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Abstract—In this paper, we introduce a general framework for
computing the throughput capacity of wireless ad-hoc netwiks
under all kinds of information dissemination modalities. We
consider point-to-point communication for unicast, muticast,
broadcast and anycast routing under the physical model as-
sumption. The general communication is denoted agn,m, k)-
cast wheren is the number of nodes in the network,m is the
number of destinations on (n,m, k)-cast group and k(k < m)
is the number of destinations that receive packets from the
source in each(n, m,k)-cast group. For example,(m =k = 1)
and (m = k = n) represent unicast and broadcast routings
respectively. We demonstrate that the upper bound of througput
capacity is given by O(v/m(y/nk)™") bits/second. The lower
bound of throughput capacity is computed as2(/m (nkd(n)) ),
Q((nkd*(n))~") and Q(n~") bits/second whenm = O(d™2(n)),
Q(k) = (d7%(n)) = O(m) and Q(d~%(n)) = k respectively,
where d(n) is a network parameter. The upper bound capacity
is achieved based on an(n,m,k)-cast tree constructed for
routing and transport capacity while the lower bound capacty

presents the capacity d¢h,m, k)-cast communication under
the physical model assumption. We assume that a constant
data rate is guaranteed under the physical model as long as
the signal to interference plus noise ratio (SINR) is greate
than a constant non-zero value.

Section Il summarizes prior work on the capacity of wire-
less ad hoc networks. The network model is introduced in
Section lll. In Section IV-A, we present the capacity of
(n,m, m)-casting, which corresponds to unicasting, broad-
casting or multicasting. Under this condition, we show that
O (1/(y/mn)) bits per second is an upper bound, while
Q(1/(nd(n)y/m)) and2 (1/n) are the lower bounds for the
capacity of(n, m, m)-casting whenn = O(d=2(n)) andm =
Q(d=2(n)), respectively. Section IV-B addresses the capacity
of (n,m,k)-casting. We demonstrate th& ( /m/ (k\/n))
is the upper bound ofn,m, k)-cast. In case of the lower

is achieved based on TDMA scheme and connected cell graphpound, there are three capacity regions according to thgeran

along (n, m, k)-cast tree.

|. INTRODUCTION

of the parameterd(n). When m O(d=2(n)), Q(k)
d=%(n) = O(m) and Q(d~2(n)) = k, the corresponding
lower bounds aré2 (y/m/ (nkd(n))), 2 (1/ (nkd*(n))) and

The seminal work by Gupta and Kumar [1] motivated) (1/n), respectively. Whemn = k = O(1), this result also

many researchers to investigate further the capacity afless matches the well known results on the throughput capacity of
ad hoc networks. Recent research activities focused on #ie hoc networks for unicasting under the physical model by
capacity of wireless ad hoc networks for different types déupta and Kumar. Section V concludes this paper and presents
information dissemination such as unicast, broadcast (€lg¢ some implications of our results.

[4]) and multicast (e.qg., [5]-[7]). Computation of all kisaf

information dissemination plays an important role in under Il. RELATED WORK

standing the fundamental limits of wireless ad hoc networks Gupta and Kumar [1] computed the capacity of wireless ad
Recent work [8] has shown that all forms of informatiomoc networks for static nodes and the multi-pair unicast rout-
dissemination in wireless ad hoc networks can be unifiggy assumption. They derived the transport capacity in oamd
into a single(n, m, k)-cast model(n, m, k)-cast is a general and arbitrary networks for the protocol and physical models
communication model where is the number of nodes in theAs a result of this, there have been many contributions that
network,m is the number of destinations in &n, m, k)-cast try to improve the capacity of wireless networks. Furtherejo
group andk(k < m) is the number of destinations that receivghere are recent advances on the study of wireless ad hoc
packets from the source in eadm,m,k)-cast group. In networks for various routing schemes such as multicast and
doing so, unicast routing, broadcast routing, multicastiry proadcast.

and various forms of anycast routing can be defined whenpranceschetti et al. [9] showed that enhanced throughput
(m=k=1),(m=k=n),(m=Fk<n)and(k<m <n), capacity is possible under the physical model by utilizing
respectively. However, such prior work [8] concentrated Opighway paths based on percolation theory. They proved that

the protocol model, where every node in the network has thgth a long-range routing scheme, the upper and lower bounds
same transmission rangén). The physical model is more

realistic channel model than the protocol model. This papefte, Q andO are the standard order bounds.
978-1-4244-2677-5/08/$25.00 2008 IEEE



of throughput capacity in random wireless networks have tlidescribe the basic notion for our analysis of them, k)-cast
same order o (1/+/n) under the physical model assump-<€apacity.

