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Abstract

Faces are among the most important visual stimuli that humans perceive in everyday life. While 

extensive literature has examined emotional processing and social evaluations of faces, most 

studies have examined either topic using unimodal approaches. In this review, we promote the 

use of multimodal cognitive neuroscience approaches to study these processes, using two lines 

of research as examples: ambiguity in facial expressions of emotion and social trait judgment 

of faces. In the first set of studies, we identified an event-related potential that signals emotion 

ambiguity using electroencephalography and we found convergent neural responses to emotion 

ambiguity using functional neuroimaging and single-neuron recordings. In the second set of 

studies, we discuss how different neuroimaging and personality-dimensional approaches together 

provide new insights into social trait judgments of faces. In both sets of studies, we provide an 

in-depth comparison between neurotypicals and people with autism spectrum disorder. We offer 

a computational account for the behavioral and neural markers of the different facial processing 

between the two groups. Finally, we suggest new practices for studying the emotional processing 

and social evaluations of faces. All data discussed in the case studies of this review are publicly 

available.
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INTRODUCTION

The human face is a critical channel for social communication and social interaction. This 

point has been well accepted in popular culture: numerous movies and TV shows such 

as Inside Out and Lie to Me, and the widely used emojis, all assume that emotions are 

expressed in and perceived from specific facial configurations; caricaturists create their 

art by exaggerating the link between certain social traits and the appearance of faces. 

Psychologists and cognitive neuroscientists have investigated the neurocognitive basis of the 

perception of others’ momentary emotions and stable social traits from faces for several 

decades (for reviews, see Refs. 1–3). The ability to accurately perceive and interpret 

affective and social information from faces is vital for effective communication and even 

survival. Many of these judgments are made automatically and rapidly.3–6 They inform a 

range of real-world decisions, such as dating and hiring,7 approachability,8 elections,9–12 

and sentencing decisions13,14 (see Ref. 15 for a review). However, inferences of affective 

states and social traits from faces alone are often inaccurate and susceptible to biases in 

society.16 For example, juries’ decisions are influenced by their perception of the facial 

expression of guilt/remorse from defendants’ faces.17 Social traits judgments, such as 

competence and moral character, are biased by the perceived social identity of the faces 

and the stereotypes associated with it.18 Thus, the emotional and social information from 

faces plays an important role in shaping social interactions and social decisions.

It is worth noting that although facial emotional expressions are momentary and state-

dependent while social traits are long-term and stable, they are not entirely separate. Instead, 

they are intricately linked in the way humans perceive and interact with each other. Our 

perception of social traits can be influenced by the emotional expressions we observe 

on people’s faces.19 For instance, individuals with facial structures that resemble happy 

expression may be perceived as more trustworthy or sociable. Furthermore, the neural and 

cognitive processes involved in decoding facial emotional expressions and inferring social 

traits may overlap or interact.20 For instance, people perceive a greater degree of anger from 

less trustworthy-looking faces. Investigating how the judgments of emotions and social traits 

interact and potentially influence each other can provide insights into shared behavioral 

and neural mechanisms and help us better understand the broader picture of human social 

perception and cognition.

Primates have evolved a specialized visual system to process faces.21–24 The amygdala 

is an essential component of this network, playing a critical role in the processing of 

faces.25 For a long time, the human amygdala has been linked to the recognition of facial 

emotions.25–28 Studies have shown that individuals without a functional amygdala may have 

difficulty recognizing fearful faces.29–31 Functional magnetic resonance imaging (fMRI) 

has demonstrated that the amygdala is most active in response to fearful faces.32–34 While 
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most research has focused on fearful faces,27 the amygdala has also been found to respond 

to neutral or happy faces in both fMRI35 and single-neuron recordings.36–39 However, 

some studies suggest that the amygdala still shows a greater response to facial expressions 

related to threat, such as fear and anger, than neutral or happy faces.40 Researchers 

have used single-neuron recordings from the human amygdala to demonstrate that these 

neurons encode subjective judgments of facial emotions41 and the content of emotions.42 

Furthermore, amygdala neurons encode social trait judgments and a comprehensive social 

trait space that establishes the basis of first impressions from faces.43,44 In addition, 

amygdala neurons encode important facial features such as the mouth and eyes that may 

have a significant role in facial emotion and social trait judgment.45

Individuals with autism spectrum disorder (ASD) experience extensive challenges in social 

functioning, especially in recognizing emotions.46,47 While some studies have identified 

deficits in recognizing emotions from facial expressions in individuals with ASD,48–51 

others have not observed such deficits52–54 (see Ref. 55 for a review). Impaired emotion 

recognition may arise from atypical fixation onto faces, which has been reported in many 

studies,54,56–58 but again the literature is mixed.59 Additionally, individuals with ASD make 

social trait judgments from faces differently compared with neurotypicals.52,60 Notably, 

the differences in both emotion perception and social trait judgment between ASD and 

neurotypicals have been linked to the two groups’ differences in amygdala function.46

In this review, we demonstrate how multimodal approaches, including human single-neuron 

recordings, electroencephalogram (EEG), fMRI, and computational modeling, together 

advance a richer understanding of perception of social affective information from faces, in 

both neurotypicals and individuals with ASD. We first discuss a relatively underexplored 

facet of neural encoding of emotion, emotion ambiguity, and subsequently provide a 

comprehensive analysis of social trait judgments from faces. Finally, we discuss future 

directions and new perspectives to investigate facial emotions and social trait judgments 

from faces. We acknowledge that emotion and social trait are just two, among many other, 

types of information people perceive from others’ faces. Other types of information, such 

as identity61,62 and attractiveness,63–66 are also critical for our understanding of person 

perception, but are beyond the scope of the present review.

