, an approximation to the original distribution giving rise to the

projections can be made by the iterative approach suggested above and other
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algorithms outlined in this section. Before examining these schemes, let us

review the simplest method of reconstruction.

3.3 Linear superposition or back-projection

'/

The simplest and most rapid method of reconstituting a two-dimensional
distribution from multiple one-dimensional projections is to merely project the

views back to a common object region as depicted in Fig. 3. This technique

Figure 3. A transverse section is created by projecting the profiles from various views
back through an image array. The technique is also known as superposition, summa-
tion, or simple transverse section scanning.

is basically that of conventional tomography or laminography implemented by
analog methods of moving the imaging system relative to the object. This
technique has been explored extensively in nuclear medicine applications since
about 1956 under the name "'transverse section scanning' (Kuhl and Edwards,
1964). Kuhl and co-workers used rectilinear scanners to obtain photopeak

events as a function of distance along the projected line P in Fig. 4.

ko
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K+l
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Ray K

Figure 4. Relation between the section ray sums and a projection.

The strings of data for the multiple views were superposed on film
by changing the angle of display relative to the film corresponding to the
change in angle of view from one scan to the next. The result is the super-
position of the projections. The first proposal for simple 'transverse section
scanning' using the gamma camera employed an optical technique for superpo-
sitioning the multiple camera views (Anger, 1967). The digital implementation
of this technique was reported first by Kuhl (1966) for nuclear medicine, and
more recently by Hart (1968) and Vainshtein (1970), the Russian crystalogra-
pher for electron microscopy. R. Hart's technique is similar to circular
tomography. Harper (1968) presented a feasible method of three-dimensional
image synthesis where any plane can be viewed by inserting an opaque screen

. in the field of back-projected three-dimensional images.
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Though this technique is very simple, it cannot give the true radio-
nuclide concentration even for an infinite number of projections. The resulting
reconstruction will not equal the true image because each point in an image
reconstructed using back-projection (Fig. 3) will be formed by the superposi-
tion of a set of straight lines corresponding to each projected ray from the
true object. The superposition of a continuous set of lines around the point
is equivalent to the rotation over a circumference of 2nr for the two-dimen-
sional case and around a sphere of 411'1‘2 for the three-dimensional case.

Thus the blurring function is 1/r or 1/1'2 respectively, and the relation

between the true object and the back-projected object is simply
Back-projection = True * 1/ |r| (18)

where * denotes a convolution. |
The operation of back=projection or linear superposition is described

mathematically for a continuous series of projections P(x, 0) as

m
B(r,¢) = [ P[rcos(¢-6), 6] de, (19)
0

T Footnote: Proof of Eq. (18)
The projection theorem (see Appendix A and Section 3.7) gives the relation
between the fourier transform A(R, 0) of the image and the projections

Px,0) = [ AR,0)e" “"R'* agr.
-00
Using Eq. (19) we have,
21 oo
=4 ™ ’
B(r,4) = J J R"?A(R,0)exp [i2n v+ Rcos (¢-0)] RAR dB
0 0

This can be rewritten

B(r,¢) = FI{RTAR, 0)} = TR} a(e, 9)

The inverse transform of R-1 is r-1 as detailed in Appendix A.
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where B is the back-projected image (Fig. 5). In almost every practical

. r cos (¢p-6,)
B(ry¢)= [ Plcos(p-6)0]d6

0

Figure 5. The value of a picture element (r,¢) after back-projection of rays from
projections at multiple angles.

situation, we are dealing with a finite number of projections and for conven-
ience of digital computation we use Cartesian coordinates. Thus, we describe
the back-projection as

B'(i,j) = =

Z Pyq) (20)
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where, for each element (i,j), we sum the contribution of each ray k(@)-r which
passes through the element. We let the total density or concentration, for

the section or array being reconstructed, be estimated by

T :,iz{ P, : (21)

for any single projection. After back-projecting, tHe total density T' for the

array is

n
T =% = B'Yi,j) . (22)
1=1 J:’_]_

In]

A normalization factor is.derived for reducing the value of each picturé element
so that the reconstructed array total density corresponds to the estimated

total given in Eq. (21). Thus the corrected back-projected image is

B(i,) = B'(,]) - = for all i,j. » (23)
A more exact background correction involves modifying the values by subtract-
ing from each pixel the mean den_sity or concentration multiplied by the number
of views minus one (Vainshtein, 1971; Gilbert, 1972b). Thus, '

T(no. of views - 1)

no. of pixels (24)

B(i:J) = B'(i:j) =

T The subscript k(§) denotes a particular ray that passes through the particular
pixel (i,j) that falls within the ray path. This unconventmnal notation is used

to signify we are dea11ng with specific ray sums.
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3.4 Algebraic reconstruction technique (ART)

A simple method of approaching a solution for fﬁe undetermined system
of linear équations was outlined in Section 3.2. Gardon et al.\ (1970) applied
this method to the reconstruction of a 50 x 50 digitized imagle frbm computed
projéc_tioné. The excellent results obtained with oniy a few views encouraged
them and ;)thers to pursué techniq'ués of iterative solution of the projection
equations. \The EMI scanner (Fischgol_d, 1973) employes a form of ART. The
simple 'algorithm‘consists of guessing at a value for all the picture elements
A(i,j), and then modifying eac}; element along each ray by a fac’cc‘nj that compen-

sates for the dislcrepal;tcy between the measured ray sum P and the calculated

k(8)

ray sum Rk(())'\

(25)

If the calculated ray s&rnis the sa\n‘q'e as the measured value, itimplies that the guessea
values are correct for apérticular projection; however, for another projectionthere
nﬁght be a 1arge discrepancy;, ‘thus the picture elements of the last view which lie
in the ray for the new view will be r;'xodified according to the discrepancy be-
tween -the new ray sum and the measured value. ‘Thus, each ray from éach‘
I;réjéctidn\is examined aﬁd values of ~Af(i,j) falling within that ray are"

changed iteratively for all the projections for 5 to 10 iterations. -Equation (25>)'

is called multiplicafiver ART. Another method of correcting the discrepancy |
between the measured projécfions consists of adding the difference between

the measured ray sum and the estimated ray sum. This is called the additive
form of ARTT.

(26)

nt1,. ., _ n. . .
AT 5) = max {AT( )+ (P g) - Ry 0))/Ny ), 0}
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Here Nk is the number of pj.xels lying along the particular ray k(g) which

(9)
passes through pixel (i, j).
There are two imp.ortlant ﬁloaificationé of ART. One'cdnéis_ts of
setting to zero those values in the array that are clearly zero because they
correspond to a ray sum that was observed as zero. This effecively bounds
’Fhe data and is an important boundary condition.for any of the iterative tech-
niques.’ A third versioﬁ of this techniqﬁé known -as' ART3 incorporates_ noisé

and has been used effectively in transmission studies of phantoms and simula-

tions with added noise (Herman, 1973; Johnson, et al., 1973).

. 3.5 Simultaneous iterative reconstruction technique (SIRT)

- The simultaneous iterative reconstruction téchnique was developed by
Gilbert (1972a) and differs from ART in that at each iteration the densities

A", j) are altered by using data from all of the projections simultaneously.

Thus
_ P ' a
et | . 250 Z R
AT ) = max AT )t ST - 3N , 00, (27)
) - o Tk(6) 5 k()

~

where (i,j) represents the pixel which is an element of ra}y' k(0); Lk(@i is

the length of ray k(8); P is the measured projected density of ray k(6);

k(6)
Rk(e) is the projected density of ray k(8) after iteration n, i.e.,
n _ n. ..
Rk(e) = z A (1_’_]):

(1, j) € *5F k(0)

and Nk(9) is the number of points in ray k(@). This algorithm was us.e.‘d in .

v

our comparative studies. Gilbert also gave a multiplicative algorithm which

is



where

and

\zZp . ZN
AR §) = max( L KO 6 KO 5 0f . (28)
- 5 Tk(0) 5 Tk(0) . -

After each iteration the td_tal a.rra;'r is normalized such that for all (i, j),

’

. n _ ,
T:ZPk'l" | .

k=1

T = zz aAMly
1]

and where An+1(i,j) are the values before the normalization. This normali-

zation can be thought of as a type of damping 'as described in the next section

for the least-squares algorithm.,

For our implementation of SIRT, we choose the line length, Lk(e)’

to be the maximum length of all lines that subtend the array between the lines

k-1 and k. The length of these line segrﬁ»ents is determined by consideration

of Fig. E-2 in Appendix E where the implemehtation of SIRT, along with a

Fortran listing, is given.

3.6 Least-squares iterative technique

A least-Asquar'es iterative technique orginally proposed for determina-

tion of density distribution using proton or heavy-ion or conventional xl--ray s

transmission scanﬁing (Goitein, 1971; Boyd et al., 1974) has particularly

‘appropriate attributes for emission studies. We emphasize this technique in
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nuclear medicine bécause it accommodates noisy data, errors in data accumu-
_iation, and can be modified to handle attenuation errors due to emission studies.
The derivation of this algorithm is.based on min_i.mizing’ the efrdr between‘ the
measured projeétions and the estimated'projections at tﬁe nth‘iterati;)n in a

least-squares fashion. First, note that

| 6, . | L
Mimj) = RE, = > A3 ) o=, ..., M
KO ) €razy k(o) '
not (i,, jo)

oJo

where f?j is a weighting factor for geometry and attenuation. The requirement

we impose is that S

6 T%2(0)

n |2 R
[~ i) |
(R< n+1(1°,J°> S Pigo) ~ Ruio) -  (30)
be a minimum. Therefore, we are improving the densities given in the pjrevious
iteration in a lea‘ét-'squares sense. The notation k(@) is to indicate that k is
‘chosen such that (i., jo) is an element of ray k(8). Equation (30) can be
: , \

rewritten as

(R(An“ ior o)) [ A™ G5 - £ A" @, J)] JoZ
; k(o) °J° (1,J)€raZY k(6)" SRe)

nOt (10’_]0) . (31)

Differentiating this with respect to An+1(i,,,j° ) and setting equal to zero, we have

d® ' 6 ,n+l1 . . z 0 n,.] 2 -

. P =1, . A ‘os]o) — f7. ) o °

aa™ i, jo) z ’ [ o) g BT g BN ke
S not (i»jo)
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Solving for An+1(i°,j°), we have the following sequence of equation-s:

N ) |
ISARCE {Zf iojo |"k(6) "(i,j)ezray k\6) ff* 0 /01‘(9’/z (542 k(‘”]

not (i,,j,) .

6 [o _mn L0 an. ]2 6 2
{ ) fi50 |[Fr(0) ™ Feo) i, & ‘“’“’]/"k(e)}/Z[fiojo/"k(e)]
- , 0 -

I3

AR (i0,50) +'{;ffojo [Pk(e) - Rﬁ(ei]/"i(e)}/ Z[f?.,u/“kw)]z
. ‘ 0

At {zfldo[ o R k(e)}/z /"’k(e)}2 e

.3.6.1 Damping Factor

1

If we now use Eq. (32) to correct the densities for each iteration we

will find that the densities do not c‘onverge, but oscillate, because Eq. (32)

corrects the prev1ous denS1ty A (10,3 .) based on the previous ray ‘sum Rk(e)

A simple example of this can be illustrated by the following 4X4 array

<
|

iP | &P
iP | 3P ;
) P P

where P is the estimated pixel density for some iteration n and P is the

Y . . ; e . . 2
measulred projection. Now, if we assume fij = 1 for all @4, 1,Jv and oke _PkG’
then 'AnA(i,j) can be evaluated

.A (i,j) = [Z( k(9 k(e)) / k(B)] [26:1/131((6)] R
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| [_-(P - 1/2P) /P+ (P - 1/2P) / P] / [1/P + 1/P]

P/2

n

Y

This then gives a new density An+1(i,j) = 3P/4 and An+1A(vi,j):

An+ 1

Afi, §) t(P- 3/2P) /P+ (P- 3/2 p) /P] /l4/P ; 1/P]

-P/2

Therefore, we have An+2(i, j) = P/4. 1f we continue this we would have the

alternating sequence for each pixel density:

P/4, 3P/4 , P/d, .... _

nt1

.. .. + ..
ARG, A, AR 2w, ..

So a damping factor is required which will be a function of all changes for '
"each pixel. Therefore, once AnA(i,jy) has been evaluated for all i,j, then
a damping factor §- must be determined such'that
o ...nt1,. .. _ .n,. . ’ n o, ,. . -
A7 T(ieje) = AT(ie jo) t 0 A7 A(iajl) (33)

where _
A Alio, jo) = [Zfijo (Pro) - Ruco) /°ﬁ<e)]/g(fieaj/"k(é))2 - G

If we require that

. n+1,2 ‘ |
/5 - ;; (P 'ZRke*) ey
ag . . . .

ko




-30-

be a minimum, then we are also choosing a damping factor in a least-squares

sense. We can rewrite Eq. (35) é.s
®(5) = zz P . 2 AR + 08 Ax, §)| /0l
2 k{ k6 (i,j)era;(k,e) ”[ i) 6

Differentiating ® with respect to 0 and setting the derivative equal to zero,

we have the following equation:

~

dg{éb) ZZ { (1,J)€ra;k 6) 0 [A L 3) + 6A Al ’J)]} / Z feA N A(l J)/Oke

i (i,j)eray(k, 9)

T
This implies .thét

- 6 .0, . o | N )
Z P, - £, A (J:,J)]' - £ AT A(GL)) /o
K Z[ K6 -.(-i,j)er;(k_,e) 1 | (i,j)er;r(k,e) v ke

V-GE z

' A AGH|% /o, = 0
6 k|(i,j)eray(k,0) ¥ - ‘ .

Thefefore, ) ‘ N

‘"

A o ;
- P - f A A(I,J)]/O
) ZZ( k6 - ) [(1,,])61‘32}’(1{ 6) * k0
0
f A A(i,]) /o
;Z[(m z(k o) U J <0

(36)

Now, if one were to apply the danﬁbing factor to the previous example, the

sequence of densities would be
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AR5, A™a . AMR)

3.6.2 Statistical noise

" For our work, we have choseh the standard deviation Gk to be the

o

square root of vthe>counts for each projected ray. Us{ng the previous notation .

we can express this as Okez = Pke , and then Eqs (32) and (36) reduce to

‘ y . ‘ L
AnAv(].-o’Jo) = [Z‘fj (1 ‘Rﬁ(g)/Pk(e))]/;(fﬁ,jo/Pk'(e)) ’

‘and

2, (1-RD >/P ) [ feA A(i ,J)]
ZZ( k67" k8 (i ,J)erazy(k 6) |

s = !z feA A15J)] /P
0 k |(i,j)eray(k,0)

(37)

3.7 [Filtered backQProjection or convolution techniques

Recall the relafionship be’cwéen the true image and the image obtained
from the linear superposition or back-projection of an infinite number of

views Eq. (18):

B(Xy Y) :// 7 A(X‘ Y ) /2 dxl dy-l = A % r]-i ) | (38)
fx-x) + (y-y")} | o

J

We seek a technique whereby % can be deconvoluted from B(x,y) = B(r, ¢)

From the convolution theoreni

ﬁTB (r,¢)} -/{A(r,¢ N Fh o, (39)
where v ’ )
' Y - znfr‘1 J,(2n Rr) r dr | , | (40)

-1 ’ '

= R
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where R is the reciprocal space radius or the measure in frequency space

" Thus, the true image is related to the back- prOJectmn image as
Are) =F N FbE ol T R Fo(x, 0 (41)

A similar result is obtained by Bates and Peters (1971) using a perhaps more
~rigorous derivation that we circumve.nted by use of the identity Eq. (40); This
shortcut does nof ;‘ecognize the real situation in which there are finite‘bounds
on the domaiﬁ of integratioﬁ where'_Eq. (40) does not ilold. We will return te
this problem later. Fer the present assume we have an infinite number of
projections and the data are not band-limited. The operations ef Eq. (41) involvei
the followjng steps: | |

(1.) Obtain a series of projections.