tion. Furthermore, Ozgur et al. [10] showed that hierarahic Definition 3.1: Physical Model

MIMO cooperation provides linear scaling laws for wireless In this analysis, a successful transmission occurs if SINR
hoc networks. Toumpis and Goldsmith [11] studied capacifhus if SINR> 3 at the receiver, the data rate between the
regions of wireless ad hoc networks with an arbitrary numb&ansmitter-receiver pair is W bits/second.

of nodes and topology. They showed that combining multihop Definition 3.2: Feasible Throughput capacity

routing, the ability for concurrent transmissions, andcgs: In a dense random wireless ad hoc network witimodes in
sive interference cancelation at the receiver side, sigantly which each source node transmits its packetg tout of m
increase the capacity of ad hoc networks. Garcia-lunaescedestinations, the per node:, m, k)-cast throughput capacity
et al. [12] proved that the throughput capacity under phalsicis defined as

model can be increased by a factor®f{ (logn) 2> %) com- N

pared to Gupta and Kumar’s result when nodes are equipped Crn.k(n) = 1 Z AL (n) 2)
with multiple packet reception and a successive interfegen n '

cancelation decoding scheme.

In addition, there have been research results for variot)
kinds of information dissemination schemes such as braadcx
and multicast. Tavli [2] showed thé&t(n~!) is an upper bound "
per node broadcast capacity in an arbitrary network. Zh8hg rnformappn within a finite time interval, .
studied the behavior of information dissemination in power Def|n|t|_on 3'_3: Order of throughput capacny .
constrained wireless networks in terms of the broadcasacc-apc’f‘*k(n) IS said to be of orded(f(n)) blt/S/SGCOﬂd if there
ity and information diffusion rate in both random extended a exist deterministic positive constantsandc” such that
dense networks. Keshavarz et al. [4] extended Zheng's wprk b
considering the interference effect in general wirelegs/aeks Jim  Prob (G, (n) = cf(n) is feasiblg = 1
and proposed the most general case for broadcast capacity re liminf Prob (Cp, x(n) = ¢’ f(n) is feasible < 1.
sults with multi hop routing under the protocol model. InT13 e
they extended the broadcast capacity for the physical modeDefinition 3.4: Transport capacity
and the generalized physical model that can be derived frarhe transport capacity [1] in a random wireless network is
Shannon’s formula [14]. Jacquet and Rodolakis [5] showetkfined as the maximum bit-meters per second which can
that, in massively dense networks, the multicast capaeity che achieved in aggregate by optimally operating the network
be decreased by a factor 6f(\/n) compared to the unicast Therefore,
capacity result [1]. Li et al. [7] unified the capacity of wiess Cr = sup Z Cii1Xi — X (4)
ad-hoc networks utilizing unicast, multicast, and broatica i#£j
routing schemes. More recent yvork [8] provided a generﬂ)herecij is the data rate defined from each nad® each
framework for the capacity of wireless ad-hoc networks a

. X . RN : dej.
for all forms of information dissemination including angta Definition 3.5: Euclidean  Minimum  Spanning  Tree
and manycast under the protocol model.

(EMST): Consider a connected undirected gragh= (V, E)
whereV and E' are sets of vertices and edges in the graph
G, respectively. The EMST aff is a spanning tree aff with

We consider a random wireless dense network wherethe total minimum Euclidean distance between connected
nodes are distributed according to the Poisson point psocaertices of this tree.
over a unit square area. In this network model, the density ofDefinition 3.6: (n, m, k)-cast tree: An (n,m, k)-cast tree
the network goes to infinity as the number of nodes increasge.a minimum set of nodes that connect a source node of an
The channel is defined based on the path-loss propagationm, k)-cast with all its intendedh destinations, in order for
model. In addition to this, we employ the physical modghe source to send information toof those destinations. The
introduced by Gupta and Kumar [1] to analyze the capacisglection ofk out of m is optimum.
for dense networks. LeX; and X p(;) denote the location of a We can also definén, m,m)-cast tree (i.e., whem = k) as
nodei and its receiving node respectively. Then SINR betweenm-cast tree in a similar manner.