EMOTION AMBIGUITY

When making perceptual decisions, we encounter situations where the mapping of a 

stimulus category to a choice is uncertain. Facial expressions of emotions are a stimulus 

category in which we frequently encounter pronounced ambiguity, as different emotions 

can be difficult to distinguish from one another.67 It is important to note that the term 

“ambiguity” in decision-making studies usually refers to an absence of information about a 

stimulus beyond categorical uncertainty, while in the perceptual domain, it refers exclusively 

to categorical uncertainty, where all information about the stimulus is available and the 

task is deterministic. In this review, we define facial emotion ambiguity as the degree of 

uncertainty that arises when making a categorical decision between two emotional facial 

expressions that are close to the perceptual boundary.
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In this section, we first describe a physiological signature that indexes emotion ambiguity 

using EEG.68,69 EEG source location indicates that this signature originates in the cingulate 

cortices, with corroborating BOLD-fMRI activation in the same areas.69 These cingulate 

cortices are functionally connected to the amygdala,70 and functional MRI also demonstrates 

amygdala activation.42 Notably, single-neuron activation in the amygdala to the same 

stimuli aligns with these neuroimaging results.42 Furthermore, the amygdala’s involvement 

in social dysfunctions in ASD is evident,25,71 and indeed atypical emotion judgment has 

been observed in individuals with ASD.59 Finally, we present a computational account that 

elucidates ASD behaviors using single-neuron data from the human amygdala.72

EEG reveals a physiological signature that encodes facial emotion ambiguity

A significant amount of research has been conducted on the neural mechanisms that encode 

ambiguous information related to perception and emotion. A specific area of interest is 

the late positive potential (LPP), which occurs around 400 ms after stimulus onset and is 

primarily associated with evaluating ambiguous information. The LPP has been found to be 

sensitive to various types of ambiguity, including ambiguous facial expressions,73 racially 

ambiguous faces,74 and stimulus uncertainty.75 The LPP plays a critical role in perceptual 

decision-making by accumulating sensory information and determining choices.76–78 It 

indexes perceptual decision-making processes that involve gradually accumulating evidence 

until a specific threshold is reached.79 Given the LPP’s role in coding faces, emotion, 

uncertainty, and combinations of these attributes, Sun et al. proposed that the LPP may serve 

as a physiological signature encoding facial emotion ambiguity and they systematically 

investigated how the LPP responds to ambiguous emotional faces, the specific attribute it 

encodes, and how accumulating sensory information can be dissociated from determining 

choices, shedding light on how the LPP encodes perceptual ambiguity.69

Specifically, Sun et al. utilized EEG and fMRI with three types of ambiguous stimuli to 

examine the neural representation of perceptual decisions under ambiguity (Figure 1A,B).69 

The LPP was first shown to differentiate levels of ambiguity (Figure 1C), and notably, 

the LPP was shown to be specifically associated with behavioral judgments about choices 

that were ambiguous (Figure 1D). Through mediation analyses and a series of control 

experiments, the LPP has been shown to be generated (1) only when decisions are made (not 

during mere perception of ambiguous stimuli) (Figure 1E), (2) only when decisions involve 

choices on a dimension that is ambiguous (Figure 1F), and (3) more strongly in the presence 

of ambiguous stimuli compared to when only unambiguous stimuli are present (Figure 1G).

Earlier notions that the LPP might be specialized in processing affective pictures80–82 

have been supplemented by accounts that the LPP is not specific to fear-happy emotion 

ambiguity, but also encodes emotion ambiguity along the anger-disgust dimension (Figure 

1H) as well as morphed animals (Figure 1I).68 Therefore, it is a general neural signature 

for perceptual ambiguity, not specific to facial expressions of emotions or even faces. 

Furthermore, using task instructions with different levels of ambiguity, it has been shown 

that the LPP is modulated by task instructions and has the maximal response when the 

dimension of stimulus ambiguity is task-relevant.68 The LPP is specifically associated with 

response latency and confidence rating, and it can be explained by direct behavioral ratings 
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of task ambiguity and difficulty but not eye movement patterns.68 It is worth noting that in 

the field of perceptual and cognitive neuroscience, different terms have been used to describe 

this event-related potential (ERP) component (e.g., P300, centro-parietal positive potential, 

and late positive deflection). The manipulation of attentional locus and stimulus-reward 

association drives this ERP component,83–86 consistent with its role in coding stimulus 

ambiguity and task uncertainty.

Research employing source modeling, a technique used to estimate the location and activity 

of brain sources contributing to EEG-recorded electrical signals, has identified the anterior 

cingulate cortex (ACC), posterior cingulate cortex (PCC), and insula as the origins of 

the LPP.87–89 This has been confirmed by fMRI and fMRI-guided ERP source prediction 

(Figure 1J,K).69 The dorsal ACC (dACC) is thought to be involved in the detection 

of performance errors and the monitoring of conflict.90–94 Meanwhile, the ventral ACC 

(vACC) is associated with fear extinction95 and emotion regulation.96 In particular, studies 

using ambiguous face stimuli have shown that the negativity bias, which is the tendency to 

interpret ambiguous stimuli as negative, is positively correlated with vACC activity when 

ambiguous faces are perceived as sad.97 The ACC has functional segregations (see Refs. 

92 and 96 for details), but most of its functions involve processing ambiguity in some 

form, which requires conflict resolution, ongoing action monitoring, dynamic adjustments 

in cognitive control, and inversely correlates with confidence in judgment. Studies have 

shown that both dACC and vACC are activated during ambiguous decision-making.98 

Ambiguous emotional faces relative to unambiguous emotional faces activate the dACC, 

whereas ambiguous affective decisions relative to ambiguous gender decisions activate the 

vACC.99 Together, the functional localization in the ACC corroborates the role of the LPP in 

encoding facial emotion ambiguity.

Neuroimaging and human single-neuron recordings reveal encoding of emotion ambiguity 
in the human amygdala

The amygdala is particularly important in detecting ambiguous stimuli and modulating 

vigilance and attention accordingly.100–102 Research has shown that the amygdala is 

capable of differentiating between stimuli with varying degrees of perceptual ambiguity. 

Notably, highly trustworthy and untrustworthy faces elicit the strongest response from 

the amygdala, while the response is weaker for faces that are perceived as intermediate 

(i.e., ambiguous) in terms of trustworthiness.103–105 This phenomenon has been observed 

even when the faces are unconsciously perceived.103 Additionally, the amygdala shows the 

strongest response to the anchor faces for both faces varying in valence and faces varying 

in nonvalence dimensions.106 Furthermore, emotional stimuli, regardless of valence, lead to 

greater amygdala activity compared to neutral stimuli.107 These findings suggest that the 

amygdala plays a crucial role in processing the categorical ambiguity of the dimensions 

represented in faces.

Using a unique combination of human single-neuron recordings from the amygdala and 

functional neuroimaging, it has been shown that the human amygdala encodes facial 

emotion ambiguity, in addition to emotion degree (Figure 2).42 Specifically, fMRI shows 

that the left amygdala is activated by emotion degree and that the right amygdala is activated 
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by levels of emotion ambiguity (Figure 2A). Single-neuron recordings show that there are 

two separate populations of neurons, one whose response correlates with the gradual change 

of fearfulness or happiness of a face and a second whose response primarily correlates with 

a decreasing level of categorical ambiguity of the emotion (Figure 2B,C). Together, this 

study has shown convergent evidence from human single-neuron recordings and fMRI that 

the amygdala encodes facial emotion ambiguity.

