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Abstract We introduce log-convexity for bargaining problems. With the requirement
of some basic regularity conditions, log-convexity is shown to be necessary and suf-
ficient for Nash’s axioms to determine a unique single-valued bargaining solution up
to choices of bargaining powers. Specifically, we show that the single-valued (asym-
metric) Nash solution is the unique solution under Nash’s axioms without that of
symmetry on the class of regular and log-convex bargaining problems, but this is not
true on any larger class. We apply our results to bargaining problems arising from
duopoly and the theory of the firm. These problems turn out to be log-convex but
not convex under familiar conditions. We compare the Nash solution for log-convex
bargaining problems with some of its extensions in the literature.
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1 Introduction

The bargaining theory introduced in the seminal papers of Nash (1950, 1953) postu-
lates that a group of players chooses a payoff allocation from a set of feasible payoff
allocations. The implementation of a payoff allocation requires unanimous agreement
among the players. In case of disagreement, the players end up getting some pre-
specified payoff allocation known as the status quo or the threat point. A bargaining
problem (henceforth, a problem in short) in the sense of Nash is thus represented by
a pair consisting of a choice set and a threat point in the payoff space. A solution on
a class of problems is a rule that assigns a feasible payoff allocation to each problem
in the class.

Nash adopted an axiomatic approach to resolve the bargaining problem:

One states as axioms several properties that it would seem natural for the solution
to have, and then one discovers that the axioms actually determine the solution
uniquely (Nash 1953, p. 129).

He postulated a set of axioms that are deemed to be natural for a solution to satisfy.
These axioms are Pareto optimality (PO), symmetry (SYM), invariance to equivalent
utility representations (INV), and independence of irrelevant alternatives (IIA). It is
remarkable that these axioms determine a unique solution, to be called the Nash solu-
tion, on the class of all compact and convex problems. Furthermore, the Nash solution
assigns to each problem the unique maximizer of the (symmetric) Nash product over
the choice set. Nash bargaining model has become one of the most fruitful paradigms
in game theory.1

When SYM is removed, Kalai (1977) showed that an asymmetric Nash solution
unique up to (henceforth unique) specifications of payoff allocations for a “normal-
ized problem” is characterized by the remaining axioms on the class of compact con-
vex problems. A payoff allocation for the normalized problem has been customarily
interpreted as representing players’ bargaining powers.2 Furthermore, given players’
bargaining powers, the asymmetric Nash solution assigns to each problem the unique
maximizer of the Nash product weighted by the bargaining powers. The Nash prod-
uct weighted by players’ bargaining powers is also known as the generalized Nash

1 Thomson (2009) provides an excellent survey of the literature on the axiomatic approach to bargaining
as pioneered by Nash. An alternative approach is to model bargaining explicitly as a non-cooperative game.
Nash (1953, p. 129) argued that the two approaches “are complementary; each helps to justify and clarify the
other.” See Binmore et al. (1986) for a formal establishment of the relationship between the Nash axiomatic
and the sequential non-cooperative approaches to bargaining.
2 This interpretation can be traced to Shubik (1959, p. 50).
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product.3 These properties consist of the standard axiomatic characterization of the
asymmetric Nash solution on the class of compact convex problems.

For applications, the uniqueness of the solution up to specifications of players’
bargaining powers is useful, since there is no a priori reason why players’ bargaining
powers are not case-specific. In addition, the choice set is not directly given, but often
derived from more primitive information. As a result, the choice set needs not to be
convex. Indeed, the non-convexity of the choice set of feasible profit shares arising
from duopolies with asymmetric constant marginal costs and concave monopoly profit
functions has been well recognized in the industrial organization literature. See, for
example, Bishop (1960, p. 948), Schmalensee (1987, pp. 354–356), and Tirole (1988,
p. 242, 271). As discovered in Aoki (1980), McDonald and Solow (1981), Miyazaki
(1984), among other ones, non-convexity also often arises in employer–employee
bargaining problems.4

The non-convexity is usually removed by allowing for randomized payoff allo-
cations and by assuming that players are expected utility maximizers. Randomized
allocations can cause conflicts of interest at the post-realization stage and may not be
realistic in some applications. Randomization was also considered as impractical for
employer–employee bargaining (see e.g., Miyazaki 1984, p. 484 for discussions).5 It
is therefore desirable to analyze the extent to which the Nash bargaining theory can
be extended to allow for non-convexity.

Our purposes in this paper are threefold. First, we characterize the complete class
of regular problems allowing for non-convexity, on which the axioms of IIA, INV,
and SIR uniquely determine the asymmetric Nash solution as in the case with convex
and compact problems. Second, we apply our results to analyze non-convex problems
arising from duopoly and employer–employee bargaining. Third, we compare our
approach with two extensions of Nash bargaining theory in the literature.

A notion of log-convexity plays a key role in characterizing problems in our class.
With arbitrary bargaining powers, our first main result shows that the maximizer of
the generalized Nash product over the choice set of a regular problem is unique if
and only if the problem is log-convex (Theorem 1). Regularity of a problem in this
paper means that the threat point is strictly dominated and the choice set is closed,
comprehensive relative to the threat point, and bounded above. Log-convexity, on
the other hand, requires that the strict Pareto frontier of the set of the natural log-
transformed allocations of positive payoff gains be strictly concave. The regularity
requirement is mild while the log-convexity of a problem is strictly weaker than
the convexity of the choice set. As illustrations of log-convexity but not convexity

3 By the Lemma in Roth (1977, p. 65), a bargaining solution is Pareto optimal whenever the solution
satisfies IIA, INV, and strict individual rationality (SIR). Thus, IIA, INV, and PO can be replaced by IIA,
INV, and SIR. Since bargaining problems in our class satisfy all the assumptions in Roth (1977) except for
the convexity, we will consider IIA, INV, and SIR as the Nash’s axioms for the asymmetric Nash bargaining
solution.
4 Bargaining problems arising from the principal–agent problems need not be convex unless randomized
contracts are allowed (see Ross 1973; Hougaard and Tvede 2003).
5 Similarly, Hougaard and Tvede (2003, p. 82) argue that it is not reasonable to allow for randomized
contracts in the context of a principal–agent problem.
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that arises in application, we show that duopoly and employer–employee bargaining
problems are log-convex but not convex under familiar conditions.

Given a specific bargaining problem, one might simply equate the Nash solution
for the problem with the unique maximizer (if exists) of the Nash product. We wish
to remark that the Nash axioms, which determine the Nash solution, are defined on an
exogenously specified class of bargaining problems. It follows that one cannot simply
treat the unique maximizer of the Nash product as the Nash solution for a given
problem, unless the problem belongs to the class of problems on which the Nash
axioms are defined. The Nash product maximization provides a method to compute,
but not a way to define the Nash solution.

With convexity, the establishment of the axiomatic characterization of the asymmet-
ric Nash solution relies on the following separation property: The unique maximizer
of the generalized Nash product over a convex choice set can be separated from any
other feasible point by the tangent line to the indifference curve of the generalized
Nash product at the maximizer. With log-convexity, however, this separation is not
always valid. Nevertheless, our second main result shows that each non-maximizer is
separable from the unique maximizer by the tangent line to the indifference curve of
the generalized Nash product at some feasible point, which may depend on but differ
from the non-maximizer (Lemma 1). As shown by our third main result (Theorem 2),
this separation, interesting in its own right, turns out to be strong enough for IIA, INV,
and SIR to uniquely determine the asymmetric Nash solution on our class of all regular
and log-convex bargaining problems. Moreover, our class is complete in the sense that
the three axioms do not uniquely determine single-valued bargaining solutions on any
class containing ours as a proper subclass (Theorem 3). We formally establish these
results for two-person problems. However, it follows from the bilateral stability of
the Nash solution that parallel results hold for the n-person case. We provide a brief
discussion along this line at the end of Sect. 3.2.

