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Four-Spin Terms and the Origin of the Chiral Spin Liquid in
Mott Insulators on the Triangular Lattice

Tessa Cookmeyer ,1,2* Johannes Motruk ,1,2,3 and Joel E. Moore1,2
1Department of Physics, University of California, Berkeley, California 94720, USA

2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
3Department of Theoretical Physics, University of Geneva, Quai Ernest-Ansermet 30, 1205 Geneva, Switzerland

At strong repulsion, the triangular-lattice Hubbard model is described by s ¼ 1=2 spins with nearest-
neighbor antiferromagnetic Heisenberg interactions and exhibits conventional 120° order. Using the infinite
density matrix renormalization group and exact diagonalization, we study the effect of the additional four-
spin interactions naturally generated from the underlying Mott-insulator physics of electrons as the 
repulsion decreases. Although these interactions have historically been connected with a gapless ground 
state with emergent spinon Fermi surface, we find that, at physically relevant parameters, they stabilize a 
chiral spin liquid (CSL) of Kalmeyer-Laughlin (KL) type, clarifying observations in recent studies of the 
Hubbard model. We then present a self-consistent solution based on a mean-field rewriting of the 
interaction to obtain a Hamiltonian with similarities to the parent Hamiltonian of the KL state, providing a 
physical understanding for the origin of the CSL.

Introduction.—The triangular lattice has played a promi-
nent role in the physics of spin liquids ever since they were
first proposed by Anderson [1], and many of the candidate
materials exhibit this lattice geometry [2–11]. In particular,
some organic charge transfer salts [2,3] and 1T-TaS2 [6,12]
are believed to be described by the Hubbard model on the
triangular lattice in the vicinity of the Mott transition. While
the existence of a nonmagnetic insulating (NMI) phase in the
Hubbardmodel has been observed in numerous studies [13–
23], the determination of the type of spin-liquid phase in
direct studies of the Hubbard model has long been elusive.
The problem has instead often been investigated via an

effective spin model. Deep in the insulating phase of the
Hubbard model, a nearest-neighbor Heisenberg model is
sufficient and contains long-ranged three-sublattice order
[24–26]. To describe physics closer to the Mott transition,
one includes a four-spin ring-exchange part in addition to
the Heisenberg term, a description coming from the lowest
order t=U expansion of the Hubbard model [27]. In a
seminal paper, Motrunich showed, using variational
Monte Carlo simulations, that a spin liquid with spinon
Fermi surface (SFS) is a strong competitor for the ground
state if the ring-exchange term is large enough [28].
Indications for this state, in subsequent works also referred
to as spin-Bose metal, have been seen in other studies,
including some with complementary methods [12,17,29–
32], but remain under debate [33]. However, recent work on
the Hubbard model suggested that the NMI is instead a
chiral spin liquid (CSL) of Kalmeyer-Laughlin (KL) type
[34–38], seemingly at odds with the results for the effective
spin model.

In this Letter, using a combination of exact diagonaliza-
tion (ED) and infinite density matrix renormalization group
(iDMRG) [39] simulations, we first show that the KL spin
liquid is indeed the ground state of the effective spin model
around the parameter regime relevant for the Hubbard
model. We demonstrate that this CSL does not emerge as a
competing state to the SFS, but rather appears at a different
value of the four-spin interaction; this is to our knowledge
the first demonstration of a KL ground state in a time-
reversal invariant spin model on the triangular lattice.
However, we also find that much of the region that had
been attributed to the SFS in previous works is occupied by
a magnetically ordered zigzag state. The second main result
is to connect analytically the four-spin term, which pre-
serves time-reversal symmetry (TRS), back to the TRS-
breaking parent Hamiltonians of the KL state [40,41] by
mean-field arguments. Hence, one aspect of our work
clarifies the relation between the appearance of the CSL
in the triangular-lattice Hubbard model and the correspond-
ing spin model, while the second clarifies why the CSL
appears in the spin model via a connection to known TRS-
breaking parent Hamiltonians for the CSL.
Finding a parent spin Hamiltonian of the KL state