Computational approaches and clinical populations reveal behavioral and neural markers 
of facial emotion processing

Several studies find reliable, but weak, differences in the ability to recognize emotions 

from facial expressions between neurotypicals and individuals with ASD,48–51 although 

others do not.52–54 The discrepancies in these findings may be due to the heterogeneity 

of ASD participants, differences in the stimuli and tasks used in the various studies, 

ceiling effects, and the compensatory strategies used by individuals with ASD. However, 

it has been suggested that as long as the measures used are sensitive enough, behaviorally 

or biologically based measures can usually detect group differences in facial emotion 

recognition.55 To enhance sensitivity and avoid ceiling effects, two main methodological 

approaches have been proposed: modifying task demands, such as by using difficult or 

unfamiliar tasks, and manipulating stimuli, such as using face morphing.49,51 Along this line 

of reasoning, one study used a two-alternative forced-choice task with a gradient of morphed 

faces along the fear-happy dimension to investigate the sensitivity and specificity with which 

people are able to distinguish ambiguous emotions in facial expressions (the same task and 

stimuli as in Figures 1A,B and 2). It has been shown that people with ASD demonstrate 

reduced specificity to emotions (Figure 3A,C), although their eye movement patterns are 

remarkably similar compared to neurotypicals and they have normal thresholds to report 

fear (Figure 3A,B). In addition, in this task, people with ASD demonstrate reduced pupil 

oscillation when judging faces with ambiguous facial expressions (Figure 3D,E).108

Inferences about differences in facial emotion judgments between neurotypical and autistic 

adults typically rely on high-level categorical descriptors of stimuli (e.g., happy vs. sad, or 

levels of happiness, etc.), neglecting image-by-image variations (Figure 4A) and neural 

sensory representations of each stimulus being tested. To address this issue, one can 

leverage computational models that characterize specific features within an image. These 

models have been developed through recent advances in computer vision and computational 

neuroscience.109–111 In a recent study,72 Kar utilized a data-driven approach to discover 

trial-by-trial (i.e., image-by-image) behavioral differences between neurotypical and autistic 

individuals. The author then utilized computational models trained to represent primate 

vision to investigate the underlying neural mechanisms that could drive the two human 

groups’ behavioral differences. The results revealed that artificial neural networks (ANNs) 

that have been developed to achieve various primate vision-related objectives109–111 could 

be fine-tuned to make facial emotion judgments like humans (Figure 4B,C). Interestingly, 

the ANN’s image-level behavioral patterns better matched neurotypical participants’ 

behavior than autistic individuals’ behavior (Figure 4D). This behavioral mismatch was 

most remarkable when the ANN was constructed from units that correspond to the primate 

inferior temporal (IT) cortex (Figure 4E). Further analyses revealed that the behavioral 
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variance explained by human amygdala responses could be significantly explained by ANN-

IT responses. The study also revealed that additional noise in sensory representations is a 

likely mechanism implicated in the different facial emotion processing in individuals with 

ASD than neurotypicals (Figure 4F).

SOCIAL TRAIT JUDGMENT

People not only infer others’ moment-to-moment emotions based on faces, but also 

others’ relatively stable social traits, such as whether someone is extroverted, trustworthy, 

or competent.112–114 Despite the ongoing debate regarding the validity of these trait 

impressions, they can impact crucial decisions in real-life situations, such as voting 

or legal sentencing.15 Various dimensional theories have been proposed to summarize 

people’s social trait judgments of faces, such as the valence-dominance model,115 the 

approachability-capability model,116 the approachability-dominance-youthful/attractiveness 

model,117 and the warmth-competence-femininity-youth model.118 While some argue 

that the dimensions across these theories are similar (e.g., the valence dimension is 

similar to warmth, the competence dimension is similar to dominance), a recent work 

using quantitative methods demonstrates that these dimensions capture distinct aspects 

of social perception from faces.118 Based on the findings from this most comprehensive 

analysis of social trait judgments of faces to date,118 we have conducted a series of 

studies to understand the neural correlates of social trait judgment, its relationship with 

personality factors, and how people with ASD perceive social traits from faces compared to 

neurotypicals.

Specifically, in this section, we first describe the neural correlates of social trait judgment 

derived from neuroimaging and human single-neuron recordings. The amygdala plays 

a pivotal role in social trait judgment, as evidenced by both BOLD-fMRI8,119 and 

single-neuron43,120 activations. Remarkably, human amygdala neurons (along with adjacent 

hippocampal neurons) encode a comprehensive social trait space.43 We then demonstrate 

that, besides individual differences in the brain, individual differences in personality traits 

can also explain how different people judge social traits from faces differently.44 Finally, 

a comprehensive analysis of individuals with ASD reveals systematic differences in social 

trait judgment compared to neurotypicals.121 Notably, these differences can be linked to 

amygdala activation and individual differences in personality.

fMRI and human single-neuron recordings reveal neural correlates of social trait judgment 
of faces

The functionality of face processing is supported by a dedicated neural system in 

primates.21,24 Most of the existing studies focus on the recognition of faces and emotional 

expressions, but it remains unclear how the brain evaluates faces in general. Data-driven 

computational approaches have been used to study low-level facial features62,122 and 

neural coding of faces,123 but the neural correlates of higher-level social trait judgment 

remains relatively underexplored. A meta-analysis of 29 neuroimaging studies for the 

social evaluation of faces has revealed that across negative face evaluations, the most 

consistent activations are in the bilateral amygdala; whereas across positive face evaluations, 
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the most consistent activations are in the medial prefrontal cortex (mPFC), pregenual 

anterior cingulate cortex (pgACC), medial orbitofrontal cortex (mOFC), left caudate, and 

nucleus accumbens (NAcc).124 Our own findings have further revealed context-dependent 

modulation of some of these brain areas during judgment of facial trustworthiness 

and dominance.8,120 In particular, the human amygdala plays a critical role in social 

perception28,125 and encodes various social trait judgments of faces, which has been 

supported by lesion studies,126 fMRI studies,8,105,119 and neurophysiology studies.120 It is 

worth noting that these prior functional studies primarily focused on facial trustworthiness; 

however, humans use hundreds of different trait words to describe spontaneous trait 

judgments of faces115,117,118 and automatically evaluate faces on multiple trait dimensions 

simultaneously. Therefore, a more comprehensive analysis is needed.