Several extensions of Nash bargaining theory allowing for non-convexity have
appeared in recent literature. Zhou (1997) showed that on the class of all regular prob-
lems any single-valued solution satisfying IIA, INV, and SIR must be a selection of the
maximizers of the generalized Nash product. However, such single-valued solution on
this broad class of problems is not unique.6 Denicolò and Mariotti (2000) associated
a social welfare ordering with each single-valued solution on a class of problems,
which includes those with the comprehensive hulls of two-point sets as choice sets.
Their work introduces techniques from social choice theory useful for extending Nash
bargaining theory. Peters and Vermeulen (2012) established new techniques to charac-
terize all multi-valued bargaining solutions satisfying Nash’s three axioms on a class of
problems, which includes problems with choice sets consisting of finitely many payoff
allocations. They showed that a multi-valued solution satisfying Nash’s axioms can
be found by an iterated maximization of generalized Nash products.7

6 Zhou’s characterization of single-valued solutions does not specify how to select among multiple Nash
product maximizers. In a recent paper, Qin et al. (2014) provide a complete characterization of exact
single-valued solutions satisfying Nash axioms under more general conditions on bargaining problems.
7 They replaced PO with weak Pareto optimality (WPO). See Peters and Vermeulen (2012, pp. 26–27)
for discussions about their refinements of multi-valued extensions in Kaneko (1980), Mariotti (1998a) and
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Nash bargaining for log-convex problems 417

Results in the preceding papers are based on large classes of problems that are not
all log-convex. For example, the comprehensive hull of two payoff allocations is not
log-convex. Intuitively, solutions are subject to stronger requirements on a larger class
of problems than on a smaller one. Thus, although a solution on a larger class always
induces a solution on a smaller class satisfying the same axioms, such induced solutions
do not necessarily exhaust all possible solutions on the smaller class. Consequently, the
existing results do not imply the unique axiomatic characterization of the asymmetric
Nash solution by IIA, INV, and SIR on our class of all regular and log-convex problems,
nor do they imply that our class is the complete one on which the three axioms
characterize a unique single-valued solution.

Conley and Wilkie (1996) established a single-valued extension of the Nash solution
by extending Nash’s axioms. Their approach involves a two-step procedure for finding
the solution. First, convexify the choice set via randomization and consider the Nash
solution for the convexified problem. Second, use the intersection point of the original
Pareto frontier with the segment between the threat point and the Nash solution for
the convexified problem as the solution.8 The uniqueness and single-valuedness of
their extension enable an interesting comparison with the asymmetric Nash solution
for log-convex problems. Herrero (1989) introduced an equal distance property to
characterize her multi-valued extension with equal bargaining powers. When adjusted
by players’ bargaining powers, this property turns out to be also closely related to the
Nash product maximization for log-convex problems.

Boche and Schubert (2011) also applied the notion of log-convexity to bargaining
problems and extended the symmetric Nash solution to log-convex problems. Their
approach is to consider the counterparts of the Nash axioms for the log-transformation
of bargaining problems in their class, and then show that these counterparts jointly
determined a unique solution, provided that the log-transformed problems are strictly
convex and regular. That is, their results imply that the log-convexity together with
their regularity requirement is sufficient for the standard axiomatic characterization of
the symmetric Nash solution to hold. A significant disadvantage with their approach
is the requirement that the threat point must be normalized to the origin; otherwise,
the translation form of INV for their class of log-transformed problems is invalid (see
Boche and Schubert 2011, equation (5), p. 3392). As such, one cannot apply their
extension to problems with nonzero threat point including bargaining problems with
endogenous threats and non-convexity. In comparison, we show that log-convexity
is both sufficient and necessary for the standard axiomatic characterization of the
asymmetric Nash bargaining solution to hold.9 Furthermore, we directly work with
Nash axioms instead of their counterparts on log-transformed problems. The proof
of necessity of log-convexity is much involved. Nonetheless, the necessity is a useful
technical result for it makes the class of bargaining problems complete, in the sense

Footnote 7 continued
Xu and Yoshihara (2006). For further references and discussions on non-convex bargaining problems, see
the recent survey by Thomson (2009).
8 See Mariotti (1998b) for an alternative characterization of Conley and Wilkie’s (1996) extension.
9 We have recently become aware of the Boche and Schubert (2011) paper. Our analysis is carried out
independently of their work.
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that there will be multiple solutions satisfying Nash axioms when bargaining powers
are not a priori definite and bargaining problems are not all log-convex. Finally, we
apply our results to duopoly and employer–employee bargaining problems which are
shown to be log-convex but not convex.

The rest of the paper is organized as follows. The next section briefly reviews
Nash axioms and Nash solution with convexity. Section 3 introduces log-convexity
and presents our main results. Section 4 applies our results to non-convex bargaining
problems arising from duopoly and the theory of the firm. Section 5 compares our
approach with some other extensions. Section 6 concludes.

2 Nash bargaining with convexity

A two-person problem is composed of a choice set S ⊂ �2 of feasible payoff allo-
cations the players can jointly achieve with agreement, and a threat point d ∈ S the
players end up getting in case of disagreement. Let (S◦, d◦) be the normalized problem
where

S◦ =
{

u ∈ �2|u1 + u2 ≤ 1
}

and d◦ = (0, 0). (1)

A solution on a class B of bargaining problems is a rule f assigning a feasible allocation
f (S, d) = ( f1(S, d), f2(S, d)) ∈ S to each problem (S, d) ∈ B.10 A positive affine
transformation for player i’s payoff is a mapping τi : � −→ � such that for some
two real numbers ai > 0 and bi , τi (ui ) = ai ui + bi for all ui ∈ �. Given τ1 and
τ2, τ (u) = (τ1(u1), τ2(u2)) for all u ∈ �2.

Nash’s axioms can now be specified as follows (see footnote 3 for references on
the replacement of PO with SIR).

SIR: For any (S, d) ∈ B, fi (S, d) > di , i = 1, 2.
SYM: For any (S, d) ∈ B with d1 = d2 and (u2, u1) ∈ S whenever (u1, u2) ∈
S, f1(S, d) = f2(S, d).
INV : For any (S, d) ∈ B and for any positive affine transformation τ : �2 −→
�2, f (τ (S), τ (d)) = τ( f (S, d)).
IIA: For any (S, d), (S′, d) ∈ B with S ⊆ S′, f (S′, d) ∈ S implies f (S, d) =
f (S′, d).

When B is composed of compact convex problems with strictly Pareto dominated
threat points, there is a unique solution N : B −→ �2 satisfying the above four
axioms, known as the symmetric Nash solution, which assigns payoff allocation

N (S, d) = arg max
u∈S,u≥d

(u1 − d1)(u2 − d2) (2)

to (S, d) ∈ B. See Nash (1953) and Roth (1977) for details.
When SYM is removed, Kalai (1977) showed that the solution on the class of

compact convex bargaining problems B satisfying IIA, INV, SIR is unique up to the
choices of players’ bargaining powers [i.e., up to the specifications of solutions for

10 Unless noticed otherwise, bargaining solutions are single-valued throughout the rest of the paper.

123



Nash bargaining for log-convex problems 419

(S◦, d◦)]. More precisely, Kalai showed that if a solution f satisfies IIA, INV, and
SIR, it must be given by

f (S, d) = arg max
u∈S,u≥d

(u1 − d1)
α (u2 − d2)

1−α (3)

for all (S, d) ∈ B, where (α, 1 − α) = f (S◦, d◦). Notice that 0 < f1(S◦, d◦), f2(S◦,
d◦) < 1 because of SIR. Thus, the solution on the classB of compact convex bargaining
problems is unique whenever f (S◦, d◦) is specified.

For later references in this paper, we say that the asymmetric Nash solution on a
class of bargaining problems is unique up to choices of the players’ bargaining powers
whenever IIA, INV, SIR together with given solution for (S◦, d◦) uniquely determine
the solution on the class. When it is unique, we use Nα to denote the asymmetric Nash
solution that assigns payoff allocation (α, 1 − α) to (S◦, d◦).

3 Nash bargaining with log-convexity

The convexity of bargaining problems plays a crucial role in the establishment of the
uniqueness and representation of the solution under Nash axioms. When the convexity
is dropped, the solutions under the axioms of IIA, INV, and SIR can still be represented
by the Nash product maximization, but may fail to be unique. In this section, we
characterize the complete class of bargaining problems allowing for non-convexity,
on which the uniqueness as well as the representation of the asymmetric solution under
the three Nash axioms holds.

3.1 Regularity and log-convexity

We first introduce log-convexity of a bargaining problem. Fix a problem (S, d) and
take the natural logarithmic transformation of the positive payoff gains to get

V (S, d) =
⎧⎨
⎩v ∈ �2

∣∣∣∣∃u ∈ S :
u1 > d1, u2 > d2,

v1 ≤ ln (u1 − d1) ,

v2 ≤ ln (u2 − d2) .

⎫⎬
⎭ .