[40,41] and its generalizations, the Read-Rezayi states
[42,43], has been of considerable interest. Generally, the
parent Hamiltonians derived from conformal-field theoretic
(CFT) arguments have long-ranged interactions, but a local
Hamiltonian can be found if only short-ranged coefficients
are kept, made uniform, and tuned [41,43–47]. While the
underlying Hamiltonian for a material in zero applied field
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should respect TRS, these parent Hamiltonians explicitly
break TRS. A notable exception is on the kagome lattice
near a classical chiral phase transition [48–53], but no TRS-
preserving spin Hamiltonian with KL ground state on the
triangular lattice is known analytically.
Model.—Motivated by the t=U expansion of the

Hubbard model, we consider the following Hamiltonian:

H ¼ J1
X
hiji

Si · Sj þ J2
X
⟪ij⟫

Si · Sj þH4; ð1Þ

where hiji ð⟪ij⟫Þ denotes (next-)nearest neighbor pairs.
The four-spin interaction H4 is given by

H4 ¼ J4
X

hi;j;k;li
½ðSi · SjÞðSk · SlÞ

þ ðSi · SlÞðSj · SkÞ − ðSi · SkÞðSj · SlÞ�; ð2Þ

where hi; j; k; li denotes a sum over unique rhombuses as
defined by unique next-nearest neighbor pairs ⟪ik⟫ (see
Fig. 1). This four-spin term is related to the extensively
studied ring-exchange operator [12,28–31,33,54–62] via
the 4J2 ¼ J4 line. Furthermore, studies on the J4 ¼ 0 line
have focused on the emergence of a “J1-J2 spin liquid”
[45,46,63–68]. Treated classically, the Hamiltonian exhib-
its spontaneous TRS breaking into a tetrahedrally ordered
phase [69–73], further motivating this particular model.
From here on in, we take J1 ¼ 1 and

P
i S

z
i ¼ 0.

Exact diagonalization.—We perform ED on 6 × 4 spins
with periodic boundary conditions (PBCs). The PBCs are
chosen such that the unit cell is translated in the ŷ direction
and in the 2x̂ − ŷ direction. We compute the structure factor
for the spin Si and dimer Dxi

α ¼ Sxi · Sxiþα correlations

SðqÞ ¼
X
i;j

ðhSi · Sji − hSii · hSjiÞeiq·ðxj−xiÞ; ð3Þ

DαðqÞ ¼
X
i;j

ðhDxi
α D

xj
α i − hDxi

α ihDxj
α iÞeiq·ðxj−xiÞ; ð4Þ

with α being the vector to one of the three nearest
neighbors, and Sxi is an alternative notation for Si. Large
values of SðqÞ and/or DαðqÞ indicate ordered phase; see
[73] for more information about the various orders.
To distinguish the tetrahedral from the collinear state, we

compute a nematic order parameter, a chiral-chiral order
parameter, [46] and we study the effect of adding a small
TRS-breaking term to the Hamiltonian. As shown in the
Supplemental Material [73], this analysis clearly shows that
large SðM0Þ [SðMÞ] is indicative of tetrahedral (collin-
ear) order.
Additionally, we are most interested in checking whether

the chiral spin-liquid phase appears. For that reason, we
compute OCFT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
4
i¼1 jhψ jKLiij2

p
, the overlap of the

ground state with its projection into the subspace spanned

by the four orthonormalized KL states jKLii (given
explicitly in Ref. [85]). The degeneracy comes from a
combination of twofold topological and TRS-breaking
degeneracy each.
From all of the data presented in Fig. 2, we see that there

are potentially many ordered states, and we present a phase
diagram in Fig. 1(c). Most interesting, however, is that, in
the region most relevant for the Hubbard model at small J2
and J4 ∼ 0.1–0.15, the overlap with the CSL is large.
iDMRG.—In order to investigate this tendency on larger