Our recent study has addressed this need, using a comprehensive face space (i.e., measuring 

trait judgments representative of the warmth-competence-femininity-youth model) (Figure 

5A) and single-neuron recordings in the human amygdala and hippocampus.43 Human 

single-neuron recordings provide unprecedented opportunities to investigate social trait 

judgment with the highest spatial and temporal resolution to date. We recorded from 490 

neurons in the human amygdala and hippocampus, and we have shown that the correlation 

patterns of these neurons’ activities are associated with the correlation patterns of human 

participants’ judgments of faces on the representative set of social traits (Figure 5B,C). 

We have further shown that the activity of single neurons also correlates with judgments 

for individual social traits (Figure 5D). Encoding and decoding models reveal the most 

strongly neural-correlated social traits (Figure 5E,F). We also recorded from another 938 

neurons and replicated our findings using a different set of social traits. Together, our 

results suggest that there exists a neuronal population code for a comprehensive social trait 

space (i.e., representing the warmth-competence-femininity-youth dimensions) in the human 

amygdala and hippocampus that underlies spontaneous first impressions. Furthermore, we 

have shown that encoding of facial features (e.g., eyes and mouth) may have a functional 

role in encoding social trait judgment (Figure 5G).45

Personality-dimensional approach reveals individual differences in social trait judgment of 
faces

Idiosyncrasies in social trait judgments are well documented in prior research.127–129 

However, what individual differences (in perceivers’ characteristics) are linked to these 

idiosyncrasies has only been examined for a small number of social traits (e.g., 

trustworthiness)130,131 and for a limited range of individual difference factors.47,132,133 

In addition, some of these individual differences may meet the criteria of clinical 

diagnosis (e.g., ASD), but they also exist as a broader, subclinical spectrum in the 

neurotypical population (e.g., the Empathy Quotient and the Autism Spectrum Quotient 

[AQ] scores). Conducting a more comprehensive investigation of what individual differences 

are linked to idiosyncrasies in social trait judgments of faces, and more importantly, 

what neurobiological mechanisms underlie such associations, is critical not only for basic 

research but also for developing effective interventions to ameliorate the social-affective 

deficits in neuropsychiatric patients.134 For example, people who score high on extroversion 

may perceive others as more approachable and outgoing, while people who score high on 
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neuroticism may perceive others as more anxious or distressed. People who score high on 

agreeableness may perceive others as more trustworthy and cooperative, while people who 

score high on conscientiousness may perceive others as more responsible and organized. It 

has been shown that the variability in the correlation structure between perceiver’s social 

trait judgments of faces across 42 world regions can be explained by the variability in the 

actual personality structure of the people living in those regions135 (see also Refs. 136 and 

137).

Past research on individual differences typically relies on a handful of established 

personality questionnaires. However, any single individual difference measure is inevitably 

limited in its ability to capture the comprehensive range and dimensions of the construct 

of interest. In recent years, a new analytic tool, the transdiagnostic approach, has been 

developed and applied in personality science in order to address this limitation.138,139 

Essentially, this approach capitalizes on the power of statistically integrating multiple 

semantically related questionnaires to maximize the capacity to capture individual 

differences. Instead of using the score of each single questionnaire, this approach starts 

with an exploratory factor analysis of the items of multiple questionnaires and uses the 

factor scores as a more comprehensive representation of individual difference profiles.

Using this approach, our study has revealed a connection between personality factors and 

social trait judgment of faces.44 Specifically, we conducted an exploratory factor analysis 

on the 33 subscales from 10 established personality questionnaires related to autistic traits, 

affect and social deficits, prosociality, and empathy. We identified a 4-factor latent structure 

that best characterized the variance in personality data (as shown in Figure 6A).44 The four 

orthogonal personality dimensions were interpreted as autistic trait and social avoidance, 

empathy and prosociality, antisociality, and social agreeableness (Figure 6A). Critically, the 

individual differences in these personality factors’ scores were significantly correlated with 

the individual differences in social trait judgments of faces (as depicted in Figure 6B).44 

Furthermore, this transdiagnostic approach indicates that the four personality dimensions 

(factors) show qualitatively similar association patterns with social trait judgments from 

faces in both people who self-identify as ASD and those who do not. However, a closer 

examination of the individual difference patterns reveals important quantitative differences 

between the two groups (see below). Together, these findings provide novel insights 

regarding the psychological mechanisms underlying the individual differences in social trait 

judgments of faces.

Computational approaches and clinical populations reveal behavioral, neural, and 
psychological markers of social trait judgments of faces

Processing faces is difficult for individuals with ASD. Yet, it remains unclear whether 

individuals with ASD make high-level social trait judgments from faces in similar ways 

as neurotypicals. Prior work has focused on a restricted set of social trait judgments of 

artificial faces. In particular, findings from prior research are discrepant. Studies using 

computer-generated faces generally find that individuals with ASD make similar trait 

judgments of faces as neurotypicals.60,140,141 For instance, one study investigated seven 

social trait judgments (attractiveness, competence, dominance, extraversion, likeability, 
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threat, and trustworthiness) using computer-generated faces and found no group difference 

between ASD and neurotypicals in any of these trait judgments.141 In contrast, studies using 

photographs of real people have revealed different social trait judgments by individuals 

with ASD.52,60 For instance, one study investigated judgments of trustworthiness and 

approachability using black-and-white photos of real faces in natural poses and found 

that individuals with ASD gave more positive ratings to these faces on both traits than 

neurotypicals.52 Yet, prior studies are limited in their conclusions by the narrow range of 

social traits that they investigated, and also by the often narrow diversity of the face stimuli, 

leaving their relevance to real-world social behavior unclear.

Our recent study has addressed this prior limitation with a comprehensive investigation 

of the judgments made of naturalistic faces on a representative set of social traits by 

individuals with ASD.121 There are several major findings. First, the correlational structure 

across trait judgments is similar between individuals with ASD and neurotypicals (Figure 

7A). However, within each social trait, individuals with ASD show different rating patterns 

(Figure 7B) and reduced specificity (Figure 7C). Second, we used deep neural networks to 

show that these group differences are driven by discrepant judgments for different types of 

faces (e.g., younger male faces for the judgments of the trait competent) and differential 

utilization of features within a face (e.g., individuals with ASD pay less attention to the eyes 

when judging the trait strong) (Figure 7D,E). Third, we showed the specificity of our results 

for the diagnosis of ASD using additional comprehensive personality measurements. We 

validated our results with both a well-characterized sample of in-lab participants and another 

large sample of online participants using a different set of face stimuli (a preregistered 

study).