Then, the maximization (3) is equivalent to

max
v∈V (S,d)

αv1 + (1 − α)v2. (4)

Since ln(ui − di ) is increasing and concave over ui ∈ (di ,∞) for i = 1, 2, the
convexity of S implies the convexity of V (S, d). For the rest of the paper we consider
(S, d) that satisfies the following regularity condition:

Regular Problems (R): A problem (S, d) is regular if S is closed, bounded above,
d-comprehensive (i.e., u ∈ S whenever d ≤ u ≤ u′ for some u′ ∈ S), and d is
strictly Pareto dominated in S.
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The following log-convexity of (S, d) is critical for the uniqueness of the asymmetric
Nash solution:11

Log-Convex Problems (L): For any two different points v′ and v′′ on the strict
Pareto frontier of V (S, d), λv′ + (1 − λ)v′′ is in the interior of V (S, d) for all
0 < λ < 1.

Before presenting our main results, we make the following observations about log-
convexity that will be useful later. First, since V (S, d) is comprehensive, log-convexity
implies that V (S, d) is convex. Second, log-convexity of V (S, d) is equivalent to the
conditions that V (S, d) is convex and it does not contain segments with normal vectors
(θ, 1 − θ) for all θ ∈ (0, 1). Third, let (S, d) and (S′, d) be two regular problems with
the same threat point d. Then, V (S ∩ S′, d) = V (S, d) ∩ V (S′, d). This implies that
(S ∩ S′, d) is regular and log-convex whenever both (S, d) and (S′, d) are.12

Theorem 1 For (S, d) ∈ R, (4) has a unique solution for all α ∈ (0, 1) if and only if
(S, d) ∈ L.

For α ∈ (0, 1), the log-convexity of (S, d) implies that solution for (4), if exists,
must be unique. Next, the existence of a solution for (4) is guaranteed by the regularity
condition of (S, d). This establishes the sufficiency. We prove the necessity in the
“Appendix”. The essential part of the proof is the convexity of V (S, d). Our idea is to
show that the closure of the convex hull coV (S, d) of V (S, d) equals V (S, d).

When V (S, d) = C − �2+ for some compact set C ⊆ �2 (i.e., when V (S, d)
is compactly generated), we can apply Caratheodory theorem to first show that the
closure of coV (S, d) = coC −�2+. Next, by applying separating hyperplane theorem
to the boundary points of the closure of coC − �2+, the condition that problem (4)
has a unique solution implies that they must be contained in C .13 Thus, coV (S, d) =
coC −�2+ = C −�2+ = V (S, d), implying that V (S, d) is convex. However, V (S, d)
is not necessarily compactly generated, although V (S, d) is closed, comprehensive,
and bounded from above. For example,

V =
{
v ∈ �2|v1 < 0, v2 ≤ 1/v1

}

is closed, comprehensive, and bounded above, but V �= C − �2+ for any compact set
C ⊂ �2.

The fact that problem (4) has a unique solution for all α ∈ (0, 1) implies that
V (S, d) is contained in the intersection of the lower closed half-spaces determined
by the tangent lines of V (S, d) with normal vectors (α, 1 − α), α ∈ (0, 1). Since
the intersection of these half-spaces is convex, the convexity of V (S, d) would be

11 See Boche and Schubert (2011) for an application of log-convexity to extend the symmetric Nash solution
with zero threat point.
12 Indeed, it is straightforward to verify that (S ∩ S′, d) is regular and V (S ∩ S′, d) ⊆ V (S, d)∩ V (S′, d).
On the other hand, take any v ∈ V (S, d)∩ V (S′, d), u ∈ S, and u′ ∈ S′ such that ui > di , u′

i > di , vi ≤
ln(ui −di ), and vi ≤ ln(u′

i −di ) for i = 1, 2. Set ui = min{ui , u′
i }. Then, vi ≤ ln(ui −di ) and d << u ≤

u, u′. By the regularity, u ∈ S∩S′. This shows v ∈ V (S∩S′, d). Hence, V (S∩S′, d) ⊇ V (S, d)∩V (S′, d).
13 Since V (S, d) is comprehensive, it suffices to consider boundary points that are Pareto optimal.
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established if it can be shown that V (S, d) coincides with the intersection. However,
to show this coincidence using the fact that (4) has a unique solution for all α ∈ (0, 1),
we need to show that there exists a tangent line at each point on the Pareto frontier of
V (S, d), which is not automatic unless V (S, d) is convex.

Our proof proceeds as follows. First, we apply the separating hyperplane theorem
to each boundary point of the convex hull of V (S, d). Next, we approximate the
boundary point by a sequence of points in the convex hull and apply Caratheodory
theorem to represent these points as convex combinations of points in V (S, d). Finally,
by considering the limits of the representing points, the uniqueness of the solution for
(4) enables us to show that the boundary point is either on the boundary of V (S, d) or
is Pareto dominated in V (S, d). This together with the comprehensiveness of V (S, d)
implies that the closure of the convex hull of V (S, d) equals V (S, d); hence, V (S, d)
is convex.

3.2 Uniqueness

We now show that IIA, INV, and SIR uniquely determine the asymmetric Nash solution
on the class of all regular and log-convex bargaining problems.

Theorem 2 A bargaining solution f on R ∩ L satisfies IIA, INV, and SIR if and only
if f = Nα with (α, 1 − α) = f (S◦, d◦).

To prove this theorem, we need the following separation result.

Lemma 1 Let (T, d◦) ∈ R∩L and let x = arg maxu∈T :u≥d◦ uα1 u1−α
2 with α ∈ (0, 1).

Then, for any y ∈ T with y � d◦ and y �= x, there exists z ∈ T such that z �= y and

αz2x1 + (1 − α)z1x2 ≥ z1z2 (5)

and
αz2 y1 + (1 − α)z1 y2 < z1z2. (6)

Proof Since (T, d◦) ∈ R∩L, it follows from Theorem 1 that x = arg maxu∈T :u≥d◦ uα1
u1−α

2 is uniquely determined. Let y ∈ T be such that y � d◦ and y �= x . Then, from
the uniqueness of the maximizer,

xα1 x1−α
2 > yα1 y1−α

2 ,

or equivalently,
α(ln y1 − ln x1) < (1 − α)(ln x2 − ln y2).

Assume without loss of generality x1 < y1 (the other case can be analogously proved).
The locations of x and y are illustrated in Fig. 1a. Notice with x1 < y1, the previous
inequality implies

α

1 − α
<

ln x2 − ln y2

ln y1 − ln x1
. (7)
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(b)

(a) (c)

Fig. 1 Separation between the maximizer x of Nash product uα1 u1−α
2 over choice set T and point y ∈ T

by the tangent line of Nash product at point z = z(t) ∈ T with z(t) �= y

Since x, y ∈ T and d◦ = (0, 0), it follows from the log-convexity

t (ln x1, ln x2)+ (1 − t)(ln y1, ln y2) =
(

ln xt
1 y1−t

1 , ln xt
2 y1−t

2

)
∈ V

(
T, d◦)

for t ∈ [0, 1]. This is the segment between (ln x1, ln x2) and (ln y1, ln y2) in
Fig. 1b. Thus, by the definition of V (T, d◦), there exists u(t) ∈ T such that
(ln xt

1 y1−t
1 , ln xt

2 y1−t
2 ) ≤ (ln u1(t), ln u2(t)), or equivalently, (xt

1 y1−t
1 , xt

2 y1−t
2 ) ≤

(u1(t), u2(t)). Since x, y � d◦ implies (xt
1 y1−t

1 , xt
2 y1−t

2 ) � d◦, it follows from
the regularity that

z(t) ≡ (xt
1 y1−t

1 , xt
2 y1−t

2 ) ∈ T

for all t ∈ [0, 1] as illustrated in Fig. 1c.
For t ∈ (0, 1), the absolute value of the slope of the tangent line of uα1 u1−α

2 at z(t)
is

αxt
2 y1−t

2

(1 − α)xt
1 y1−t

1

and that of the segment between z(t) and y is

xt
2 y1−t

2 − y2

y1 − xt
1 y1−t

1

.
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Thus, the tangent line of uα1 u1−α
2 at z(t) is flatter than the segment between z(t) and

y if and only if14

αxt
2 y1−t

2

(1 − α)xt
1 y1−t

1

<
xt

2 y1−t
2 − y2

y1 − xt
1 y1−t

1

⇔ αxt
2

(1 − α)xt
1
<

xt
2 − yt

2

yt
1 − xt

1
.