system sizes, we focus on the region with J2 ≤ 0.05 and
J4 ≤ 0.4 and study it with iDMRG. We consider the model
on infinite cylinders of circumferences Ly ¼ 6 and 8 sites
and compute the ground state on the slices J2 ¼ 0 and J2 ¼
0.05 at various bond dimensions χBD. We use the TENPY
library [86] and give further details of the numerics in the
Supplemental Material [73]. The results for the Ly ¼ 6

cylinder are presented in Fig. 3 and are summarized in
Fig. 1(d). We find similar phases as in ED. The spins order
into the 120° (zigzag) state at low (high) J4, respectively. At
intermediate J4, we find a phase that breaks TRS by
acquiring a nonzero value of the chiral order parameter
χ ¼ hSi · ðSj × SkÞi with i, j, k going clockwise around a

FIG. 1. (a) The different colored lines connect the spins involved
in the different terms of Eq. (1). (b) The first Brillouin zone of the
lattice showing several named points. (c) The proposed phase
diagram from our ED results using the various orders in Fig. 2. For
phase descriptions, see the Supplemental Material [73]. The phase
boundaries were determined via the symmetry sector of the ground
state and first excited state [46,73]. The grayed out region is within
the SFS parameter space found in [28], but also might have some
dimer or plaquette ordering. (d) The phase diagram from the
iDMRG results on the Ly ¼ 6 cylinder on the J2 ¼ 0.00, 0.05
slices, which includes theCSL, perhaps suggested byED. (e) From
left to right, the 120°, collinear, zigzag (ZZ), and tetrahedral (whose
spins, connected tail to tail, forma tetrahedron) classical spinorders
are shown [73].



triangle (and h·i denotes the expectation averaged over all
triangles in the lattice), which we identify as the KL CSL
below. Furthermore, we confirm the presence of the
valence-bond solid (VBS) on the J2 ¼ 0 slice reported
in Ref. [12].
For the Ly ¼ 8 cylinder, we focus on demonstrating that,

at the point ðJ2; J4Þ ¼ ð0.05; 0.18Þ, the ground state is the
CSL. By running the algorithm at different ðJ2; J4Þ, we find
the same states as in the Ly ¼ 6 cylinder. In addition to an
unbiased run, we use those states as the initial state to bias
the algorithm toward converging to a non-CSL state at
(0.05,0.18). By χBD ¼ 1600, however, the algorithm
always converges to the CSL, and an unbiased run with
χBD ¼ 3200 also finds the CSL.
Identification as the CSL.—Here, we identify the TRS-

breaking phase as the Kalmeyer-Laughlin state by studying
the entanglement spectrum and performing a spin-Hall
numerical experiment. We focus on ðJ2; J4Þ ¼ ð0.05; 0.18Þ
and show the results of both in Fig. 4. First, we compute the
entanglement spectrum, which shows the correct counting
for the KL state; each of the levels with spin quantum
number jszj ∈ f0; 1; 2g show the degeneracy pattern of
1; 1; 2; 3; 5;… as we move around the momentum [87,88].

FIG. 2. (a)–(f) Various orders are shown in color vs J2 and J4.
The table in the upper right indicates the phase to which each
order corresponds. (g) The overlap of the ground state with the
manifold of KL states, which suggests that the CSL may appear
for small J2 and J4.

FIG. 3. We plot various order parameters that we extract from
ground state wave function from iDMRG for the Ly ¼ 6 cylinder,
and J2 ¼ 0 (J2 ¼ 0.05) for the left (right) column, respectively.
(a),(b) [(g),(h)] We plot the spin-spin correlation at the K (Y)
point, respectively. We see a jump in the value corresponds to a
phase boundary. (c),(d) We plot χ ¼ hSi · ðSj × SkÞi averaged
over all triangles of the lattice from the iDMRG results at varying
bond dimension χBD. (d) The jump in the nonzero value of χ at
J4 ¼ 0.19 corresponds to whether the trivial (J4 ≤ 0.19) or
semion (J4 ≥ 0.20) sector of the KL state is the ground state
as evidenced by the entanglement spectra. We include an
extrapolation [73] to χBD → ∞ where it is nonzero. (e),(f) We
plot the dimer-dimer correlation at theM0 point for dimers in the x̂
direction, which signals the VBS state. The phase boundaries
estimated from these data are plotted in Fig. 1.