We further investigated the neural correlates of these group differences. Although much of 

the literature has investigated the impaired face processing in ASD,142–145 few studies have 

shown the neural mechanisms underlying this impairment. To address this open question, we 

recently conducted two correlational studies,43,44 focusing on the amygdala, which has long 

been hypothesized to underlie deficits in face processing in ASD.146,147 We explored the 

association between social trait judgment from participants and the neural responses of the 

amygdala and hippocampus acquired from an independent group of neurosurgical patients 

without ASD, and whether this association is diminished in participants with ASD compared 

to neurotypicals.

First, we found that although the similarity structure of social trait judgments across faces 

by participants with ASD (Figure 7F) is similar to that of neurotypicals, the former is less 

correlated with the similarity structure of neural responses across faces by the neurosurgical 

patients than the latter (Figure 7G,H).43 Second, in individuals with ASD, analysis of 

the judgments on each individual social trait has revealed a reduced correlation between 

judgments (trustworthy and warm) and neural responses.44 Therefore, although we did not 

directly acquire neural responses from participants with ASD, we found that the judgments 

from participants with ASD are less explanatory of the neuronal responses in the amygdala 

and hippocampus. These findings suggest that the representation of social trait judgments in 

the amygdala and hippocampus may account for different social trait judgments of faces in 

ASD compared to neurotypicals.
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Finally, we explored the underlying psychological mechanisms of social-affective difficulties 

in individuals with ASD. Prior research has put forward several theories. One of these 

is alexithymia, which refers to difficulty in recognizing and describing one’s and others’ 

emotional states,148–150 and which has been suggested as a possible explanation for the 

observed difficulties in social interactions and emotional reciprocity in individuals with 

ASD.151–154 Another proposed mechanism is deficits in empathy, which is the ability to 

experience others’ feelings and show concern for their suffering.155–158 This has been 

suggested as a possible explanation for the central impairments in social interactions in 

ASD, including difficulties with emotional engagement.159

In our recent study,44 we explored a novel psychological account of social-affective 

difficulties in individuals with ASD, namely, the difficulty in social trait judgments. To this 

end, we used the transdiagnostic approach to individual differences (see above) and showed 

that individuals with ASD exhibit a weaker association between prosocial personality 

dimensions and social trait judgments of trustworthiness and warmth from faces compared 

to neurotypicals (Figure 7J). These results suggest that personality factors can explain some 

of the different social trait judgments and downstream behavioral difficulties in individuals 

with ASD.

CONCLUSIONS AND FUTURE DIRECTIONS

In this review, we have shown how multimodal approaches provide a richer understanding 

of emotional face processing and social trait judgment of faces, informing the psychological 

and neural underpinnings of face processing with different spatial and temporal resolutions. 

Specifically, we have demonstrated the benefits of using EEG, fMRI, single-neuron 

recordings, computational modeling, and a personality-dimensional approach to study 

emotion ambiguity and social trait judgment from faces. In particular, for each aspect of 

face processing, we have observed behavioral differences in individuals with ASD compared 

to neurotypicals. All data described in this review are publicly available (see Ref. 160 for 

emotion ambiguity and Refs. 44 and 161 for social trait judgment from faces). Below, 

we discuss some limitations in the existing research paradigm and advocate a few new 

perspectives to advance a generalizable understanding of emotional face processing and 

social trait judgment of faces.

Limitations of the existing paradigm for studying emotions and social traits judgments 
from faces

The empirical research reviewed so far by and large assumes that one’s affective states and 

social traits can be inferred or decoded by a social interactant for communicative purpose 

or by a scientist for research purpose, through matching their facial configuration with the 

prototypical facial configurations of the basic emotions and social traits.1,162 What this 

widely adopted approach primarily achieves is the description of associations between a 

narrow, researcher-dependent set of facial configurations and a small set of linguistic labels 

of emotion and social trait categories. This surface association is unable to directly address 

the deeper, mechanistic question of what specific information is encoded in and decoded 

from certain facial configurations that make social communication successful (in this case, 
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conveying an emotional state or a social trait). In other words, the underlying information 

ontology is unknown.

One way to address this information gap is to combine psychophysical approaches with 

facial configurations generated, with the help of computer algorithms, from higher-order 

axes of information.162 For example, combining 42 static action units with six temporal 

parameters will give rise to a 252-dimension dynamic facial movement pattern space, 

which is far more comprehensive and less biased than the facial configurations posed 

by human actors used in the traditional research.163 This approach can alleviate the 

potential misleading inferences of a high-dimensional structure based on its low-dimensional 

projection that the traditional research has risked committing.164 Combining this more 

representative sample of dynamic facial movement patterns and psychophysical tasks, such 

as signal detection theory165 and reverse correlation,166 researchers are then able to identify 

diagnostic information underlying successful social communication via faces.

Another limitation of the traditional approach is the predominant use of static, 

decontextualized face images as stimuli. This is in stark contrast with what people 

experience in the real world—the faces people encounter in everyday life are dynamic, 

physically embedded, and socially situated. The movement and contextual information 

may fundamentally modulate the way we perceive and interpret the affective states and 

social trait information conveyed by the faces. For instance, studies have shown that the 

emotional valence of body gesture has a strong impact on how observers perceive the 

valence of accompanying ambivalent facial expressions.167 In a similar vein, a face is 

perceived to belong to someone with high competence if the face is accompanied by richer 

than poorer clothes.168 To address this limitation, recent research has incorporated dynamic 

facial movement and naturalistic face images as stimuli to study the perception of affective 

states163,169 and social traits.114,118,170

Combining multimodal neuroscience approaches with these new ways of probing 

the naturalistic affective and social judgment processes will shed new lights on the 

understanding of the neurobiological bases of emotional face processing and social trait 

judgment of faces.

Multi-scale computational modeling of multimodal data

Multimodal experimental approaches generate data at multiple scales, including 

macroscopic fMRI and EEG data, mesoscopic intracranial EEG (iEEG) data, and 

microscopic single-neuron/local field potential (LFP) data. Given the complexity of 

multimodal data, we need powerful tools for data analysis. First, we promote the use of 

a unified computational model to explain multimodal data at different scales. For example, 

our ongoing work is establishing a unified drift-diffusion model that can explain data from 

different modalities (e.g., EEG, fMRI, and single-neuron data, as well as behavioral data 

from neurotypicals and individuals with ASD). Second, we promote the use of multimodal 

data fusion171,172 to extract relevant information from each modality and combine it in a 

meaningful way to provide a more complete picture of the question under investigation. 