ere /\in,k(") is the throughput capacity of souré¢etrans-
itting packets tok out of its m chosen destinations in a
network of n nodes, and with all such nodes receiving the

®)

1. NETWORK MODEL AND PRELIMINARIES

X; and Xp; is defined as Definition 3.7: Minimum Euclidean(n, m, k)-cast Tree
(MEMKT): The MEMKT of an(n, m, k)-cast is an(n, m, k)-

m cast tree in which thé destinations that receive information
SINR = ’ (1) from the source among the receivers of the(n, m, k)-cast

N+Zk;ﬁi|xf)l; NG .. . .
kT ARG have the minimum total Euclidean distance. Whenr= m,

where N is the ambient noise power and(i # k) is We denote by minimum Euclidean m-cast t¢dEMT) an
the interfering node. The following definitions and lemma§?, m, m)-cast tree with a total minimum Euclidean distance.



Lemma 3.8:Let f(z) denote the node probability distribu-m destinations. Now it is obvious that the total bit-distanc
tion function in the network area. Then, for large valuesiof product in (n, m, m)-cast should be upper bounded by the

andd > 1, the |EMST]| is tight bounded as transport capacity in the network. Therefore,
[EMST] = © <c<d>ndd1 f(x)ddldm> NG > () (n) <supd_disCiy (6)
R4 i=1 7]

whered is the dimension of the network. Note that befd)
and the integral are constants and not functions.oWhen
d = 2, then||EMST]|| = © (/n).

Sinced,, ,,(n) > [[MEMT]|, the following inequality can
be derived.

IV. THE CAPACITY IN PHYSICAL MODEL O 2\ ;
_ IMEMT] Y Al (n) € D Ay ()i (n) - (7)
A. The Capacity ofn, m, m)-Cast =1 =
In order to compute the capacity ¢f, m, k)-casting under ~ Combining the above two inequalities and the definition of
the physical model, we first derive the capacity(ofm,m)- (n,m,m)-cast capacity, we arrive at
cast. The(n, m,m)-cast model corresponds to unicasting,

multicasting, and broadcasting when = 1, m < n, and IMEMT [[nCinm (n) < Supzdijcij' (®)
m = n, respectively. 7

1) Upper Bound:Gupta and Kumar derived the transport ) L
capacity as the following lemma [1]. Next, we derive the upper bound of the transport capacity

Lemma 4.1: Assuming that each node can transmit der the random wireless network un.der physical model.
W bits/second over a wireless channel shared by all nodes-€mma 4.3:The transport capacity for random networks
the transport capacity for an arbitrary network wheraodes under the physical model i© (W\/%) bit-meters per
are arbitrarily located over an area df is ©(W+/An) bits- second.
meter/sec. Proof: From [15], we know that the successful communi-
According to the physical model in Definition 3.1, thecation condition under the physical modelin a random networ
transmission range between any two nodesripm, m)-cast is related to the protocol model in an arbitrary network.
depends on the SINR at the receiver side. Hence, given that &ccordingly, the upper-bound transport capacity for a @md
successful communication condition is SINR3, successful network under the physical model & ( W+/An ), which was
communication can only occur between transmitter-receivrst proved by Gupta and Kumar in [1]. m
pairs that satisfy this condition. It was shown in [15] thatls ~ Based on these observations, the following theorem states
successful communication condition for the physical modgie upper bound for the throughput capacity(ofm, m)-cast.
in random networks can be translated into the successfulTheorem 4.4:In a dense wireless ad hoc network with

communication criterion for the protocol model in an amiyr (. m)-cast, the upper bound per node throughput capacity

network wheng = (1 + A)“. under the physical model is given by
In (n, m, m)-cast communication, when a node transmits a
packet, we can assume two different approaches to compute Cinm(n) = O (1/v/nm) . ©)

