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Information Flows?
A Critique of Transfer Entropies
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A central task in analyzing complex dynamics is to determine the loci of information storage and
the communication topology of information flows within a system. Over the last decade and a half,
diagnostics for the latter have come to be dominated by the transfer entropy. Via straightforward
examples, we show that it and a derivative quantity, the causation entropy, do not, in fact, quantify
the flow of information. At one and the same time they can overestimate flow or underestimate
influence. We isolate why this is the case and propose several avenues to alternate measures for
information flow. We also address an auxiliary consequence: The proliferation of networks as a
now-common theoretical model for large-scale systems, in concert with the use of transfer-like
entropies, has shoehorned dyadic relationships into our structural interpretation of the organization
and behavior of complex systems. This interpretation thus fails to include the effects of polyadic
dependencies. The net result is that much of the sophisticated organization of complex systems may
go undetected.

Keywords: stochastic process, transfer entropy, causation entropy, partial information decomposi-
tion, network science
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An important task in understanding a complex system
is determining its information dynamics and informa-
tion architecture—what mechanisms generate informa-
tion, where is that information stored, and how is it
transmitted within a system? While this pursuit goes
back perhaps as far as Shannon’s foundational work on
communication [1], in many ways it was Kolmogorov [2–4]
who highlighted the transmission of information from the
micro- to the macroscales as central to the behavior of
complex systems. Later, Lin showed that “information
flow” is key to understanding network controllability [5]
and Shaw speculated that such flows between information
sources and sinks is a necessary descriptive framework
for spatially extended chaotic systems—an alternative to
narratives based on tracking energy flows [6, Sec. 14].

A common thread in these works is quantifying the flow
of information. To facilitate our discussion, let’s first
consider an intuitive definition: Information flow from
process X to process Y is the existence of information
that is currently in Y , the “cause” of which can be solely
attributed to X’s past. If information can be solely at-
tributed in such a manner, we refer to it as localized.
This notion of localized flow mirrors the intuitive general
definitions of “causal” flow proposed by Granger [7] and,
before that, Wiener [8].

Ostensibly to measure information flow—and notably

much later than the above efforts—Schreiber introduced
the transfer entropy [9] as the information shared between
X’s past and the present Yt, conditioning on information
from Y ’s past. Perhaps not surprisingly, given the broad
and pressing need to probe the organization of modern
life’s increasingly complex systems, the transfer entropy’s
use has been substantial—over the last decade and a half,
its introduction alone garnered an average of 100 citations
per year.

The primary goal of the following is to show that the trans-
fer entropy does not, in fact, measure information flow,
specifically in that it attributes an information source to
influences that are not localizable and so not flows. We
draw out the interpretational errors, some quite subtle,
that result—including overestimating flow, underestimat-
ing influence, and more generally misidentifying structure
when modeling complex systems as networks with edges
given by transfer entropies.

Identifying shortcomings in the transfer entropy is not
new. Smirnov [10] pointed out three: Two relate to how
it responds to using undersampled empirical distributions
and are therefore not conceptual issues with the measure.
The third, however, was its inability to differentiate in-
direct influences from direct influences. This weakness
motivated Sun and Bollt to propose the causation en-
tropy [11]. While their measure does allow differentiating
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between direct and indirect effects via the addition of
a third hidden variable, it too ascribes an information
source to unlocalizable influences.
Our exposition reviews the notation and information
theory needed and then considers two rather similar
examples—one involving influences between two processes
and the other, influences among three. They make opera-
tional what we mean by “localized”, “flow”, and “influ-
ence”, leading to the conclusion that the transfer entropy
fails to capture information flow. We close by discussing
a distinctive philosophy underlying our critique and then
turn to possible resolutions and to concerns about model-
ing practice in network science.
Background Following standard notation [12], we denote
random variables with capital letters and their associated
outcomes using lower case. For example, the observation
of a coin flip might be denoted X, while the coin actually
landing Heads or Tails would be x. Emphasizing temporal
processes, we subscript a random variable with a time
index; e.g., the random variable representing a coin flip at
time t is denoted Xt. We denote a temporally contiguous
block of random variables (a time series) using a Python-
slice-like notationXi:j = XiXi+1 . . . Xj−1, where the final
index is exclusive. When Xt is distributed according to
Pr(Xt), we denote this as Xt ∼ Pr(Xt). We assume
familiarity with basic information measures, specifically
the Shannon entropy H [X], mutual information I [X : Y ],
and their conditional forms H [X | Z] and I [X : Y | Z]
[12].
The transfer entropy TX→Y from time series X to time
series Y is the information shared between X’s past and
Y ’s present, given knowledge of Y ’s past [9]:

TX→Y = I [Yt : X0:t | Y0:t] . (1)