With multimodal data fusion, we can, therefore, gain a more comprehensive understanding 

of emotional face processing and social trait judgment of faces by combining information 
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from different sources. Although in this review we highlighted multimodal approaches to 

study emotional face processing and social trait judgment of faces and these studies pointed 

to coherent results, it is worth noting that these studies were not conducted in the same 

participants. Future studies are needed to understand how data from each modality are 

related to one another (e.g., how BOLD-fMRI is related to LFP), and more importantly, 

what unique information each modality can provide.

Multimodal approaches, such as concurrent EEG-fMRI, have been used to study neural 

face processing.173,174 Furthermore, a study using concurrent electrical stimulation of the 

amygdala with iEEG (electrical stimulation tract-tracing) or fMRI (electrical stimulation 

fMRI) has provided strong inferences about the effective connectivity of amygdala 

subdivisions with the rest of the brain.175 However, an underexplored approach is to employ 

human single-neuron recordings to study the neural circuits for face processing, and few 

studies have combined microscopic data with macroscopic data. Human single-neuron 

recordings provide a very unique and valuable opportunity to directly study face processing 

at the neuronal and neural circuit levels in the human brain. Recording directly from neurons 

in the human brain will bridge the gap between standard neuroimaging techniques that lack 

this level of spatial and temporal resolution and neurophysiological studies of nonhuman 

animals (note that it is often very hard to probe emotion and social trait judgment in 

nonhuman animals). With the highest possible spatial and temporal resolution currently 

available, human single-neuron recordings can have a significant impact on studying 

face processing. Notably, our publicly available datasets160,161 can facilitate the research 

community to study face processing using human single-neuron recordings.

A network view of emotional face processing

The studies discussed in this review focus on a single brain area at a time. However, 

functional neural networks for emotional face processing are complex systems that involve 

multiple brain regions and processes. Although a large literature has documented the 

functional localization of emotional face processing, fewer studies have systematically 

investigated the functional neural network underlying emotional face processing, especially 

when the processing requires orchestration between multiple brain areas. It is, therefore, 

important to understand emotional face processing (as well as social trait judgment of faces) 

from a network view. For example, functional connectivity analyses can elucidate how 

the amygdala, dorsomedial prefrontal cortex (dmPFC), and ventromedial prefrontal cortex 

(vmPFC) collectively encode emotion ambiguity.70

Some studies have investigated effective connectivity and functional organization underlying 

emotional face processing, and the amygdala is a key node of the emotional face processing 

network. For example, emotional faces increased the coupling between the fusiform gyrus 

and the amygdala, whereas famous faces increased the coupling between the fusiform 

gyrus and the orbitofrontal cortex.176 Using emotional faces, emotion-induced loss aversion 

increases amygdalastriatal functional connectivity in low-anxious individuals,177 activation 

of the rostral cingulate is accompanied by a simultaneous and correlated reduction 

of amygdalar activity in an emotion Stroop task,178 and acute tryptophan depletion 

significantly reverts the functional connectivity between the amygdala and vACC as 
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well as ventrolateral prefrontal cortex (vlPFC) while viewing facial signals of aggression 

(angry faces).179 Beyond the amygdala, explicit processing of facial affect leads to a 

prominent increase in the effective connectivity from the inferior occipital gyrus to 

vlPFC.180 Clinically, effective connectivity between the amygdala and orbitofrontal cortex 

is disrupted in patients with social anxiety disorder during facial emotion discrimination 

tasks,181 abnormal amygdala-prefrontal effective connectivity to happy faces differentiates 

bipolar from major depression,182 and increased connectivity between the amygdala, 

especially basolateral amygdala, and distributed brain systems involved in attention, emotion 

perception, and regulation is associated with high childhood anxiety.183

Again, multimodal approaches can be used to study functional connectivity at three scales: 

(1) at the macroscopic level, psychophysiological interaction and dynamic causal modeling 

analyses can be performed on fMRI data, and coherence and coupling analyses can be 

performed on EEG data; (2) at the mesoscopic level, cross-correlation, coherence, and 

Granger causality analyses can be performed on iEEG data; and (3) at the microscopic 
level, LFP phase shift, spike-LFP coherence, LFP-LFP coherence, Granger causality, and 

spike-train differential latency analyses can be performed on single-neuron recording (i.e., 

microwire recording) data. Functional connectivity analyses at multiple scales can enable 

us to systematically and comprehensively understand the neural processes underlying 

emotional face processing.

Practices to advance a generalizable understanding of emotional face processing and 
social trait judgment of faces

We recommend the following practices to advance a more generalizable understanding of 

emotional face processing and social trait judgment of faces. The first recommendation 

is to use multiple, diverse sets of participants and stimuli to improve the generalizability 

of the findings to different populations and situations. Preregistration of studies is also 

encouraged. The second recommendation is to use more naturalistic stimuli in order to 

better understand emotional face processing and social trait judgment of faces in real-world 

contexts. Prior studies have primarily used computer-generated or controlled photographs to 

study emotion and social trait judgments from faces, which may limit the generalizability of 

the conclusions. More naturalistic stimuli, such as photographs of individuals from diverse 

races with varied facial expressions and in complex contexts, should be used. Notably, 

deep neural networks can effectively analyze such naturalistic faces.170 Specifically for 

studying social trait judgments, the third recommendation is to sample comprehensive sets 

of social traits and faces for collecting human judgments.118 Prior research has examined 

a limited number of social traits, which may not be representative of the full range of trait 

judgments that people make from faces in a wide range of contexts. Understanding how 

individuals make judgments along all trait dimensions will allow for greater generalizability 

to diverse trait judgments of faces. Lastly, the use of complex and convergent analytic 

approaches as well as multimodal data fusion is recommended to allow for a multifaceted 

and comprehensive analysis of emotional face processing and social trait judgment of faces.
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Barriers associated with conducting multimodal investigations

Last but not least, we would like to acknowledge that there are technical barriers to 

conducting multimodal investigations. These investigations can be complex and expensive 

processes, often necessitating expertise and collaborations across multiple laboratories 

or institutions. Researchers need to possess the necessary expertise in collecting and 

analyzing multimodal data, which may involve very different techniques (e.g., fMRI, 

