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Abstract 

  This dissertation develops computational methods for analyzing large-scale genomic 

and epigenomic datasets. We developed a supervised machine learning approach to predict non-

exonic evolutionarily conserved regions in the human genome based on vast amount of 

functional genomics data. The resulting probabilistic predictions provide a resource for 

prioritizing functionally important regulatory regions in the human genome. We also developed a 

method for identifying from large-scale gene expression datasets genes that are differentially 

expressed in both blood and brain from 12 vervet monkeys, which we used to identify 29 

transcripts whose expression is variable between individuals and heritable. Additionally, we 

developed a method using a global search optimization algorithm to successfully improve a 

model of human thyroid hormone regulation dynamics leading to a better fit of data for 

thyrotoxicosis. Together, these three approaches have the potential to impact the understanding 

and eventual treatment of disease. 
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Chapter 1 

Introduction 

1.1 Motivation 

Human genome contains 3 billion base-pairs. Only 1.5% of it is coding for proteins. At 

the time of writing this dissertation, it is estimated that only 4% of the human genome (including 

the aforementioned 1.5%) is exonic, while 96% of the human genome is non-exonic. Therefore, 

any dataset obtained by measuring any kind of activity related to human genome (e.g. gene 

expression, GWAS, sequencing, ChIP-Seq, DNase-Seq, etc.) is considered large scale data. 

These datasets require statistical and computational methodology, in addition to incredible 

amount of computational resources (such as time, memory, and processing power) in order to be 

analyzed and produce scientific findings. The main objective of this dissertation is to develop 

and/or apply existing computational, statistical, numerical, and machine learning methods to 

analyze large-scale biomolecular and genomic data. The overarching motivation for this 

dissertation is to use computers and algorithms to help solve problems that would potentially 

lead to novel medical discoveries, such as insights, therapies, and medication for finding cures 

for some of currently major diseases such as cancer and various neuro-psychological disorders. 

 

1.1 .1 Epigenetic Marks for Genome Annotation 

Epigenetic modifications in the human genome play diverse roles in gene regulations and 

are likely to have a causal role in human disease. The human genome comprises of 96% non-

exonic regions. Genome-wide association studies (GWAS) have discovered thousands of loci 

associated with complex traits and diseases, and have shown that most variants are located in 

non-exonic regions. At this time, there are thousands of data tracks obtained by using various vet 
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lab techniques (assays) followed by next generation sequencing measuring various epigenetic 

processes, and yet the challenge remains to identify potentially important locations in 96% of 

non-exonic genome. Efforts are being made to functionally annotate human genome using 

functional genomics and comparative data.  

We developed Predictor and Identifier of Conserved Elements (PICEL) method that uses 

supervised machine learning technique (logistic regression) and produces a single data track 

containing probabilities that predict conserved regions genome-wide. It integrates almost 11,000 

data tracks of functional genomic datasets in order to prioritize important regulatory bases and 

provide a resource to the scientific community. This method also has for the objective to 

understand to what extent conservation could be predicted from functional genomics data. The 

resulting predicted peaks overlap known conserved elements genome-wide. False negatives 

provide potentially novel discoveries in non-exonic DNA and candidates for further human 

genetics studies. 

 

1.1.2 Gene Expression Studies for eQTL mapping 

 We processed and analyzed large-scale dataset obtained by gene expression studies of 

data collected from vervet monkeys (Chlorocebus aethiopssabaeus). Vervets are excellent non-

human primate model for this type of investigation because there is high degree of conservation 

of tissue expression profiles between vervets and humans. The data consisted of blood samples 

drawn from 347 vervet monkeys and eight brain regions from 12 vervet individuals. The goal 

was to find out how genes expressed in brain correlated with gene expression variation in blood 

from the same individuals and search for genes expressed in both brain and blood so that blood 

tissue could serve as surrogate for brain tissue in further experiments. By applying stringent 
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method and statistical criteria, we identified 29 transcripts whose expression is measurable, 

stable, replicable, variable between individuals, relevant to brain function and heritable. These 

findings provided means to investigate variation in gene expression relevant to human brain 

traits and neuropsychiatric diseases.  

 

1.1.3 Global Parameter Search and Sensitivity Analysis 

Dynamic system models are used for simulating intracellular functions in search of novel 

therapies for clinical disorders. Techniques involved in quantification cycle of nonlinear dynamic 

models, specifically methods for global sensitivity analysis and parameter search, have as an 

objective to efficiently improve selection of parameter subsets by reducing the search space and 

computational times. We carried out numerical experiments on NF-κβ biomolecular dynamic 

system model and have successfully augmented model of human thyroid hormone regulation 

dynamics to better fit the available data for thyrotoxicosis. Our study provides insight into model 

mechanics and identifies limitations of current methods, as well as serves educational purpose of 

demonstrating how human body processes toxic dose of thyroid hormone replacement over time. 

 

1.2 Contribution of this Dissertation  

The contribution of the dissertation can be split into three parts.  

The first part contributes novel computational methodology for analyzing large-scale 

genomic and epigenomic datasets and offers a useful tool for future scientific discoveries.  

The second part contributes to statistical methodology for analyzing and interpreting 

large-scale gene expression datasets and leads to novel finding significant in human genetics.  
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The third part analyzes numerical computational methods for parameter search and global 

sensitivity analysis for dynamic system models, and makes a contribution towards improving one 

of such models.  

Together, the three computational and quantitative methods developed specifically for 

processing large-scale data and searching vast parameter space may lead to discoveries in 

biological chemistry, human genetics, and medicine. 

 

1.3  Organization of Dissertation 

The dissertation is organized in three chapters, each one pertaining to a different problem 

and methodology used to solve it.  

The first chapter discusses methodology for dealing with large-scale genomic and 

epigenomic datasets and efforts to functionally annotate the human genome, which comprises of 

96% non-exonic regions. At this time, there are thousands of data tracks obtained by using 

various vet lab techniques (assays) followed by next generation sequencing measuring various 

epigenetic processes, and yet identifying potentially important locations in the vast amount of 

data remains a challenge. We present Predictor and Identifier of Conserved Elements (PICEL) 

method that integrates more than 10 thousand of tracks into a single track and accurately predicts 

conserved regions in the human genome. This computational method is joint work with Dr. Jason 

Ernst.  

The second chapter discusses methodology for interpreting large-scale gene expression 

datasets. The dataset contains gene expression values from brain and blood samples from vervet 

monkeys (non-human primate model). Result of data analysis identified 29 transcripts that are 

differentially expressed in both blood and brain whose expression is variable between individuals 
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and heritable, which lead to a further genetic studies and discoveries. Chapter 2 is joint work 

with Dr. Anna Jasinska and Dr. Nelson Freimer.  

The third chapter addresses numerical computational methods for parameter search and 

global sensitivity analysis for dynamic system models. This type of modeling existed before 

large-scale datasets became available, but it does rely on clinically measured data (the data needs 

to fit the model, not vice versa). The models typically consist of systems ordinary differential 

equations, which contains several scores (or more) of parameters that are unknown (e.g. 

impossible to measure). The challenge remains to estimate the parameter values in order to get 

the model to fit the clinical data. The chapter describes application of global sensitivity analysis 

techniques on more complex version of NF-kB model dynamics and global parameter search or 

model of thyroid hormone dynamics, addressing in particular fitting the model to a thyrotoxic 

data. Chapter 3 was joint work with Dr. Joe DiStefano.  

Finally, we conclude by summarizing results obtained from the three parts and discuss 

potential extensions to the methodology presented and its application to different areas in 

computer science.  
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Chapter 2 

Predictor and Identifier of Conserved Elements (PICEL) 

Abstract 
 

 A large majority of genome-wide association study (GWAS) hits fall into non-exonic 

regions of the genome. Determining likely causal variants among multiple ones in linkage 

disequilibrium (LD) remains a challenge.  Large scale consortium projects such as NIH 

Roadmap Epigenomics and ENCODE as well as the collective effort of many individual labs 

have produced thousands of genome-wide experiments on regions of open chromatin, locations 

of transcription factor binding and histone modifications which can be a resource to prioritize 

important regulatory locations in the genome. However with the vast number of data sets 

available, large fractions of the genome showing signal, and in many applications the relevant 

cell types uncertain, it is often unclear how to prioritize genomic locations based on the data.  

 Here we present Predictor and Identifier of Conserved Elements (PICEL) method that 

integrates vast amount of various functional annotation datasets into a single track that prioritizes 

likely regulatory important bases in the human genome. PICEL uses supervised machine 

learning technique (logistic regression) to predict conserved regions in the human genome. 

Training set incorporates histone modification, transcription factor, DNaseI and DNaseI 

footprints data as well as chromatin states. The resulting training set is very large, it contains 

10,836 distinct features. PICEL was trained on 10 million samples genomewide. The response 

labels were chosen from conserved region datasets: phastCons, GERP++, SiPhy-Pi and SiPhy-

Omega elements. We applied PICEL genome-wide to make a probabilistic prediction for each 
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individual nucleotide as to whether it would fall into a non-exonic conserved region. We were 

able to obtain relatively effective predictions of the conserved regions (AUC = ~0.82).  