Intuitively, this quantifies how much better one predicts Yt

using both X0:t and Y0:t over using Y0:t alone. A nonzero
value of the transfer entropy certainly implies a kind of
influence of X on Y . Our questions are: Is this influence
necessarily via information flow? Is it necessarily direct?
Addressing the last question, the causation entropy
CX→Y |(Y,Z) is similar to the transfer entropy, but condi-
tions on the past of a third (or more) time series [11]:

CX→Y |(Y,Z) = I [Yt : X0:t | Y0:t, Z0:t] . (2)

(It is also known as the conditional transfer entropy.)
The primary improvement over TX→Y is the causation
entropy’s ability to determine if a dependency is indirect
(i.e., mediated by the third process Z) or not. Consider,
for example, the following system X → Z → Y : variable

X influences Z and Z in turn influences Y . Here, any
influence that X has on Y must pass through Z. In this
case, the transfer entropy TX→Y > 0 bit even though
X does not directly influence Y . The causation entropy
CX→Y |(Y,Z) = 0 bit, however, due to conditioning on Z.
Many concerns and pitfalls in applying information mea-
sures comes not in their definition, estimation, or deriva-
tion of associated properties. Rather, many arise in in-
terpreting results. Properly interpreting the meaning of a
measure can be the most subtle and important task we
face when using measures to analyze a system’s structure,
as we will now demonstrate. Furthermore, while these
examples may seem pathological, they were chosen for
their transparency and simplicity; similar failures arise in
Gaussian systems [13] signifying that the issue at hand is
widespread.
Example: Two Time Series Consider two time series,
say X and Y , given by the probability laws:

Xt ∼

{
0 with probability 1/2

1 with probability 1/2
,

Y0 ∼

{
0 with probability 1/2

1 with probability 1/2
, and

Yt = Xt−1 ⊕ Yt−1 ;

that is, Xt and Y0 are independent and take values 0
and 1 with equal probability, and yt is the Exclusive OR
of the prior values xt−1 and yt−1. By a straightforward
calculation we find that TX→Y = 1 bit. Does this mean
that one bit of information is being transferred from X

to Y at each time step? Let’s take a closer look.
We first observe that the amount of information in Yt is
H [Yt] = 1 bit. Therefore, the uncertainty in Yt can be
reduced by at most 1 bit. Furthermore, the information
shared by Yt and the prior behavior of the two time
series is I [Yt : (X0:t, Y0:t)] = 1 bit. And so, the 1 bit of
Yt’s uncertainty in fact can be removed by the prior
observations of both time series.
How much does Y0:t alone help us predict Yt? We quantify
this using mutual information. Since I [Yt : Y0:t] = 0 bit,
the variables are independent: Y0:t alone does not help in
predicting Yt. However, knowing Y0:t, how much doesX0:t
help in predicting Yt? The conditional mutual information
I [Yt : X0:t | Y0:t] = 1 bit—the transfer entropy we just
computed—quantifies this. This situation is graphically
analyzed via the information diagram (I-diagram) [14] in
Fig. 1a.
To obtain a more complete picture of the information
dynamics under consideration, let’s reverse the order in
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Yt

X0:t Y0:t

01

(a) Y0:t alone does not predict
Yt. (The -shaped region

I [Y0:t : Yt] = 0 bit.) However,
when used in conjunction with
X0:t, they completely predict

its value. (The -shaped
region

I [X0:t : Yt | Y0:t] = 1 bit.)

Yt

X0:t Y0:t

0 1

(b) X’s past X0:t alone does
not aid in predicting Yt. (The

-shaped region
I [X0:t : Yt] = 0 bit.) However,
given knowledge of X0:t, then
Y0:t can predict Yt. (The

-shaped region
I [Y0:t : Yt | X0:t] = 1 bit.)

FIG. 1. Two complementary ways to view the information
shared between X0:t, Y0:t, and Yt. In each I-Diagram, a circle
represents a random variable whose area measures the ran-
dom variable’s entropy. Overlapping regions are information
that is shared. The transfer entropy is a conditional mutual
information; a region where two random variables overlap, but
that falls outside the random variable being conditioned on.

which the time series are queried. The mutual information
I [Yt : X0:t] = 0 bit tells us that the X time series alone
does not help predict Yt. However, the conditional mutual
information I [Yt : Y0:t | X0:t] = 1 bit. And so, from this
point of view it is Y ’s past that helps predict Yt, con-
tradicting the preceding analysis. This complementary
situation is presented diagrammatically in Fig. 1b.

How can we rectify the seemingly inconsistent conclusions
drawn by these two lines of reasoning? The answer is
quite straightforward: the 1 bit of information about Yt

does not come from either time series individually, but
rather from both of them simultaneously. (In fact, the
I-Diagrams are naturally consistent, once one recognizes
that the co-information [15], the inner-most information
atom, is I [Yt : X0:t : Y0:t] = −1 bit.)