FIG. 4. (a) We plot the entanglement spectrum for the ground
state at ðJ2; J4Þ ¼ ð0.05; 0.18Þ on the Ly ¼ 8 cylinder with
χBD ¼ 1600. The y axis is −s lnðsÞ, where s are the Schmidt
values. The color indicates the charge as specified in the legend,
and different charges are offset slightly from each other to more
clearly show the degeneracy. For each momentum, the counting
of the lowest cluster of Schmidt values is shown for each of the
sz ≥ 0 charges in color. They show the correct pattern for the
Kalmeyer-Laughlin state. (b) We make the same plot as in
(a) after adiabatically inserting one flux quantum through the
cylinder. Although the Hamiltonian is the same, the entanglement
spectrum has changed, indicating a topological degeneracy of the
state. (c) During the flux insertion, we can monitor how much
spin has flowed along the cylinder. We see that exactly a spin 1=2
is pumped across the system, indicating a quantized fractional
spin-Hall effect.



Next, we thread flux through the cylinder by replacing
Sþi S

−
j → Sþi S

−
j e

iθðyi−yjÞ=Ly , so that, upon going around the
cylinder, a spin will have picked up a phase of eiθ. As can
be seen in Fig. 4(c), adding 2π flux moves exactly 1=2 a
spin along the cylinder. Additionally, although the
Hamiltonian has returned to the original Hamiltonian up
to a gauge transformation, the ground state has a different
entanglement spectrum with half-integer spin quantum
numbers. Indeed, inserting 2π flux exchanges the trivial
and semion sectors of the ground state manifold [89] of the
KL state on the infinite cylinder, which is precisely what we
see in this numerical experiment.
Zigzag vs spinon Fermi surface.—In a recent DMRG

study of Eq. (1) at J2 ¼ 0, the authors of Ref. [12] find a
spin liquid at J4 ≳ 0.3 that they identify as a spinon Fermi
surface phase. We instead find that a zigzag ordered state at
finite bond dimension has lower energy for the parameter
choices we studied (i.e., J4 ≤ 0.4), consistent with our ED
results. By biasing the initial state toward the SFS or zigzag
state, we compare how the energy depends on the trunca-
tion error of iDMRG at the point J4 ¼ 0.4 [73,90,91],
which allows us to estimate the ground state energy at
infinite bond dimension. However, we still find the zigzag
state is preferred for the Ly ¼ 6 cylinder where we
performed the analysis. Future work may attempt to clarify
whether the SFS appears at other points in the parameter
space; a recent effort in that direction is seen in [33].
Regardless, the SFS does not seem to be favored in the
regime most physically close to the Hubbard model. These
results could also be investigated by variational
Monte Carlo studies, since previous works seem not to
have considered a trial state with zigzag order [28,31,59].
Discussion.—As mentioned in the Introduction, this spin

model is motivated by the Hubbard model’s t=U expansion.
In particular, at order t4=U3, the Hubbard model gives
J1 ¼ 4ð1 − 7t2=U2Þt2=U, J2 ¼ 4t4=U3, J3 ¼ 4t4=U3, and
J4 ¼ 80t4=U3, where J3 is a next-next-nearest-neighbor
Heisenberg interaction [27]. Ignoring J3, if we use the
value of U=t ∼ 10.6 for the transition to the CSL phase
from Ref. [35], we would estimate the transition to be at
ðJ2; J4Þ ∼ ð0.01; 0.19Þ, essentially where we find it.
One could still ask why the KL state should be the ground

state for the Hamiltonian (1), though. In this section, we
connect the aboveHamiltonian to the parentHamiltonians of
Refs. [41–43]. In the Supplemental Material [73], we derive
that, for spin 1=2s, we can rewrite Eq. (2) as