 Analysis of the false negative predictions of our method and the genes they are proximal 

to can be used to identify cell types or classes of genes, such as olfactory genes, that are not 

adequately represented in current functional genomic data sets and can suggest potentially 

addition cell and tissue types for experimental mapping. Our false positive predictions can 

suggest potential important recently evolved regulatory locations in the genome. Heritability 

analysis of complex traits such as BMI show that locations of greater probability of being 

conserved strongly tracked with locations that explained an increasing fraction of disease 

heritability suggesting our predictions have the potential to be an important resource for 

interpreting and prioritizing disease associated variants. 

 

 

 

 

 

 

 

 

 



	  

8	  
	  

2.1 Introduction 
 

 Genome-wide association studies (GWAS) have identified loci associated with complex 

traits and diseases. However, detecting the causal variants remains a challenge due to loci 

containing multiple single nucleotide polymorphisms (SNPs) in linkage disequilibrium (LD). 

More recently, large scale consortium projects such as NIH Roadmap Epigenomics and 

ENCODE as well as the collective effort of many individual labs have produced thousands of 

genome-wide experiments on regions of open chromatin, locations of transcription factor binding 

and histone modifications which can be a resource to prioritize important regulatory locations in 

the genome.  

 Epigenetics is the study of change in gene expression or phenotype that occurs without 

changes in DNA (Bird, 2007; Goldberg et al., 2007). Therefore, epigenetic modifications in the 

human genome can modulate the interpretation of the primary DNA sequence, without 

alternating the sequence. Functionally, epigenetic modifications can serve as markers to 

represent gene activity, expression, and chromatin state (Berger, 2007; Bernstein et al., 2007; 

Kouzarides, 2007). Epigenetic research can help explain how cells carrying identical DNA 

differentiate into different cell types (Weinhold, 2006; Jaenisch e Young, 2008).  Epigenetic 

markers across the genome are called epigenome. 

 Epigenetic mechanisms (Weinhold, 2006; Gal-Yam et al., 2008; Consortium, 2012; 

Encode, 2012) include histone proteins associated with DNA (histone modifications) (Jenuwein 

e Allis, 2001; Berger, 2007; Bernstein et al., 2007; Goldberg et al., 2007; Kouzarides, 2007; Li 

et al., 2007), chemical modifications to the cytosine residues of DNA (DNA methylation) (Laird, 

2003; Feinberg e Tycko, 2004; Jones e Baylin, 2007; Esteller, 2008), small and non-coding 

RNAs (Mattick e Makunin, 2006; Pathways | SABiosciences, 2016), and chromatin architecture 
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(Li et al., 2007; Encode, 2012). The nucleosome is the fundamental subunit of chromatin, 

composed of approximately two turns of DNA wrapped around histone octamer, which contains 

two copies of each of H2A, H2B, H3, and H4 histone proteins. Perhaps the most useful 

epigenetic information for detecting regulatory elements is post-translational modifications in the 

tails of histone proteins that package DNA into chromatin.  

 Epigenetic marks are used to annotate potential locations of functional elements of the 

human genome, including in non-coding regions, and therefore aid in understanding of the 

human genome and gene regulations. However, the functional roles of combinations of 

epigenetic modifications are still being discovered. Functional annotations are important because 

they could predict the functional effect of a variant and subsequently its likelihood to have a 

causal role in a disease. Similarly, open chromatin and transcription factor binding sites (TFBS) 

provide vast amount of epigenetic information and are likely to be predictive to conservation in 

the genome.  

 Next generation sequencing enabled studying of the genome-wide occupancy maps of 

transcription factors (TF’s) by chromatin immunoprecipitation technique (assay) followed by 

sequencing (ChIP-seq). Many loci are occupied by multiple TF’s in various cell types, indicating 

the existence of combinatorial regulation in cells. The encyclopedia of DNA Elements 

(ENCODE) (Encode, 2012) project has systematically mapped regions of TFBS.  

 Another commonly used experimental technique (assay) combined with next generation 

sequencing is Deoxylribonuclease I Hypersensitivity (DNase-seq) (Wang et al., 2012). 

Deoxylribonuclease I (DNase I) is an enzyme that cleaves (cuts) links in the DNA backbone 

usually at sites that are ‘hypersensitive’ to DNase I. These are the sites where the chromatin is 



	  

10	  
	  

open and accessible (where there are no histone proteins) (Encode, 2012) and therefore it is 

likely TFBS.  

 One more, among many experimental techniques that derive functional genomic datasets, 

is formaldehyde assisted isolation of regulatory elements (FAIRE-seq). This assay isolates 

genomic regions that are depleted of nucleosomes (Encode, 2012). Similarly to DNase-seq, this 

assay is also identifying open chromatin regions that are likely TFBS.  

 Data from genomes of many species including some that have recently been sequenced 

provided an opportunity to identify and interpret encoded functional elements by looking for 

sequences that are conserved across species (Siepel et al., 2005; Davydov et al., 2010; Pollard et 

al., 2010; Rosenbloom et al., 2015). The reason for sequence conservation across species is 

believed to be negative (purifying) selection. Sequences that are significantly more similar than 

would be expected if they were evolving under neutral revolution are considered to be conserved 

and therefore are likely to have critical functions.  In other words, nucleotides that are 

functionally important tend to remain unchanged by evolution because mutations at those sites 

would reduce fitness and are therefore eliminated by natural selection (Cooper et al., 2005; 

Siepel et al., 2005). It is estimated that only ~1.5% of the human genome encodes proteins 

(Lander et al., 2001), and yet comparison studies with genomes of other species (e.g. mouse 

(Waterston et al., 2002), rat (Gibbs et al., 2004), and dog comparison (Lindblad-Toh et al., 

2005)) showed that at least 5% of the genome is probably functional.  

 In this study, we integrated the vast amount of functional genomic datasets to predict 

conserved regions in the human genome, as indicated in the workflow schema in figure 1. The 

result from applying the trained model is a single track with a score for each base in the genome 
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that predicts the probability the base is conserved. We show that our method Predictor and 

Identifier of Conserved Elements (PICEL) accurately predicts known conserved regions in non-

exonic DNA, and also discuss the known conserved regions that our method is not predicting. 

Our false positive predictions can suggest potential important recently evolved regulatory 

locations in the genome. 

 

Figure 2.1: General Workflow of the Project 

2.2 Background  
 

 In this section, we present in detail some currently available functional genomics and 

their limitations. In general, most of the conservation methods do not make use of functional 

information. Furthermore, methods designed to define conservation metrics across the genome 

are based on the assumption that genomic elements are present at orthologous locations and 

maintain similar function over long evolutionary time, but  evolutional turnover may cause 
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inconsistencies between sequence orthology and functional homology (Gulko et al., 2015). The 

shorter evolutionary time scales can be associated with information about genetic polymorphism 

in order to make this approach more robust to evolutionary turnover and less sensitive to errors 

in alignment, but polymorphic sites tend to be sparse along the genome (Fay et al., 2001).  

 Combined Annotation-Dependent Depletion (CADD) method (Kircher et al., 2014) is 

one of the first methods trying to close the gap and attempt to integrate functional and 

comparative data. CADD identifies differences between human genomes and the inferred 

human-chimpanzee ancestral genome in order to predict variants that are pathogenic. It uses 

samples from simulated and observed datasets, and supervised machine learning technique 

support vector machine (SVM) with linear kernel to accomplish this task (the latest version uses 

logistic regression). It was trained on 166 features derived from 63 annotations from functional 

and comparative data, with total of 949 features. Ten models were trained independently on 

observed and simulated data, and an average of those models was applied to score 8.6 billion 

possible single-nucleotide variants (SNVs) of the human reference genome (GRCh37). The 

model predictions are compiled into a single-value metrics named C score. Therefore, the 

advantage of CADD over other methods is that integrates diverse annotations of genetic 

variation into a single score.  

 Fitness consequence (fitCons) (Gulko et al., 2015) is another method that attempts to 

integrate cell type specific functional genomic and comparative data. It estimates the probability 

that a point mutation at each position genome-wide will influence fitness. Therefore, fitCons 

scores are designed as evolution-based measure of genomic function. They are derived from 

ENCODE (Consortium, 2012) data for three human cell types and are inferred from patterns of 

genetic variation. In particular, genomic positions are clustered by their joint functional genomic 
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fingerprints from three data types: DNase-seq, RNA-seq, and ChIP-seq, and also using 

ChromHMM (Ernst e Kellis, 2010) with 25 states. fitCons method is reported to perform better 

than other discussed methods: phyloP (Rosenbloom et al., 2015), phastCons (Siepel et al., 2005), 

GERP++ (Cooper et al., 2005; Davydov et al., 2010), and CADD (Kircher et al., 2014). 

However, this could be an artifact of discrepancy among the definitions of genomic function. 

fitCons represent the fractions of positions at which point mutations will have fitness 

consequences, but they do not account if sequences that would have fitness were deleted. fitCons 

scores in different cell types were concordant.  

 Another method that makes an attempt to integrate functional genomic data is Eigen 

(Ionita-Laza et al., 2016). Similarly to CADD, Eigen proposes single meta-score that 

differentiates among disease-associated and benign variants in both coding and non-coding 

regions. Eigen method uses unsupervised spectral approach for scoring variants, which does not 

make use of labeled training data. This approach has an advantage when labeled data is limited, 

which is the case with annotation data, as different annotations measure different properties of a 

variant (e.g. degree of conservation, the effect of regulatory element in non-coding region, etc.). 

Like CADD’s C-score, Eigen score needs to be interpreted with caution, because different 

annotations can measure different properties of a variant.  