In short, the 1 bit of reduction in uncertainty H [Yt] should
not be localized to either time series. The transfer en-
tropy, however, erroneously localizes this information to
X0:t. In light of this, the transfer entropy overestimates
information flow.

This example shows that the transfer entropy can be
positive due not to information flow, but rather to nonlo-
calizable influence—in this case, a conditional dependence
between variables. This suggests that, though inappropri-
ate for measuring information flow, the transfer entropy
may be a viable measure of such influence. Our next
example illustrates that this too is incorrect.

Example: Three Time Series Our second example paral-
lels the first. Before, we considered the case where one of
two time series is determined by the past of both, we now
consider the case where two time series determine a third,
again via an Exclusive OR operation. Their probability
laws are:

Xt ∼

{
0 with probability 1/2

1 with probability 1/2
,

Yt ∼

{
0 with probability 1/2

1 with probability 1/2
, and

Zt = Xt−1 ⊕ Yt−1 ,

in which z0’s value is irrelevant. Unlike the prior ex-
ample, the transfer entropy from either X or Y to Z

is zero: TX→Z = TY→Z = 0 bit, and it therefore un-
derestimates influence that is present. Furthermore,
the relevant pairwise mutual informations all vanish:
I [Zt : X0:t] = I [Zt : Y0:t] = I [Zt : Z0:t] = 0 bit. The time
series are pairwise independent.
Given that we are probing the influences between three
time series, it is natural now to consider the behav-
ior of the causation entropy. In this case, we have
CX→Z|(Y,Z) = CY→Z|(X,Z) = 1 bit, indicating that given
the past behavior of Z and X (or Y ), the past of Y (or
X) can be used to predict the behavior of Zt. Like before,
this 1 bit of information cannot be localized to either X
or Y and so it is inaccurate to ascribe the 1 bit of infor-
mation in Zt to either X or Y alone. In this way, the
causation entropy also erroneously localizes the 1 bit of
joint influence. While the causation entropy succeeds here
as a measure of nonlocalizable influence, as a measure
of information flow, it overestimates. (This is known to
Sun and Bollt, but here we stress that the failure is a
general issue with interpreting its value, not merely a lim-
itation regarding network inference.) These information
quantities are displayed in the I-Diagram in Fig. 2.
Discussion We see that transfer-like entropies can both
overestimate information flow (first example) and un-
derestimate influence (second example). The primary
misunderstanding of these quantities stems from a mis-
characterization of the conditional mutual information.
Most basically, probabilistic conditioning is not a “sub-
tractive” operation: I [X : Y | Z] is not the information
shared by X and Y once the influences of Z have been
removed. Rather, it is the information shared by X and Y
taking into account Z. This is not a game of mere seman-
tics: Conditioning can increase the information shared
between two processes: I [X : Y ] < I [X : Y | Z]. This
cannot happen if conditioning merely removed influence:
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FIG. 2. Information diagram depicting both transfer entropies
and causation entropies for three times series X, Y , and Z.
TX→Z = 0 bit corresponds to the two regions shaded with
south-east sloping lines and TY→Z = 0 bit, the two regions
shaded with north-east sloping lines. CX→Z|(Y,Z) = 1 bit is the
region containing only south-east sloping lines and, similarly,
CY→Z|(X,Z) = 1 bit is the region containing only north-east
sloping lines.

conditional dependence includes additional dependence
that occurs in the presence of a third variable [16]. Mea-
suring information flow—as we have defined it—requires
a method of localizing information. Since simple con-
ditioning can fail to localize information, the transfer
entropy, causation entropy, and other measures utilizing
the conditional mutual information can fail as measures
of information flow.
Another way to understand conditional dependence
is through the partial information decomposition [17].
Within this framework, the mutual information between
two random variables X1 and X2 (call them inputs) and a
third random variable Y (the output) is decomposed into
four mutually exclusive components: I [(X1, X2) : Y ] =
R + U1 + U2 + S. R quantifies how the inputs X1 and
X2 redundantly inform the output Y , U1 and U2 quantify
how each provides unique information to Y , and finally S
quantifies how the inputs together synergistically inform
the output. In this decomposition, the mutual informa-
tion between one input and the output is equal to what
uniquely comes from that input plus what is redundantly
provided by both inputs; I [X1 : Y ] = R+U1, for example.
However, the mutual information between that input and
the output conditioned on the other input is equal to what
uniquely comes from that one input, plus what is synergis-
tically provided by both inputs: I [X1 : Y | X2] = U1 + S.
In other words, conditioning removes the redundant in-
formation, but adds the synergistic information. Here,
conditional dependencies manifest themselves as synergy.
Treating X0:t and Y0:t as inputs and Yt as output, the
partial information decomposition identifies the transfer