(2) Derive the back-projected image by sirn'ple*linear superposition

(Appendix D). R
.(3) Feurier transform the two-~dimensional .imag‘e.
(4) Multiply the Fourier coefficients by the spatial frequency radius.
(5) Fourie.r transferm (inve;‘t) the result of (4) to‘obtain the true image.
This procedure can be done op;cically (Peters, '19%3) or digitally. Two-dimen--
sional Fourier transforms can be accomplished in less than one rﬁinute for \
64X 64 arrays on small 16-bit computers (Budmger and Harpoothan, 1973)
but for 128X128 arrays, rnuch more time is involved. The fast Fourier trans-
- form algorithm limits the array size to integer powers of 2, thus we cannof do
80X 80 or 100X100- arrays by this method unless zeroes are added to expand
the array to 128X128. This is not a serious limitat-ion for nuclear rﬁedicine,
but becomes important for transverse-section'radiography using transmission

. where the resolution is four or more times better than for emission studies.

Thus we seek a method w\hich is computationally more convenient. Methods of
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 modifying the projection vectors before back-projecting are both convenient in
terms of computer space, and very fast.

The true value of each pixel is related to the Fourier coefficients as .
2T o

A(r, ¢) =/ / K(R,G.)-_eXp[iZTrRr cos(¢-6)] Rd4drd6 . - . - (42) |
0 Y0 , ' _

s

Note that A(R,0) = A(-R,0 + m), thus Eq. (41) can be written as
: +00 1y » ,
A(r, ) / / |R| A (R, 0) exp [1217Rr cos(¢- 9)] dR do . (43)
w0 0 ’
If we define

FYIR| AR, 0)} = B(r. o) , | o " (44)

’

then the true pi>/:e1 values become

f" B (rco‘s\(d)e.e), é) o . | | (45)

0

A(r,$)
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But, Irecall the .baek-projection operation Eq. (19), which indicates 'th_e operation
of Eq. (45) is linear superposition of projections l'5 What are the physical
interpretations of 7%’, P, and A? K(R,‘e) is the Fourier component at the
reciprocal space position (R, 6). The projection theorem! equates the inverse
Fourier transform of A with respect to the real space values of the projection |
normal to the line, 6 = constant. Thus, it is easy to see that P is the pro-
Ject1on value assoc1ated with A and P therefore, is the result of mod1fy1ng

\

the projection by a ramp filter since
- - {rlFP} = P . o | (46)

With these considerations, . the relation between the projections and the true
image can be deduced. Namely, the true image can be reconstructed by back-
projecting the projectidhs after they have been modified in accordance with

Eq. (46).

T Fourier transform of the pro_]ectmn gives the components along the section
in Fourier space normal to the projection:
A(x,y,z) is a three-dimensional distribution, and the two-dimensional pro-

jefztiop is defined as’ i
B P(x,y) = f A(x,v, z) »dz
I‘h\e thl;ee-dimehsional }Fourier transform is
:X(X»Y: Z) =fff A(x,y, z) exp [-iZ-rr(# ‘X+y-Y+az -‘Z')] dx d;r dz ;
for Z = 0 we have | |

K(X, Y,Z) = ff{ fA(x, Vs z)dz}exp [-i2m(xX+ y-Y)]dx ay

' ' Q.E.D.

- See Appendix A for the two-dimensional projection theorem.
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~

There are two ways of implementing Eqs. (44) and (45). One is known
"as the convolution technique and the ofher as the filter technique. Both are

eqﬁivalent as can be seen by the following:
The Fourier transform of the function |R| is not defined unless one

imposes an upper bound Rm which is the maximum meaningful frequency which

14

can be reconstructed:

7

: ~ (Rm ' ‘
g(r) :[ |R| exp(i2n Rr) dR . (47)
b |

Integration by parts gives

R_ :

sin (2n R_ r) - A
m

.t [1-cos(2r R_1)] - (48)
Z(Trl')z’ v m AP

The function g(r) convoluted with the projection gives the modified projection.
If the projection function is band limited fo Rm’ then Eq. (48) becomes identical
to that derived by Bracewell and Riddle (1967):

. [8(x) - R_’sinc? R_1)] - | (49)

If the data are sampled at equal intervals, which are integer multiples of —Zlir—-n ,
where 1/(2Rm) = a is the sampling interval chosen small enough to avoid
aliasing. The sampling theorem requirgs T(L = 2a . Ramachandran and

m
Lakshminarayanam (1971) arrive at a somewhat similar expression deduced
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from evaluation of the integral Eq. (47) between some large values -R, to

+Ry (see footnotex)
1/4a2 n=0
g(na) -1'/(na1)2 n odd . | (50)
0 n even v ' -t
These techniques are equivalent to the direct application of a ramp h “

filter to the Fourier components of the projection values, which can be seen

by recalling the convolution theorem, since

N

t The Fourier series of the function |R| between: -Rm and Rrn is

|R| = § Cn exp('in-rr‘,R/Rm) ,

where .
C, = == me |R| expv(-'rri’Rn/R ) dR .
n = ZR_ T Tm T
' -R
m
For n=0, N
o1 (R _ 1 R® |BRm_ Ry,
Cn = ®_ Rdr=q 72 T2
RN m 0 '
otherwise _
R ;o R
Cp = ;nz (exp(-win) + exp (T/I‘il’l)) - - 2m2
2n n : : T n
Thus, o
Rp/2 if n=0 |
_ 2.2 : .
Ch = -2Rp/mn if n is odd
) 0 - o if n is even

Note from the sampling theorem g(na) = g(n/2Rp,) = 2R,,C,. This gives Eq. (50).

/
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e -

= gxP
FB) = Fle) - F®)
F(®) = R F(P) , | |
- 7T , [IR| ey . 51

Note the image reconstruction is completed by back-projection of the projec-

tions modified according to Eq. (51).
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3.8 Studies with phantoms and patients ) ' o N
3.8.1 Scope ' .

The methods outlined in the preceding sections and implemented in the

appendix are ' : ,

Back-projection . Appendix D

SIR'T | ~ Appendix E

Least-squares iterative techniq‘ﬁé : Appendix F o i
Filtered back-projection '~ Appendix G )

The results of both phantom and patient studies using thése‘four techniques
are presented in this sectiép. Attenuation is discussed in Sec. 3.9 and
Appeqdix H. ' | '

3.8.2 Methods of data acquisition

3.8.2.1 Scintillation camera pr0cedureé

" Studies were done by rotating the subject in front of the Anger scintillation
camera (Anger, 1967). The 16-inch scintillation camera was used with a
technetium 1ow—e\nergy parallel-hole collimator and a special extended colli-
mator.constructed at Donner L'aboratdlry. The extended collimator consists
of a rectangular array of aluminum tubes of 0.15 mm wall thickness and. |
12.7 cm long. These 'tubes are stacked in the natural hexagonal close-packed
fashion. ' | \ ' v \

The camera-collimator arrangement is posi_tioned: vertically to accommo-
date the rotation of the ‘patien.t or phantom around a vertical axis in front of the
camera. The subject is positioned as close to the collimator as possiblé, ‘be-
cause the i‘esolution deteriorates Witi’l distance from the collimator. In some
trials the. };;atient was fixed relative to the rotation axis by a head holder con-
nected to a chair, which is rotated on a stage and stopped at intervals of 10°.
This was found to be cumbersome. A more satisfactory procedure was head
fixation ‘by a mogthpiece bite arrangement shovx}n in Fig. 6. At pfesent there
is no convenient method for rotating the patient around a fixed axis. The ideal
method involves rotation of the camera -around the patient, as suggested in

Fig. 3.



-39.-

Figure 6. The technique of rotating a patient before the scintillation camera: The
patient is rotated manually with head support provided by a bite mouth piece which
is mounted on the rotation stool.

3.8.2.2 Digital data management

At eachangle, 50,000 to 100,000 events are collected on the Hewlett-Packard
digital system HP-5407 (Budinger, 1973). These eventsare digitizedin 64X64 ar-
rays, and stored as a histogram for later processing. The viewing time is usual-

ly 15 or 30 seconds, and each frame is stored sequentially around 360° at 10°

increments. The 36 frames are held on a disc frame file, which has a total
capacity of 160, 64X 64 frames. We use a slight zoom or gain on the analog-
to-digital converter (ADC) so as to concentrate the digitizing process on that
part of the crystal, which sees the head. Thus the space between raster points
represents 5.5 mm. For the reconstruction, three rows (3X5,5 = 16.5 mhm)
are selected from each of the 36 frames, and these become the projections for
reconstruction of slices or transverse sections. Normally eight sections are
taken at 16.5-mm intervals from the head vertex to about the nasion-meatal
level (8 X16.5 mm = 13.2 cm).

3.8.3 Reconstruction procedures

The procedures for back-projection (Appendix D), SIRT (Appendix E),
and filtered (compensated) back-projection (Appendix G) involve forming 18 pro-

jections, which are the square roots of the product of the conjugate views,
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(geometric mean), m radians apart. This procedure in part compensates for
attenuation and the change in impulse response with distance from the collima-

tor. Note that the true activity of a point source in the attenuation midline of

di
& . uT/2
{Pk(e)' Pk(9+-rr)}2 8 (52)

where | is the attenuation coefficient; and the true activity of a distributed

thickness T is

source is given by

1
s _pT/2
[Py g) Prio +ml°e £T

2 sinh(pfT/2) .

k(6)

(53)

where 6 is the effective fraction of the thickness occupied by the source. This para-
meter can vary from 0.1to 0.9 without seriously affecting the result (Sorenson, 1971).
Eighteen views derived as simple conjugate means or modified by correc-
tion for attenuation are used as the input to the reconstruction program. The
correction of Egs. (52) or (53) is not adequate, because it requires a priori
knowledge of the thickness and an assumption about the attenuation coefficient.
A refined technique for the attenuation correction has been incorporated in the
least-squares technique (Appendix H).
The complete procedure for the attenuation correction iterative least-
squares technique involves use of the 18 conjugate means for 3 to 5 iterations,
after which the algorithm for ascertaining an outline of the object is applied.
Using this outline, the distance li)j between each pixel and the object edge

along a ray is calculated, and this gives the parameter fij defined as

f.=e 1 (54)

where p is the linear attenuation coefficient. The values of fe;j are then
incorporated into Eq. (32) and a few more iterations are completed using all
36 views to give the solution as discussed again in the section on attenuation.

3.8.4 Hot-spot detection

A comparison of the ability of these techniques to reconstruct hot spots in
an 18-cm diameter lucite disc having a hot annulus around the periphery is
shown in Fig. 7. Clearly the least-squares and filtered back-projection
techniques are superior to the back-projection and SIRT techniques. Ten to

20 iterations for both SIRT and the iterative least squares were made. The
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Figure 7. Comparison of four techniques for three-dimensional reconstruction—back-

projection, simultaneous iterative reconstruction, least-squares, and back-projection
of filtered projections (BPFP)—using a lucite phantom and 997 Tc.
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ability of these techniques to reconstruct the original density is made by evalu-
ating the root mean square of the normalized difference between the true
distribution and the reconstructed distribution after each iteration as
1/2
- s ws il
;[A'(l,J)—An(l,J)] )
Discrepancy = & (55
DAL ) - A% (5, §)]2
1,)

where A'(i,j) is the true value, A9 (i,j) is the value for the initial solution,

and An(i,j) is the value after the nth iteration. The results are shown in
Fig. 8 for two objects.
3.8.5 Cold-spot detection

One of the problems of conventional tomography is detection of cold spots

deep within hot tissue, for an example, detection of a tumor within the liver.
The ability to reconstruct holes with the same resolution as hot spots is dem-
onstrated in Fig. 9, where a simulated liver slice was reconstructed. The
hole 1.25 cm in diameter can be seen above noise in the reconstructions using
the techniques of iterative least squares and the filtered back-projection.
3.8.6 Patient studies

Four patient studies have been made including one adult with parietal-

occipital abnormal accumulation (Fig. 10), and one probable-normal 14-year-
old child who could have a craniopharyngioma (Fig. 411). The abnormal accumu-
lation in Fig. 9 could be from hemorrhage, tumor, or granulomatous disease.
In the child with suspected craniopharyngioma, the hot activity is in the region
of the cavernous sinus and might be a normal finding. Quantitative brain
scanning by this technique relies heavily on the ability to correct for attenua-

tion, as alluded to earlier and explored in detail in the next section.

3.9 Attenuation

In emission studies the contribution of each volume element to the pro-
jection ray sum is not a simple additive factor, as in the case in transmission
studies. Each element contributes a photon emission concentration, y/sec-cm3,
which is attenuated by the path length between each point and the edge of the ob-
ject along a projection ray. Thus the activity measured along one projection
view will be significantly different from the activity measured in the conjugate
view 180° from the first view if the distribution of activity is asymmetric. For

transmission studies the projected ray sum is
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Figure 8. Comparison of the accuracy of reconstruction by back-projection, SIRT,
least-squares, and filtered back-projection (BPFP) techniques for the phantoms as
shown.



10°
20°
E 300
B
30° :
20° |
170° 1cm 3 cm 2.5 ¢ 10° Y
24 cm - 0° 170

—?%—

BACK PROJECTION \ S.ILR.T. LEAST SQUARES B.P.F.P.

Figure 9. Comparison of the ability of the four techniques for three-dimensional
reconstruction to detect small holes in a liver phantom slice filled with 99 Tc

(shaded region).

ORIGINAL



-45_

Figure 10. Patient study showing the transverse sections and on the left, the
corresponding rows of data flagged from views taken at 10° increments. An abnormal
accumulation of technetium is shown in the parietal-occipital area of this patient with

an as yet undiagnosed pathology.
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Figure 11. Patient study revealing possible abnormal accumulation of technetium in
midbrain or cavernous sinus region.
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where li. is the length of the element with attenuation coefficient p‘ij' However,

for emission studies

= Ali,j) expl -Z p(a, ) (a,B)]. (57)

2
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Thus the nuclear medicine reconstruction problem is more difficult than the
transmission problem. The influence of the term exp[-Z p(a,B)] depends on
the attenuation coefficient p, which unfortunately is so large for all energies
used in nuclear medicine that the reconstructed images are seriously affected.

The effects of attenuation can be seen from Fig. 12; where the effects of

ORIGINAL x = 0.05

m=0mM = 0.15

Figure 12. Comparison of the reconstructed transverse section for various photon
energies (attenuation coefficients) if no attenuation compensation is made.
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gamma rays of a few MéeV(u = 0.05) are compared to the effects of gamma rays
of 511 keV (L = 0.11) and 140 keV (. = 0.15). The images in the lower row show
the serious artifact that will result for the usual isotopes used in nuclear medi-
cine if attenuation is not taken into account. The source is a disc of 23-cm
diameter similar in size to a section through the head. Another way of evalu-
ating the seriousness of this problem is shown in Fig. 13 where the profiles
through the reconstructed disc are given. The deviation of the reconstructed
image from the true image is shown (Fig. 14) in terms of the fraction of the
total number of pixels that depart by multiples of the standard deviation from
the true value. Here the standard deviation is taken to be the square root of
the true pixel value.

The quantitative three-dimensional reconstruction of gamma-emitter
distribution in the head and other parts of the body requires compensation for
attenuation. The chest presents the extreme case, and unfortunately cradles
the heart, which is a most important region for application of these techniques.
We envision six methods for solving this problem.