EEG, and single-neuron recordings). Training the next generation of researchers with 

multimodal investigations in mind and providing them with opportunities to collaborate 

across laboratories could be a long-term solution to this challenge. Some successful multi-

institutional collaborative data collection initiatives (e.g., Ref. 184) may help alleviate such 

difficulty.
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FIGURE 1. 
The late positive potential (LPP) is a physiological signature for perceptual ambiguity. (A, 

B) Sample task and stimuli to study facial emotion ambiguity. (A) A face is presented 

for 1 s followed by a question asking participants to identify the facial emotion (fearful 

or happy). After a blank screen of 500 ms, participants are then asked to indicate their 

confidence in their decision (“1” for “very sure,” “2” for “sure,” “3” for “unsure”). (B) 

Sample stimuli of one female identity ranging from 100% happy/0% fearful to 0% happy/

100% fearful are shown on the right. Three ambiguity levels (unambiguous, intermediate, 
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and high) are grouped as shown above the stimuli. (C) The LPP at the electrode Pz 

differentiates ambiguity levels. Gray shaded area denotes the LPP interval. The top magenta 

bars illustrate the points with significant difference across three ambiguity levels (one-way 

repeated-measure ANOVA, p < 0.05, corrected by FDR for Q < 0.05185). (D) LPPs from 

trials with similar RTs are similar even for different ambiguity levels. Mean LPP amplitude 

for each condition is shown on the right (averaged across the entire LPP interval). Error bars 

denote one SEM across participants. n.s., not significant. (E) The LPP is abolished when 

participants freely view the faces without judging emotions (passive viewing). (F) The LPP 

is abolished when participants judge whether the stimulus is a human face or an animal, an 

unambiguous aspect of the stimuli. (G) The LPP is not only modulated by ambiguity levels, 

but also by the context of ambiguous stimuli. Specifically, the LPP for the same anchor 

(unambiguous) stimuli is enhanced when there are ambiguous stimuli presented in the same 

block (Block 2). Only unambiguous stimuli are shown in Block 1 and Block 3. (H) Face 

judgment task with anger-disgust morphed emotions. (I) Animal judgment task with cat-dog 

morphs. (J) Source localization of the LPP. Mean differential ERPs (unambiguous minus 

high ambiguity) are used to obtain the sources. Source locations are in standard Talairach 

space. Left: Sources estimated using a distributed model. The locations and intensities (color 

coding) of the regional sources are shown for a 40-ms time interval within the LPP time 

window (560–600 ms) for illustration. Right: Sources estimated using a discrete model. 

Five dipoles (four fixed and one free) were fitted for the time interval of 400–700 ms after 

stimulus onset. (K) fMRI results. Left: Increasing ambiguity is correlated with increasing 

BOLD activity in the bilateral IFG/anterior insula and dmPFC/dACC. Right: Decreasing 

ambiguity is correlated with increasing BOLD activity in the left vACC, PCC, dlPFC, IPL, 

and right postcentral gyrus. The generated statistical parametric map is superimposed on 

anatomical sections of the standardized MNI T1-weighted brain template. Figure adapted 

from Refs. 68 and 69.
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FIGURE 2. 
The human amygdala encodes facial emotion ambiguity. (A) fMRI result. Upper: Ambiguity 

levels were correlated with the BOLD activity in the right amygdala (functional ROI 

defined by localizer task). Lower: Time course of the BOLD response in the right amygdala 

(averaged across all voxels in the cluster) in units of TR (TR = 2 s) relative to face onset. 

Error bars denote one SEM across participants. One-way repeated ANOVA at each TR: 

*p < 0.05. (B) An example neuron that fires most to the anchors and least to the most 

ambiguous stimuli (linear regression: p < 0.05). Each raster (top), PSTH (middle), and 

average firing rate (bottom) is color coded according to ambiguity levels as indicated. Trials 

are aligned to face stimulus onset (left gray bar, fixed 1-s duration) and sorted by reaction 

time (black line). PSTH bin size is 250 ms. Shaded area and error bars denote ±SEM across 

trials. Asterisk indicates a significant difference between the conditions in that bin (p < 

0.05, one-way ANOVA, Bonferroni-corrected). Bottom left shows the average firing rate 

for each morph level 250- to 1750-ms post-stimulus-onset. Bottom right shows the average 
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firing rate for each ambiguity level 250- to 1750-ms post-stimulus-onset. Waveform for this 

unit is shown at the top of the raster plot. (C) Group average normalized firing rate of 

ambiguity-coding neurons that increased (n = 29) firing rate for the least ambiguous faces. 

Asterisk indicates a significant difference between the conditions in that bin (p < 0.05, 

one-way ANOVA, Bonferroni-corrected). Figure adapted from Ref. 42.
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FIGURE 3. 
People with autism spectrum disorder (ASD) show a deficit when judging ambiguous facial 

expressions. (A) Group average of psychometric curves. The psychometric curves show the 

proportion of trials judged as fearful as a function of morph levels (ranging from 0% fearful 

[100% happy; on the left] to 100% fearful [0% happy; on the right]). Shaded area denotes 

±SEM across participants. (B) Inflection point of the logistic function (xhalf). (C) Steepness 

of the psychometric curve (α). Error bars denote one SEM across participants. Asterisks 

indicate a significant difference using two-tailed two-sample t-test. **: p < 0.01. n.s., not 

significant (p > 0.05). (D) Time-frequency plots depicting the power of pupil oscillations for 

each group of participants. Black dashed line denotes stimulus onset (time = 0). (E) Mean 

power of pupil oscillation in the 3–12 Hz frequency range between 200 and 600 ms after 

stimulus onset. Error bars denote ±SEM across participants. Asterisk indicates a significant 

difference using two-tailed two-sample t-test. *: p < 0.05. Figure adapted from Refs. 59 and 

108.
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FIGURE 4. 
Leveraging computational models to probe the neurobehavioral markers of face emotion 

recognition differences observed in ASD. (A) Quantification of image-by-image differences 

in behavior between ASD and neurotypicals. (B) ANN models of the primate ventral stream 

(typically comprising V1, V2, V4, and IT-like layers) can be trained to predict human 

facial emotion judgments. This involves building a regression model, that is, determining 

the weights w  based on the model layer activations (as the predictor) to predict the 

image ground truth (“level of happiness”) on a set of training images, and then testing the 

predictions of this model on held-out images. (C). An ANN model’s predicted psychometric 

curves (e.g., AlexNet, shown here) show the proportion of trials judged as “happy” as a 

function of facial emotion morph levels ranging from 0% happy (100% fearful; left) to 