By L’Hôpital’s rule and (7), the above inequalities hold as t −→ 0. Now, choose
t ∈ (0, 1) such that the tangent line of uα1 u1−α

2 at point z(t),

αz2(t)u1 + (1 − α)z1(t)u2 = z1(t)z2(t), (8)

is flatter than the segment between z(t) and y. Since x is Pareto optimal, x1 < y1
necessarily implies x2 > y2. Thus, z1(t) < y1 and z2(t) > y2. Consequently, y is
below the tangent line in (8). On the other hand, by definition of x, x cannot lie below
the indifference curve of uα1 u1−α

2 at z(t) (see Fig. 1c for an illustration). Thus, (5) and
(6) are established by setting z = z(t). ��

Lemma 1 extends the separation between the maximizer of the generalized Nash
product over a convex choice set and the rest of the choice set. Specifically, with
convexity, the maximizer is separable from any other point of the choice set by the
tangent line of the indifference curve of the generalized Nash product through the
maximizer. In the case with a regular and log-convex choice set, the separation in
Lemma 1 is weaker in the sense that it may be point-dependent (i.e., z may change as
point y changes in the choice set), but it is nonetheless strong enough for IIA, INV,
and SIR together to determine a unique solution.

Proof of Theorem 2 Let f be a solution on R ∩ L satisfying IIA, INV, SIR and let
f (S◦, d◦) = (α, 1 − α). Suppose f �= Nα . Then, there exists (T, d◦) ∈ R ∩ L such
that

f (T, d◦) �= arg max
u∈T :u≥d◦ uα1 u1−α

2 . (9)

Set y = f (T, d◦). By SIR, y >> d◦. By Lemma 1 and (9), there exists z ∈ T such
that z �= y and y is below the tangent line of uα1 u1−α

2 at z:

αz2u1 + (1 − α)z1u2 = z1z2, u ∈ �2. (10)

Set
S =

{
u ∈ �2+|αz2u1 + (1 − α)z1u2 ≤ z1z2

}
.

14 Since x1 < y1, the condition is equivalent to y lying below the tangent line.
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Clearly, (S, d◦) ∈ R ∩ L and y ∈ S (see Fig. 1c). By INV and the assumption
f (S◦, d◦) = (α, 1 − α), we have15

f (S, d◦) = z. (11)

Since (S ∩ T, d◦) ∈ R ∩ L and since z ∈ S ∩ T , it follows from IIA and (11) that
f (S ∩ T, d◦) = z. On the other hand, since y ∈ S ∩ T and y = f (T, d◦), it follows
from IIA that f (S ∩ T, d◦) = y. This shows y = z, which is a contradiction. ��

Our next result shows that the class of all regular and log-convex problems is the
complete class for IIA, INV, and SIR to uniquely determine the asymmetric Nash
solution.

Theorem 3 The axioms of IIA, INV, and SIR do not uniquely characterize solutions
up to choices of bargaining powers on any class B such that R ∩ L � B ⊆ R.

Proof Let (S′, d ′) ∈ B be such that (S′, d ′) /∈ R∩L. SinceB ⊆ R, it must be (S′, d ′) ∈
R \ L (set theoretic minus). By Theorem 1, there exists α′ ∈ (0, 1) such that (S′, d ′)
has multiple maximizers of the generalized Nash product with bargaining power α′
for player 1. Now, consider two solutions f 1 and f 2 on B given by f 1(S◦, d◦) =
f 2(S◦, d◦) = (α′, 1 − α′),

f 1(S, d) = arg max
u∈N α′

(S,d)
u1,

and
f 2(S, d) = arg max

u∈N α′
(S,d)

u2

where N α′
(S, d) = arg maxu∈S:u≥d uα

′
1 u1−α′

2 , for (S, d) ∈ B. By the multiplicity
of N α′

(S′, d ′), f 1(S′, d ′) �= f 2(S′, d ′). Moreover, by construction, the usual proof
implies that f 1 and f 2 are solutions on B satisfying IIA, INV, and SIR. This together
with f 1(S◦, d◦) = f 2(S◦, d◦) = (α′, 1 − α′) shows that solutions on B satisfying
IIA, INV, and SIR are not unique up to choices of bargaining powers. ��

Since the class of regular and log-convex problems is a proper subset of the regular
problems, Theorem 3 implies that solutions under IIA, INV, and SIR are not unique
on the broad class of bargaining problems in Zhou (1997).

15 Consider affine transformation τ : �2 −→ �2:

τ(u) =
(
α

z1
u1,

1 − α

z2
u2

)
, u ∈ �2.

Then, by (10), τ(S) = S◦. Since f (S◦, d◦) = (α, 1 − α), f (τ (S), τ (d◦)) = (α, 1 − α). By INV,
τ( f (S, d◦)) = f (τ (S), τ (d◦)). Hence, f (S, d◦) = τ−1(α, 1 − α) = z.
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3.3 Generalization to n-person case

The notions of regularity and log-convexity and Theorem 1 can all be naturally gen-
eralized to the n-person case. The asymmetric Nash solution for the n-person case
satisfies bilateral stability (consistency), which states that the solution for a n-person
problem agrees with the solution for each two-person subproblem obtained by taking
the other players’ utility levels in the original solution as given.16 The two-person
subproblems of a n-person regular and log-convex problem are again regular and log-
convex. Thus, by applying Lemma 1 to two-person subproblems, it can be shown that
Theorem 2 can be generalized to n-person regular and log-convex problems. Finally,
the method of proof of Theorem 3 is directly applicable to n-person regular and log-
convex problems. It follows that Theorem 3 can also be generalized to the n-person
case.

3.4 A subclass of log-convex problems

By the IR frontier of a bargaining problem (S, d) we mean the portion of the frontier
of S that is individually rational (i.e., satisfies ui ≥ di for i = 1, 2). For Nash product
maximization with generic bargaining powers to have a unique solution, log-convexity
quantifies how non-convex the individually rational (IR) portion of a bargaining prob-
lem can be allowed. When the frontier of the choice set is smooth, log-convexity is
implied by a simple condition as shown in the following proposition.

Proposition 1 Let (S, d◦) ∈ R be such that the IR frontier of S is given by a C2

function u j = ψ(ui ), ui ∈ [0, ūi ] for some number ūi < ∞ with ψ(ūi ) = 0 and for
i �= j . If

(C) ψ ′(ui ) < 0 and e(ui ) ≡ uiψ
′(ui )

ψ(ui )
is strictly decreasing over (0, ūi ),

then (S, d◦) is log-convex.

Proof Notice first that for any v = (vi , v j ) in the frontier of V (S, d◦), there exists
ui ∈ (0, ūi ) such that vi = ln(ui ) and v j = ln[ψ(ui )]. That is, the frontier of V (S, d◦)
is parameterized by ui ∈ (0, ūi ). Thus, the slope of the frontier at v is given by

e(ui ) = uiψ
′(ui )

ψ(ui )
.

Hence, the frontier of V (S, d◦) is downward sloping due to ψ ′(ui ) < 0 and is strictly
concave if e(ui ) is strictly decreasing. ��

16 Bilateral stability of the n-person symmetric Nash solution was introduced in Harsanyi (1959). Bilateral
stability also holds for the asymmetric Nash solution. See Lensberg (1988) for general results on multilateral
as well as bilateral stabilities of the symmetric Nash solution.
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Note that, e(ui ) in Proposition 1 is the elasticity of the IR frontier, u j = ψ(ui ), of
a bargaining problem with respect to ui . Thus, in applications, it is relatively easier to
check (C) than checking the log-convexity.

A stronger sufficient condition is either ψ is log-concave, or uiψ
′(ui ) is decreas-

ing, in addition to ψ being decreasing. With a generic threat point d, (C) takes the
following form,

ψ ′(ui ) < 0 and e(ui ) ≡ (ui − di )ψ
′(ui )

ψ(ui )− d j
is strictly decreasing over (di , ūi ).

Moreover, as d varies in S, the log-convexity of (S, d) puts further restrictions on S.
A natural question is whether S is necessarily convex when (S, d) is log-convex for
all strictly Pareto dominated threat points d ∈ S. Proposition 2 in the next section
establishes a class of problems that is not convex but log-convex for all threat points
that are strictly Pareto dominated.

4 Applications

Nash bargaining theory has been widely applied to employer–employee bargaining
and bargaining in duopoly, among many other areas. We refer the reader to Bishop
(1960), Aoki (1980), McDonald and Solow (1981), Miyazaki (1984), Schmalensee
(1987) and Tirole (1988) for applications involving non-convexity in previous liter-
ature. In this section, we demonstrate that bargaining problems arising in these two
areas are log-convex but not convex under mild familiar conditions. By our results,
Nash bargaining theory can be applied to these problems, even though it was regarded
as nonapplicable due to the non-convexity in the preceding papers.