1) The simplest technique involves application of a correction matrix to the

results of the reconstruction. The correction matrix consists of correction
factors determined from phantom studies and assumes a fixed geometry for
all studies and a constant or an assumed distribution of attenuation coefficients.
2) We would like to be free of constraints on geometry, and have adapted
the second method, which entails assumption of constant attenuation coefficient
and calculation of the attenuation path length [ lij of Eq. (54)] between each
pixel and the edge of the object along each ray. The shape of the object is
estimated after a few iterations by employing the subroutine SEARCH of
Appendix H. This procedure gives good results for objects with a constant
linear attenuation coefficient such as the brain. A comparison of the least-
squares procedure with and without attenuation is shown in Fig. 15. Without
this or some other techniques discussed below, the results of the reconstruc-
tion will be nonquantitative and lead to artifacts such as the ring distribution

derived from the disc section, as shown in Fig. 12.
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Figure 14. Fraction of pixels that deviate by 1, 2, and 3 standard deviations from the
true values in a reconstruction if attenuation is not taken into account.
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Figure 15. A comparison of transverse sections with and without attenuation com-
pensation using the least-squares technique.
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3) Another method of attenuation correction that can be applied to the last
iteration of the iterative techniques or to the results of the filtered back-pro-
jection involves recalculating the projected data that would have occurred if
there were no attenuation. The outline of the region of interest is automatically
determined by a simple computer search routine (Appendix H). The correc-
tion is made for each ray by multiplying the geometric mean of conjugate views
by a factor,

"L . (0T /2)/sinh(£uT/2),
where p is the linear attenuation coefficient, T is the thickness of the body
section along the conjugate view ray, and f is some factor that varies be-
tween 0.2 and 0.8, depending upon the fractional distribution of isotope. A
large change in this estimated parameter does not affect the solution signif-
icantly.

4) A fourth technique involves iteration between the algorithm for de-
termination of the value of each pixel and the algorithm for determining fij’
which is the correction factor for attenuation. For example, ART could be
used to determine the estimate of the concentration in a section for a few
iterations, then the concentration fixed for a few iterations where f?. values
are determined. We have not yet pursued this interesting approach, which

was suggested by Dr. Richard Gordon.

5) The true distribution of attenuation coefficients can be determined by
transmission measurements, as suggested by Eq. (56). The usual technique
involves measuring the ratio of transmitted-to-incident photons. Thus, to
estimate the distribution of bone and soft tissue in the chest, a transmission

study would be done before the emission study with the Anger camera. The

99m 241

source could be 57Co or Tc and, with proper tuning, Am

6) The last technique involves use of multiple isotopes where advantage

is taken of the known different absorption coefficients of various tissues for
different photon energies. For example, if 21OPb (40 keV), 241Am (60 keV)

99mTc (

and 140 keV) were used, we can determine the distribution of tissue

such as lung, bone, and soft tissue by noting
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210
I (C77Pb) L | : . 5

g T = gty B T Bty = Pl
241

- L( Am) - 1" " ] — "

log IO = H’lll + |J.S£s + H“bzb = Pk(@)’ (58)
99m

- ..I_( TC) — mt i mt — mnt

b =y R ity T Pl

and where Mys By and My refer to known attenuation coefficients for lung, soft
tissue, and bone respectively; and the primes denote the coefficient appropriate
to the various energies. The system of equations, Eq. 58, can be applied to
each ray sum and from this the distribution of lung, soft tissue, and bone can

be determined using the algorithms of Secs. 3.3 to 3.7.
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4.0 NUMBER OF VIEWS REQUIRED

If a reconstructed image is to be uniformly resolved to a resolution d of
a completely unsymmetrical object, the number of discrete views must be at
least

n~m D/d, (59)

where D is the dimension of the object (Crowther et al., 1970; Klug and
Crowther, 1972). Thus for a resolution of 1.5 cm in imaging a head 20 cm
in diameter, we need 42 views. In practice, only 20 views are necessary for
the class of objects of importance to nuclear medicine. An explanation for
this discrepancy is that 42 projections would be required for an object that has
no symmetry and thus no regional correlation. This is not true for any image,
as there is great departure from complete randomness just by the fact that a
recognizable image exists. Thus it is not surprising to find that the number
of views required for reconstructing a two-dimensional distribution with a
resolution distance of 1.5 cm are far fewer than theoretically prescribed for
images of no symmetry. Another way of understanding the reason for the
discrepancy is that in the class of objects of concern, many different objects
are essentially identical. The resolution and, to a great extent, appearance
of artifacts are related to how close the axis of rotation is to a center of
symmetry. For example, multiple views of a right cylinder taken around an
axis that is displaced from the center of rotation will give a reconstruction that
is distorted and contains ''clutter'' outside the object region (Peters, 1973).
Only a single view of the same right cylinder is necessary if the cylinder
is in the assumed center of rotation for the reconstruction. However, no a

priori assumption can be made regarding the topology of a cross section.
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5.0 DISPLAY OF RESULTS

The distribution of intensity that represents isotope concentration can be
displayed readily on the HP-5407 (Budinger and Harpootlian, 1973) using
either eight levels of gray on a CRT with resolution of 64X64 or even
256 X256, Concentration relationships can also be shown by the isometric or
""projection'' view as shown in Fig. 16.

For hard copy from the computer printer, we have worked out an over-
printing routine for the CDC machines that gives levels of gray and has been
very useful in our detailed program development. The subroutine that gives

images, as shown in Fig. 16(c), is explained and listed in Appendix I.
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6.0 SUMMARY AND FUTURE DIRECTIONS

Methods of three-dimensional isotope distribution reconstruction from
multlple two- d1mens1ona1 views are similar to those employed in astrophysms,
electron microscopy, and radiology; however, photon attenuation must be
taken into account. Successful quantitation of the thr’ee—dimensional distribution
of isotopes has been achieved using the iterative least-squares technique, but
not the Fourier technique. The iterative least-squaree technique is superiof
to other te/chniques because it handles noise and has been successfully modified
to incorporate attenuation. The method has been implemented on the CDC
6600/7600 and on the small computer HP-2100A in Fortran. In our first imple-
mentation, approximately 20 min of processing per section are required by the
- small machine. The ART techniques do(nvo.t account for neise, but can re-
construct a section in approximately 1 min v;rithqut attenuaﬁon correction.
‘Fourier transform techniques are approximately 80 ftivmes faster than the
lea'st—squares method, but de not handie noise or attenuation.

‘Patient studies for isotope distribution in the head, heart, and liver can
be accomphshed by rotating the patient before a scintillation camera in 10°

‘increments. The study time is approximately 30 min, and the doses are no
greater than routine studies of 100 to 400 mrad. . _

. Application of these techniques to the heart and other organs involves gating
the camera or the computer to overcome motion, as has been done in preliminary
studies (Fig. 17). Generalized techniques of motion extraction (Schmidlin
et al., 1973; Budinger and Harpootlian, 1973) are also applicable to this
tractable problem. In order to 1mp1ement these techniques to heart work, a
parallel-holed collimator that can handle the high. energies of 81 Rb (446-511 keV)
should be used, and one of the suggested techniques for attenuation.correction
should be employed. . o

Transmis s1on scanning for the direct determination of attenuation co-efficients
suchas is done on the EMI scanner (Flschgold 1973; Cho et al., 1973; Robb, et al.,
97 3) cannot be done using the gamma camera in countlng mode because about
'10 counts per picture element or ray sum are needed to determine a change in
tissue density of 0.5% to 1% . The eamera cannot qperafe over- about 7><103
counts/sec overall or 20 counts/s;ec/pi}iel. HoWevex-', it is possible to combine
transmission imagery with emission to givee comparisoen of density distribution
to isotope concentration, if the requirements are not greater than distinguishing

between bone, muscle, fét, water, air, (lung = 0.2-0.6 sq. gr.).

N
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of end-systole and end-diastole.
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The concept of a fan beam is under development, and it is possible to
reconstitute fan-beam data, either transmission or emission, to the parallel
beam for implementation of the algorithm used in this report.

Proton radiography (Steward and Koehler, 1974) or radiography with
heavier ions (Benton, et al., 1973) such as 4He, 16O, or 40Ne has the potential
of resolving density differences of 0.5 to 1 part in 1000; thus with these tech-
niques the small differences in density between normal and cancerous or

infected tissues can give a new dimension to clinical diagnostic medicine.
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Appendix A - Th_eorems for Fourie&' teqh_niqu'es

The back-projected 1mage for a contmuum of pro_]ectlons is equal to the

true image convoluted with 1/r.

B(r,d) = A(r, ¢) * 1/r.

Proof: The back-projected imég‘eha‘s the‘ following relationship (see Fig. 5):

Tr | R .
B(r, ¢) =/ ‘P(rcos(¢-96), 0)de, ‘ S (A1)
0
By the projection theorem we knéw that
m. .
- P(x, o) =i/' A(R,0) "*"R* ar, T (A2
- . . -00 " . .
giving ~
. o | i ‘
B(r,¢) = // A(R, 0) exp[2mirR ‘cos(q)-e)] dR de. . | ‘ (A3)

Now we can r'ewrite Eq. (A3) as

2 .0 - ' C
B(r, ¢) / / R~ -1 A A(R e)exp[Zer cos(d- 6)] R dR ds. (A4)

Equation (A4) is the inverse Fourier transforrn of R_1 A(R, 0), which we can

write as

)

B(r,$) = 67 R AR, 6))
2) ._' .

-F R raAr,e)

Now the inverse Fourier transf_ofrn of R_1 is

(2)

» oo' 2m . ) . v o -
L : :// exp[Z'rrirR cos(d-6)] dedR (A7)
. 0o Jo :

T a0 2T . |
-1 . , '
Jé {R-i} = // R_1 exp[ZwirR cos (¢-6)] Rde dR = (A6)
. 0 0
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d

Expanding the integrand as a power series, we have

2m
/ [ (Z'rr1rR). cosk(¢-6) 40 dR '
(2) o k= 0 ' -

o 00 . 2T
= f z (___,___karR) / cos™($-6) de drR
0 k=0 . ) 0 v

Now . N ,

2n . 21 i(¢-0) _-i(¢-0)k |
/ X cosk(d)-ﬂe) de = (e 1—<e ) dg,
0 o : 0 . 2 , '

i(¢-6) _

and expanding the term (e

2on R
f cosk(d>—6) de
o ,

¢

n=0 anl (k-n)!

N

n=0 an‘. (k-n)!

{0 if 2n £k

where f (k Zn)i6 doe -
. , 0 2r if2n=k

- (2) 2%kt (2k-k)r (2R

(21‘1’11‘R.)

k 0o 2° 22K01)2

dR

Therefore, -1
‘ RN [ . (Zk)' (2mirR)ZE

= o}

k (ZTrrR)

5 dRrR
kO . Zken)

0

f J (anR)d , -

e'l(d)_e))as' a power serieS,/' we can write

/‘2‘_' g k! ein§¢'-g)ei(n-1;)(¢-e) dé'
. -

; ki . (2n- K)ie f olk-2m)if o
. |

dR

(A8)
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' " A . .
Next let's investigate Eq. (A8). If we use the identity (Watson, 1966)

| /2 | v -
I () = 1 / elt(sme dg, . v (A9)
o T wm [ _ o S -
L /2 )
we can express JO(ZTTrR) as
_ ' /2 ' ‘ .
- JO(ZTTrR) _ -11r‘ . e121TrR s1nQ,d9 ' | , o (A10)
- Jn/2
Letw = r sinf6 and dw = r cosfdf = '\/r2 - w2 de, then
o 1 T Ji2TRw o A o
J (2mrR) = =— == dw . (A11)
0 - m [r ,\/_1-.—2—:;]—2- ™~ B
Equation (A10) implies that N _ N
F U 2mrR)} = f(w) | - .
where , _ ' | |

| TTI\/rZ_WZv 1f IW |‘$r\'

f(w) =

‘

0" . elsewhere

. 0 .
_ : : ) o , )
| Now we know that .2 /0 .Io(ZTrrR) dR —/{Jo (2er)}W=o = £(0),

 which implies that |
‘ 0 ‘ ;
' L o_2m 411
ZTT/O JO (ZTTI‘R) dR —Tﬁ_ . ?—- -;- v
Therefore, we can expreés Eq. (A5) as

B(r,¢)'=_11;_ % A(r ) o | . Q.E.D.
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The proof of the projection theorem for two-dimensional spac‘e' is
givei'l in Peters (1973) and is repeated here using our notation.
Projection Theorem for RZ: The Fourier transform of the projection gives

the components along the section [Fig. A-1(a)] in Fourier space ndrmal to

the projection, i.e.,

P
P(X', 8) = / A(R, 6) elxp(Znix'R) dr
oS OO

(a)

- <
P4

I

_ Fourier space Real space

Figure A-1. Relation between components in Fourier space and projections in
real space. ' : o

Proof: First, note 1n Fig. A;—1(b) that the projections P(x',§) can be

expressed as

P(x', 6) =‘f A(x,y) dy'

-0

where the coordinate system (x',y') is rotated at an angle §. Now expressing

A(x,y) in terms of its Fourier transform, we have

Al e 2mi(Xx +
P(x', 0) =f i f R (X, v) 2THEEFYY) 4x gy dy!
-00 -00 -00
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Using the equations for rotation given in Eq. (2) of the text, we have

P(x', ) =[ffK(X,Y)exp

Rearranging., we have

2mi [X(x'cosf - y'sinf) + Y(x'sing + y'cosO)]IdX dy dy'

00 o0 [+ o] N
P(x', 0) =[ f [ A(X,Y) exp{Zni[(X cosf+ Ysinf)x'+ (-Xsinf + Ycose)y‘]}dX dY dy'
o OO -00 =00

-} 0 o0
P(x', 0) =f j f A(X,Y) exp [2mix' (Xcos6+ Ysing)] exp [2niy' (Xsinf - Ycos0)]dy'dX dY
- 00 =00/ 00

(A-12)

Then integrating with respect to y', we have

[~ ] o0
P(x!', 9) =/ f K(X,Y) exp [Znix' (Xcos@+ Ysine)] 5(Xsinf - Ycosg) dX dY
- OO -00

Next, let U= Ycosf, which implies dU= cosfdY or d¥Y=secfdU. Substi-

tuting these relations in Eq. (A12), we have
o0 o0 ~
P(x', 8) =[ f A(X, Usech) exp [Znix' (Xcosg + Utan@)] 5(Xsinf - U) sech dU dX
-CO =00
o0
=f X(X, Xtanf) exp [Znix' (Xcos0+ Xsing tane)] sech dX
-00
=f K(X, Xtanf) exp(2nwix' Xsech) sech dX
=00
If we let R= Xsecf, then dR=sechdX giving us
[=o]
P(x', §) :f A(R cosf, R sinf) exp(2mix'R) dR
=00 .

or

P(x',0) = f A(R,0) exp(2wix'R) dR . Q.E.D.
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Appendix B. The Relationship Between the Array Pixels
and the Projection Rays - :

Figure B-1illustrates the relationship between the N X N array of pixels
and the family of lines which bound the projection rays. Note that the pro-
jection rays remain fixed corresponding to a fixed camera, and the coordinate
system rotates relative to these fixed rays. The development of the equations
relating the array pixels and projection rays is sepérated into four categories
c-orre sponding to the rotated angle 6. Subsection V generalize's these equations-
for all angles.