100% happy (0% fearful; right). This curve demonstrates that activations of ANN layers 

(layer “fc7,” which corresponds to the “model-IT” layer) can be successfully trained 

to predict facial emotions. (D) ANN behavior better matches the behavior measured in 

neurotypicals compared to ASD. (E) IT-like layers of ANN best discriminate between 

behaviors of ASD and neurotypicals. (F) Ratio of ANN behavioral predictivity of noisy 

versus noise-free ANNs. At specific levels of noise, referred to as the “ASD-relevant noise 

levels,” the ANNs trained with noise show much higher predictivity for behavior measured 

in ASD while suffering a reduction in predictivity of the neurotypicals. Error bars denote 

bootstrapped confidence intervals (CIs). Figure adapted from Ref. 72.
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FIGURE 5. 
A neuronal social trait space in the human brain. (A) Distribution of face images in the 

social trait space based on their consensus social trait ratings after dimension reduction using 

t-distributed stochastic neighbor embedding (t-SNE). (B) Correlation between dissimilarity 

matrices (DMs). The social trait DM (left matrix) was correlated with the neural response 

DM (right matrix). Color coding shows dissimilarity values (1−r). (C) Observed versus 

permuted correlation coefficient between DMs. The correspondence between DMs was 

assessed using permutation tests with 1000 runs. The magenta line indicates the observed 

correlation coefficient between DMs. The null distribution of correlation coefficients (shown 

in the gray histogram) was calculated by permutation tests of shuffling the face identities. 

(D) Example neurons that showed a significant correlation between the mean normalized 

firing rate and the mean z-scored rating for a social trait. Each dot represents a face identity, 

and the gray line denotes the linear fit. Sample face images with a range of consensus social 

trait ratings are illustrated below the correlation plots, and the corresponding consensus 

ratings (z-scored) are shown under each sample face image. (E) Encoding of each social 

trait. The bars show the average correlation coefficient across all face-responsive neurons 

for each social trait. Error bars denote ±SEM across neurons. Asterisks indicate a significant 

difference from 0 (two-tailed paired t-test). *p < 0.05; **p < 0.01; and ***p < 0.001. 

(F) Decoding of each social trait using a linear decoding model on face identities. Model 

predictability was assessed using the Pearson correlation between the predicted and actual 

trait ratings in the test dataset. The magenta bars show the observed response and the 

gray bars show the permuted response. Error bars denote ±SEM across permutation runs. 
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Asterisks indicate a significant decoding performance (two-tailed two-sample t-test between 

observed vs. permuted). **p < 0.01 and ****p < 0.0001. (G) Feature-selective neurons (i.e., 

neurons that differentiate fixations on the eyes vs. mouth) are related to social traits. Shown 

is the correlation between the firing rate for fixations on the eyes and perceived social traits. 

Similar analysis can be performed for fixations on the mouth. Error bars denote ±SEM 

across neurons. Asterisks indicate a significant difference above 0 (two-tailed paired t-test) 

or between feature-selective versus nonselective neurons (two-tailed two-sample t-test) after 

Bonferroni correction for multiple comparisons. **p < 0.01 and ***p < 0.001. Figure 

adapted from Refs. 43 and 45.
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FIGURE 6. 
Correlation between personality factors and social trait judgments. (A) The correlation 

matrix of 33 questionnaire subscales and loadings of each subscale for the four factors. (B) 

Correlations between factor scores and social trait judgments. Asterisks indicate a significant 

correlation. Figure adapted from Ref. 44.
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FIGURE 7. 
Multifaceted investigation of atypical social trait judgment in ASD. (A) PCA loadings 

of social traits on the first four PCs. Each column plots the strength of the loadings 

(x-axis, absolute value) across traits (y-axis). Color coding indicates the sign of the loading 

(orange for positive and purple for negative). Saturated colors highlight each trait’s most 

strongly correlated PC. (B) Aggregate ratings. Error bars denote ±SEM across rating 

modules. Asterisks indicate a significant difference between participants with ASD and 

neurotypicals using two-tailed two-sample t-test. *p < 0.05; **p < 0.01; ***p < 0.001; 

and ****p < 0.0001. (C) Ratings for each face identity rank-ordered by mean ratings 

from neurotypicals. Red: ASD. Blue: neurotypicals. Error bars and error shades denote 

±SEM across rating modules. (D, E) Features within faces that contribute to atypical trait 

ratings in ASD. Relevance of each pixel to classification was revealed using layer-wise 

relevance propagation (LRP). Color coding shows LRP values in arbitrary units (a.u.). 

Yellow pixels positively contributed to the classification, whereas blue pixels negatively 

contributed to the classification. (D) An example face and its corresponding LRP maps 

(trait strong). (E) Difference in LRP maps for each trait. Red contours show the regions 

with a significant difference between participants with ASD and neurotypicals. (F) The 

social trait dissimilarity matrix (DM) from participants with ASD. (G) Bootstrap distribution 

of DM correspondence for each participant group. Blue: neurotypicals. Red: ASD. The 

dots show the mean value of each distribution. Participants with ASD show a weaker 

correspondence with the neural response DM compared to neurotypicals. (H) Observed 

versus permuted difference in DM correspondence between participant groups. The magenta 

line indicates the observed difference in DM correspondence between participant groups. 
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The null distribution of difference in DM correspondence (shown in the gray histogram) 

is calculated by permutation tests of shuffling the participant labels (1000 runs). (I) Group 

differences in personality factor scores. As expected, the ASD group is significantly higher 

on Factor 1, which is primarily associated with standard autistic trait measures (i.e., AQ 

and SRS), social anxiety, and alexithymia. ***p < 0.001. (J) Relationship between social 

trait judgment and personality factors derived using representational-similarity analysis. 

The dissimilarity matrix structure of the social trait judgments (trustworthy and warm) is 

predicted by the dissimilarity matrices of the four personality dimensions or factors. Shown 

are regression coefficients of each personality dimension (factor) for trustworthy (left) and 

warm (right) judgments. The asterisks on the margins indicate a significant main effect of a 

personality dimension in predicting the social trait judgments, while the asterisks with curly 

brackets indicate a significant group-by-factor interaction, or in other words, a significant 

group difference in the predictive power of a given personality dimension. Figure adapted 

from Refs. 43, 44, and 121.
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