4.1 Bargaining in duopoly

We now apply our results to duopoly bargaining (or collusion) problems.17 Suppose,
there are two firms in an industry supplying a homogeneous product with a market
demand function D(p). Each firm i has zero fixed cost and constant marginal cost of
production given by ci , where ci ≥ 0 for i = 1, 2.

Let p◦ = inf{p : D(p) = 0}. We make the following assumptions on the demand
function and marginal costs: (i) 0 ≤ c1 < c2 < p◦; (ii) D(p) is twice continuously
differentiable and D

′
(p) < 0 on (0, p◦); and (iii) firm 1’s monopoly profit function

π̄1(p) ≡ (p − c1)D(p) is strictly concave on (0, p◦) and lim p→p◦ π̄1(p) = 0.
Assumption (iii) implies that there exists a unique monopoly price p̄1 that maximizes
π̄1(p) and that c1 < p̄1 < p◦. To make bargaining nontrivial, we also assume (iv)
c2 < p̄1.

17 Binmore (2007, pp. 480–481) illustrated the use of Nash bargaining solution as a tool for studying
collusive behavior in a Cournot duopoly with asymmetric constant marginal costs. However, the profit
choice set without side payments is drawn as if it is convex (Figure 16.13(a)), which is not with respect to
the assumed demand and cost functions.
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Suppose, the two firms bargain over their production outputs (or equivalently price
and market shares) without side payments.18 We first describe the feasible set of profit
allocations for the firms, which is denoted as �. Assuming free disposability, we
only need to characterize the Pareto frontier of �, which we denote by PF. Let profit
allocation π = (π1, π2) ∈ PF be resulted from an output agreement (q1, q2). Since
πi = (p−ci )qi with for i = 1, 2 with p being the price such that q1+q2 = D(p), π ∈
PF satisfies

π1

p − c1
+ π2

p − c1
= D(p). (12)

That is, feasible profit allocations on PF can be parameterized by a range of prices
instead of output allocations. We shall narrow down the price range that completely
characterizes PF.

Notice that, profit allocations associated with prices p ≤ c2 or p ≥ p◦ are Pareto
dominated by those with prices in (c2, p◦). Given p ∈ (c2, p◦) and π2, it follows from
(12) that

h(p, π2) ≡ π̄1(p)− π2(p − c1)

p − c2
(13)

is the profit for firm 1 should they agree to let firm 2 receive profit π2. Thus, π ∈ PF
if and only if

π1 = max
c2<p<p◦ h(p, π2).

The supporting price, p(π2), is determined by the first-order condition

π̄ ′
1(p)+ (c2 − c1)π2

(p − c2)2
= 0

and hence, the Pareto frontier is represented by π1 = h(p(π2), π2) for π2 ∈ [0, π̄2],
where π̄2 is the maximum monopoly profit for firm 2. Note that, the second-order
condition is satisfied due to Assumption (iii).

To illustrate non-convexity of �, consider a simple example in which D(p) =
20 − p, c1 = 0, and c2 = 10. In this case, the Pareto frontier can be easily computed

and is given by π1 = 100 − π2 − 3(5π2)
2
3 for 0 ≤ π2 ≤ 25. Simple calculation

shows that the PF is a strictly convex curve. Consequently, the feasible choice set of
the resulting bargaining problem is not convex. Intuitively, without side payments,
production arrangements are necessarily inefficient in order for firm 2, the inefficient
one, to produce positive quantities and receive positive profits, so that one unit of profit
gain by firm 2 results in more than one unit of profit loss for firm 1.

We next show that under our assumptions, the PF curve π1 = h(p(π2), π2) is
strictly decreasing and convex in π2 ∈ [0, π̄2].19 Nevertheless, we show that for any
d ≥ 0 that is strictly Pareto dominated in �, (�, d) satisfies Condition (C) for log-
convexity with generic threat point mentioned in Sect. 3.4 (pp. 15–16).

18 Explicit transfers or briberies between firms may be too risky due to antitrust scrutiny.
19 The non-convexity of � was shown in Tirole (1988, p. 242, 271) under one extra assumption that the
monopoly profit function for firm 2 is concave. We will show the non-convexity without such an assumption.
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Proposition 2 Suppose (i)–(iv) hold. Then,� is non-convex, but (�, d) ∈ R ∩ L for
all d ≥ 0 that are strictly Pareto dominated in �.

Proposition 2 and Theorem 2 together imply that the duopoly problem (�, d) has
a unique Nash bargaining solution under the assumed conditions. The uniqueness of
the solution makes it easier for one to perform comparative static analysis of the Nash
solution with respect to bargaining powers, marginal costs, threat points, and demand
parameters.

4.2 A bargaining model of the firm

Aoki (1980) analyzes a bargaining model of the firm as an organization of stockholders
and employees. In his model, the employees, who are assumed to be homogenous,
work with assets supplied by the stockholders to generate economic gains that are not
possible through casual combination of marketed factors of production. As a result,
by acquiring firm-specific skills and knowledge, the employees may exert bargaining
power over the disposition of the economic gains. In what follows, we first consider
single-product monopoly profit maximization parameterized by per product unit wage,
and we show that the bargaining problem with Pareto frontier determined by such profit
maximization is log-convex but not convex, under familiar conditions on demand and
cost functions. We then show that the bargaining problem associated with the Aoki’s
model can be reduced to such a bargaining problem.

To that end, let D(p) be the market demand for a monopoly firm’s product and
consider the following profit maximization problem

π(w) = max
p
(p − c − w)D(p), (14)

where c is the component of the firm’s marginal cost on production factors other
than labor and w is the other component. We take both c and w to be constant. This
could be due to the firm’s technology being of constant returns to scale and perfect
competitiveness of the factor markets. Alternatively, it could also be resulted from the
fact that the firm is in short run with labor as the only variable input (in which case
c = 0) and w as the outcome of wage bargaining.

Assume (i) D(c) > 0 and D(p) is twice continuously differentiable with D′(p) < 0
whenever D(p) > 0. Setμ(p) = −D(p)/D′(p). This term has useful applications to
the analysis of monopoly pricing decisions among many others (see for example, Weyl
and Fabinger 2013 for details). Assume further (ii) μ′(p) < 1 whenever D(p) > 0;
and (iii) there exists a price 0 < p̄ < ∞ such that μ( p̄) − p̄ + c < 0. Assumptions
(i) and (iii) are self-explanatory. Assumption (ii) is equivalent to the monopoly firm’s
marginal revenue being downward sloping. Hence, the objective function in (14) is
single-peaked in price p. It follows that maximization problem (14) has a unique
solution that is determined by the first-order condition

D(p)+ (p − c − w)D′(p) = 0 ⇔ μ(p)− p + c + w = 0. (15)

Denote by p(w) the solution for (15). Define w̄ by [p(w̄)− c − w̄]D(p(w̄)) = 0.
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Lemma 2 Assume (i)–(iii). Then, the bargaining problem with Pareto frontier deter-
mined by (14) and threat point d◦ is non-convex; but it is log-convex if in addition,
0 < w̄ < ∞ and the absolute value of price elasticity of D(p) is monotonically
increasing in price.

Proof By (15),

p′(w) = 1

1 − μ′(p(w))
and π ′(w) = −D(p(w)). (16)

Consequently, π ′′(w) = −D′(p(w))p′(w). Assumption (ii) together with (16) then
implies p′(w) > 0 and hence, π ′′(w) > 0. This shows that the PO frontier of the
choice set is strictly convex. As a result, the bargaining problem is non-convex.

Observe next that from (14) and (16) it follows

e(w) = − w

p(w)− c − w
,

where e(w) = wπ ′(w)/π(w). Consequently,

e′(w) = w
−(−c − w)+ w(p′ − 1)

(−c − w)2

= w

(p − c − w)2

[
wp′ − (p − c)

]
.

By (15) and (16),

e′(w) < 0 ⇔ wp′ − (p − c) < 0

⇔ w < (p − c)(1 − μ′(w))
⇔ (p − c)− μ < (p − c)(1 − μ′)
⇔ μ− (p − c)μ′ > 0.