L =0 . |
For 6 = Q° the family of lines which define the projection rays is
y=k+1/2 k=0,1,2,---, N. . (B1)

II. 0° < 6 < 90°
A. - The family of 11nes

For 0'< 0 < 90° the family of lines which define the prOJectlon rays are
y = (tanB)x+yo+k/COSG k=0,1,2,.--, ng, _ (BZ)

.where tan@ is the slope of the family of 11nes, Yo is the y intercept for the line
=0, 1/cos€ is the increase in the y intercept for each succeeding line and -

n, is the total number of rays necessary to cover the NXN array. This varies

6
from Nto N2 N if the width of each ray is identical to the distance between

pixels. _ .
Before developing the equation for Yo and P first compare Fig. B-1(a)
for 8 = 0°to Fig.B-1(b) for 0°< 6 < 90 and notice that additional lines are
added so that the NXN array is bound above and below by lines. The necessity
for adding additional lines.is that the djstanCe between the points (N, 1) and
(1,N) and the line X has increased as the coordinate system is rotated. The -

distance between X and (N, 1) is developed in the following sequence of

N

equations: ‘ .
Distance between x _ and (N, 1) = N-1 sin(6+45°)
: N2
N-1

= (éin@cos 45° + cosf sin45°)

|

! (sinf + cos0). ‘ ' (B3)
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y
(O) L] L] o ® [ ] e . xc
k:2 [ *® [ 4 L ] ® [ ] [ o
k=| , [ 4 ® L] [ ] L L] [ ] L] )
_| k=O [ 4 L] [ [ [ . [ [ (N,I)
2 — 7 ’
// X

/ X ' -
y=(tanB)x+yy+k /cos8 k=0,1,2...,ng
' XBL741-2177

Figure B-1. Relationship between the picture elements and coordinate system for the
derivation of the family of lines, which delineate the parallel rays.
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Due to symmetrv, ILq. (B3) holds for the point (1,N) as well as (N,1). When
0 = 45° this distance will be at a maximum. |

From Eq. (B3) we can dével_op an expression for the distance between
_the point (N, 1) at 6 = 0° and the point (N, 1) at 0° < 6< 90°.

]?istance betwefen (N,,i)l 0 =0° and (N, 1)| 0°< 9< 90°

:(Distance,betWeen X anfi (N, 1) ‘0°< 6.< 90° ) - (Distance be’cweenxC and’ (N, 1) l|6=00)

N-1
2

v

Edy= B2l (sing + cos6-1). » . (B4)

(sinf + éos@) - (

Now at 8 = 0° the first line chreslponding tok =0is é.t y = 1/2 and.the dis-
tance between'it and the point (N,'1)‘is' 1/2. Therefore the distance expressed
in Eq. (B4) can increase by.v1/2 before more lines dre necessary. To deter- .
mine the distance between the line k=0 at 9= 0° and the line k = 0 at

0° < 6 < 90°, one needs tp add 1/2 to Eq. .(B4) and take the largest integer

less than this since the family of lines are separated by integraliwidths.

Therefore, .

Distance between line-k = 0

0°< 6< 90° andlinek=_0|9:0°

N-1
2
For the special case when [e] = INT [e¢] in Eq. (B5), we adopt the rule

= INT [

(sinb + cosb - 1)‘+ 1/2] . | (B5)

that if a point lies on one of the family of lines, let's say the line corresponding
to k, then the point (pixel) belongs to the ray k + 1. . Therefore when

[ o] =INT[ K ] a ray will be added for the point (1, N) but not for the point
(N,1). Therefore, from Eq. (B5), we;see that the total number of additional
rays necessary to cover an array for 0°< 6 < 90° is given in the following
equatién: | 4 \ |

N-1

2 INT[ 5 (sinb + cosB-1)+1/2] if [» ]> INT[‘Y ]

Additional rays =§ | o ~ (B6)

{2 INT[B5! (sin6 + coso-1)+1/2] -1 if [+ ] = INT[ « ]

Adding Eq. (B6) to N which is the number of rays for 6.= 0° we get the total

number of rays n, for the angle 0°< 6 < 90°:

4
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N+ 2 INT[R5! (s1n6 + cos8-1) + 1/2]  if[e ]> INT[» ]
ng = : _ (B7)
N +2 INT[N (sin + cosB-1) + 1/2] -4 .if [« ]= INT[e ]
For 6 = 0° the distance from X to the line k = 0 is N/2. Therefore, .‘the‘
distance to the line k = 0 for 0°< 6 < 90° is N/2 plus the increased integral

ray widths 'such that the point (N, 1) is bounded below by a line. Using

Eq. (B5) with provision for the placement of a point if it lies on a line, we have

Distance between line k = and X equals

0 |0°< é< 90°

%I+ INT [Néi (sinf + cos6-1) + 1/2] if[«] INT[e ]
1, = N » ‘ ' S ' (B8)
g +1NT[-1\-I%3(_sine+cos6-1)+1/2]—1 if [ o] = INT[ « ]

Now with Eq. (B8) we can use triangles II and III (Fig. B-1(b)) to déveilop
an expression for the y intercept, Yo’ for the line k = 0 The line segments o

on the v axis corresponding to triangles II and III have values L/cosd and
N+1

) tanf, respectively. Thus the y intercept, Yor for the line k = 0, has the
equation - T

_N+1 L N+1 o -
Yo T2 - cos® T2 'tanG . . (B9)

B. The set of rays {k(€)} corrésponding to a given pixel (I, J).

For each pixel in the NXN array with coordinates (I,-J), an expression
can be developed which irﬁmediafely determines the ray for which it is an
element. First, notice in the following figure that we already have an ex~-
pression f‘orvthe distance between the point (N, 1) and the line X and the dis-
tance be'gween the line k =0 and\the line x_ as given in Eq. (B3) and (B8) re-
spectively.
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Figure B-2. Distance between the first line, of the family of lines delineating the rays,
and a line through the center of the array for projection angles between 0°-and 90°. -

For the point corresponding to the coordinates (I, J), the leg adjacent to
@ for triangle A will have the value J-1, which implies that the hypotenuse
has the value (J-1)/cos® and the leg opposite '@ has the value (J-1)tanf. There-
fore, the hypotenuse of triangle B haé the value N-I - (J-1)tané, which implies
that the leg o'pp.osite ® has the value [N-I - (J-1)tan6] sinf. Hence, '

Distance between (I,J) and X

2

Combining terms we have

.N-1 (sin® + cosB) - (J-1)/cos6 + [ (N-I) - (J-1)£an6] sin@l.ﬁ

I-N—*q—_zg—lsin6+gJ—Tl\L—1 cos@l. o - | - (B10)

Using Eq. (B10) fhe distance D between (I, J) and the line k = 0 is

D=L+ M2l gy 4 21N og0. (B11)



-74 -

From Eq. (B11) we can calculate the particular ray for a projection 6 that goes

through the point (I, J) as

k(6) = INT{D} + 1. ‘ o ~ (B12)
III. 6 = 90°
For 6 = 90° the family of lines that define the projection rays is o
x=k+1/2 k=0,1,2, »», N. S (B13)
IV. 90°< 6< 180° | - : S

A. The family of lines

. For 90° < € < 180°, the family of lines which defines the projgctioﬁ rays is

4

'y = (tanf)x +yp+k/[cos8| k= 0,1,2,...'}16, | (B14)

where tanf is the slope of the family of lines, y'o is tlhe y intercept fqr the line
k =0, 1/| cos6| is the increase in the y intercept for each succeeding line,
and ng is the total number of rays. |

The development of the expression for y'o and ng is similar for th?.t given
for 0°< 6 < 90°. Notice in Fig. B-3 that the family of lines increases down
thé plane, whereas for 0° < 6 < 90°the family of lines increases up the plane.
Also another thing rhus\t be kept in mind; as"illustrated-in F;ig.' B-3, -
vy = 180° —é, ‘therefore cosy=| cosGl . 7

Due to symmetry, the distance, L', between X and the line k =.0 for

90° < @ < 180° will have. the same expression as given for. L in Eq. (B8),

DS L (éih6_+ | cos6 | -1) +1/2]  if [+ ]> INT[+ ]

L'=¢ : o ] ) (B15)

B+ INT[5 (sin6 + | coso | -4) + 1/2] -1 if [+ ] = INT[ - ]

and the number of rays will also have a similar expression,

s

\%

N +2 INT[RS! (sinf + Jcos6 |-1) + 1/2]  if [+ 1> INT[ - ]

N + 2 INT[R5! (sinf + | cos6 | -1) +1/2] -1 if [+ ] = INT[ « ]
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y=(tan 8) x+y,+k/cos 6 k=O,I_,2...,h9/

ol '_\N_""_l
(1,1 N\ J°
K J B

& k=0 _
D _'__ \_ ,
os)’\>>\'L'/cos)’ k=)

b

. r ~
< / 0. ) N o

. _© keng_

-

XBL741-2178

_ Figure B-3. Relationship between the picture elements and the family of lines for
projection angle between 90 and 180°. ‘

~ .
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Now dsing triangles I and.II indicated in Fig. B~3, we can develop an ex-
pression for y'o. For triangle I the side adjacepf toy has the ve,lue (N+1)/2,
which implies that the side opposite vy is [ (N+1)/2)] tany. Also, knowing the
‘Value for L', we have L/ /cosy as the value for the hypotenuse of triangle III

Therefore, ut111z1ng these 11ne segments on the y axis, we have

CONHL L 4 Nt

Yo = "2 ° cosy’ 2 tany
S ' (B17)
- 4 !
SN#t LY N#t g
2 |cos6| 2 °

B. The set of rays {k(8)} co'rresponding to a gi\}en pixel (I, J).

As was done ‘for 0° < 6< 90° in Section IIB, we can develcop an expression

that gives the ray for a particular projection that goes-through a pixel (I, J).
The distance between the point (1,1) and the line X and the distance between

the line k = 0 and the lihe X is given in Eq. (B3) and (B15) respectively.

> k=0

Figure B-4. Distance between the first line,’of the family of lines delineating the rays,
and a line through the center of the array for projection angles between 90° and 180°.

In Fig.B~4 the side adjacent to triangle D has the value J-1 which implies
that the hypotenuse has the value (J-1)/cosy and the, side opposite y has the
value (J-1)tany. Now the hypotenuse of triangle C is I- 1- (T-1)tany; therefore
the side opposite y has the value [I-1-(J-1)tany] siny. This gives ‘

-~
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Distaﬁce between (I, J) and X

= l[I—i-(J-i)ta;ny] siny + (J-1)/cosy— N21 (siny + cosy) I

= l————-—(ZI—IZ\I—“‘ siny + —————l-(ZJ_IZ\I—,i cos%{

, . | (B18)

which implies that the distance D! between (I, J) and line k = 0 is

D' =L' + (—Z—I-—ZM sinf +1-2‘—‘:L_-21\I;1)— lcosG l . _ ’ . (B19)

From-Eq. (B19) we can determine the ray corresponding to the pixel (I,J) for
a given angle 0, . ] ’
B k(@) = INT{D'} + 1. (B20)

V. 6= 180° |

Figure B-5 illustrates the corresponding relationships for angles greater
than 180°. Therefore, from the equations given in‘seéti-ons I and IV we can
summarize the equations for the family of lines determining rays for all angles

other than projectives for integral multiples of /2,

(321)

 y =(tan®)x+y, +k/| cosd |, © k=0,1,2,--,n,
where
: N+ L . N#t
Yo~ 72 |cos@| = 2 ans ,
and
B+ INT (B2 ([sin6| + | cose [-1) +1/2] it [+ ]> INT[ + ]
L=
-125 + INT'[—l\%1 (|sin@ |+ |cos6|-1) +1/2] -1 if [+ ] =INT[+ ]
[N+ 2INT( -N—?:i( |si'n9 |+ [cos@ |-1) + 1/2]  if [ « 1> INT[ « ]
.
| N+ 2INT [25 ([sind |+ Jcos6 |-1) + /2] -1 if [+ ] = INT[ « ]
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y=(tan 8 ) x + Yot /lcos 61 k=0,1,2;, Ny

y= (ton9)x+y°+k/|cos el - . ' )
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. / , : : y= (tone)x+y +k/|ohl
y o k= o 2,
X,BL74I—202|

Figure B-5. Relationship between the equations for the family of lines delineating rays.
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' Whereas the angle‘s 6 =0°, 180° the family of linés"is
y=k+1/2 k=0,1,2,---,N, N R "(322)
and for angles 6 =90°, 270‘f the family of 1ines is - |
x=k+_1/2’ k=0,1,2,-++-,N. - (B23)

- Equations (B11) and (B12) give the ray corresponding to a pixel (I, J) for ,
0°< 6 < 90° and 180°< 6 <2,70°\x;hereas Eqgs. (B19) and (B20) give the ray
corresponding to a pixel (I, J) for 90°< 6 < 180° and 270°< 6 < 360°. This can
be summarized as ' ' |

k (@) = INT {D},

where
rL + N+12_ZI lsine |+ (ZJ"]-Z\I-']- ICOSG l if Qo< 6 < 900 ) } .
o T A, _ . 180°< 6 < 270° SO
D= R L (B24)
L+ BT sine| + LIS Jeoso|ir 90°< 6 < 180 .

270°< 6 < 360°

A Subroutine Determining the Projection Values for Each Ray 3

Equations (B21) - (B24) give the family of lines which defines the rays for -
each angle. Using these equations the following subroutine generates the pro-

e n
jection values Rke-— by

} CALL SUM(B,XR) .
'whe;r'e B Ais avNXN array. The array XR contains the projectibns of B, which
is returned upon execution of the above subroutine. Thesé >projectionsi are de-
noted by XR (M, KK) where. M is the index for the angle and KK is the index

for the ray. It is assumed that the projecfion RkG has the funct—iOnél itelvatiron- .

" ship R, , = = A(i,j). See Appendix H for the case where
ko . » ;
' (i, j)erayk(h)
R ,= " = fQ.A(i,_j) and f?. is some factor other than 1.
k6 A ij ij :
(1, j)erayk(6) . .

Note that the listing for SUM calls the following two subroutines:

CALL YMIN(KK, M, IY1,1Y2)

CALL XMIN(KK, M, JY, IX1, IX2) '
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where KK is the index for the ré,y and M is the index for the angle. The re-
‘turned values IY1 and IY2 are respectively the minimum and maximum y
coordinates for pixels in the ray KK at the angle M. The returned values |

IX1 and IX2 aré respectively the minimum and maximum x coordinates for
pixels in ray KK at the angle M and having a y coordinate of JY. - An example
of the variables IY1, IY2, IX1 and IX2 for an 8 X8 array are shown in Fig. B-6.

Sl e1vess
.‘ o« - : ROy k(e) ‘ ,
» . +forJY=4,IXI=4 and IX2:=6

<

Figure B-6. Parameters calculated by a subroutine CALL XMIN.

The above subroutines require a COMMON block which contains the cosine;

sine, and tangent of each projection é,ngle and other constants which remain

fixed for eacl; iteration. These trigonometric functions can be evaluated and
'stored in the block COMMON by ‘
' ‘ CALL CONST
where the block COMMON has the following values
S(1) = ABS[SIN(6;)]

, Cc) = ABS[.C’OS(GI)] c
T(D) =TAN(8)

IR (I)=The number of rays for the angle 61. See Eq. (B21).
XL(I)=The variable L given\in Eq:. (B21).

IA(I)=The angle € . in degrees

I
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XN = FLOAT (N)

XN1= FLOAT (N-1)

XN2
N
N1

M1

)

FLOAT (N1)
The NXN array size being reconstructed.
N+1 |

The number of projections

The variable IAA in SUBROUTINE CONST is the angle in degrees in which the

subJect is rotated for each succeedlng projection.

51
52

66
19

67
S 61

53

- 68

63
13

SUBROUTINE QUN(B X&)

[y

DIMENSION B(46+46)3XR{36464) s
COMMON S{36),C(36),T(36),IR(30), XL(jé)vIA(36),XNyXN1 XNZ'N N1l,M1

DG 18 M=1,M1
MR=TR{M)

TF(IA(M)LEQaU.ORJIA(M)EQL180152+51
[TF{TA(M)JEQ.90.0RTA(M) e EQ.270)54,53

DO 19 K=1y4MR
XR{MyK})=0,

DO &6 1=14N

XK{M, K)”XR(M K)*B(IrK)
CONTINUE - /
CONTINUE

GO T 18

DO 61 K=1,MR
XR{M,K)=0.