entropy TX→Y as the sum of the unique information
from X0:t plus the synergistic information from both
X0:t and Y0:t together. It seems natural, and has been
previously proposed [13, 18], to associate only this unique
information with information flow. The transfer entropy,
however, conflates unique information and synergistic
information leading to inconsistencies, such as analyzed in
the examples. Similar conclusions follow for the causation
entropy; however, due to the additional variable, the
analysis is more involved.
Though there is as yet no broadly accepted quantification
of unique information [19], if one were able to accurately
measure it, it may prove to be a viable measure of informa-
tion flow. It is notable that Stramaglia et al., building on
Ref. [20], considered how total synergy and redundancy
of a collection of variables influence each other [21].
Other quantifications of information flow between time
series have been proposed. The directed information [22]
is essentially a sum of transfer entropies and so inherits
the same flaws. Furthermore, both the transfer entropy
and directed information have been shown to be general-
izations of Granger causality [7, 23–25], itself purportedly
a measure of “predictive causality” [26]. Ay and Polani
proposed a measure of information flow based on ac-
tive intervention in which an outside agent modifies the
system in question by removing components [27]. We
conjecture that all these measures suffer for the same
reasons—conflation of dyadic and polyadic relationships.
Conclusions and Consequences Although the examples
were intentionally straightforward, the consequences ap-
pear far-reaching. Let’s consider network science [28]
which, over the same decade and a half period since the
introduction of the transfer entropy, has developed into a
vast and vibrant field, with significant successes in many
application areas. Standard (graph-based) networks are
composed of nodes, representing system observables, and
edges, representing relationships between them. As com-
monly practiced, such networks represent dyadic (binary)
relationships between nodes [29]—article co-authorship,
power transmission between substations, and the like. It
would seem, then, that much of the popularity of us-
ing the transfer entropy to analyze large-scale complex
systems is that it is an information measure specifically
adapted to quantifying dyadic relationships. Such a tool
goes hand-in-hand with standard network modeling.
As the examples emphasized, though, observables may be
related by polyadic relationships that cannot be naturally
represented on a standard network as commonly practiced.
For example, all three variables in our second example are
pairwise independent. A standard network representing
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dependence between them therefore consists of three dis-
connected nodes, thus failing to capture the dependence
between variables that is, in fact, present. As a start
to repair this deficit, it would be more appropriate to
represent such a complex system as a hypergraph [30, 31].

Continuing this line of thought, if one believes that a stan-
dard network is an accurate model of a complex system,
then one implicitly assumes that polyadic relationships
are either not important or do not exist. Said this way,
it is clear that when modeling a complex system, one
must test for this lack of polyadic relationship first. With
this assumption generally unspoken, though, it is not
surprising that a nonzero value of the transfer entropy
leads analysts to interpret it as information flow. Within
that narrow view, indeed, how else could one time series
influence another if all interactions are dyadic? Restated,
when a system is modeled as a standard network, all
relationships are assumed to be dyadic. One is therefore
naturally inclined to explain all observed dependencies
as being dyadic. The cost, of course, is either a greatly
impoverished or a spuriously embellished view of organi-
zation in the world. As such, modeling a complex system
by way of a graph with edges determined by transfer or
causation entropies is intrinsically flawed.

Many of the preceding issues are difficult to analyze since
at present notions of “influence” are not sufficiently pre-
cise and, even when they are as with the use of informa-
tion diagrams and measures and the partial information
decomposition, there is a combinatorial explosion in pos-
sible types of dependence relationships. Said differently,
what one needs is a more explicit, even more elemen-
tary, structural view of how one process can be trans-
formed to another. Paralleling the canonical ε-machine
minimal sufficient statistic representation of stationary
processes, two of us (NB and JPC) recently introduced
a minimal optimal transformation of one process into
another, the ε-transducer [32]. This provides a structural
representation for the minimal optimal predictor of one
process about another. The corresponding transducer
analysis, paralleling that above in Figs. 1 and 2, identifies
new informational atoms beyond those of the transfer
entropies [33].

In short, the transfer entropy can both overestimate infor-
mation flow (first example) and underestimate influence
(second example). These effects are compounded when
viewing complex systems as standard networks since the
latter further misconstrue polyadic relationships. While
we do not object to the transfer entropy as a measure of
the reduction in uncertainty about one time series given
another, we do find its mechanistic interpretation as in-

formation flow or transfer to be incorrect. In fact, this
is true for any related measures—such as the causation
entropy—that are based on conditional mutual informa-
tion between observed variables. In light of these interpre-
tational concerns, it seems that several recent works that
rely heavily on transfer-like entropies—ranging from cellu-
lar automata [34] and information thermodynamics [35] to
cell regulatory networks [36] and consciousness [37]—will
benefit from a close reexamination.
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