If μ′ ≤ 0, then μ − (p − c)μ′ > 0 because μ > 0 and p ≥ c. If μ′ > 0, however,
μ− (p − c)μ′ ≥ μ− pμ′. This together with the preceding analysis implies

e′(w) < 0 whenever
pμ′(p)
μ(p)

< 1. (17)

Now, let ε(p) = −pD′(p)/D(p). Then,

μ(p)ε(p) ≡ p ⇒ pμ′(p)
μ(p)

+ pε′(p)
ε(p)

= 1.

Applying the assumption on ε(p) to the preceding equation and then combining with
(17) would imply

e′(w) < 0, w ∈ [0, w̄].
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Withψ(·) replaced by π(·) and ūi by w̄, the assumptions in Lemma 2 together with
the preceding analysis shows that all the conditions in Proposition 1 are satisfied. It
follows that the bargaining problem with disagreement point d◦ is log-convex. ��

Assumptions (i)–(iii) are satisfied by many familiar demand functions. Examples
include D(p) = a − bp and D(p) = e−ηp, where a, b, η > 0 are constant.

Remark 1 It is worth pointing out that the non-convexity of the choice set can arise
under much weaker conditions. To see this, notice that as the maximum value function,
π(w) is convex. As such, the bargaining problem is non-convex if π(w) is nonlinear,
which holds under more general conditions on the demand function than what are
required in the lemma.

In Aoki’s (1980) model, the firm incurs an average growth expenditure T = φ(g)
per unit of current sales in order to realize planned growth rate g of sales from current
period to the next one. Payment to an employee consists of a fixed wage (w̄) and
differential earning (ω). While the fixed wage is determined by competitive external
labor market, the differential earning is settled through bargaining.

Following Aoki (1980), assume φ is increasing and convex. Let p and x(p) denote
the price and sale of the firm’s product in the current period. Furthermore, let l denote
the number of employees needed for producing one unit of the product, which is
assumed to be constant in Aoki (1980). The stockholders and employees jointly share
the firm’s organizational rent R, where

R = [p − lw̄ − φ(g)] x(p). (18)

Let θ be the stockholders’ share of the rent. Then,

ω = (1 − θ)R

lx(p)
. (19)

Aoki assumed that investors follow a simple Keynesian “convention,” in the sense
that they believe on average that the existing state and firm’s policies will continue
indefinitely. With this in place, the rate of stock value appreciation equals g and the
dividends at the end of the period equals θR. It follows that competitive valuation π
of the firm’s stock satisfies

gπ + θR = ρπ,

where ρ is the one-period interest rate. The preceding equation implies

π = θR

ρ − g
. (20)

The stockholders and employees jointly bargain over the shares of the firm’s organi-
zational rent R with their objectives given in (19) and (20). As such, the set of feasible
choices for the parties is the set of (ω, π) reached by feasibly varying (g, p, θ). We
refer the reader to Aoki (1980) for more details of the model.
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In the rest of this subsection, we first show that the bargaining problem for Aoki’s
model can be transformed into one with Pareto frontier determined by (14). Corre-
spondingly, it follows from Lemma 2 that the problem is log-convex but not convex
under familiar conditions. To this end, observe first that by (18), (19), and (20),

π = R − lωx(p)

ρ − g
= [p − lw̄ − lω − φ(g)]

x(p)

ρ − g
.

Thus, the Pareto frontier of the choice set is determined by the following maximization
problem:

π(ω) = max
p,g

[p − lw̄ − lω − φ(g)]
x(p)

ρ − g
. (21)

Next, denote by y = p − φ(g) and D(y) = x(y + φ(g(y)))/(ρ − g(y)), where g(y)
solves

max
g

x(y + φ(g))

ρ − g
. (22)

By (22), it can be shown that given differential earning ω, the maximum value in (21)
satisfies

π(ω) = max
y
(y − lw̄ − lω)D(y).

Letting w = lω and c = lw̄, we have from the preceding equation,

π(w) = max
y
(y − c − w)D(y)

which is identical to maximization problem (14).
Finally, Aoki assumes that there exists a critical value g̃ < ρ such that it can

never be profitable for the firm to plan a growth rate larger than g̃. We maintain this
assumption below. Set μx (p) = −x(p)/x ′(p).

Proposition 3 Assume x(p) is twice differentiable with x ′(p) < 0. Assume further
μ′

x (p) ≤ 0 and (ρ− g)φ′′(g) ≥ 2φ′(g) for g < g̃. Then, the bargaining problem with
d◦ is log-convex but not convex.

Proposition 3 implies that the choice set is log-convex but not convex under the
assumed conditions and the threat point normalized at d◦. The log-convexity for cases
with general threat points can be similarly established. Notice also that the condition
μ′

x (p) ≤ 0 is satisfied by the demand functions such as x(p) = a − bp, a − bpη with
0 < η < 1, and a − bep in the relevant price ranges.

5 Comparison

We now compare our extension of Nash bargaining with the two other extensions by
Conley and Wilkie (1996) and Herrero (1989), respectively. To simplify our compar-
ison, we focus on log-convex problems (S, d◦) satisfying condition (C) in Sect. 3.4,
which include the duopoly bargaining problem in Sect. 4.
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Under Conley and Wilkie’s (1996) extension, the solution is determined by the
intersection of the Pareto frontier of the choice set with the segment connecting the
threat point and the Nash solution for the convexified problem. Although they only
consider extensions of the symmetric Nash solution, their method can be also applied
to extend the asymmetric Nash solution. Given (S, d) and α ∈ (0, 1), we denote by
Nα(S, d) the Nash solution with bargaining powers α for player 1 and 1−α for player
2 as before and by CWα(S, d) the Conley–Wilkie’s extension.

Proposition 4 Let (S, d◦) ∈ R be such that the IR frontier of S is given by a C2

function u2 = ψ(u1), u1 ∈ [0, ū1] for some number ū1 < ∞ with ψ(ū1) = 0.
Suppose ψ satisfies (C) for i = 1 and ψ ′′ > 0.20 Then, there exists α̂ ∈ (0, 1)
such that (a) N α̂(S, d◦) = CW α̂(S, d◦), (b) Nα

1 (S, d◦) < CWα
2 (S, d◦) and

Nα
2 (S, d◦) > CWα

2 (S, d◦) for α < α̂, and (c) Nα
1 (S, d◦) > CWα

2 (S, d◦) and
Nα

2 (S, d◦) < CWα
2 (S, d◦) for α > α̂.

Proposition 4 implies that the Nash solution without convexification is more respon-
sive to the relative bargaining powers than the Conley–Wilkie solution. The intuition
appears to be that the Nash solution without convexification utilizes more local cur-
vature of the Pareto frontier of the choice set than the Conley–Wilkie solution does.
For the class of duopoly problems with c1 < c2 as discussed in Sect. 4, we can further
show that α̂ > 1/2, implying that in the presence of asymmetric marginal costs and
equal bargaining powers, the Nash solution favors the less efficient firm as compared
to the Conley–Wilkie solution.

Condition (C) together with the regularity condition also guarantees a geometric
property of the asymmetric Nash solution given in Proposition 4 below. Given α ∈
(0, 1), let I1(α) and I2(α) denote the horizontal and vertical intercepts of the tangent
line to the Pareto frontier of S at Nα(S, d◦), respectively. We use || · || to denote the
Euclidean norm.

Proposition 5 Let (S, d◦) ∈ R be such that the IR frontier of S is given by a C1

function u2 = ψ(u1), u1 ∈ [0, ū1] for some number ū1 < ∞ with ψ(ū1) = 0.
Suppose ψ satisfies (C) for i = 1. Then, for any α ∈ (0, 1),

α||Nα(S, d◦)− I2(α)|| = (1 − α)||Nα(S, d◦)− I1(α)||.

Proposition 5 states that the distances between the asymmetric Nash solution and
the two intercepts are proportional to the associated bargaining powers. In the case of
equal bargaining powers, this geometric (equal distance) property is the main feature
in Herrero’s (1989) characterization of the multi-valued solution under a different set
of axioms and has also been noted in Mas-Colell et al. (1995, Example 22.E.3, p. 842)
for compact convex problems. The proportional distance property of the asymmetric
Nash solution in Proposition 5 represents an extension of the equal distance property
to asymmetric cases and to a large class of regular problems satisfying (C).

20 If ψ is concave, then S is convex in which case both extended Nash solutions reduce to the standard
Nash solution.
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6 Conclusion

It is well-known that on the class of compact convex bargaining problems, Nash
axioms without that of symmetry uniquely determine the asymmetric Nash solution,
which is parameterized by players’ bargaining powers. The parametrization by players’
bargaining powers is useful in applications, for it offers flexibility in fitting data by
choosing suitable bargaining powers. In this paper, we have extended the standard
axiomatic characterization of the unique asymmetric Nash solution to the class of all
regular and log-convex problems. We have shown that this is the complete class for
such an extension to hold.