the capacity [16]. We can either assume that, for each trans- Proof: Assuming that there are -+ 1 nodes in(n, m, m)-
mission, only a single node receives the packet or multiptst tree, it is obvious thMEMT || is equal to® (,/m) from
nodes within an area of transmission range receive the packg). Now the proof is immediate by replacifMEMT|| with
The former concept is called unicast communication whié te (,/m) and combining Lemmas 4.2 and 4.3. [
latter approach corresponds to broadcast [16]. Keshavaiz €  Adopting the broadcast concept for the network, a transmit-
used these two concepts to compute the multicast capacityen can simultaneously deliver packets to multiple desitims
wireless ad hoc networks for both cases. In this paper, we relays spread over an area where the successful communi-
compute the upper boun, m, m)-cast throughput capacity cation in the physical model is satisfied. Thus, to find out the
when each transmitter is only allowed to transmit packets igper bound of the throughput capacity based on the broadcas
a single relay or destination based on the unicast concept.concept, we have to consider the consumed area used to route
Lemma 4.2:The per-node throughput capacity ofpackets from source to destinations as a channel usagadnste
(n,m,m)-cast in dense wireless ad-hoc networks isfthe |[MEMT]. Recently in [16], Keshavarz showed that the
upper bounded by (% x w) under the physical upper bound of the multicast per node throughput capacity is

model. IMEMT]| Crm(n) = O (1/n) when we utilize broadcast concept in

Proof: Given that the throughput capacity for the nade the _network. Due to page limitations, the analysis will be th
is defined as\i , (n), the throughput capacity in aggregatéubject of future work.
is equal tOnCw;m(n) = S X (n). To find out the Therefore, we conclude that the upper bound of the

per-node throughput capacity, we defidig ,,(n) as the total (n,m,m)-cast throughput capacity iS,, (n) = O ( L

Vnm

distance that the generated bits from the nedmvel to its when the unicast concept of communication is considered.




The SINR can be computed as
1- P
AT @)™
|| /| SINR > SSCDIE-
o 17 N+ L Sy
LN ) /o] >
o o -1 o
e L e = — e 2 60
O\( N(d(n)) + — = Zi:1 i-2)e
. A )
o | ‘--i, L e > (+)a has a bounded value @ff whena > 2. By
e i—2
. \ * solving this equation with respect ti{n), we arrive at
1
VAR E Pl1 8(W2) )"
. ° e d(n) < N B - 71_,0‘ . (12)
L L Equation (11) can be also solved with respecfto
I T 1 1
T-(d(m/V2) dimy/\2 8¢y (\/ﬁ)a o
T= (1 _ N(dm)*® (13)
Fig. 1. Cell graph construction used to derive a lower boundcapacity. B P

The solid dots are used to conndet, m, m) cast tree while the blank dots

do not act Therefore, any node in a cell can successfully transmit to

any other node placed within a distancedfh) when T is
satisfies in Eq. (13). It also implies thatis a function ofx, 3
and d(n). In this paper, the TDMA parameter that satisfies
2) Lower Bound: The lower bound for(n, m,m)-cast is (13) is denoted a§'(«, 3,d(n)). As mentioned earlier, we
derived using a TDMA scheme as shown in Fig. 1. Tehoose the transmit power as a function of transmissiongang
construct the TDMA scheme, cells with the same side lengte., P = k(d(n))® wherek is a constant value. Under this
of d(n)/+/2 are grouped intd@™ non-interfering groups. Note assumption, the TDMA parameter is not a functionof m
that, in the physical model, there is no common communica-Next we show that there exists a minimuiy;, (n) which

tion range and in order for this scheme to work for the phylsicguarantees a connected cell graph for any arbitfAnEMT|
model we need to derive the condition under which the SINfhder the physical model.

conditipn is satisfied. By choosing a common vaIuea_tQtz), Lemma 4.6:If d(n) = ( Tog (n)/n) and the condition
we derive a loose lower bound that can potentially be |mptdov§:n (13) is satisfied, the cell graph is’ connected under the

utilizing percolation theory [9]. The communication is idied nPhysicaI model based on our TDMA scheme

. 5 . . .
into 7 time slots. In each time slot, every node in the same Proof: It was proved in [17] that the longest edde, of

group transmits packets with a common transmission POWEE nearest neighbor aranh (NNG) has the following propert
P. Furthermore, we will definé® as a function ofi(n). g graph ( ) 9 Property

. 2 _ —a
Lemma 4.5:Under the physical model, by properly choos- lim P -n- M, —log(n) < a] = exp(—e™*),a € B (14)

ing TDMA parameterT, a particular node in a cell can |f 4 is an increasing function of n, the probability thi, <

sgccessfully transmit to any other nodes placed within &1og(n)+a goes to 1 as: tends to infinity. In this paper we
distance ofd(n). nm

will set a aslogn - (7 — 1).