DO 67 J=14N

XR(MpK)Y=XR{M,K)+B(KyJ)

CUNT INUF

CONTINUE

GO TN 18

DO 63 K=1yMR
XR(M,K,:OD N
CALL YMIN{K,M,IY1l,1Y2)
DO £8 J=1Y1l,1Y2

CALL XMIN(KyM,y,JyIX1,1X2)

DN 68 I=1X1,1X2

CONTINUE
CONTINUE
CONTINUE -
RETURN
END



O~NOU

11

15
16
14

17

13

19

31

32
33
35

34

20
22

21
25
26

27
30
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SUBROUTINE YMIN(KKv VIYlleZ)

TCOMMON S(36) ((36)'T(36)'IR(36)1XL(36)91A(36)9XN9XN1,XNZ NeN1yM1
XK=FLOAT (KK

XK1=FLOAT (KK-1)

DO 7 I=14N '

XI=FLOAT(I1)

X={ XI-XN2*, 5*(1.-T(M’)*(XL(M) XKl)/C(M))/T(M) .
ITF{TA{M)JLE.ID.ORT AIM)aGT . IBOoAVD IA(M)LTL270)8,9
IF{X-1.)7410,10

IF(X=XN)10,10,7

CONTINUE

Ivli=1 -

lF(IR(M)‘KK)ll 12 11 '

1Y2=N

G0 TQ 13 .

MI=1+1 ’ '

DO 14 J=MI,N1 :

XJ=FLOAT(J) i
X=(XJ=-XN2*, 5*(1.‘T(M))+(XL(M) XK)/C{M) ) /T (M)
JF{IAIM) e LE.90.0ReTIA(M)eGT4180.AND. IA(M)-LT 270)15116
TF(X-XN)14,17417 _ ;
IFIX-1:)17417,14 :
CONTINUE
1vY2=4-1
CONTINUE
RETURN"
END

SUBROUTINE XMIN (KK, M,Jv,xxl,ixz)
€ OMMON ﬁ(jb),((%6),T(36)1IR(36),XL(36),IA(36).XN,XN1 XN2 gNy Nl,Ml
XK=FLOAT(KK) '
XK1=FLOAT (KK=-1)

XJ=FLOAT (JY)

X1=(XJ=XN2%, 5% (1.=T (M) )+ (XL {(M)- XKl)/C(M))/T(M)

X2= (XJ-XN2% 5% (1o=T (M) ) +{XLAMI=XKI/CEM)D/TIM)

IF{TA(M) eLE.900R.TIA(M).GT.1804AND. IA(M) LT.270)19,20
IF({X1-XN)31,32,32

TX2=INT(X1)

GO TO 33

IX2=N _

IF{X2-1.)34,35,35

IX1=INT(X2)+1

GO TO 30 . '

IXl=1 _ : .

GO TO 30 ' :

TF(X1-1.)21422,22

IX1=INT(XL1)+1 :

GO TO 25

1x1=1

IF{X2-XN)26426,21

IX2=INT(X2)

GO TQ 30

IX2=N
RETURN

END



21

22

6

SUBROUTINE CONST

COMMON S(36),((36),T(36)yIR(&O),XL(&&),IA(36).XN XNLy XN2sNyN1,M1

RFAD FMT 14N
READ FMT2,M]

RELD FMY3,1AA

Nl=N+1
XN=FLOAT(N)

XN1=FLOAT(N-1)

XNZ2=FLOAT (N1)
b 1 I=1,M1
TA(L)=(I-1)*1AA

~83-

\

AA=FLOAT{IA(T))*3,1415621/16C.
S(T)=ABS(SIN(AA))
C{I)=ABS(COS(AA))

T{I)=TAN{AA)

ARC= 5= XNL*(S([)#C(T)-1

IZ=INT(ARG)
I=FLOAT(IZ)

IF(ARG-Z)21,22,21

XL{T)=XN*,5+2
GO TO 2

XL(T)=XN .5 +2-1.
TF{IACT) «EQ.0.0R IA(I).FO 9CeORIA(I)EQ. 180, UR.IA(I).EQ 270)6,8

IR(I)=N
GO0 1O 1

IF{ARG-2)11412,11

IR{T)I=N+2%112
6O 10 1
IRCI)=N+2%*17-1
CONT INUE
RETURN

END

e)+a5

N
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A Subroufiné for Determining the Rays Corresponding to Each Pixel

Equation (B24) gives a relationship for determining the rays corresponding -

to each pixel with coordinates (I, J). This relationship is achieved on the -

digital computer by

CALL RAY (I, J, M, K)

where (I, J) are the coord1na.tes for the pixel, M is the index for the angle,

and K is the index for the ray which is returned after the above, subroutine is

executed.

23
35
22

24

25
26

27
29

SUBROUTINE RAY{19JyM,K) -
COMMON S (36), (,(36),T(36),IR(56)7XL(.‘36)yIA(Bb)vXNvXNl,XNZy 1N1yM1
IF{IA(M)eEQaOeRLIA(M) EQ.180)22,23

IF{IA(M)eEQa90.0R.TA{M),EQ.270)25,35

AF(TAIM)eLT 90 ORTA(M)aGT 41830.AND IA(M) LT, 270)24;26
K=J :
GO TO 29

XX=FLOAT(N-2%1#1)

YY=FLOAT(2%J=-N=1)
GC 10 27

K=1

GO 10 29
XX=FLOAT(2%]-N-1)

YY=FLOAT{2%J-N-1)

K INTOCXX*S (M) +YYXC (M) ) * S+XLIM) I+
RETURN
END
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Appendix C. Using Generalized Inverse for
C Three-Dimensional Reconstruction
» Techniques of solving for the unknown values at each picture element

(i,j) from both an adequate and inadequate number of views using direct
“matrix methods are detailed in this appendix. ( '
The criterion for the reconstruction of an image from multiple projections

'Pké) is that the best estimate, [A(i, j)] sbe a minimum to the least-squares

function .
’ ' 2
. n, (P,,-R, ,)
‘R(A) = = 29 k62 k6 , (1)
6 k=1 0o
where the densities A(i,j) satisfy the functional relationship
_ 0 L. - _ o .
Rke- p f..A(l,J), 9—1,,°' ,M,.k—is""’ne’ (Cz)

@, j)e ray (k,0) 1

and 0, , is the standard deviation in the measured projection PkG' The factor

‘f?j rlggresents the fraction of density that we assume is be\ing measured by the ’
ray Rk@' This factor can incorporate the expected results due to attenuation .
and spread of an emitting source as measured by a gamma camera. Note

" ‘that the factors f?j are also a function of the ahgle 6.

Generalized Inverse

Equation (C1) can be expressed in matrix notation as

Q@) =@ -ra)tet p-Fa) . (C3)
'I‘he row matrix,
BL =[P, P, «v- P oeven. PP vunen P .. ] (1Xm)
117 21 n, iM™ 2M nMM ’

is (PK 9), a matrix of measured projections where K designates the pai‘ticular

ray and 6 the projection. The row matrix AT is

AT - [A(1,1) AR, 1) e--- A(N, 1) e... A(1,N) A(Z,VN)- .+ A(N,N)] (1><n2),

where A(i,j) are the values for the Fel_ernents of the section to be reconstructed.
The matrix -1is the inverse of the covariance matrix for the errors inthe measured

projections P, where we assume that the measured projections are independent:
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2
1/011

1/0,,

1/0
i | nMM _J
The matrix F is an m X N2 matrix where the row (k, 9) is'composed of 0's and
f?j’ depending on whether the point (i,]j) is an.element of ray (k, 8). The
variable m is the sum total of rays for all projections such that

M
m= 2 n

p=1 ¢

An éxample of the matrix F is illustrated by the following 4X4 array with

.project_ions for 0° and 90°.

> =
Ps
, P32
A(1,2) | A@R,2) ['o o o of . P,
A(1,1) | A@,1) L A(, 1) | A4,1) P,

z.= P P P

11 24 31 P

4 1 ’ ’

If we assume that f?j =1 for all i, j, 6 then for this particular example the

¢

matrix F is
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A
panding (C3) we can write (C5) as

£t 0 0 o 4. 0 0 0 41 0 0. 0 1 0.0 0
o 4 0.0 0°14 0 0 O 41 0 0 .0 1 0 O
.foo 02 0o o o0 1 0 0 0 1 0 0 0 1 0
F=jo o o0 4 0 ©0..0 4 0 O O 1 0 0 o0 1| (C4
1+ 4 4.4 0 0 0 0O O 0.0 6 0O 0 0 0
o° 0o ,0 0 4 4 4 1 0 O 0 O O 0O 0 0
o o o o0 o0 o0 0 0 4 14 14 1 0 0 0 0
o .0 o o . 0 O o0 O0O O O O 0 1 1 1 1
- The best estimate A which minimizes Eq. (C3) must sétisfy the equation
VAR a0 \ (C5)
‘where v, isa /mlatrix differential operator (See Deutsch, 1965). By ex- °

T 1 T

o la+ ATET

T T

. T —1 -‘1' N "1 A —
V(P 2 P-P 2T FA-ATF a7 'FA) | 2 =0

and simplifying we have | ,

2Fr e lpi2rT o 1 ra = 0.

Solving for A we obtain

T -1

TelpmterTolp, (C6)

A= (F

1

if the inverse matrix (FL @ 1 F)"! exists. Goitein (1971) claims this is true

2 1

if (m-N"-M+1)> 0. However, if the matrix FT@— F is singular, we can

-~

express A in terms of the generalized inverse, F.‘G, of the matrix F,

A= [(q),-i);/zF ]G (¢;1)1/~2P. » ©7)

If we assume that @-1 =Iand F is the matrix given in the previous ex-
ample, (C4), then A can be solved by multiplying the generalized inverse FG

by the measured values P:



r0.21875
-0.03125
—0,03125
-0.03125

-0.03125
-0.03125
A=]-0.03125

0.21875
-0.03125
-0.03125
-0.03125

0.21875
-0.03125
-0.03125
-0.03125

0.21875 -

-0.
0.

-0.
.03125
.03125
.21875
.03125
.03125

-0.
0.

-0.

03125
21875
03125

03125
21875

.03125
.03125
.03125
.21875 -
.03125

03125

-0.
.03125
.21875
.03125
.03125
.03125
.21875
.03125
.03125
.03125
.21875
.03125
.03125
.03125
.21875
.03125

03125

-0.
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03125
.03125
03125
.21875
.03125
.03125
.03125
.21875
.03125 -
.03125
.03125
.21875
.03125
03125
.03125
.21875

A

.218175
.21875
.21875
.21875"
.03125
.03125
.03425
.03125
.03125
.03125
.03125
.03125
.03125
.03125
.03125
.03125

-0

~

.03125 -0.03125
.03125 -0.03125
.03125 -0.03125
.03125 -0.03125"

0.21875 -0.03125
0.21875 -0.03125

.21875 -0.03125

0.21875 -0.03125

.03125 0.21875
.03125 0.21875
.03125 0.21875
-0.
.03125 -0.03125
.03125 -0.03125
.03125 -0.03125
.03125 -0.03125

03125 0.21875

o o o o

.03125
.03125
.03125
.03125
.03125
.03125
.03125
.03125
.03125
.03125 -
.03125-
-0.
.21875
.21875
.21875
.21875

03125

This is the unweighted best estimate for the densities. A(i, j). The appeafing

thing about the generalized inverse is that once the generalized inverse has

been determined, then the estimate A can be determined by direct matrix

multiplication. Also the computer storage space necessary for the matrix

FG can be reduced by noticing that the factor multiplying each projection

Pk@ is only a function of the number of elements in the ray (K, 6), However,

usually the generalized inverse for a Iarge array is not easy to determine.

[XP
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Appendix D. Subroutine for Back-Projection Algorithm
, The reconstructed back-projection image can be obtained by
CALL BCKPROJ (B, P)

where B is the reconstructed array, and the arrajr P contains the sampled

projection data. Each projection value is denoted by P(M, K) where M is the

‘index of the angle and K is the index of the ray. The ray corresponding to

a particular ba;ck—pr,ojection pixel is found by the subroutine
- CALL RAY(I, J, M, K),

which is listed in Appendix B.

The flow chart for the back-projection algorithm is presented in Fig. D-1.

SUBROUTINE BCKPRCJ(B,P)
DIMENSION B(46,46),P(36464)
COMMON §(36’yC(36):T(36)9IR(36’9XL(§6),IA(36) XNy XNl'XN29N N1,M1
‘XT=C.,
MR=1R(1)
NN 1 I=14MR
XT=XT+P{1,1)
1 CONTINUE : : ‘ .

DO 20 1=1,N ' : ' o
DO 20 J=1,N -
XP2=0.
DO 30 M=1,M1 . o
CALL RAY(TI,JsMyK) cf Appendix B
XP2=XP2+P (M,K) .

30 CONTINUE
B(IyJ)=XP2

20 CONTINUE
XTT=0,.
DO 80 I=1,N
DO 80 J=1,N .

O XTT=XTT+B{1,J) '

80 CONTINUE : : _
DO 83 I=1,N
DO 83 J=1,N
B(IaJ)=XTHB(1,J)/XTT

B3 CONTINUE '
RETURN . '
END - - | -

4
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Input projection

values P(M K)

CALL CONST

~ Evaluate XT

0 IR@)

XT =Y, P(1K)
K=1 :

N

For all 1,J evaluate
Ml . .
CALL BCKPROJ(B,P) B(1,)) = 9 P(M,K")
‘ )
1

Evaluate XTT

: N N
XTT =% 5 B(L))
- I=1)=1

- For all 1] evaluate

B(L]) = XT+B(1,])/XTT

A}

STOP

Comment:

For each M, K’ is determined -
by CALL RAY(1,], M,K’)

Figure D-1. Flow chart for back-projection algorithim.
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Appendix E. Subroutine for SIRT Algorithm
The simulfaneous iterative reconstruction techniq\ue (SIRT) is discussed
in Section (3.5). The flow chart is presented in Fig.E-1. The image B is
' reconstructed by the SIRT algorithm by .

CALL SIRT (B,P,ITER)
where B is the reconstructed array, P is the sampled projection data, and
ITER is the number of iterations desired. Each projection value is denoted
by P(M, K) where M is the index for the angle and K is the 1ndex for the ray.‘ .
The number of pixels for each ray is stored in NN(M, K) and the length of each
ray is stored in XLENGTH(M K). Ray lengths are evaluated by

CALL XLENGH(M, K, X)
where M is the index for the angle, K is the index for the ray, ‘and X is the
ray length which'is returned. A ' |

Figure E-2 gives the equations for the length of the line segments whieh

intersect the NXN array. The variable x is the vertical distance as measured
from the point (N,1). The graphs given in the f1gure are for- angles less than
90°, but these same results hold for angles greater than 90° and one is directed
_ to the listing of SUBROUTINE XLENGH(M, R, X) for the implementation-'
thereof. We have taken the length of the ray K to be the maximum 1ength of
" all lines which subtend the array between the lines K-1 and K.



CALL SIRT (B,P,ITER)
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‘Input projection
values P(M,K)

CALL CONST

For every M K evaluate

' XLENGTH (M,K) and NN (M,K)

T

Let initial solution for B be .

" B(1,)) = XT/N?
IR(1)

where TT =4~ P(1,K)
- K=1

L

For every M, K evaluate XR(M,K)

XR(MXK) = B
(1,))e ray. (K,M)

by CALL SUM(B,XR)

e N

- M1 ‘ M1 M1
B(1,)) = max {B(L]) + ZP(M K’ )/ZXLENGTH(M K) ZXR(M K)/ZNN(M X), os

For all 1,J, evaluate B(I ])
where

Yes

\
Evaluate XIT where

N N
XIT =23 B(L))

I=1]J=1

I

For all 1,] evaluate new values
of B(I,]) = TT*B(I,J)/XIT -

No of iterations < ITER

) \omment; In the sums

for each M, the
values for K are

determined by
CALLRAY (1,] M,K).