As well recognized in the IO literature, bargaining between duopolists with asym-
metric constant marginal costs and concave monopoly profit function for the efficient
firm results in non-convex problems. Nevertheless, they are shown to be regular and
log-convex in this paper. Similarly, it is also shown in this paper that the bargaining
problem for Aoki’s model of the firm is regular and log-convex but not convex. These
results illustrate that more applications of log-convex bargaining problems may be
possible. Further explorations will be conducted in a different project.

The uniqueness and single-valuedness of the asymmetric Nash solution make it
possible to conduct comparative static analysis with respect to bargaining powers,
threat points, and determinants of the choice sets such as the marginal costs for duopoly
problems. They also enable interesting comparisons with other single-valued solutions
appeared in the literature.

Appendix: Proofs

Before proceeding with the proof of Theorem 1, we make the following observa-
tions. First, the logarithmic transformation (v1, v2) = (ln(u1 − d1), ln(u2 − d2)) is
a homeomorphism from S ∩ {(u1, u2) | u1 > d1, u2 > d2} onto V (S, d). It follows
that the boundary ∂V (S, d) of V (S, d) must be the homeomorphic image of that of
S ∩ {(u1, u2) | u1 > d1, u2 > d2}; that is,

∂V (S, d) =
{(

ln(u1 − d1), ln(u2 − d2)
)∣∣∣∣u ∈ ∂S : u1 > d1,

u2 > d2.

}
.

Thus, V (S, d) is closed. Second, because S is bounded above, V (S, d) is bounded
above and ∂V (S, d) �= ∅. Third, for any (u1, u2) ∈ S ∩ {(u1, u2) | u1 > d1, u2 >

d2}, the intervals ((d1, u2), (u1, u2)] and ((u1, d2), (u1, u2)] are transformed into
((−∞, ln(u2 − d2)), (ln(u1 − d1), ln(u2 − d2))] and ((ln(u1 − d1),−∞), (ln(u1 −
d1), ln(u2 − d2))] in V (S, d), respectively. As a result, V (S, d) = V (S, d) − �2+.
Thus, by moving the origin properly, we can assume, without loss of generality, that
for some constant h > 0,

V (S, d) ⊂ −(h, h)− �2+, (23)

so that the closed cone generated by V (S, d) and any line passing through the origin
with a normal vector in �2+ has no point in common other than the origin.
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Lemma 3 Let U ⊆ �2 be closed, convex, and comprehensive (i.e., U = U − �2+). If
the boundary ∂U of U is nonempty, then U = ∂U − �2+.

Proof Notice ∂U −�2+ ⊆ U −�2+ = U is automatic. Conversely, let u be any interior
point of U . Then, there exists a number ε > 0 such that (ui + δ, u j ) ∈ U for i �= j
and for all δ ∈ [0, ε). Set δi = sup{δ|(ui + δ, u j ) ∈ U }. Since U is convex and
comprehensive, δi < ∞ for at least one i , for otherwise U = �2 which contradicts
∂U �= ∅. Assume without loss of generality δ1 < ∞. Then, u1 = (u1 + δ1, u2) ∈ ∂U
because U is closed. It follows that u = u1 − (δ1, 0) ∈ ∂U − �2+. This shows
U ⊆ ∂U − �2+.

Proof of Theorem 1 As observed earlier, log-convexity is equivalent to conditions that
V (S, d) is convex and it does not contain segments with normal vectors (α, 1 − α)

for all α ∈ (0, 1). To prove the necessity, we only need to show that V = V (S, d) is
convex because the necessity of the rest is obvious.

Let V̄ denote the closure of the convex hull of V . Notice V̄ also satisfies V̄ =
V̄ − �2+; hence, from Lemma 3, V̄ = ∂ V̄ − �2+. For any boundary point v̄ ∈ ∂ V̄ , it
follows from the separation theorem and the comprehensiveness of V̄ that there exists
a ∈ �2+ such that

a · v̄ = max
v∈V̄

a · v = max
v∈V

a · v. (24)

Without loss of generality, we may take a = (θ, 1 − θ) for some θ ∈ [0, 1].
There exist sequences {vk(n)}n in V for k = 1, 2, 3, {λ(n)}n in �3+, and {ε(n)}n

in � such that21

v̄ = λ1(n)v
1(n)+ λ2(n)v

2(n)+ λ3(n)v
3(n)+ ε(n), (25)

λ1(n)+ λ2(n)+ λ3(n) = 1, (26)

ε(n) → 0. (27)

By the nonnegativity of λ(n) and (26), we may assume

λ(n) → λ̄ ∈ �3+ with λ̄1 + λ̄2 + λ̄3 = 1. (28)

By (23), the sequences {λk(n)vk(n)}n, k = 1, 2, 3, are bounded above and by (25),
(27), and (28), they are also bounded below. Hence, we may assume

λk(n)v
k(n) → w̄k ∈ �2, k = 1, 2, 3 ⇒ v̄ = w̄1 + w̄2 + w̄3. (29)

Suppose first λ̄k > 0 for k = 1, 2, 3. Then, since V is closed, (25) and (27)–(29)
imply

vk(n) → v̄k ∈ V, k = 1, 2, 3, v̄ = λ̄1v̄
1 + λ̄2v̄

2 + λ̄3v̄
3. (30)

21 The reason is as follows. Since v̄ is in V̄ , there exists a sequence {v̄(n)}n in the convex hull of V
such that v̄(n) → v̄. By Carathéodory Theorem, for each n, there exist v1(n), v2(n), v3(n) in V and
λ(n) ∈ �3+ satisfying (26) such that v̄(n) = λ1(n)v

1(n) + λ2(n)v
2(n) + λ3(n)v

3(n). Finally, (25) and
(27) are established by setting ε(n) = v̄ − v̄(n) for all n.
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Suppose now λ̄k = 0 for some k but λ̄k′ > 0 for k′ �= k. Without loss of generality,
assume λ̄1 = 0, λ2 > 0, and λ3 > 0. In this case,

v̄ = w̄1 + λ̄2v̄
2 + λ̄3v̄

3, λ̄2, λ̄3 > 0, λ̄2 + λ̄3 = 1. (31)

By (24) and (29),

a · w̄1 = lim
n→∞ a · λ1(n)v

1(n) = lim
n→∞ λ1(n)a · v1(n) ≤ lim

n→∞ λ̄1a · v̄ = 0.

On the other hand, by (24) and (31),

a · w̄1 = a · v̄ −
[
λ̄2(a · v̄2)+ λ̄3(a · v̄3)

]
≥ 0.

It follows that a · w̄1 = 0. This shows that w̄1 lies on the line having normal vector
a = (θ, 1 − θ) ∈ �2+ and passing though the origin. Furthermore, as the limit of
{λ1(n)v1(n)}, w̄1 is in the closed cone generated by V . Thus, by (23), we must have
w̄1 = 0. Suppose finally λ̄k = 1 for some k. Assume without loss of generality λ̄3 �= 0.
In this case, a similar proof as before shows w̄1 = w̄2 = 0.

In summary, by letting v̄k be arbitrary element in V when λ̄k = 0, the preceding
analysis establishes

v̄ = λ̄1v̄
1 + λ̄2v̄

2 + λ̄3v̄
3. (32)

When λ̄k > 0, (24) and (32) together imply

a · v̄k = max
v∈V

a · v,

which implies v̄k ∈ ∂V . If a ∈ �2++, then the above equality and the assumption that
(4) has a unique solution imply v̄k = v̄ whenever λ̄k > 0. Hence, v̄ ∈ ∂V ⊂ V . If
a = (1, 0), then

v̄1 = a · v̄ = a · v̄k = v̄k
1 .

Assume without loss of generality λ̄1 > 0 and v̄1
2 = max{v̄k

2 | λ̄k > 0}. Then, by (32),

v̄2 = λ̄1v̄
1
2 + λ̄2v̄

2
2 + λ̄3v̄

3
2 ≤ v̄1

2 .

Thus, v̄ ≤ v̄1. This shows v̄ ∈ V . If a = (0, 1), then a similar proof establishes v̄ ∈ V .
We have shown that v̄ ∈ V for any v̄ ∈ ∂ V̄ . Thus, by Lemma 3,

V ⊆ V̄ = ∂ V̄ − �2+ ⊆ V − �2+ = V .