Proof: First note that, in order to use a commém), we |t js also proved in [17] that the longest edge of NNG is
need to assure that the phySical mOde| Condition iS Satlsﬁ%ymptoucany the same as the Euc"dean minima| Spanning
We showed that the physical model in a random network jgee. Thus, by defining the side length of the celldés) >
equivalent to the protocol model in an arbitrary network, [1]p7, and setting up the conditioff(«, 3, d(n)) to guarantee
[15]. We can thus achieve the lower bound for the capacity Ryiccessful transmissions, a particular node can sucdigssfu
computing the upper bound for interference at the receiveg|ay packets to its adjacent nodes existing within). This
Figure 1. demonstrates the nodes that can simultaneouslyg implies that the minimum guaranteég;,(n) is equal
transmit in shaded cells while the physical model criteriog, | /1og (n)/n. Therefore, any two neighboring nodes on
is satisfied. Clearly, the interference is maximized whes tﬂi\MEMTH can be connected based on our TDMA scheme if
interfiering nodes have the closest distance to the receod®, ihe side length of cells is greater thdﬁhn(n)/\/i-
ie., % (1T —2) forie I ={1,2,...}. Therefore, the total  Now it is obvious that two neighboring cells are connected
interference experienced by each node is given by under the physical model if the distance from a particulateno

to its receiver nodes in the neighboring cells is withifn).
0o Otherwise, a particular node should exploit relay nodedién t
Zgi 7w P ) (10) same cell to connect two neighboring cells. Since we already
= {50 T-2)} know that with high probability a particular node can findael




nodes wheni(n) > duwin(n), we can construct a connectedo a (n,m, m)-cast tree satisfy the following upper bound.
cell graph by connecting relay nodes PMEMT|| in a multi-
hop fashion. N #MEMTC(d(n)) = min (6 (v/m/d(n)) ,© (d*(n)))

Next we prove that, based on our TDMA scheme, any two ) (?'6) ]
neighboring cells can be connected in finite hops through the Proof: Because the maximum number of cells in this
nodes onMEMTJ]. network is equal t® (d~2(n)), it is clear that one tight bound

Lemma 4.7:Assume that nodes andv are located in two for #MEMTC(d(n)) is this value. That is#MEMTC(d(n))

adjacent cells in an MEMT. Then, the number of hops betwe&ANNOt exceed the total number of cells in the network anld wil
these two nodes are a constant’value cover all cells when the number of multicast destinations is

Proof: Since the graph is a connected graph, then therelfflrge enough. On the other hand, the total Euclidean distanc

always a path betweenandwv. Further, the number of hops inOF the (n7m7m.)-cast tree was shown earlier tp W V).
. : o caused(n) is a network parameter that limits the the
any cell is at most two. Therefore, there is a finite number ?r

relays between these two nodes either directly betweemihe t ansmission range In this TDMA scheme, the ”“mber of
adjacent cells or through some of the eight cells surr0|,g1diCeIIS for this (n, m, m)-cast tree must be (ﬁ/d(n))’ L€,
any single cell MEMTC(d(n)) = © (v/m/d(n)). The actual tight bound
A clearly is the minimum of these two extreme values in the
Now it is obvious that, based on our TDMA SChemer'letwork, which is a function of the topology of the network
the condition for d(n) is ( %) < d(n) < and this proves the lemma. |
By combining Lemmas 4.9 and 4.8, the following theorem

1
Qj% 3 - 3(v2)"er in order to assure connectivity andcan be presented.
p

™ Theorem 4.10:The achievable lower bound of the

ysical model criterion in the network. It is easy to shoatth . . B " -
the upper bound is aIV\{ays greater than the lower bound whgﬁ m, m)-cast capacity wheri(n) = © ( log n/n) 'S

(% (% _ 8(\/52 C1>) > 1. With this condition ford(n), o ( ) Q (1/\/7W0gn) ,m=20 (n/ ]an)

we have shown thaf(a, 3, d(n)) does not increase with as A Q(n~1),m = Q (n/logn)

n goes to infinity. The result implies that our TDMA scheme

does not change the order of throughput capacity. This is the maximum lower-bound capacity that can be
Note that the(n,m,m)-cast tree based on the TDMAattained in the network.