 Among the most recent methods, GenoCanyon (Lu et al., 2015) uses unsupervised 

statistical learning to accomplish whole-genome annotation. It uses 22 computational and 

experimental annotations (regions near significant loci from GWAS data) to predict many of the 

known functional regions and attempt to predict potentially new ones. The unsupervised learning 

is accomplished by estimating 49 model parameters using EM algorithm. The resulting score is 

prediction of functionality for each position in the human genome.  
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(Schrider e Kern, 2015) used supervised learning approach to predict conserved regions in the 

human genome. In particular, they trained support vector machine (SVM) classifier using known 

functional and non-functional portions of the genome and combined it with allele frequencies 

from low-coverage 1000 Genomes Project dataset. Some of the datasets they used as features 

are: disease-associated SNPs from GWAS compiled by (Hindorff et al., 2009), and phastCons 

elements (Siepel et al., 2005) from an alignment of 29 mammalian genomes, but ignoring 

human. The method recognizes previously known constrained portions of the genome (identified 

by phylogenetic methods), and uncovers new regions where gains and losses of function might 

have occurred, specifically in central nervous system and near neurotransmitter receptor genes.  

2.3 Materials and Methods 

 

2.3.1 Functional Genomics Datasets   
 

 Encyclopedia of DNA elements ENCODE (Consortium, 2012) project has a goal to map 

all functional elements in the human genome. So far ENCODE project has systematically 

mapped regions of transcription, TF association, chromatin structure, and histone modification, 

among others. The elements mapped and approaches used include RNA transcribed regions 

(RNA-seq, CAGE, RNA-PET and manual annotation), TFBS (ChIP-seq), chromatin structure 

(DNase-seq, FAIRE-seq), histone marks (ChIP-seq and MNase-seq), and DNA methylation sites 

(RRBS assay). Out of those, for our model training, we have only used ENCODE datasets with 

TFBS, histone marks, DNase peaks, and chromatin state core and imputed marks (Ernst e Kellis, 

2010; Ernst et al., 2011; Roadmap Epigenomics et al., 2015) derived by ChIP-seq,  DNase-seq, 

and FAIRE-seq assays. We used hg19 assembly of human genome and exclude exons as they are 
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already well-annotated and focusing on regulatory regions. We excluded RNA-seq datasets as 

RNA-type features are associated with exons.  

 DNaseI footprinting enables discovery of the sequence-specific TFs at a higher 

resolution. Footprints are quantitative markers of TF occupancy at nucleotide resolution because 

DNaseI cleavage is not uniform within DNaseI hypersensitive sites. (Neph et al., 2012) provided 

an extensive map of the footprints, resulting with millions of TF sites (short sequence elements) 

in 41 cell lines (~1.1 million high-confidence footprints per cell type and collectively 45,096,726 

6-40 base-pair footprint events across all cell types). The study found strong correlations 

between footprint occupancy and phylogenetic conservation for diverse TFs. For that reason, the 

footprint dataset was incorporated in training of our model.  

 The NIH Roadmap Epigenomics Consortium (Roadmap Epigenomics et al., 2015) is, like 

ENCODE, another major project that attempts to map epigenomic data. It generated so far the 

largest collection of human epigenomes for different cells and tissues, profiled for histone 

modifications, DNA accessibility and methylation, and RNA expression. Regulatory elements 

are catalogued in global maps, based on their activators and repressors. Some of the resulting 

datasets from ChIP-seq and DNase-seq assays are selected to train our model.  

 In addition to ENCODE and Roadmap projects, there is a lot of data available publicly 

from other ChIP-seq experiments. (Griffon et al., 2015) integrated 395 available human public 

(non-ENCODE) datasets from ChIP-seq experiments (downloaded from Gene Expression 

Omnibus and ArrayExpress databases) and created a map of regulatory elements by compiling 

the genomic localization of 132 different TF’s across 83 different cell lines and tissue types. 

They compared resulting TF occupancy map with the one from ENCODE TF catalogue and 
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realized that public regulatory elements catalogue was complementary to ENCODE region. They 

identified 8.9 million ChIP-seq peaks bound by TFs in the human genome, out of those 5.4 

million they classified as non-redundant. For our model training we’re using original 395 non-

ENCODE datasets as features.   

 Chromatin states data (Ernst e Kellis, 2010; Ernst et al., 2011; Roadmap Epigenomics et 

al., 2015) provides an annotation of the human genome based on diverse combinations of 

epigenetic marks. Two datasets we used for this work are a result of chromatin model applied to 

9 (Ernst et al., 2011) and 127 epigenomes (Roadmap Epigenomics et al., 2015) respectively of 

different cell types using ChromHMM algorithm. ChromHMM uses a multivariate Hidden 

Markov Model to reveal chromatin states in many cell types, based on combinations of 

chromatin marks. Each chromatin state shows specific enrichments in functional annotations, 

sequence motifs and other characteristics related to biological roles. ChromHMM analysis 

revealed 15 distinct states for both of these datasets. One of the 15-state chromatin models 

consists of 8 active and 7 repressed states that were recurrently recovered (such as promoter, 

enhancer, insulator, transcribed regions, repressed regions and inactive state) and show 

evolutionary conserved non-exonic regions. The second chromatin state data set we used for 

model training also consisted of 15-states, but different ones due to being derived across 127 

epigenomes.  The third chromatin state data set we used for model training is 25-state model also 

based across 127 epigenomes (Roadmap Epigenomics et al., 2015), but also contains imputed 

epigenomic signal. It is used to complete missing histone marks and therefore complement 

observed data, but also imputed data can be used even when observed data is available. 
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2.3.2 Conserved Regions Datasets 

 Several methods to detect conservation already exist and resulting datasets of identified 

conserved elements are available. For this study, we used four different datasets delineating 

conserved regions in the human genome: phastCons (Siepel et al., 2005; Rosenbloom et al., 

2015), GERP++(Cooper et al., 2005; Davydov et al., 2010), SiPhy-Pi (Pi) and SiPhy-Omega 

(Omega) Elements (Garber et al., 2009; Lindblad-Toh et al., 2011), named after methods that 

were used to derive them. The four datasets contain differences not only because they are derived 

by different methods, but also because there are discrepancies in quality and granularity among 

them in terms of density and length of conserved regions they define.  Each dataset is used 

separately to derive a response vector (labels) to train our method as described in methods 

section. The names of the files we used and sources where we obtained them are given in the 

table in data section, and all of them pertain to hg19 assembly of the human genome. The four 

sets of resulting predictions resulted with similar predictions, but there are slight differences that 

are later compared and contrasted in the discussion section. In this section, we give brief 

description of each of the four datasets used for model training.  

 PhastCons dataset (Siepel et al., 2005) was generated by phastCons program, which is 

part of software package called PHAST (Phylogenetic Analysis with Space/Time models). 

PhastCons model uses shortened phylogenetic tree for comparison of genomes of various 

species. PhastCons method aims to identify regions that show slower substitution rates than 

sequences evolving neutrally and is therefore classified as rate-based method. The original study 

using phastCons method compared total of 18 genomes (five vertebrate, four insect, two C. 

elegans and seven yeast genomes, but not compared to each other). For labels in our method, we 

used a newer dataset that aligns 100 vertebrate genomes (Rosenbloom et al., 2015).  



	  

18	  
	  

GERP++ dataset (Cooper et al., 2005; Davydov et al., 2010) is an improvement to GERP 

(Genomic Evolutionary Rate Profiling) program (Cooper et al., 2005).  GERP method is also 

rate-based and uses the concept of rejected substitutions to discover sequences with fewer 

mutations than would be expected for sequences evolving neutrally. Rate-based methods are 

successful and widely-used, but do not capture all aspects of the evolution of functional 

sequences and the notion that the functional constraint can also act as a biased substitution 

pattern. GERP++ provides both nucleotide and element-level constraint scores. It uses maximum 

likelihood evolutionary rate estimation for position-specific scoring and dynamic programming 

to define constraint elements. It ranks the candidate elements based on statistical significance. 

GERP++ identified over 1.3 million constrained elements spanning over 7% of the human 

genome. We have used GERP++ dataset for labels in order to train our model (newer version 

than original GERP method). 

 SiPhy-Pi and SiPhy-Omega elements datasets (Garber et al., 2009; Lindblad-Toh et al., 

2011) were generated by SiPhy (SIte-specific PHYlogenetic analysis) program. SiPhy-Pi method 

takes into account biases in the substitution patterns (selection acting on the pattern of mutations) 

in addition to the substitution rate, such as positions free to mutate between A and G as the last 

nucleotide in lysine codons AAA and AAG. SiPhy-Omega method only takes into account 

substitution rate. The study using SiPhy-Pi method, comparing 29 eutherian (placental) genomes 

across the four major mammalian clades, has greater power to detect evolutionary constraint than 

human-mouse-rat-dog comparison (Lander et al., 2001; Waterston et al., 2002; Gibbs et al., 

2004; Lindblad-Toh et al., 2005) due to greater effective branch length (~4.5 substitutions per 

site) and high sequence accuracy (estimated error rates of only 1-3 miscalled bases per kilobase, 

that is ~50 fold lower than between the species nucleotide sequence difference).  
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 The study concluded that 4.2% of the human genome is detectable (confidently 

identifiable) and at least 5.5% is constrained. Specifically, 3.6 million conserved elements were 

identified at a finer resolution of 12 basepairs. Most of the newly detected elements were present 

in non-coding regions. Further, the study interpreted ~60% of the identified bases as functional, 

playing protein-coding, RNA, regulatory and chromatin roles, while ~40% were unclassified. 