STOP

Figure E-1. Flow chart for the SIRT algorithm.
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|FOR 0 <6< 45°

Ligh
) N=1).
| cos 0
X . ) _ :
sinfcos 0 / “(N=1)(sin 8 + cos 8) — x
sinf cos @
| : [ / ‘
| |
A1 I S
I I
! |
! !
I — >
~Distance from point (N,1) x
| \ Y
- x=(N—1)sin@ x=(N—Tjcos @

FOR 45° <@ < 90°

4

Loy}
(N-1)
sin @
X \ - :
sinfcos 8 (N—1)(sin 8 + cos ) — x
\ I | sinf cos 6
o /
L
I |
| | -
. Distance from point (N,1)  x
Ao |
x = (N—1)sin 6

x = (N—1)cos@

Figure E-2. The length of ray segments. "

DBL 741-4629
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SUBROUTINE SIRT(B,P,ITER) .

DIMENSIUN Bl46946) ) XLENGTE(36464) 4NN(36,64), XR($6,64)pP(36,643
COMMON S(36), C(%b)pT(%é),IR(Bb),XL(jb),IA(Sb),XN XNLs XN2sNeN1yM1
DO 11 M=1,M1

MR=IR({M)

D0 11 K=1,MR

11

19

30

43
20

80

83

81

CALL XLFENGH(M,K, XLENGTH{M K1)

CUNTINUE

DO 1 I=1,N :

DO 1 J=1,4N o ‘

B(IsJd)=1. "

CONTINUE _

CALL SUM(B,4XR)

DO 2 M=1l,M1

MR=IR(M) ‘ :

DO 2 K=1y4MR /

NN(M,K)-INT(XR(N,K))

CONT INUF

TT=0C. S . , N ’
MR=TR(1) . - - : . ‘ ¢
DO 5 I=14MR : N ’
TT=TT+P(1l,1)

CONTINUE

Do 7 I=19N

DC 7 J=14N

B(1;J)=TT/FLOAT (NX%2)

CONT INUF

Kl=1

CALL SUM(B,yXR)

DO 20 [1=1.N

DU 20 Jl=1,N ‘ ,
1P2=0, . ; N T
XL=00 ' ) )

R=0,

N2=0 _

DO 20 M=1,M1 , ,

CALL RAY(I1,J1,M,K) ,
XP2=XP2+P {M,K) ' '
XL=XL+XLENGTH(M,K)

N2=N2+NN({MyK)

R=R+XR{M,K)

CONTINUE -

BtilsJdl)= B(11,J1)+XP2/XL R/FlUAT(NZ)
IF(B(IL1sJ1))43,20,52C
B(T1l,J1)=0.

CONT INUE

XIT=0.

DO 80 1=14N

DO 80 J=14N ,
XIT=XIT+B(1,J) -
CONTINUE ) -

DO 83 I=1,N R

DN 83 J=1,N

BOIyJ)=TT*B(I,J)/XIT

LCONTINUE
_Kl=Kl+]

TFE(K1-1ITER)79,79,81
RE TURN

© END
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SUBRDUTINE XLENGH{M,KyX)
COMMON S{36)9C(36)yTL36)yIR{36) 4XLI36}sTAL36) s XNeXML sXN2sNsNLyM1
[F{IAIM) aEQeCoORJIAIM)eENeTO0NR 4 IAIM) eEQe1BO0URSTAIM)EQe27T0)15,17
15 X=FLOAT{N1)
s4d TO 99
17 IF{KsEQel)44,445
44 XKK=0,
GO 10O 47
45 XKK=FLOATIK=1)-XL(M)#XN1¥, 5% {S{M)I+C (M))
47 XK=FLOAT{KI=XLAM)+XNL*,5x{S{M)+C(M))
IFLITIAIM) 1T o45) ORI TAIM)uGT 135 ANDTA(M)eLTa189)0R(TA{M).GTW]
C30+ANDS JTAIM) LT 4225) sORG{TAIM) s GT315.ANDLIAIM) L Te360)) 1,2
1 XK1=XN1%S{(M)
XK2=XNL1*C (M)
[F{XK,LFaXK1)2,4
IF{XKKGT o XK2 )16 46
X=XK/S{M}/C(M)
G601 TN 99
6 X=XN1/7C{M)
GO0 70 99
16 X=IXNI*{S{MI+CI{M))-XKK}I/S(M)/C(M)
60 TO 99
3 XKL=XNL%C (M)
XK2=XN1*%S(M)
TFIXKJLE XK1 )2,420
20 IF{XKK.GT.XK2116,422
22 X=XN1/S{M)
99 RETURN
END

N



_’9?-

Appendix F. Subroutine for Iterative Least-Squares Algorithm

Section (3.6) of the discussion gives the de'v'elopment' and theory for the
iterativ-e least-squares algorithm; Fig.F-1 gives the flow chart. The computer
11st1ng given in this section assumes that each of the factors, f?lj, is equal to
1. Therefore, for any emission study where the projection data'is taken to be
the conjugate mean of oppos1ng v1ews, the reconstructed image will not repre-
sent quantitatively the true 1rnage because of attenuatlon However, for trans-
mission studies Where the projection data is taken to be. the log of the ratio of
the incident beam over the measured beam, the reconstructed image will be a
true measure of the den81ty distribution. See Appendix H for the description of
the least-squares algonthm used for ern1ss1on studies.

' The image B is reconstructed by ]

CALL LESQ (B, P, ITER),
where B is the reconstructed array, P is the sampled projection data, “and
ITER is the number of iterations desired. Each projection value is denoted
by P(M, K) where M is the index for the angle and K is the-index for the ray.
'DEL(I, J) is the delta change for the p1xel (I J) as given by Eq. (32) The
array XDEL contains the prOJectlons of the array DEL. Itis as sumed that the

variance for each:s_ampled projection is the value of that projection.

v
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Input the projection '
values P(M,K)

CALL CONST ‘
Let the initial solution for B be - ’
| B(L)) = XT/N?

IR(1)
where XT = Z P(1,K)
K=1

CALL LESQ (B,P,ITER)

|
1
For every MK evaluate XR(M,K)

XR(M,K) = D B(L)),
(L)€ ray (K,M)

by CALL SUM(B,XR)

l

For all 1,J evaluate DEL(1,])

M1, M1
DEL(L]) = [M1-) XR(M K)/P(M,K)] le/P(M K)
T M=1 N

For every M,K, evaluate XDEL(M K)

o R XDEL(M K) = Y.DEL(L))
- ) _(IL)E ray (K,.M)

for each M, the
values for K are
determined by

Evaluate DAMP where

(M1 IR(M) ) : M1 IR(M) -
DAMP={}" 3" [P(M K) - XRIMK)] - XDEL(M,K)/P(M,K) Y. D XDEL(M,K)2/P(M, K)
M=1K= . M=1 K=1

For all 1,], evaluate the new values for B(1,]) - '
where B(1,]) = max {B(LJ) + DAMP = DEL (1,]),0}

Yes Is

ITER

0. of iterations <

' Figure F-1. Flow chart for the iterative least-squares algorithm.

Comment: In the sums

by CALL SUM(DEL XDEL) "CALL RAY (1] MX).




79

20

80

10
83

81
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SUBROUTINE LESQ(B,P,ITER)

DIMENSION B(46448) 3y DEL{4694E)3P{364064) ¢ XR{36,64) 4 XDEL{36,64)
COMMON SH{361,C(36) 4 T(36)9yIR(36) 4XLI36)yTA(36) 9 XNy XNLyXN2yNyNLsM1

XM1I=FLOAT (M1}

T1=0.

MR=TIR(1)

PO 5 I=14MR
TT=TT+P(1,1)

CONT INUE

DO 7 I=14N

DO 7 J=1,N
B(IoJ)=TT/FLCAT{N%*%2)
CONTINUE

Kl=1

CALL SuUM(B,XR)

DO 20 1=1,N

DQ 20 J=1,N

XIP2=0.

R=Oc

DO 3D M=14M1

CALL RAY{I4J9MyK)
XX=P{M,K)+l,
XIpP2=XIP2+1./XX
R=R+XE{M,K}) /XX
CONTINUF
DEL{IyJ)=(XML1-R)/XIP2
CONTINUE

CALL SUM{DEL,XDEL)
XNUM=0.

DEM=0.

0O B0 M=1,M1

MR=TR(M)

D) 80 K=1,yMR
XX=P{M,K) ¢1,
XNUM=XNUM+ XOEL (MyK) {1 a=XR{NyK)/XX)
CEM=DENM+XDEL{M, K)*%2/XX
CONTINUE
DAMP=XNUM/DEM

DO 83 I=1,N

DO 83 J=1,N

Bl ,J)=B(T,J)+DAMPAXDEL(I,J)
IF(B(1,J))10,83,83
B(I1sJ)=0.

CONTINUE

Kl=K1l+1
IF(KL-ITER)79,79,81
RFTURN

END
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Appendix G. Subro'utine for Filtered Back-Projection Algorithm

 The image B is reconstructed by the filtered back-projection algorithm
(Fig. G-1) by -
. CALL FILTER(B, P)
where B is the reconstrucféd NXN array, and the array P contains the
s‘ampvled proj_ecfion data. Each projection value is denoted by P(M, K) where
"M is the index of the anglé and K is the index of the ray.
' Inlthe listing of SUBROUTINE FILTER, one will notice that the projection

data for each angle is first transferred to array A which has a fixed dimension.

Thereforé, for a particular projection P(M,K),K =1, ... ,IR(M), the array A
has the following values . ‘ o
A1) v K real 0
. A(2) imaginary . 0
A(3) . real ‘ 0 '
A(4) ‘ ~ imaginary 0
. .
®
[ ]
® .
AT , 1
(1) rea 8 P(M, 1)
A(I+1) : imaginary 0
A(I+2 : ‘
. (I+2) real | 10 POML2)
A(I+3) imaginary 0 .
[ ]
° .
[ ]
[ J
. ,
A(I+2*IR (M})-1 , :
( (M)-1) real 20 P[ M, IR(M)]
CA(I+2*IR (M)) _ imaginary ' ,
A(T+2*IR (M)+1) real ’
A(I+2*IR (M)+2) imaginary
o ) .
L
[
A(127) real

A(128) o imaginary -

A



-102-
_ ’

The array A is filled in so that the projection values of P are centered
around a fixed center point of A. The array A is large enolugh to incorporate
the values of the projection P(M, ¢ ) with the 1argést number of rays.  Then
the Fourier transform of A is taken by

CALL CFFT(MM, A,INV;SS,1,ITER) .
The returned matrix A will now have the real and imaginary co'mponents of the
Fourier transform. These components are then multiplied by the appropriate

measure in Fourier space (the reciprocal space radius) and stored again in A. ¥
- R 7

A1) ——e - A()
AQ2) A(2) .
CAQ3) o A(3)
A(4) | A(4)
2% A(5) ' A(B) - -
2% A(6) _ A(6) '
31% A(63) ‘ Al63)
31% A(64) | A(64)
32% A(65) . A(65)
32% A(66) | A(66) |
31%FA(67) _ A(67)
, 31*-A.(68) A(68)
2% A(125) | A(125) .
2% A(126) A(126)
A(127) , A(127)
“ A(128) - : ‘ .'A(1‘28)

Al

" At present this routine does not include a truncation at the maximum reason-
able frequency though in our application the mé.ximum ‘frequenéy is close to the
‘highest freduency component in the discrete Fourier transform. This truﬁca-
tion with a roll-off is being investigated at the time of this writing. The quantita-
tive and noise amplification‘aspecés of this algorithm reside in proper selection

N

of the filter shape.
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Then the inverse Fourier transform of A is’ obtained'rby :

CALL CFFT(MM, A, INV, SS, -1, IFER),
where now the components of the inverse transform are stored in A. Then the
components of A are mapped into the prOJectlon array P(K M) by converting

the real and imaginary parts of each term to the modulus:

y A(i) o real
A(2) o imaginary = 0
[ ] . . (
'y
. [ ) "
A(T) . real o : .
| PM, 1) = N A@DZ + A@H)?
A(I+1) ' imaginary v
L] .
L]
[ ] ’ .
A(I+2*IR(M)-1) real o |
% 7 o P(M,IR(M)) = Modulus
A(I+27IR (M)) . imaginary ‘
A(I+2*IR (M)+1) real
A(I+2 *IR (M)+2) imaginary
. ‘ . R
[ ]
* -
A(127) real
A(128) - imaginary

After this has been done for all angles, the new projection values are then
back-projected by ‘ »

CALL BCKPROJ(B, P) . ,
- Remark: This technique gives good qualitative results, but is not quantitative
and will seriously arnplify noise because statistically weak Fourier coefficients

are amplified and the ramp filter is not truncated at the maximum allowable

frequency.
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Input.projection
~ values P(M,K)

!

CALL CONST
M=1

For angle IA(M) map p.rojection ' w

values P(M,K) into array A(I)

T
Tak; Fourier transform of A(D) by

CALL CFFT(MM,A,INV,SS,I,'IFER)

Multiply array A by appropriate
measure in Fourier space
Take Fourier inverse transform of A(I) by
CALL CFFT(MM,A,INV,SS,-1,IFER)

~

~ Map corresponding values of A -

back into the projection P(M,-)

M=M+1  Yes

Obtain the recohst'ructed image by
" CALL BCKPRO]J (B,P)

Figure G-1. Flow. chart for the filtered back-projection algorithm.

(d'9) AL TIVD
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SUBRUOUTINE FILTER(B, P)
DIMENSION B(46,46),P(36,64},VN(B),A(lZS)'INV(IZB),SS(IZS)
CUOMMON S(Jb)yt(16);T(3b),[k(jb),XLlJb),IA(jb)vXN,XvaXNavavaMl
MM(Ll)=6
MM(2)=0
MM(3)=0
ID=10
PRINT 200
DO 6 M=1,M1 o
DO 5 1=1,128 - ' S
A(l)=0,
5 CONTINUE
MR=TR(M)
IF(TA(M))2104314,310C
310 TF{TA{M)I-901)315,314,315
315 IZ=INT(o5%XNLX{S(M)+C( M)~ 1.)+.5)
Iu=1D-12-1
GO 1C 395
314 IU=1ID-1
305 I=2%1y+1
DO 7 K=1,MR
A(T)=P(M,K)
I=1+2
7 CUNTINUE
CALL CFFT(MM,A,INV,SS,I,IFFR)
NM=128 - . \ _ S ' -
K=1 . ‘ '
DO 8 1=3,63,2 :
CA(I)=A(T)*FLOATI(K) , _
ACT+1)=A{I+1)*FLCAT(K)
A(NN+3-T)=A{NN+3-1)%FLOATIK)
AINN=T+2)=A(NN=T1+2) *FLCATI(K)
K=K+l :
8 CONTINUE
A(E5)=A(65)%32, : .
AlE6)=A166) %32, I , o ‘ .
CALL CFFT(MMyAyINVySSy—-1,TFER) o
[=2%1U+]
NG9 K=1yMK
IF(A(1))55,56,56 S
55 A{I)=C. "
A(I+1)=0. . '
56 PIMyK)=SQRTIA(TI*:24A(I+]1)%%2)
S I=142
9 CONTINUE
6 CONTINUE
CALL BCKPRCJI(B,P)
RETURN ‘ o
END - ‘
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SUBROUTINE CFET(MgA,INV,Se [FSET, [EERR)
DIMENSTON ACL), TNVEL)SCL)4N(3) MU0 NP (3) W (2)5W2(2) 4 W3 (2)

10

12

13

14
16
18

19
29

30

40

IF( TABS(IFSET) - 1) SCG,90C,1¢

MTT=MAXO(M(1)sM(2),M{3))
IF(MTT.LTL1) GO TO 13
MSUM=M{1)+M{2)+M(3)
IF{(MSUM.GT15) GO TC 13
ROUT2 = SQRT(2.) ‘
IF (MTT-MT ) 14,14,13
[FERR=1 -
RETURN

IFFRR=0

MLl=M(1)

M2=M(2)

M3=M(3) - : ,
N1=2%%xM1

N2=2%%M2

N3=2%%M3 :
IF(IFSET)20,18,18

NX= NL1*N2%N3

FN = NX

DO 19 I = 1,4NX

A(2%1-1) = A(2%I-1)/FN
A{2%1) = —A(2%1)/FN
NP(Ll)=N1%2

NP(2)= NP(1)%*N2
NP(3)=NP(2)%N3

DO 250 1D=1,3

IL = NP{3)}-NP{ID)

ILL = IL+1

MI = M(ID)

1F (MI)250,250,3C
IDIF=NP(1D)
KBIT=NP (ID)

MEV = 2%(MI/2)

IF (MI ~ MEV )60,60,40
KBIT=KRIT/2
KL=KBIT-2

DO 50 I=1,I1L1, [DIF
KLAST=KL+I |

DO 50 K=1,KLAST,2

50

52

KD=K+KBIT
T=A(KD)
ALKD)=A{K)-T
A(K)=A(K)}+T
T=A(KD+1)

CA(KD+L)=A(K+L)-T

A(K+L)=A(K+1)+T

IF (MI - 1)2504250,452
LFIRST =3

JLAST=1

GO TO 70

-2

- EQUIVALENCE (NLyN{1))y (N2yN(2)),(N3,N(3))

From IBM program HARM

- cf. Budinger (1971).
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80
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LETRST = 2

JLAST=0 _
00 240 L=LFIRST,MI,2
JIDIF=KBIT -
KBIT=KBIT/4
KL=KBIT=-2

DC 80 I=1,IL1,IDIF
KLAST=1+KL

DO 80 K=1,KLAST,2
KL=K+KBIT ‘
K2=KL+KBIT
K3=K2+KBIT

T=A(K2)

A(K2)=A(K)-T
ALKI=A(K)+T

T=A(K2+11)..