This concludes V = V̄ which implies that V is convex. ��
Proof of Proposition 2 To show the non-convexity of �, notice that the PF of � is
given by the function

π1 = ψ(π2) = h(p(π2), π2)), π2 ∈ [0, π̄2].
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By (13),

h2(p, π2) = − p − c1

p − c2
, h22(p, π2) = 0, h12(p, π2) = c2 − c1

(p − c2)2
, (33)

and

h11(p, π2) = π̄ ′′
1 (p)− 2(c2 − c1)π2

(p − c2)3
, p′(π2) = − h12(p(π2), π2)

h11 (p(π2), π2)
. (34)

It follows from the envelope theorem, (33), and (34) that

ψ ′(π2) = h2(p(π2), π2), (35)

and

ψ ′′(π2) = h12(p(π2), π2)p
′(π2) = −[h12(p(π2), π2)]2

h11(p(π2), π2)
> 0, (36)

where the strict inequality holds since h11(p, π2) < 0 due to the strict concavity of
π̄1(p).

Next, we show that (�, d) ∈ L for all d ≥ 0 that are strictly Pareto dominated in
�. By the discussions following Proposition 1, it suffices to show that ψ ′(π2) < 0
and e(π2) ≡ (π2−d2)ψ

′(π2)
ψ(π2)−d1

is strictly decreasing in π2 over (d2, π̄2).
By (33) and (35), ψ ′(π2) < 0 if p(π2) > c2. Suppose p(π2) < p̄1. The strict

concavity of π̄1(p) implies that π̄ ′
1(p) > 0 for p ∈ [p(π2), p̄1], which in turn implies

h1(p, π2) > 0 for p ∈ [p(π2), p̄1]. Consequently, p(π2) cannot be Pareto optimal.
Thus, p(π2) ≥ p̄1 > c2. By the strict concavity of π̄1(p) and (34),

− h11(p, π2) >
2(c2 − c1)π2

(p − c2)3
> 0 (37)

for any π2 ∈ (0, π̄2). It then follows from (33)-(37) that

ψ ′(π2)+ π2ψ
′′(π2) = h2(p(π2), π2)+ π2

[h12(p(π2), π2)]2

−h11(p(π2), π2)

< − p(π2)− c1

p(π2)− c2
+ c2 − c1

2[p(π2)− c2]
= −2p(π2)− c1 − c2

2[p(π2)− c2)]
< 0

for any π2 ∈ (0, π̄2), where the last inequality holds since p(π2) ≥ p̄1 > c2 > c1.
Since the derivative of e(π2) has the same sign as

[ψ(π2)− d1]
[
ψ ′(π2)+ π2ψ

′′(π2)− d2ψ
′′(π2)

] − (π2 − d2)[ψ ′(π2)]2 < 0,
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where the inequality follows from π2 ≥ d2 ≥ 0, ψ(π2) ≥ d1, ψ
′′(π2) > 0, and

ψ ′(π2)+ π2ψ
′′(π2) < 0 for any π2 ∈ (d2, π̄2). ��

Proof of Proposition 3 The first-order condition for maximization problem (22) is

(ρ − g)x ′φ′ + x = 0 ⇔ μx (y + φ(g))− (ρ − g)φ′(g) = 0. (38)

Recall that D(y) = x(y + φ(g(y)))/(ρ − g(y)). Thus, simple calculation shows that
(38) implies

D′(y) = x ′(y + φ(g(y)))

ρ − g(y)
and

D(y)

D′(y)
= x(y + φ(g(y)))

x ′′(y + φ(g(y)))
.

Consequently, assumptions (i) and (iii) in Lemma 2 are automatically satisfied due
to the assumptions in Proposition 3. Next, since g(y) < ρ and μx (y + φ(g(y))) =
(ρ − g(y))φ′(g(y)), there exists ȳ such that μx (ȳ + φ(g(ȳ)))− ȳ < 0. This together
withμ(y) = μx (y+φ(g(y))) as shown above implies that assumption (ii) in Lemma 2
is also automatically satisfied.

Let ε(y) = −y D′(y)/D(y). Then, from the derivation of D(y) it follows that

ε(y) = − yx ′(y)
x(y)

= y

μx (y + φ(g(y)))
.

Hence,

ε′(y) > 0 ⇔ μx > y
dμx

dy
. (39)

By (38),

dμx

dy
= [

(ρ − g)φ′′ − φ′] g′

and

g′ = μ′
x

(ρ − g)φ′′ − φ′ − μ′
xφ

′ .

Notice that the dominator on the right-hand side of the last equation is positive under
the assumptions. Combining these last two equations with (39) would then imply

ε′(y) > 0 ⇔ (μx − yμ′
x )[(ρ − g)φ′′ − φ′] − μxμ

′
xφ

′ > 0

which holds under the assumed conditions. This completes the proof that all the con-
ditions in Lemma 2 are satisfied. ��
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Proof of Proposition 4 Notice that (S, d◦) ∈ R and by Proposition 1, (S, d) ∈ L.
Thus, by Theorem 2, there is a unique Nash solution given by (2), where the first-
order condition is given by

− u1ψ
′(u1)

ψ(u1)
= α

1 − α
. (40)

The Nash solution (Nα
1 (S, d◦), Nα

2 (S, d◦)) is determined by (40) and u2 = ψ(u1). It
follows that the ratio of the two payoff gains is

RN (α) ≡ Nα
2 (S, d◦)

Nα
1 (S, d◦)

= −1 − α

α
ψ ′(Nα

1 (S, d◦)).

Moreover, the left-hand side of (40) is strictly increasing in u1 by (C) and the right-
hand side is strictly increasing in α. It follows that Nα

1 (S, d◦) is strictly increasing in
α for any interior solution.

The frontier of the convex hull of S is a straight line given by

u2 = ū2

ū1
(ū1 − u1).

Applying Nash solution on the convex hull yields a solution u = (αū1, (1 − α)ū2).
This solution and the Conley–Wilkie’s extended Nash solution have the same ratio of
the payoff gains for the two players, which is given by

RCW (α) ≡ CWα(S, d◦)
CWα

1 (S, d◦)
= (1 − α)ū2

αū1
.

Comparing the two solutions yields

RN (α)

RCW (α)
= −ψ ′ (Nα

1 (S, d◦)
)

ū2/ū1
.

The strict convexity of ψ and the monotonicity of Nα
1 (S, d◦) at the interior solution

imply that −ψ ′(Nα
1 (S, d◦)) is strictly decreasing in α. Thus, there exists α̂ ∈ (0, 1)

such that (a) RN (α̂) = RCW (α̂), (b) RN (α) > RCW (α) if α < α̂, and (c) RN (α) <

RCW (α) if α > α̂. The claims then follow since both solutions are on the frontier. ��
Proof of Proposition 5 Notice first that (S, d◦) ∈ R∩L. Set z = Nα(S, d◦). Then, by
Theorem 1, z is the only tangent point between the indifference curve of Nash product
uα1 u1−α

2 and the Pareto frontier of S. The corresponding tangent line is represented by

u2 = ψ(z1)+ ψ ′(z1)(u1 − z1).

It intersects the horizontal axis at I1 = (z1 + ψ(z1)/ψ
′(z1), 0) and it intersects the

vertical axis at I2 = (0, ψ(z1)− z1ψ
′(z1)). The distances ‖z − I1‖ from z to I1 and

‖z − I2‖ from z and I2 are given by
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‖z − I1‖2 = (ψ(z1)/ψ
′(z1))

2 + (ψ(z1))
2 = (ψ(z1))

2[1 + (ψ ′(z1))
2]

(ψ ′(z1))2

and

‖z − I2‖2 = (z1)
2 + (z1ψ

′(z1))
2 = (z1)

2
[
1 + (ψ ′(z1))

2
]
.

It follows that
‖z − I2‖2

‖z − I1‖2 =
(

z1ψ
′(z1)

ψ(z1)

)2

. (41)

Recall that the proportional distance property states that

‖z − I2‖
‖z − I1‖ = 1 − α

α
.

By (41), the preceding equality is equivalent to

(
1 − α

α
− z1ψ

′(z1)

ψ(z1)

) (
1 − α

α
+ z1ψ

′(z1)

ψ(z1)

)
= 0.

Since ψ ′(z1) < 0, the above equality in turn is equivalent to (40), which is automatic
because it is the first-order condition for Nash bargaining solution z = Nα(S, d◦). ��
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