Roles of elements residing in intronic and intergenic regions were characterized by their overlap 

with evolutionary signatures (Kellis et al., 2003; Stark et al., 2007) of specific types of features. 

 When compared to PhastCons and GERP methods at false discovery rate (FDR) at 5%, 

SiPhy method identified significantly more bases as constrained in comparison to PhastCons and 

GERP, indicating that significant number of SiPhy-Pi elements do not overlap with PhastCons 

and GERP. Specifically, only 56% of the elements are shared by all three methods. SiPhy-Pi 

detects more degenerate sequences than the other two methods. Specifically, SiPhy elements 

showed enrichment in unique exonic and promoter bases in regions that are rich with degenerate 

regulatory motifs. The SiPhi-Pi set that we used for labels to train our model has conservation 

score of approximately 5%.  

2.3.3 Data Access  

 Datasets for training features were obtained from ENCODE and Roadmap projects, and 

publicly available database compiled by (Griffon et al., 2015). Table 1 illustrates datasets used to 

train our model and number of features obtained from each set of files. Table 2 contains file 

names of datasets used as labels in our model. Further information and links to each specific 

datasets are given in tables 3 and 4 in the supplementary material.  
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Source Feature Types Features 
ENCODE TFBS Uniform 690 
ENCODE DNase Uniform 125 
ENCODE Histone Peaks 274 
ENCODE Open Chrom Dnase 100 
ENCODE DNase 236 
ENCODE Dgf 64 
ENCODE TFBS – Sydh 359 
ENCODE TFBS – Univ. of Chicago 6 

ENCODE TFBS – Univ. of 
Washington 114 

ENCODE Open Chrom Chip 55 
ENCODE Histone 29 
ENCODE Histone 207 
ENCODE Open Chrom Faire 38 
ENCODE TFBS 692 
ENCODE Histone 280 
ROADMAP Peaks (narrow) 1915 
ROADMAP  DNA Footprints 42 
Public Data Peaks 395 
ROADMAP  Chromatin State Hmm 135 

ROADMAP Chromatin State Core 
Marks 1905 

ROADMAP Chromatin State Imputed 
Marks 3175 

Table 2.1: Datasets used to train our model and number of features obtained from each set 
of files 

 

Name File Name 
GENCODE 
v19 gencode.v19.annotation.gtf.gz 

phastCons phastconselements_100_hg19.txt 
GERP hg19.GERP_scores.tar.gz 
Omega 
Elements 

hg19_29way_omega_lods_elements_12mers.chr_specific.fdr_0.1_with_scores.
txt 

Pi Elements hg19_29way_pi_lods_elements_12mers.chr_specific.fdr_0.1_with_scores.txt 
Table 2.2: Datasets used as labels in our model 
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2.3.4 Data Access Supplementary 

 Datasets for training features were downloaded from ENCODE and Roadmap projects, 

and other publicly available databases. Links to each specific datasets are given in the table 3. 

The single-feature files contain histone mark peak calls in the first three columns (chromosome 

number, start and end coordinates of the peak). The coordinates in these files are 0-based with 

the first coordinate inclusive and the second coordinate exclusive. Each file is treated as one 

feature (total of 5226 files and therefore 5226 features).  

 

Source Files Features Link 

ENCODE 690 690 http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEnc
odeAwgTfbsUniform/*.narrowPeak.gz 

ENCODE 125 125 http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEnc
odeAwgDnaseUniform/*.narrowPeak.gz 

ENCODE 274 274 http://www.broadinstitute.org/~anshul/projects/encode/rawdata/peaks
_histone/mar2012/narrow/combrep_and_ppr/ 

ENCODE 100 100 ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEnco
deOpenChromDnase/*.narrowPeak.gz  

ENCODE 236 236 ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEnco
deUwDnase/*.narrowPeak.gz  

ENCODE 64 64 ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEnco
deUwDgf/*.narrowPeak.gz 

ENCODE 359 359 ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEnco
deSydhTfbs/*.narrowPeak.gz 

ENCODE 6 6 ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEnco
deUchicagoTfbs/*.narrowPeak.gz 

ENCODE 114 114 ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEnco
deUwTfbs/*.narrowPeak.gz 

ENCODE 55 55 ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEnco
deOpenChromChip/*.narrowPeak.gz 

ENCODE 29 29 ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEnco
deSydhHistone/*.narrowPeak.gz 

ENCODE 207 207 ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEnco
deUwHistone/*.narrowPeak.gz 

ENCODE 38 38 ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEnco
deOpenChromFaire/*.narrowPeak.gz 

ENCODE 692 692 ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEnco
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deHaibTfbs/*.broadPeak.gz 

ENCODE 280 280 ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEnco
deBroadHistone/*.broadPeak.gz 

ROADMAP 1915 1915 http://egg2.wustl.edu/roadmap/data/byFileType/peaks/unconsolidated/
narrowPeak/*.narrowPeak.gz  

ROADMAP 
DNA Footprints  

42 42 http://egg2.wustl.edu/roadmap/data/byDataType/dgfootprints/*.narro
wPeak.gz 

Publicly 
Curated Data 

1 395 http://tagc.univ-mrs.fr/remap/download/All/nrPeaks_public.bed.gz 

ROADMAP 
Chromatin State 

9 135 http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEnc
odeBroadHmm/* 

ROADMAP 
Chromatin State 

127 1905 http://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentat
ions/ChmmModels/coreMarks/jointModel/final/*mnemonics.bed.gz 

ROADMAP 
Chromatin State 

127 3175 http://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentat
ions/ChmmModels/imputed12marks/jointModel/final/*mnemonics.be
d.gz 

Table 2.3: Datasets used to train our model and access links for each feature file 

 

 The multi-feature files (public currated data and chromatin states) contain feature names 

in the fourth column, in addition to chromosome number, start and end coordinates of the peak in 

the first three columns. The coordinates of the peaks in these files are 0-based with the first 

coordinate inclusive and the second coordinate exclusive. Each unique entry in the fourth column 

is a separate feature so the combination of the file and the fourth column uniquely identifies the 

feature. There is a total of 264 files and 5610 features, depending on how many features each file 

contains.  Publicly curated data contains 1 file, which contains 395 distinct features, which are 

corresponding to different datasets. For chromatin model, every genome position should be in 

one chromatin state in each cell type by the Roadmap ChromHMM. First Chromatin State 

dataset contains 9 cell types (there is one file per cell type) and 15 states per file and therefore 

135 features, the second dataset contains 127 files and 15 states per file totaling 1905 features, 

and the third dataset contains 127 files and 25 states per file, totaling 3175 features.  
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 For conserved regions, we used GENCODE v19 (hg19) as reference, in order to remove 

exons from our model. In this file, exon positions are those lines for which the third column has 

the entry exon, the first column is chromosome, the fourth column is the start position and the 

fifth column is the end position. These coordinates are 1-based with start and end inclusive. 

Phastcons file is a single file. The coordinates are 0-based, with start inclusive and end exclusive. 

GERP file is a single zipped file that contains separate files for each chromosome named 

hg19_chr#_elems.txt (where # stands for chromosome number). These coordinates are 1-based 

and start and end inclusive. Omega and Pi elements files are a single file each. The coordinates 

are 0-based, start and end inclusive. Links to each specific datasets are given in the table 4. 

 

Name File Name Link 
GENCOD
E v19  

gencode.v19.annotation.gtf.gz ftp://ftp.sanger.ac.uk/pub/gencode/
Gencode_human/release_19/ 

phastCons phastconselements_100_hg19.txt  http://hgdownload.cse.ucsc.edu/  

GERP hg19.GERP_scores.tar.gz  http://mendel.stanford.edu/SidowL
ab/downloads/gerp/  

Omega 
Elements 

hg19_29way_omega_lods_elements_12mers.
chr_specific.fdr_0.1_with_scores.txt 

http://www.broadinstitute.org/scien
tific-
community/science/projects/mamm
als-models/29-mammals-project-
supplementary-info 

Pi 
Elements 

hg19_29way_pi_lods_elements_12mers.chr_
specific.fdr_0.1_with_scores.txt 

http://www.broadinstitute.org/scien
tific-
community/science/projects/mamm
als-models/29-mammals-project-
supplementary-info 

Table 2.4: Datasets used as labels in our model and access links for each feature file 
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2.5 Method 
 

 PICEL was trained using logistic regression to predict non-exonic in the human genome. 

In order to accomplish this task, we have chosen 10,836 functional genomics features to be 

directly related to gene regulation. This number of features supersedes by far the amount of 

features used by other similar methods described earlier in this manuscript such as CADD 

(Kircher et al., 2014), fitCons (Gulko et al., 2015), Eigen (Ionita-Laza et al., 2016), GenoCanyon 

(Lu et al., 2015), and method by (Schrider e Kern, 2015). 

 Majority of the features chosen to train PICEL (5579 features, which equals to 51.5% of 

all features) are peak or domain calls from DNase-seq and FAIRE-seq assays, and histone 

modification TFBS derived by ChIP-seq experiments from various sources. In addition, a small 

subset of features for training (~.5%) also included DNase I footprint data. As described earlier, 

footprints are quantitative markers of TF occupancy at nucleotide level and demonstrate protein-

DNA interaction. TFBS are likely to be regulatory elements and therefore provide useful 

epigenetic information and are therefore likely to be predictive to conservation in the genome.  