H4¼−
107

88
J4
X
hiji

Si ·Sjþ3NJ4
129

352

þJ4
X

hi;j;k;li

�
−
39

88
χ̂2ijkl−

21

22
ðχ̂2ijklÞ2þ

8

11
ðχ̂2ijklÞ3

�
; ð5Þ

where χ̂2ijkl¼O△ði;j; lÞO▿ðk;l;jÞþO▿ðk;l;jÞ ·O△ði;j; lÞ
for O△=▿ði; j; kÞ ¼ 2Si · ðSj × SkÞ, and N is the number
of sites.

We nowmean-field decouple ðχ̂2ijklÞn. In the phase we are
looking for, the scalar chirality χ ¼ hO△ði; j; kÞi=2 ¼
hO▿ði; j; kÞi=2 takes a nonzero value on all triangles.
Rewriting O△=▿=2 ¼ χ þ ϵ△=▿, expanding, and keeping
only to order ϵ, we arrive at the Hamiltonian

H¼
�
J1−

107

88
J4

�X
hiji

Si ·SjþJ2
X
⟪ij⟫

Si ·Sj

þ3NJ4
129

352
þ3NJ4

�
39

11
χ2þ63

22
82χ4−

5

11
84χ6

�

þ3J4

�
−39

11
χ−21

11
82χ3þ 3

11
84χ5

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Jχ

X
△;▿

Si ·ðSj×SkÞ: ð6Þ

By adjusting J4 and J2, we are essentially following the
program of localizing the long-range parent Hamiltonian of
Refs. [40–43]; however, we also have self-consistency
conditions. In semiquantitative agreement with the
iDMRG results [Fig. 1(d)], we show that when J2=½J1 −
ð107=88ÞJ4� ¼ 0.05 the point J4 ¼ 0.13 produces a self-
consistent solution with χ ≈ −0.116 and Jχ=½J1 −
ð107=88ÞJ4� ≈ 0.268 [73], whose ground state is known
to be the KL state [45,46]. We note that the mean-field
decoupling happens only on the level of the chiral order
parameter and the ground state of the resulting Hamiltonian
(6) still has to be found by iDMRG.
Further evidence in support of the validity of this

rewriting comes from the similarity of the phase diagram
of Eq. (1) at intermediate J4 in comparison to the phase
diagram of the J1-J2-Jχ Hamiltonian at intermediate Jχ
studied in Refs. [45,46]. In particular, we find the three
most relevant competing phases for J4 ¼ 0.16 are the 120°
order, the CSL, and the tetrahedral order [73], in analogy to
Jχ ∼ 0.2. Additionally, the rewriting in Eq. (5) is reminis-
cent of the analysis in Ref. [92] where the nearest-neighbor
term is rewritten as related to ½Si · ðSj × SkÞ�2. The author
then writes down and analyzes a free-energy expression to
argue that TRS is spontaneously broken when J2 ≠ 0.
Although that is not seen in numerics, future work could
apply a similar analysis to our Eq. (5).
Conclusion.—We have demonstrated that a CSL appears

in the effective spin model for the Hubbard model on the
triangular lattice at half filling in the parameter space near
the physically relevant region. Furthermore, through a
rewriting of Eq. (1), we heuristically argued that the
CSL emerges in this model because the four-spin term
favors spontaneous TRS breaking, after which the mean-
field Hamiltonian resembles known parent Hamiltonians of
the KL state. This result provides some understanding of
the origin of the CSL in the Hubbard model found in
Refs. [35,38]. We additionally have found that the SFS
may only be the ground state in a more restricted part
of the phase diagram than previously thought.
Beyond the triangular lattice, the approach of seeking



self-consistent numerical solutions of a mean-field-
decoupled Hamiltonian could potentially aid in under-
standing the appearance of spin liquids in some other
situations.
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Note added.—A recent preprint [93], using a heuristic
Schwinger boson argument, may provide an alternative
understanding of the origin of the KL state in this model.
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