A(K2+1)=A(K+1)-T
A(K+L}=A{K+1)+T
T=A{K3)
A{K3)=A(K1)-T

CA(KL)=A(KL)+T

T=A(K3+1)
A(K3+1)=A{K1+1)-T
ALKL#1)=A(KL1+1)+T
T=A(K1)

A(KLY=A(K)-T
A(K)=A(K)+T -
T=A(K1+1)
A{KL+1)=A(K+1)=T
A(K+L)=A(K+1)+T
R=—A(K3+1)

T = A(K3) _ "
A{K3)=A(K2)-R
A(K2)=A(K2)+R
A{K3+1)=A(K2+1)-T
A(K2+1)=A(K2+1)+T7

IF (JLAST) 235,235,82
JI=JJIDIF +]

ILAST= 1L +JJ

DO- 85 1 = JJyILAST,IDIF
KLAST = KL+ \

DO 85 K=I,KLAST:2

Kl = K+KBIT

K2 = K1+KBIT
K3 = K2+KBIT
R =—A(K2+1)

T = A(K2)

A(K2) = A(K)-R

A(K) = A(K)+R
A(K2+1)=A{K+1)-T
A(K+1)=A{K+L)+T
AWR=A(KL1)-A(K1+1)
AWIT = A(K1+1)+A(K1l)



85
S0

96
98

100
110

120

130
140

150

160

170
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R=—A(K3)-A(K3+1)
T=A{K3)-A(K3+]1)
A{K3)= (AWR-R)/R0OT2
A(K3+1)={AWI-T)/RO0T2
A(K1)=(AWR+R)/RCCT2.
A(KL+1)=(AWI+T ) /RO0T2
= AIKL) !
AKLI=A(K)-T
ACK)=A(K)+T

T=A{K1+1) .
A(KL#1)=A(K+1)-T
A(K+L)=A(K+1)+T

R==A(K3+1)

T=A(K3)
A(K3)=A(K2)-R
ALK2)=A{K2)+R
A(K3+1)=A(K2+1)-T.

ALK2+1)=A(K2+L)+T

IF(JLAST-1) 235,235,9C
Jd= JJ + JJIDIF

D2 230 J=2,JLAST

I=INV(J+1)

IC=NT-1

W{L1)=SUIC)

Wi2)=S{1)

12=2%1

12C=NT-12
LF(120)12C,116,1CC
W2(1)=S(12C)
W2(21=5s(12)

GO TOQ 130 ' ‘
W2(1)=0. '
W2{2)=1.

GG . T0 130

12CC = T12C+NT
[2C==-12C : -
W2(1)==5(12C) .
W2(2)=S{12CC)

13=1+12 -
I3C=NT-13
IF(I3C)160,150,140C
W3(1)=S(13C)
W3(2)=S(13)

GO 10D 200

wW3({l)=0.

‘W3{2)=1.

GO TO 200
I13CC=I3C+NT - T
IF(1I3CC)190,18C,179
I3C=~13C -
W3(1)==S(I13C)"
W3{2)=S(13CC)

60 10 200



180°

189

200
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W3{l)=~-1.
W3{2)=0,
GO TO 200

I3CCC=NT+I3CC"
[3CC = -13CC

W3{1)=-S(I3CCC)
W3{2)=-S{13CC)

TLAST=1L+JJ

DO 220 1=JJ,ILAST, [DIF

KLAST=KL+1

DD 22C K=1, KLAQT 2.

Kl=K+KBIT

K2=K1+KBIT

K3=K2+KBIT

R=A(K2)EW2{1)-A(K2+1)%W2(2)

T= A(KZ)*w2(2)+A(KZ+L!*w2(1)

A{K2)=A{K)=R

A(K)=A(K)+R

A(K2+1)=A[K+1)-T

A(K+l) A(K+L)+T
A(KB)*WJ(I)-A(K3+1)*w3(’)

T AUK3)EW3(2)+A(K3+1)*W3 (1)

AWR=AL(KL)I®W (1) —A{KL+LI*W(2)

ANI=A(KL)®W (2)+A{KL+1) #*W( 1)

A(K3)=AWR-R

A(K3+1)=AWI-T

S A(KL)=AWR+HR r.

220
230
235
249
250

350

360

CA(KLI+L)=AWI+T

T=A{K1)
A{KL)I=A(K)-T

CA(K)=ALK) +T

T=A(K1+1)
A(KLI+L)=A(K+1)-T

CALK+1)=A(K+L)+T

R=—A(K3+1)

T=A(K3)
A{K3)=A(K2)-R
A(KZ2)=A(K2)+R
A(K3+]1)=A(K2+1}~T ,
A(KZ+1)=A(K2+1)+T -
JI=JIDIF+JJ
JLAST=4%JLAST+3
CONTINUE

CONTINUE.

NTSQ=NT%NT.
M3IMT=M3-MT

IF(MJM]) 37 156‘3136()
16113=1

NB3VNT=N3/NT

- MINN3=NT

GO TO 380



370

380

450
460

1603=2

"N3VNT=1

NTVN3=NT/N3

MINN3=N3

JJD3 = NTSQ/N3
M2ZMT=M2-MT

IF (M2MT 147044604460
[GC2=1" '

"NZ2VNT=N2/NT

470

480

" 550
560

570

580
- 600

610

MINN2=NT
60 TO 480

1602 = 2

N2VNT=1

NTYN2=NT/N2
MINN2=N2
JID2=NTSQ/NZ
MIMT=M1-MT

TF(MIMT 570,560,560
1601=1 )
NIVNT=N1/NT
MINNL=NT

GG TO 580

1601=2
NLVNT=1

"NTVNL=NT/NL

MINN1=N1
JJD1I=NTSQ/NL

JJd3=1

J=1 o
D0 880 JPP3=1,N3VNT
IPP3=INV{JJ3)

DO 870 JP3=1,MINN3.

GO TO (61056201, 1603
I[P 3=INV(JP3)*N3VNT

- G0 TO 630

" 620
630

700

710
S 720
130
800

810

IP3=INV(JP3)/NTVN3
I3=(1IPP3+IP3)%*N2
JJz=1 _ .

DO 870 JPP2=1,N2VNT
IPP2=INV(JJ2)+13

DD 860 JP2=1,MINNZ2
GO TO (710,720), 1602
IP2=INV{JP2) #N2VNT
GO TG 730
IP2=INV(JP2)/NTVN2
[2=(IPP2+IP2 )% N1 |
JJyl=1

DO 860 JPPL=1y4N1VNT
IPPI=INV(JJLI+I2

DO 850 J4P1=1,MINN1

.GO TO (810,820),16G01

IPL=INV(JPL)IENLVNT
GO TO 830

-110-
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820 IPL=INV(JP1)/NTVNL
830 I=2%(IPPLl+IP1)+1
IF (J-1) 840,845,845
B840 T=A(1)
A(T)=A(J)
CAL)=T
T=A(I+1)
A(I+1)=A(J+1)
A(J+1)=T
845 CCONTINUE
850 J=J+2
860 JJl=JJl+J4JD1
870 JJ2=JJ2+3IN2
880 JJ3 = JJI3+JJD3
890 IF(IFSET) 865,895,891
891 DN 892 I = 1,NX
892 A(2%][) = —A(2%1)
895 RETURN _ :
900 MT=MAXO(M{1),M(2},M(3)) -2
: IF(MTLLT.1) GO TO 9C5
MT = MAXO(2,MT)
904 IF (MT-13)9C¢&sS5C6,905
905 1FERR = 1 :
GO TC 895
906 IFERR=0
NT=2%%NT
NTV2=NT/2
910 THETA=.7853981634
JSTEP=NT
JDIF=NTV2 . ,
S(JDIF)=SIN(THETA)
DC 950 L=2,MT
THETA=THETA/ 2.
JSTEP2=JSTEP
JSTEP=JOIF
JDIF=JSTEP/2 "
S(JDIF)=SIN(THETA)
JC1=NT-JDIF
"S{JC1)=COS(THETA)
JLAST=NT-JSTEP2
IF(JLAST - JSTEP) 950,62C,920.
920 DO 940 J=JSTEP,JLAST,JSTEP
© O JC=NT =Y
C JD=J+JIDIF
940 S{JD)I=S(J)I*S(JCL)+S(JIDIF)ES(JIC)
950 CCNTINUE



960

9790

580
982
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MTLEXP=NTV?2
LMIFXP=1"

INVI1)=0

DO 980 L=1,MT ,
INV(LMIEXP+1) = MTLEXP
DO S70 J=2,LMLEXP
JJ=J+LMLIEXP
INV{JJI)I=INV{JI+MTLEXP
MTLEXP=MTLEXP/2
LMLIEXP=LMLEXP%2
[F(IFSET)I12,+895,12
END
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~

Appendix H. Subroutines for the
Attenuation-Corrected Iteratlve Least-Squares Algorlthrn
The reconstruction of objects by us1ng an emission source will have a
density lower than the true 1mage, due to attenuatlon, 1f the projection data
are assumed to be ’ _
Rip= > aGd. o (H1)
(i, jleray(k,0) '

\

The results of this are discussed and éhown in Section (3.9)." To correct for
this we have develbped a least-squaresiterative algorithm (Fig. H-1) which
assumes that N
Rg= Q.  AGD, | w2

(i, jleray(k,0) M , ' :
- where f? are the attenuation factors. In 6rde;‘ to evaluate the fa\c;térs féi’j
the object is first reconstructed by CALL LESQ (B, P, ITER) for a few iterations,
ITER, and where the projections P(M, K) are the geometric mean of opposing-
views. -Then the shape of the object.is outlined by assuming a partlcular
'thnmth XLEVAL, by \
' CALL SEARCH(B, BX, BOUNI, BOUNJ,XLEVAL, L) \
'where B is the NXN reconstructed array after 1mp1ementat1ng LESQ; BX |
is an NXN array used ‘to def1ne whether a p1xe1 with values given by B 1s an
1nter10r, boundary, or exterior point; BOUNI, BOUNJ, give the x and y co-
'.ordinates respectively for the boundé.ry points; XLEVALis a threshold value
such that the boundary is determined if B(I, J) > MAX/XLEVAL, where MAX
is the maximum value for B; and L is the total number of Boundary points. |

Therefore, if the matrix B is

i

©o 0.0 0 0 0 0O 0.0 0
6 0 0 0 0 0 0 0 0 0
0O 0 0 02 21 0 0 0 0
ﬁ 0 0 ‘0 20 10 45 25 0 0 O
0.0 20 15 6 40 24 0 0 0
0 0 20 15 5 40 20 0 0 0
0 0 0 24 22 20 0 0 0 O
’ 0 0 0 0 | 0 0 0 0
0 0 0 o o 0o 0o o0
o 0 0 0 0 0 0 0 0 O0-
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then the matrix BX returned will be

0 0 0 0 0 o 0 0 0]
1o 0o 0 o0 o0 0 0 0 0
00 0 o0 0.0 0 0
o0 0 1 -2 -2 1 0 0 0 .
0O 0 1 -2 -2 -2 4 0 0 0
0o 0 1 -2 -2 -2 4 0 0 .0
0 0 0 1 4 14 0 0 0 0
/ 0 0 0 0 0 0 0 0 0 0
00 0 0 0.0 0 0 0 0
(0 0 0 0 0°0 0 0 0 O

Note that the searching occurs fifst from each side, then from the top and
bottom. It is assumed that the object is convex as will be the case fér any
_.bralri scan. " ‘
_ Next the values fe‘ are- determlned by
- CALL DIST(I%X BOUNI, BOUNJ, I1,J1,M, L, ATC FACTOR, XD)
where BX is the NXN array descrlbed above; BOUNI and BOUNJ' are the
arrays containing the x.and y coordlnates respectively for the b'oundary points;
I1 is the x coordinate and J1 is the y coordinate for the pixel whose FACTOR=fiJ.
is desired; M is the index of the angle, L is the total number of boundary
points, and ATC is the as sumed attenuatlon coefficient; and XD is the distance
of the pixel from the boundary if it is an interior point (XD = 0 if the pixel is an
exterior point). | | .
For interior p01nts the factor, FACTOR fe. , will be
FACTOR = EXP (- ATC#*XD) ,
where XD is the distance of the pixel from the boundary, and where the dis-
tance is measured ‘along a line at the angle IA(M) and in the direction of the
projection. For exterlor p01nts, FACTOR will be zero since there is no density
at these points for an emission study. . This saves computer time in not having
to determine the factors for exterior points.
Next the reconstructed array corrected for aétenua.tion is determined by
' CALL LESQC (B, PP, FACT, ITER) 'A
where B is the reconstructed array, PP is the sample prOJectmn data, ITER

is the number of iterations, and FACT (I, J, M) is ‘the array storing the factors
£9 .
1]
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In executing this subroutine on the CDC 7600 at Lawrence Berkeley Labs,
we had to use Large Core Memory in order to store the 46X46X36 array
FACT; thus the dimension declaration, LARGE is usé'd to allocate storage. |

The sums for the projection data given bfr Eq. (H2) are obtained by

CALL SUMM (B,XR,FACT) |
where B is an NXN array, XR is an array éonf\aining the projections of B,
and FACT is the array storing the factors ,f?j. Each projection is denoted by
XR (M, K)where M 1is t_he index of the angle and K is the index of the ray.
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. Input projectidn
values P(M,K)

CALL CONST

v

-~ Comment: See Appendix F for
flow chart for LESQ. Note ’
that P is the geometric mean .
of opposing views

CALL LESQ(B,P'ITER)

Determine shape of object by )
CALL SEARCH (B,BX, BOUNI,BOUNJ,XLEVAL,L) |
. - i . .
For all I,j,M determine factors FACT(I,J,M)
, v by |
CALL DIST(BX,BOUNI,BOUN],I1,J1,M,L,ATC, FACT(I,] M), XD)

{

Reconstruct the image corrected for attenuation
by
CALL LESQC(B,P,FACT ITERR)

Comment: The flow chart for LESQC is similar to that given for LESQ in Appendix F.
However, CALL SUMM(B,XR) replaces CALL SUM(B,XR) where in SUMM it is

‘ assumed that XR(M ,K)= ZFACT(I J.M) * B(I J) and the equations for DEL
(L)€ ray(K,M) ,
and DAMP are

’

DEL(I]) ;Zl FACT(L,],M) « [1-XR(MK)/P(M, K)] /I\; F/\CT(IJM)Z/P(M K) ‘
1

M=1
M1 IR( M ' B . ) [MIIR(M) ‘

DAMP = 32 Z XDEL(M,K) »[1-XR(M,K)/P(M,K)] ; 2 2. XDELMK)Z/P(MK)
M=1K=1 :

M=1K=1

.+ Figure H-1. Flow chart for the attenuation corrected iterative least-squares algorithm.
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L ‘ .
SUBRCUTINE SEARCH(B,BX,BOUNT,BOUNJ s XLEVAL L)
"DIMENSICON B(46446),8X(464,46)
INTEGER BOUNT(200),BOUNJ(20C) ‘
COMMON S(36),C{356),T(36),IR(36)4XL(36) s IA{36) s XNyXNLeXN2yNyN1yML
MAX=0.
CNN=N/2+1
L=0 _
. DD 11 I=1,N
' NO 11 J=1,N
IF(B{I,J)=-MAX)}1lLl,s11,12
12 MAX=B(I,J)
11 CONTINUF
DO 13 1=1,N
DO 13 J=1,N
BX(14J)=0.
13 CONTINUF
- DO 1 J=1,N
11=0
[2=N+1 - _ S
ITL=1
1T2=1
DO 2 K=1,NN
I1=11+1 : :
12=12-1 ' ' ’ o
IF(IT1)343,4 :
4 IF(B(ILyJ)-MAX/XLEVAL)S,9,6
"6 BX(Il.d)=1.
IT1=0 -
L=t +1
BOUNT(L)=11
BOUNJI(L)Y=J
GO T0 9
BX{1IlyJ)==-2.
IF(IT2)10,10,7
TF(B(I125J)-MAX/XLEVAL)2,2,8
BX(12,J)=1. '
L=L+1
CBCUNI(L)=I2
BOUNJIL)=J
172=0
GO TO 2 -
10 BX(12,J)=-2.
2 CONTINUE
1 CONTINUE
DO 21 I=1,N
J1=0
J2=N+1
1Tl=1
IT2=1
DO 22 K=1,4NN
J1=J1+1
J2=42-1
IF(IT1)23,23,24
24 [F{BX(T1,J1))35,25433

L1~ DO W



25

26

33

35
37

36
23

27
28,

29

31

30

47

46
22
21
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IF(B{I,J1)=-MAX/XLEVAL)23,23,26
BX({I,Jdll=1.