 Approximately another half of the features used to train PICEL (5215 features, which 

equals to 48% of all features) are chromatin state datasets (with core and imputed marks). As 

discussed earlier, chromatin states (Ernst e Kellis, 2010; Ernst et al., 2011; Roadmap 

Epigenomics et al., 2015) provide diverse classes of epigenetic function in the human genome. 

Two datasets we used for this work are a result of chromatin model applied to 9 and 127 
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epigenomes respectively of different cell types using ChromHMM algorithm. The third 

chromatin state dataset we used for model training is imputation based 25-state model across 127 

epigenomes, which contains imputed epigenomic signal. It is used to complete missing histone 

marks and therefore complement observed data, but also imputed data can be used even when 

observed data is available. Combined patterns of chromatin marks show evolutionary conserved 

non-exonic regions and are therefore good candidates for our training set. 

 Each feature subset and data source is discussed in more detail elsewhere in this 

manuscript and the information about the number of individual features in each subset and 

source from where they were obtained is provided in the tables. 

 The response vector for training PICEL contains binary labels indicating whether the 

sampled location in the human genome is conserved or not.  The labels are derived from a 

dataset that already contains known conserved regions, except that locations within exons are 

excluded because exploring non-exonic regions of the human genome is of primary interest in 

this project. In particular, if randomly sampled location happens to be an exon, it was labeled as 

non-conserved region. Also, we have discarded any conserved regions located at random 

fragments that were present in GERP++ file, as those weren’t pertaining to a specific 

chromosome (or at least their location hasn’t been confirmed). Also, we have excluded 

chromosome Y from our model training in all cases. We repeated model training with four 

different sets of labels, each coming from a different dataset: phastCons, GERP, Pi, and Omega 

elements.  
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2.6 Model Training 
 

 The model training was done by randomly sampling positions from genome-wide 

locations on all chromosomes, except for one chromosome that was designed as a test 

chromosome. The same procedure was repeated 23 times, as each time a different chromosome 

was designed as the test chromosome. Sampling of the positions on the chromosomes was done 

proportional to chromosome size. 10 sets of samples of 1 million each were trained individually 

and predictions were averaged across the 10 resulting models, totaling to 10 million samples.  

The same procedure has been repeated 23 times, where each time a different chromosome was 

designed as a test chromosome, and the model was trained on samples drawn from all but the test 

chromosome. Furthermore, the entirely described procedure was repeated four more times, for 

four different sets of response labels (phastCons, GERP, Pi and Omega elements) as mentioned 

earlier. 

 Given the large amount of samples, the training matrix was logged in sparse format, 

indicating only matrix coordinates of the locations at which features were present (non-zero 

entries), and not listing locations where the features were not present (zero entries). However, 

even in sparse format, the files are very large. The number of non-zero entries in datasets was 

approximately 50 million.  

 The matrix was created in programming language C and the source code was unified to 

do the sampling, feature extraction from various data sources, and label identification all at once. 

The code was executed on the cluster computer with 32GB of memory (RAM). The code is also 

able to handle two million samples at once (twice as many), when 64GB of memory (RAM) is 

available (twice as much).  
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 We were able to reduce the time to create training matrix down to several hours from 

expected several days or longer (the matrix size was very large: 1,000,000 rows x 10,836 

columns). In order to do that, we made several algorithmic improvements.  

 One of the major improvements was to create training vectors separately for each feature 

and write them to intermediate files. This way we didn’t need to wait for 10,836 features to be 

processed serially one by one, which was not only computationally intensive task (for each 

feature). Instead, feature vectors were created in parallel, which significantly reduced 

computational time, but it also reduced any additional I/O access to original datasets (features 

files) because all the information about training features was already processed.  In addition, this 

added flexibility to the code, as more features (datasets or tracks) could be added without 

previously collected features having to be recalculated for the same training set.  

 However, about 50% of the features were contained in files that consisted of multiple 

features (not in single file), as mentioned in data section. Not all training vectors were able to be 

created simultaneously in parallel as repeated passes through multi-feature files were needed. 

Therefore, to compromise between the two (single vs. multiple feature files) and to 

accommodate for flexibility for adding more dataset tracks later, our code was split into sections, 

so that given the argument passed when running the program, a certain section of features gets 

processed. All sections were executed in parallel.  

 Having intermediate vector files also helped with redundancy (back up),, and thanks to 

this improvement the process could be continued from the breaking point instead of all the way 

from the beginning (e.g. if 80% of the features had already been processed, then the run could 

get restarted to only complete processing the remaining 20% of the features). Requiring extra 
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space for the intermediate vector files was a minor issue in comparison to the gain of overall 

performance improvement, flexibility and reliability. Besides, if disk space were an issue, those 

files could’ve been written to the “scratch” partition that was designed to occasionally 

automatically get purged.  

 Once training vectors were written to separate files, they were collected into a matrix, and 

the matrix was transposed. Transposing the training matrix was memory and computationally 

intensive task, but was fortunately needed to be done only once per training set. Since row vector 

files were containing only binary values, we took advantage of Boolean type in C that required 

less memory (at least 4 times less memory than integer value). Given that intermediate row 

vector files were identical in format (unlike feature files) and smaller than originally feature files 

(datasets containing more information), we did not experience any significant issues loading 

them after figuring out the memory requirement for the size of the matrix. The time to transpose 

the matrix and create a file in the format required by Liblinear package to perform logistic 

regression was measured in hours (e.g. around 12 hours, depending on the power of the cluster 

node assigned for the job), which is still significantly short given the size of the problem (which 

could take days).   

 One more improvement included the code for determining labels (whether sampled 

genome position was considered a conserved region or not). All four datasets used for labels 

were processed in parallel, and separate label vectors were created in parallel (again, using 

Boolean type in C that uses at least 4 times less memory than integer). Therefore, when training 

matrix was transposed, the labels were appended for four different datasets and four different 

files (in the file format required by Liblinear) were created right away. Therefore, there was no 
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need to transpose the matrix four times for the same training set, just because it needed different 

labels.  

 Another major improvement to feature extraction algorithm was addition of temporary 

2D array (matrix) to help speed up creation of the training vector for each feature. First, we 

sorted all feature files using sort() utility in Unix so that tuples (chromosome number, start 

position, end position) were sorted by chromosome number in ascending order, then by start 

position also in ascending order. Given the number and size of the datasets (feature files), this 

was time consuming task (it took approximately half a day), but was only done once.  

 The training samples were sorted as well (after being randomly sampled genome-wide), 

in a manner that all positions pertaining to a particular chromosome were logged in a single row 

(and sorted in ascending order), and each row of the matrix pertained to one chromosome (again 

in ascending order, starting from chromosome 1 up to chromosome 23, which was chromosome 

X, as we ignored the information from chromosome Y).    

 The temporary 2D array (matrix) was initialized to all zeros, and if the feature was 

present at the particular sampled location (if the entry containing the interval of the sampled 

position was found in the feature file), the matrix value for that sample was changed to one. 

Because the feature files were sorted, logging whether a feature was present at a certain sampled 

location on the chromosome was speeded up because as the program was parsing through a 

feature file, it would log features present at a particular chromosome in a single row of a matrix, 

then when the chromosome number changed in the feature file, it would hop to the next row of 

the matrix. This way access to 2D array was serialized, and given that the access was row by row 

(which is how matrices are stored in memory) and not column by column, this provided 
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significant speedup in processing single feature file.  Feature vector was created also by passing 

through temporary 2D array row-wise.  

 Finally, we took advantage of job parallelization by simultaneously scheduling array jobs 

that could run independently in parallel on the cluster computer.  

 

2.7 Logistic Regression 

 Logistic regression was performed using Liblinear package (Fan et al., 2008) on the 

training matrix created by PICEL method. Here we give a brief overview of logistic regression. 

 Logistic regression is traditionally one of the tools used for discrete data analysis, 

possibly because it often works well as a classifier. It models the conditional probability 

P(Y=1|X=x) as a function of x (where X is a feature vector and x is an individual feature) for a 

binary output variable Y. The hypothesis function p (θTx), where θ is vector of parameters, is 

chosen to be sigmoid function (termed “logistic function”): 

𝑝θ 𝑥 =
1

1+ 𝑒!!!!
 

 The output values of the sigmoid function could be any real value in the range [0..1] 

(including zero and one, which are boundaries). Any unknown parameters in the function can be 

estimated using maximum likelihood.  

Formally, the model for logistic regression is (Shalizi, 2015):  
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Where solving for p gives: 

 

The decision boundary separating two classes is the solution of the linear term: 

 

 This makes logistic regression a linear classifier. The classifier not only shows where the 

boundary between the two classes is located, but that the class probabilities depend on the 

distance from the boundary in a particular way, which go towards the extremes (zero or one) 

more rapidly depending on the value of β. Most importantly, logistic regression predicts 

probabilities and is also well calibrated, for example, for classes C and “not C” p(C|X)=[0..1]  

and p(“not C”|X) > .5  

 The performance of a model trained using logistic regression is measured by applying it 

to test samples and calculating area under the curve (AUC) value, which ideally would be an 

estimate of the probability that the classifier will assign a higher score to a randomly chosen 

positive example than to a randomly chosen negative example. Statistically, AUC is the 

probability that a classifier will rank a randomly chosen positive instance higher than a randomly 

chosen negative one(Fawcett, 2006) and is based on calculating true positive rates and false 

positive rates. Receiver operating curve (ROC) plots true positive vs. false positive rate for all 

possible cutoffs, and AUC is simply the area (integral) under ROC curve.  Therefore, the purpose 

of AUC is to tell us something about family of tests, not an individual test, but one for each 

possible cutoff value.  