scheme is a function of transmission rangfe). Therefore, )

the optimum m-cast tree will depend on the transmissidh Capacity Bounds ofr, m, k)-cast

range. We define#MEMTC(d(n)) as the average number 1) ypper Bound: In this section, we demonstrate the

of cells that contains arﬁn,m,m)-cast tree. The fO”OWing throughput Capacity O(n7m7k)_cast in random wireless ad

lemma presents the achievable lower bound capacity for thgc networks. The proofs are very similar to those shown

(17)

(n,m, m)-cast. in the previous section. Thus, lemmas and theorems are only
Lemma 4.8:The achievable lower bound of tite, m, m)-  stated without proof for completeness of the paper.
cast capacity is Lemma 4.11:The per node throughput capacity of
(n,m, k)-cast in dense wireless ad-hoc networks is upper
1 sup 2;;d;; Cij
Coum) = 2 ( 1 . L “bounded byo (E_x W)
#MEMTC(d(n)) T («,B,d(n))” nd?(n) Proof: This is similar to Lemma 4.2 except that we
(15) replace MEMT with MEMKT. [

Proof: It is obvious that the maximum simultane- Lemma 4.12:The average length of MEMKT has the lower
ous transmitting cells based on TDMA scheme are &bund of@.
most T(a,ﬁ,d(n;)2»d2(n)/2' Lemma 4.7 proves that there  Proof: The proof can be found in [8]. [
is a finite number of hops to traverse from one cell Theorem 4.13:The per node upper bound throughput ca-
to its adjacent cell. Since the total number of cellpacity of the(n,m, k)-cast in dense wireless ad hoc network
in (n,m,m)-cast is #MEMTC(d(n)), then it is easy under the physical model is given by
to see that the per-node lower bound capacity is given

! ) : NG
by Q (#MEMTC(d(n)) X T(a7ﬁ)2nd2(n)/2), which proves the Crnx(n) =0 (W) ) (18)
lemma. |
Given the above lemma, to express the lower bound of Proof: The proof is similar to the proof of Theorem 4.4.
Cm.m(n) as a function of network parameters, we need to ]
compute the tight bound ofMEMTC(d(n)), which we do  2) Lower Bound:In this section, we demonstrate the lower
next. bound for(n, m, k)-cast based on the same approach used in

Lemma 4.9:The average number of the cells that belongSection 1V-A2.



Lemma 4.14:The achievable lower bound of thie, m, k)-
cast capacity is given by

Crum(n)

1]
2]
[3]

1 1
(#MEMKTC(d(n)) . T(a,ﬂ,d(n))QndQ(n)>
(19)

where #MEMKTC(d(n)) is the mean number of cells in
MEMKT (d(n)).
Proof: The proof is similar to Lemma 4.8 except that

#MEMTC(d(n)) is replaced with#*MEMKTC (d(n)). g
Lemma 4.15:The average number of cells in
MEMKT (d(n)) tree is upper bounded as 5]

O (K(ymd(m) ') ;m =0 (d() g
#MEMKTC(d(n)) = ¢ © (k),Q(k) = (d~ ) O(m
O (d* E=Q((d?(
(d7*(n)), (d7*(n)) co 7

Proof: The proof is similar to the proof of lemma 4.9
The maximum attainable lower bound capacity is achieve!

whend,,in(n Q(\/logn/n) is applied ford(n).

Theorem 4 16:The maximum achievable lower bound for [°!
the (n, m, k)-cast capacity is

[10]
(\/—/k\/nlogn) m = O (n/logn)
Q2 (1/klogn),Q(k) =n/logn = O(m)
Q(1/n),k=Q(n/logn)
(21) [12
Proof: Combining lemmas 4.14 and 4.15 with the mini-

mum distance parameter fdn) provide us with the result. |13
|

Cm,k (TL)

(11]

V. CONCLUSION

We have presented a general theory for the capacity @f
wireless ad hoc networks under the physical model. First, th
(n, m, k)-casting model that was developed in [8] was adoptétf
here to extend the results to the physical model. By doirgj thi
a new upper bound of g\/\/_’i and the same lower boundI17]
similar to the results in [8] were derived. The lower bound
capacity consists of three different regions with values of

Q (wm) klogn and( (1) whenm = O(n/logn),
Q(k) logn) = O(m) and Q(n/logn) = k, respec-
tively. It is worth investigating as future work, if the gap
in the physical model fofn, m, k)-cast can be closed using
percolation theory.
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