L=L+1

BOUNI(L)=I

BCUNJ(L)=J1

IT1=0

GO T 23
IF(B([le)—MAX/XLEVAL)36936,37
BX(Tsdl)=1. -
L=L+1

BOUNT(L)=1I

BOUNJ{L)=J1

IT1=0
GG TO 23

BX{1,41)=0.

1F(1T2)22,22,27
IF(BX{1,42))39,28,31

IF(B(1, J2)—MAX/XLEVAL)22,22.29
BX(]:J:_)-I..

L=l +1

BOUNI(L)=1

BOUNJ(L)=J2

IT2=0

GO YO 22
TF(BUT,J2)-MAX/XLEVAL)4L6,46,47
Bx(I,JZ)—l. S

L=L+1 . :

BCOUNT(L)=1

BCUNJ(L)=JZ

[T2=0 :

GO TOQ 22/, ~

BX{1,J2)=0.

CUNTINUE

CUONTINUE

RETURN

END

N



200

203

. 207
; 210
204

205

206
11

12

208

34
35

209
41

42

211

SUBRUUTINE FIST(BX,BOUNIoBPUNJpIloleMyL,ATC FACTOR,XD)

DIMENSION BX{46,46)°

COMMON S(36),C(jb)9T(3657IR(Bé),XL(jé),IA(Bé),XN XNl,XNZyN N1l,M1
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INTEGER BLUN[(?OO),dCUNJ(?“F)

FACTOR=1,

XD=0.

XI1=FLOAT(ILl)
XJ1=FLOAT(J1)
TF(BX{TL,J1)1200,201,2C0
IF{IA(M)) 203,204,203
1F(lA(M)—90)205,206,207'
IF{IA(M)-180)208,205,210
IF{IA(M)=270)211,212,213
I=11

I1=1+1
IF(BX{I,J1))1,96S,2
XD=FLOAT{(I-I1)

GO TO 999 .
XLL=64. : \

DO 3-K=1,L

TF{Il.lTe BPUNI(K) ANDoJlelTo BOUNJ(&))4:3‘

BI=FLOGAT(BOUNT(K))
BJ=FLCAT{BOUNJ(K})

XL X=ABS{(BJ~ XJI—(B[-XII)*T(M))*L(M)

IF{XLL=-XLX)3,3,5
ALL=XLX

XD=SQRT((XI1=BT)#%24 (XJ1—BJ ) ¥*2)

CONT INUE ™

GO TO 999

J=J1

J=J+1
IF(BX(11,4))11,959,12
XD=FLGAT(J=-J1) |

G0 TO 999

XLL=64 .

DO 33 K=1,L

[F(I1eGT.BOUNT(K)ANGLJL.LT, BOUNJ(K))34;33

BI=FLOAT(BOUNI(K))
B8J=FLCAT{BOUNJ(K))

XLX=ABS(BJI=XJ1+(XIl~- BI)*T(M))*C(M)

IF(XLL-XLX)33,33,35
XLL=XLX

XD=SQRT((XIL-BI)*%2+(XJL-BJ)**2)

CONTINUE

G0 10 699 C,

=11

I=1-1 :
IF(BX(I,JL))411999'42
XD=FLOAT(TI1-1)

GO TO 999

XLL=64.
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DN 53 K=1,L -
TF(T1eGTBUOUNI(K)«ANDaJ1oGT «BOUNJ{K)) 54,53
54 BI=FLOAT{BOUNI(K))
BJ=FLOAT(BCUNJ(K)) -
XLX=ABS{XJ1=BJ-(XTL=BI)*T(M)I*C(M)
IF{XLL-XLX)53,53,55
55 XLL=XLX
XD=SQRT ((XI1-BI)*%24(XJl- -BJ)#%2)
53 CONTINUE
GO TO 999
212 J=J1 )
61 J=J-1
IF(BX(T11,J0))61,959,62
62 XD=FLOAT(JLl-J)
GO TO 959 - ~
213 XLL=64.
DO T3 K=1l,L - | ' ‘
IF(I1eLT.BOUNT(K)eANDeJ1aGT BDUNJ(K))74,73
74 BI=FLCAT{BOUNI(K))
BJ=FLOAT(BOUNJ (K))
XLX=ABS{XJl-By+{BI- XIl)*T(M))*L(M)
4 TF(XLL=-XLX)T73,73,175
75 XLL=XLX
XD=SQRT((XI1- BI)**Z*(XJI BJ)**Z)
73 CONTINUF '
S99 FACTOR=FXP(- ATC*XD) , :
201 RETURN - / -
END ‘ ' - ST

-



19

30

20

80

- 10
83

81

124y

SUBROUT INE LtSQC(ByPP FACT, ITFRR)

NIMENS 1ON b(46,46),DEL(46'46),PP(36,6%),XR(56,64),XDEL(36y64)
COMMON S{36) C(36),1(36),IR(Bb),XL(ﬁb)pIA(jb),XN XNl,XNZ,N N1,M1
"LARGE FACUT(46,46436)"

K1=1

CALL SUMM(ByXR,FACT)

DO 20 I=1,N

PO 20 J=1,N

X1P2=0. -

R=0.

DO 3C M=1,M1

CALL RAY(IyJsMyK)
XX=PP(M,K)+1.,
XIP2=XTP24FACT (LgJdyM)%E2/XX
R=R+FACT (I, JsM)*(Le=XR{MsK)/XX)
CONTINUE : \
DEL{I,J)=R/XIP2

CONTINUE

CALL SUMM(OtL,XEEL FACT)
XNUM={},

DEM=0.,

DG 80 M=]1,M1

MR=TR{M)

DO 80 K=1,MR
XX=P{M,K)+1l.

- XNUM= XhUN+XDEl(M,K)*(l.-XR(NyK)/XX)

DEM=DEM+XDEL (M, K) X%2 /XX
CONTINUE

DAMP=XNUM/DEN

DO 83 I=1,4N

DO 83 J=1N _ )
BLT143)=8(1,J)+DAMPXDEL(],J)
IF(B(T,4))10,83, 83
B(1,J3=0.

CONT INUE

Kl=Kl1l+1

[F{K1l- ITFRR)?9y79 81
RETURN

END



51
- 52

66
19

54

67
61

53
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SUBROUTINE SUMM(B ,XR,FACT)
DIMENSTON Bl46,46) s XR(36,64)

COMMON 5(56),L(56),T(56),[R(36)pXL(jb)yIA(Bé)vXN'XleXN29NpN19M1

LARGE FACT(46,%46,36)

DO 18 M=17M1

MR=TR(M) \
IF(IA(M) LEQe0.ORLIA(M).EQ.180)52,51
TFOIAIM) WEQ.90.CRTA{M) . EQ.270)54,53
DO 19 K=1,yMR

XR(MyK3=0,

DO 66 1=1,N

XR(MyKI=XR(M,K)+FACT(I, K,M)*B(I,K)
CONTINUE

CONTINUE

GU TO 18

DO 61 K=1,4MR

XR(M,K)=0.

DO 67 J=1,N .

XR M, K)~xR(M,K)+B(n,J)*FACT(K,J.M)
CONT INUE

CCONTINUE

GO T9 18

DO 63 K=1,MR
XR(M,K)=0.

CALL YMIN(KyMyIYL,1Y2)

-

- DO 68 J=1YLl,1Y2

63
63
18

CALL, XMIN(K yMyJy IXL,1X2)

DO 68 T=I1XL,IX2

XR{MyK)=XR(M, K)+8(1,J)*FALT(1.J M)
CONTINUE

CONTINUF

CONT INUE

RE TURN

END
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Appendix I. Subroutine for Array Imaging

The reconstructed array can be imaged, as in Fig. I-1, on the computer
printout by | , )
: CALL ARAYPLT(B,N)
where B is an NXN array. ‘

This subroutine utilizes the over—pfinting capability on the.line brinter at
"Layirrence Berkeley Laboratory. The line printer has ten characters per inch
and six lines pér inch. 'Therefore,v the subroutine interpolates between the |
lines in order for the array to appear square. Some printers have eight lines
_.per inch for which the subroutine would have to bé chaﬁged accordingly. A
printer with eight lines per inch is considerably more desirable. McLeod (1970)

describes the particulal_‘ algorithm used here.
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Figure I-1. Example of overprmtmg techniqué used for CDC or IBM hxgh speed
printer output dlsplay of images. :
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SUBRDUTINF ARAYPLT{B,N) .

DIMENS ION B(46, 46),LN1(128),LNZ(lZB),LN3(128),LN4(128),LNS(lZB)yLN

26(128),LNT(128),LN8(128)+CEN(21])

INTEGER GRAYL(21),GRAY2(21) GPAYj(Zl)beAi4(21) GRAYS5(21),GRAY6 (21

2),GRAYT(21),GRAYB(21)

DATA (GRAYLI{I),1=1,21)/1F plk—le—,lH+,lH)y1Hl'1HL,1HX,1HA 1HM, 1 HO

29 1HECy1BQOy 1HO 9 LHO ) iHO 9 LEG 3 LHC 5 LHGy LHG, 1HO/
DATA (GRAY2(1)41=1,421)/1tH " y1F 414 41H ,1H
2,1H=91H+,1H*y1H+ylH+ylHX71HX71HX,1HX1LHX/
DATA (GRAY3{I1)y1=1421)/1F 41F 41H ,1H 41H
29IH 21H 41H y1H ,1H sLH®"31H 41H o1H y1H*/
DATA (GRAY4(T),I=1,21)/1FH 4 1H o1H 4 1H 41H
291H 31H s1HeylH=yiHeslHe ylHaylHeylHay LHS/
DATA (GRAYS(IVY,I1=1,21)/1H 41H 414 41H ,1H

291H 3 1H s1H 41H slH=,1H-y1lEty1HHy1HHy LHH/

501
500

24

101
22
23

DATA (GRAYG6(I)41=1421)/1F 41K ,1H 41H 4 1H.

291H 41H 41H 41H 41H 41H 2 LEC 1HB, L HB,y LHB/

 DATA {(GRAYT(I)5I=1421)/1H s1H y1H s 1H »1H
211H ,1H 11H 11H ylH ylh 1lF'1lﬂ 11HV11HV/

- DATA (CRAY8(1)1I~1121)/1H_11H yiH 9 1H H1H
2elH o1H 41H $1H y1H 41H s1H 21H 41H 11HA/

7 1H

2 1H

s 1H

s LH
»1H
s 1H

v 1H

le
s 1H
v 1H
91H

?1H

v 1H

+1H

11H ’lH ’lH
»IH »1H o 1H
2 1H 'leylH

t1H, y1H , 1H

‘s1H 41H 4 LH

v1H 4 LH ,1H

'lH +1H H1H

y LH-
? 1H
v 1H
v 1H
'1H
91H

y 1H

DATA (DEN(I)91—1,21)/.Oy.lSy.ZZ,.iSy.ZQp.35,.37'.40,.42,.45,.53,.5

XMAX= 0.

DO 500 I=1,N
DO 500 J=1,4N
IFIB(IyJ)1501,50C,500
B(1,J)=0.
CONTINUF ‘
DU 1 I=1,

DO 1 J= lvN
[F{XMAX-B(14J))33,1,1
XMAX=8{1,J)
CONTINUE
IF{N.GTL100}23,24
Ni=N*6/10
NN=(60-N1)/4~-1
DO 22 I=14NN
PRINT 101
FORMAT (/)
CONTINUE

DO 2 I=1,128
LNL(I}=1H
LN2{1})=1H
LN3(IL)=1H
LN4(I)=1H
ENStI)=1H
LN6(I)=1H
LN7¢(I)=1H
INS(D)=1H
CONTINUE ,
T11=(128-N})/2
[2=71+N~-1
111=11-1
112=12+1
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DO 12 I=111,112 -
ENL(I)=1H*
12 CCNTINUE
PRINT 1002,4LN1
1002 FORMAT{(1X,128(A1)) :
N1=N%*6/10 ' . ' .
DO 3 K=1,N1 _ c
J1=N=-(K-1)%10/6 ,
J2=J1-1 v
Xd=FLOAT(N)-FLOAT (K~ 1)*10./6.
=0 '
DO 4 I=11,12 : -
I1=11+1
D=B(ITyJLI+(BIII,d2)- d(II,JL))*(FLUAT(JL)—XJ)/FLOAT(Jl -J2)
. D=D/XMAX :
DO 5 M=1,21
" TF({D-DEN(M) )6, 7,45
5 CONTINUE
6 Ml=M-1
M2=M ‘ , :
-’(DEN(MZ)+DEN(M1))/Z. . - C -
R=DEN{M2)-DEN(M1) : ‘
D=D+R/ 2. —R%*RANF(C.)
[F{D-T19,9,10
9 L=M1
GO TO 20
10 L=M2 ’
GO T 20
7 L=M -
20 LNL(T)=GRAYL(L)
LN2{I)=GRAY2(L) : _
LN3{I)=GRAY3{L) : .
LN&4(1)=GRAY4 (L)
LNS(I)=GRAY5(L)
LNGLI)=GRAY& (L)
LN7(1)=GRAYT7({L)
LNB(I)=GRAYS (L) ' -
4 CONTINUE. :
PRINT 1001,LN1
PRINT 1001,LN2
PRINT 1001,LN3
PRINT 1001,LN4
PRINT 1001,LN5
~ PRINT 1001,LN6
" PRINT 1001 ,UNT.
PRINT 1000,LN8
1000 FORMAT({1H ,128(Al))
1001 FORMAT{1H+,128(A1))
3 CONTINUE
DO 13 I=111,112
LNL(I)=1H% -
13 CONTINUE _— -
PRINT 1002,LN1 - ‘
RE TURN
END
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