 The pseudo code for the simple way of calculating AUC is the following: 
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First, rank scores obtained for test examples in decreasing order, then: 

auc = 0.0 

height = 0.0 

for each training example xi, yi 

 if yi = 1.0 

  height = height + tpr 

 else 

  auc = auc + height * fpr 

return auc 

 

2.8 Model Testing, and Validation 
 

 Given that the model was trained using large number of samples, over-fitting ended up 

not being a problem. We have run many experiments in this area in order to make sure that is the 

case. The model was trained multiple times, including times when regularization was attempted. 

For regularization, various values of regularization parameter lambda were used and in the range 

from 10-5 to 100, with step 10 in terms of power in order to understand when the AUC value 

reaches saturation point on both ends (lower and upper bound). Also, two types of logistic 

regression regularization were attempted: l1 and l2. L1 regularization is based on Laplacian 

distribution which contains a term with absolute value (e.g. |x|) and therefore favors zero 

weights, while l2 regularization is based on Gaussian distribution which contains square term 

(e.g. x2) and favors weights that are close to zero, but not exactly zero. The reason is that zero 

weights penalize some features and favor others, which could be good approach in some cases. It 

is noteworthy, though, that if there are two feature with the same weight and one of them gets 

favored randomly the other one might get ignored. In our training, almost all of the resulting 
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weights were non-zero whether using l1 weights for most values of the regularization parameter 

or l2 regularization. Table 5 illustrates some of the average weights of 10 classifiers for some of 

the features (rows) used for model training. Each column indicates a model trained with a 

different set of labels (conserved element sets: Omega, Pi, GERP++, and phastCons). The only 

notable difference between l1 and l2 regularization was speed, because l1 took much less time to 

run than l2 (approximately 10-15 minutes vs. 10-15 hours).  

 

Average Weights 
Omega Pi GERP++ phastCons 

-0.03 
-

0.03 -0.01 0.00 
-0.02 0.01 -0.03 -0.02 
-0.02 0.00 -0.03 -0.03 
0.02 0.04 0.02 0.02 
0.03 0.00 0.02 0.03 

-0.03 
-

0.02 -0.03 -0.03 
0.01 0.02 0.01 0.00 
0.02 0.02 0.04 0.02 

-0.01 0.00 -0.02 -0.02 

-0.04 
-

0.04 -0.05 -0.05 

-0.05 
-

0.04 -0.04 -0.03 

-0.03 
-

0.01 -0.02 -0.02 

-0.02 
-

0.02 -0.03 -0.02 
-0.01 0.00 -0.01 -0.01 
0.05 0.06 0.06 0.05 
0.12 0.07 0.15 0.12 

-0.01 0.00 -0.01 0.00 

-0.09 
-

0.07 -0.09 -0.08 
Table 2.5: Average weight of 10 classifiers for some of the features (rows) used for model 
training. Each column indicates a model trained with a different set of labels (conserved 
element sets: Omega, Pi, GERP++, and phastCons). 
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 The area under the curve (AUC) value reached its saturation point when the 

value of regularization parameter lambda was not small (as mentioned earlier, 

values of regularization parameter lambda were used in the range from 10-5 to 100, 

with step 10 in terms of power), as indicated in table 6. This showed that the 

amount of samples was large enough to avoid overfitting and therefore any non-

small value of parameter lambda would suffice (regularization was not needed).   

Type l1 l2 

Samples 
100 
million 

10 
million 

100 
million 

10 
million 

lambda AUC 
0.00001 0.5823 0.574 0.7381 0.7343 
0.0001 0.6218 0.6227 0.8056 0.8009 
0.001 0.7511 0.7493 0.823 0.8181 
0.01 0.8141 0.8097 0.829 0.8236 
0.1 0.8284 0.823 0.8303 0.8242 

1 0.8309 0.8241 0.8306 0.8242 
10 0.8309 0.8237 0.8306 0.8243 

100 0.8309 0.8236 0.8306 0.8244 
Table 2.6: Resulting AUC values after regularization (varying the value of parameter 
lambda). Model trained using l1and l2 logistic regression on 100 million and 10 million 
data points representing genome-wide chromosome positions on all chromosomes except 
chromosome 1.   

 

 To push the limits even further, we have successfully trained the model on 100 million 

samples in total by training 100 models of one million samples each and averaging resulting 

predictions. This particular run was done only once, where training set were all chromosomes 

except chromosome 1, and chromosome 1 was designed as a test chromosome. As shown in 

table 6, AUC values were only slightly higher, indicating that adding more samples was reaching 

diminishing returns. Likewise, averaging two models of one million samples each or training a 



	  

35	  
	  

single model of two million samples didn’t show significant difference (similar AUC values in 

all three cases, as shown in table 7). Having more than two million samples in a single training 

set was not feasible with current technical abilities of the cluster computer we were using and 

model implementation. Alternatively, it might’ve been possible to use stochastic gradient descent 

regression, that doesn’t require all samples to be provided at once, but the number of samples our 

implementation could process was satisfactory.   

Samples 
10x1 
million 

1x2 
million 

10x2 
million 

Chromosome AUC  
chr1 0.828552 0.816697 0.828579 
chr2 0.821355 0.807488   
chr3 0.822076 0.810995   
chr4 0.822461 0.811989   
chr5 0.821542 0.810629   
chr6 0.822243 0.811814   
chr7 0.822673     
chr8 0.822734     
chr9 0.821938     
chr10 0.821636     
chr11 0.82241     
chr12 0.822625     
chr13 0.82271     
chr14 0.822914     
chr15 0.822295     
chr16 0.822132     
chr17 0.822155     
chr18 0.823042     
chr19 0.822897     
chr20 0.822805     
chr21 0.822756     
chr22 0.823071     
chr23 0.821613     

Table 2.7: AUC values received when testing the model. Training set contained genome-
wide positions from all chromosomes, except single chromosome, test set contained the 
excluded chromosome. Model trained using l1 logistic regression with regularization 
parameter lambda = 1. In the first column, predictions were averaged from 10 models, 
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each one containing 1 million samples (total of 10 million samples). In the second column, 
predictions were based on a single model containing 2 million samples. In the third 
column, predictions were averaged from 10 models of 2 million samples each (total of 20 
million samples). AUC values are similar enough to indicate that the optimal amount of 
samples for model training is 10 x 1 million samples (when computational time and 
memory are taken into account).  

 

 Therefore, based on experimental results and taking into account technical availabilities 

(e.g. computational time and memory), we have chosen the amount of samples for model 

training to be 10 x 1 million samples. Thus, for final model training we have settled on using l1 

logistic regression with regularization parameter lambda =1 (default value), and 10 million 

samples (10 models trained on one million samples each and then averaged predictions) per 

training set for each test chromosome.  

 Finally, we have applied our trained model parameters genome-wide and obtained a score 

for each position in the entire human genome.  This was computationally intensive task and 

required some clever algorithmic design and parallelization, which reduced the memory 

requirement 4 times (from 32 GB to 8 GB needed for creating a training set), and computational 

time 2-fold (from initial 1 to 5 days to only 12 to 60 hours) depending on the size of the 

chromosome (taking into consideration that chromosome 1 is five times larger than chromosome 

21).  

 First of all, the genome-wide process was parallelized by working on each chromosome 

separately (23 array jobs were running in parallel). Even though this was major time-saving step, 

it would’ve still taken (more) days to complete the computations. The second major 

improvement was splitting each of the jobs operating on a single chromosome into 10 parts. This 

ended up being 230 jobs times four for four different models (due to four different datasets for 

labels), which totaled 920 jobs running in parallel (theoretically). Practically, the scheduler did 



	  

37	  
	  

not allow this many jobs to run in parallel, and certainly wouldn’t prioritize scheduling any of 

the jobs if they required a lot of memory, so the second major algorithmic improvement was to 

reduce memory requirement.  

 The significant memory reduction was achieved by storying as little information as 

possible in order to calculate probabilities (scores). While the parameters of all training vectors 

were stored in the matrix (in order to keep calculations for multiple models efficient and 

parallel), whether the feature was present or not at each particular position on the chromosome 

was not stored in a matrix. Instead, we only kept a single vector that was keeping the running 

sum. To be more specific, the vector was initialized to zero. Once the first feature was processed, 

all the entries in the vector pertaining to positions that contained that particular feature were 

changed to the weight of that feature (specifically, the new weight was added to the originally 

initialized zero weight). Then, once the next feature was processed, also the weight for that 

particular feature was added to the previous value in that position in the vector. Once the last 

feature was processed, the vector contained the running sum for each position on the 

chromosome. Then the value of the intercept was added and the running sum was plugged into a 

logistic function, in order to calculate probabilities (scores). Since the final scores were averaged 

of 10 (or more) models, we introduced an extra vector to keep track of accumulated probabilities 

at each position for all models, which were averaged in the end. None of these steps required 2D 

arrays (except for the array keeping track of parameter vectors for each model), and therefore 

didn’t have as large memory requirement.  

 As mentioned earlier, each run per chromosome was split to be processed as 10 runs in 

parallel, each one pertaining to the different part of the chromosome. Therefore, the above 

described vectors were 10 times shorter than the chromosome size, which resulted in memory 
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requirement per job reduced 8 times from the original version. This was possible to do, because 

the scores for each genome position were independent.  

 However, this did require extra coding effort to make sure that each part of the 

chromosome was processed correctly (e.g. that each position where the feature is located is 

logged in the right section). Even more specifically, start and end position of a particular feature 

location could span multiple chromosome parts and it required extra caution that they those 

features get logged in all places (parts). It is worth noting that some feature files contained 

positions of the peaks starting before the beginning of the chromosome and end positions ending 

beyond the ends of the chromosome, probably due to read errors during sequencing.  

 Some of the algorithmic improvements were similar to already described in model 

training section.   The processing of feature files (datasets or tracks) was split into sections, so 

that given the argument passed when running the program a certain section of features would get 

processed. That way I/O access to feature files (datasets) was minimized. All sections were 

executed in parallel. Similarly to also previously described, given that feature files (datasets) 

were sorted, only sections of the files containing lines pertaining to a certain chromosome 

needed to be considered, while lines for other chromosomes were skipped.  

 Finally, concatenated 10 resulting files from each part of the chromosome into a single 

.wig file with scores for the entire chromosome that can be loaded into genome browser. 

Similarly, we concatenated .wig files for all chromosomes into a single .wig file for more 

comprehensive viewing.   
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2.9 Results  
 

 Receiver operating characteristic (ROC) curve for each element set along with Area 

under the Curve (AUC) value is given in figures 2, 3, 4, and 5 respectively. The highest AUC 

value for GERP element set was 0.83 and 0.82 for both SiPhy-Pi and SiPhy-Omega elements, 

indicating good model performance. Only the AUC value for phastCons elements was slightly 

lower: 0.76.  
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Figure 2.2: Single ROC curve for all models trained using10 million sampled points from 
all chromosomes genome-wide except the chromosome numbered on the plot and labels 
based on Pi elements dataset.  
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Figure 2.3: Single ROC curve for all models trained using10 million sampled points from 
all chromosomes genome-wide except the chromosome numbered on the plot and labels 
based on phastCons dataset.  
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Figure 2.4: Single ROC curve for all models trained using10 million sampled points from 
all chromosomes genome-wide except the chromosome numbered on the plot and labels 
based on GERP dataset.  
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Figure 2.5: Single ROC curve for all models trained using10 million sampled points from 
all chromosomes genome-wide except the chromosome numbered on the plot and labels 
based on Omega elements dataset.  
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 The AUC values for each test per chromosome are given in table 8.  

 

10 milion Area Under the Curve (AUC) Value 
lambda = 1 Pi phastCons GERP Omega 
chr1 0.77 0.76 0.83 0.82 
chr2 0.80 0.76 0.82 0.82 
chr3 0.79 0.75 0.81 0.81 
chr4 0.80 0.75 0.81 0.81 
chr5 0.80 0.75 0.81 0.81 
chr6 0.80 0.75 0.81 0.81 
chr7 0.82 0.75 0.82 0.82 
chr8 0.80 0.76 0.82 0.81 
chr9 0.85 0.78 0.84 0.85 
chr10 0.80 0.75 0.82 0.81 
chr11 0.81 0.75 0.81 0.80 
chr12 0.80 0.74 0.82 0.81 
chr13 0.84 0.79 0.84 0.85 
chr14 0.84 0.80 0.85 0.85 
chr15 0.85 0.79 0.85 0.85 
chr16 0.83 0.78 0.84 0.82 
chr17 0.80 0.74 0.81 0.80 
chr18 0.81 0.76 0.82 0.83 
chr19 0.85 0.73 0.84 0.83 
chr20 0.82 0.75 0.82 0.82 
chr21 0.86 0.80 0.86 0.86 
chr22 0.87 0.81 0.86 0.86 
chr23 0.81 0.71 0.78 0.82 
Table 2.8: Comparison of AUC values on per single chromosome basis for the four 
conserved element sets: Pi, Phastcons, GERP, and Omega. Lambda is a regularization 
parameter (non-small value of lambda indicates very little regularization). 

 ROC curves for each set of conserved regions and each test per chromosome are given in 

figures 6, 7, 8, and 9 respectively. 
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Figure 2.6: ROC curves for model trained using10 million sampled points from all 
chromosomes genome-wide except the chromosome numbered on the plot and labels based 
on Pi elements dataset.  
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Figure 2.7: ROC curves for model trained using10 million sampled points from all 
chromosomes genome-wide except the chromosome numbered on the plot and labels based 
on phastCons elements dataset.  
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Figure 2.8: ROC curves for model trained using10 million sampled points from all 
chromosomes genome-wide except the chromosome numbered on the plot and labels based 
on GERP elements dataset.  
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Figure 2.9: ROC curves for model trained using10 million sampled points from all 
chromosomes genome-wide except the chromosome numbered on the plot and labels based 
on Pi elements dataset.  
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 In addition, AUC curves for each test chromosome are plotted separately (not overlaid for 

better clarity) for Pi elements in figure 10.  

 

Figure 2.10: Individual ROC curves for model trained using10 million sampled points 
from all chromosomes genome-wide except the chromosome numbered on the plot and 
labels based on Pi elements dataset.  
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 The resulting genome-wide scores are stored in the .wig file format and each score 

indicates how likely the particular base in the human genome is a conserved region. Scores are 

rounded to three decimal digits in order to make the file smaller, as scores are available for each 

of the three billion bases in the human genome. The .wig file can be imported in genome browser 

and all genome-wide predictions get plotted in the form of predicted peaks where the conserved 

regions are located. The genome-wide cumulative distribution of all scores is given in figure 11.  

The histogram of scores for all bases is given in figure 12 also for Pi element set. Similarly, 

cumulative distribution of the genome-wide scores for all four element sets (phastCons, GERP, 

Pi and Omega) is given in figure 13.  

 

Figure2. 11: Cumulative distribution of scores for all positions genome-wide based on Pi 
conserved elements dataset 
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Figure 2.12: Histogram of scores for all positions genome-wide based on Pi elements 

 

Figure 2.13: Cumulative distribution of conservation scores of all positions genome-wide 
based on all four conserved element datasets (phastCons, GERP, Pi, and Omega) 
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 In order to show robustness of the scores, we have repeated sampling and model training 

on another set of genome-wide samples and calculated correlation among predicted scored 

genome-wide from two models with different samples to be 0.97. This is a very high correlation 

and indicates that the model predictions are robust and independent of the randomly chosen 

sample of positions genome-wide. Furthermore, we calculated pairwise correlations of scores 

obtained by applying the models that were trained based on different set of labels. The resulting 

correlations among each of the two sets of lables are given in table 9. Scores are highly 

correlated, pairwise correlation among any of the two sets was greater than 0.9. 

 

Element 
Set 1 

Element 
Set 2 

Pairwise 
Correlation 

GERP++ Pi 0.9259 
GERP++ Omega 0.9549 
GERP++ phastCons 0.9496 
Omega Pi 0.9497 
Omega phastCons 0.9553 
Pi phastCons 0.9095 

Table 2.9: Pairwise correlations of scores obtained by applying the models that were 
trained based on different sets of labels. The resulting correlations among each of the two 
sets of lables (phastCons, GERP, Pi, and Omega).  

 

 Resulting predicted peaks overlap known conserved elements in non-exonic DNA. The 

example from genome browser is given in figure 14, where top track contains PICEL’s 

predictions, and track on the bottom shows existing conserved regions as identified by Pi 

elements set. It is clear from the figure that PICEL accurately identifies known regions under 

constraint.  
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Figure 2.14: Resulting predictions for positions on chromosome 21 depicted in genome 
browser. Model trained using10 million sampled points from all chromosomes genome-
wide except chromosome 21 and labels based on Pi elements dataset. Predicted peaks 
overlap known conserved elements. 

 

 As discussed earlier, Pi element set seems to show one of the best results overall and 

therefore we have continued to focus on results obtained using Pi element set. 56% of all bases 

are covered by at least one DNase peak. Cumulative distribution of scores under DNase sites in 

comparison to scores on all bases (figure 15) and histogram (figure 16) indicate that more bases 

under DNase peaks have higher scores on average. Compared to all bases, bases covered by 

DNase peaks showed decreased population with very low scores and increased mean value of 

scores (from 0.042 to 0.057). Most bases with a score of 0.25 or above are covered by at least 

one DNase peak as illustrated in subplot of figure 16.  
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Figure 2.15: Comparison of cumulative distribution of scores at DNase sites genome-wide 
and all genome-wide positions based on Pi conserved elements dataset. More bases under 
DNase peaks have higher scores. 
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Figure 2.16: Histogram of conservation scores of all positions genome-wide based on Pi 
element dataset. Most bases with a score of 0.25 or above are covered by at least one 
DNase peak. 

 Even though PICEL accurately predicts most conserved regions, there are some known 

conserved regions that it misses. Prediction score of 0.004 is a threshold indicating that the 

particular genome position (base) is likely not within conserved region. For this reason, we 

identified all known conserved elements that PICEL is not predicting (with score less than 0.005) 

for each of the four conserved element sets and performed the analysis using Genomic Regions 

Enrichment of Annotations Tool (GREAT) (Mclean et al., 2010). For example, GREAT analysis 

on Pi dataset returned a set of olfactory genes in various cell types to be located in that region 

(results and with p-values shown in table 10). It is presumed that olfactory genes are well-

conserved across species as great variation exists in the number of genes among vertebrates and 

it is difficult to infer about individual receptors across species.  
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 Recently, stratified LD score regression method has become available (Finucane et al., 

2015) that is using GWAS summary statistics and explicitly modelling for LD in order to 

partition heritability of complex traits. Since their findings indicate large enrichment of 

heritability in conserved regions across many traits, including heritability of body mass index 

(BMI), and since the method is flexible enough to allow for custom annotations, we were able to 

perform heritability analysis of our conservation scores using their method for BMI.  

 We partitioned our scores in 20 bins (each bin indicating certain interval, so that all 

intervals from 0 to 1 are included), and each bin contained approximately 5% of the SNPs 

associated with BMI that had the score that falls within the interval. This gave us approximately 

even spread of SNPs per bin, ~5% in each of the 20 bins.  We created custom annotation track 

with binary indicator whether the SNP associated with BMI fell into that interval (bin label) or 

not. We then ran the method by comparing one bin against the remaining 19 bins, and repeated 

the procedure for all 20 bins. The results we obtained were proportion of heritability of complex 

trait (BMI in this case) explained by the SNP’s in that interval, and the enrichment value, which 

was defined as proportion of heritability divided by proportion of SNPs in the same interval. The 

obtained proportion of heritability and the enrichment scores along with p-values for each test 

are listed in table 11, and also shown on plot in figure 19. The table is sorted by fold enrichment 

(highest to lowest), while the bar chart is sorted by intervals in each bin (again from highest to 

lowest). It is remarkable that results showed eight-fold enrichment in the regions that our method 

scored the highest (the most likely to be conserved). Also, other bins with high conservation 

scores also showed 4-6 times enrichment. These results indicate an increasing fraction of disease 

heritability. 
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Table 2.10: Results of Gene Ontology (GO) Analysis using GREAT tool applied to some 
known conserved regions that it misses. Top result shows a set of olfactory genes in 
various cell types to be located in that region. 
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2.10 Discussion 
 

 As indicated in results section, the resulting predicted peaks overlap known conserved 

elements in non-exonic DNA. However, the predictions vary slightly (correlation greater than 

0.9) based on which set of conserved elements (phastCons, GERP, Pi, or Omega) was used for 

training. As discussed in earlier sections, the four conserved element sets are derived by methods 

that use different approaches to identify constrained regions. Also as mentioned in one of the 

sections earlier, the quality of data varies from dataset to dataset.  

 According to the AUC values presented in Results section, GERP++ elements have the 

largest AUC values (by 0.01 greater than the AUC of Pi and Omega elements), while phastCons 

have the lowest. The explanation for this discrepancy is that phastCons conserved region data 

set, even though widely used (and based on a newer alignment). Pi elements are covering more 

of the genome. On the other hand, GERP++ seems to be covering fewer genome locations, but it 

has longer conserved region segments, which would hypothetically be less likely to be missed by 

our method. In addition, phastCons method is only a substitution based method, and methods 

that incorporate other information in addition to substitution rates (such as Pi elements) are more 

likely to have higher accuracy. The reason is, as explained earlier in the manuscript, that SiPhy-

Omega method doesn’t include substitution patterns when identifying conserved regions. Due to 

these trade-offs, we decided to perform most of our analysis on model obtained by using Pi 

elements as labels.  

 Results of GREAT analysis discussed in Results section indicated that false negative 

predictions of our method and the genes they are proximal to can be used to identify cell types or 

classes of genes, which are not adequately represented in current functional genomic data sets. 
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Furthermore, this type of analysis could suggest additional cell and tissue types for experimental 

mapping.  

 GWAS studies have uncovered 1000’s of loci associated with complex traits and diseases 

(Bush e Moore, 2012; Marbach et al., 2016), but they can’t tell whether the variant is causal due 

to most of them being in linkage disequilibrium (LD) and located in non-exonic regions. As 

indicated in figure 18, two lead SNPs at specific loci on chromosome 21 fall in regions where 

conservation is scored highly by our method. This type of analysis can potentially suggest 

locations of candidate causal SNPs. 

 Furthermore, heritability analysis of complex traits such as BMI shows that locations of 

greater probability of being conserved were strongly correlated with locations that explained an 

increasing fraction of disease heritability.  This suggests our predictions have the potential to be 

an important resource for interpreting and prioritizing disease associated variants. 

 

 

Figure 2.18: Resulting predictions for specific positions on chromosome 21 depicted in 
genome browser and two causal single nucleotide polymorphisms (SNP’s) that fall in the 
regions where conservation is scored highly.  
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Begin 
Score 

End 
Score Prop._SNPs 

std 
error Enrichment p-value 

0.102 1.100 4.83% 4.75% 8.7 1.26E-13 
0.068 0.102 5.07% 4.93% 6.7 2.44E-08 
0.055 0.068 5.26% 5.77% 6.4 2.16E-06 
0.048 0.055 5.01% 6.83% 5.3 2.03E-03 
0.043 0.048 5.20% 6.50% 4.3 8.08E-03 
0.039 0.043 5.55% 7.40% 2.2 3.48E-01 
0.010 0.013 4.89% 6.38% 2.1 3.98E-01 
0.013 0.016 5.53% 6.99% 2.1 3.93E-01 
0.016 0.018 3.97% 7.61% 2.0 6.11E-01 
0.036 0.039 5.15% 7.86% 0.6 7.72E-01 
0.007 0.010 4.06% 5.78% -0.1 4.19E-01 
0.018 0.021 6.32% 7.98% -0.6 1.89E-01 
0.000 0.007 4.81% 2.49% -2.4 1.14E-09 
0.034 0.036 3.93% 7.45% -2.7 5.23E-02 
0.021 0.023 4.45% 7.47% -4.2 1.80E-03 
0.031 0.034 6.61% 6.97% -4.2 5.53E-06 
0.023 0.025 4.73% 8.61% -6.2 8.19E-05 
0.029 0.031 4.81% 6.46% -6.7 8.04E-08 
0.025 0.027 4.89% 6.20% -6.9 2.14E-09 
0.027 0.029 4.95% 5.80% -7.6 4.29E-11 

Table 2.11: Results of heritability analysis for body mass index (BMI): Enrichment scores 
sorted highest to lowest for 20 bins. Fold enrichment calculated when 1 bin is compared to 
the remaining 19 bins. Top score is associated with BMI Heritability (8 fold enrichment). 
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Figure 2.19: Results of heritability analysis for body mass index (BMI): Enrichment 
scores for 20 bins (sorted by bins containing highest to lowest scores). Fold enrichment 
calculated when 1 bin is compared to the remaining 19 bins. Top score is associated with 
BMI Heritability (8 fold enrichment). 
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Chapter 3 

Gene Expression Data Analysis in Vervet Monkey 

 

Abstract 

 This study was joint work with Dr. Nelson B. Freimer and Dr. Anna J. Jasinska (Jasinska 

et al., 2009) from center of Neurobehavioral Genetics at University of California, Los Angeles.  

We analyzed gene expression profiles in tissues derived from blood samples from 347 vervet 

monkeys (Chlorocebus aethiopssabaeus) and eight brain regions from 12 vervet individuals. The 

goal was to find out how genes expressed in brain correlated with gene expression variation in 

blood from the same individuals. Because of high degree of conservation of tissue expression 

profiles between vervets and humans, our findings provide means to investigate variation in gene 

expression relevant to human brain traits and neuropsychiatric diseases. By processing large-

scale datasets resulting from gene expression studies and applying stringent method and 

statistical criteria, we identified 29 transcripts whose expression is measurable, stable, replicable, 

variable between individuals, relevant to brain function and heritable. The follow up study 

(Jasinska et al., 2012) localized one eQTL (at B3GALTL) to a region of <200kb by conducting 

SNP genotyping and association analysis.  
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3.1 Introduction 

 Vervets, also known as African green monkeys (chlorocebus aethiops sabaeus), are 

native to Africa. However, small number of vervet individuals had been moved on ships from 

Africa to the islands of the Caribbean, during colonial times in the 1600’s. These individuals 

have formed their own habitat on the Caribbean islands, where they have lived for centuries (and 

still do). During the period from 1975 to 1989, UCLA researchers trapped 57 individual vervet 

monkeys from various regions of the Caribbean islands, St. Kitts and Barbados in particular, and 

brought them to UCLA in order to form a vervet research colony. Over time, the colony became 

an inbred pedigree as the monkeys could only mate with each other. In January 2008, when the 

colony contained approximately a thousand members, it’s members have made the cross-country 

journey from UCLA on the West coast to Wake Forest University on the East coast of the United 

States. The colony has been permanently relocated at Wake Forest University	  in Winston-Salem, 

North Carolina.   

 Vervet monkeys are non-human primate (NHP) biomedical model that is more directly 

relevant to human biology and disease than rodents or other commonly used animal models. 

They permit invasive and longitudinal investigations that are not possible (or ethical) to be 

performed in humans. Therefore, prior to relocation of the vervet colony, UCLA researchers 

collected data in the form of blood and brain tissue samples. In particular, blood samples were 

drawn from 347 individuals as well as two blood replicates from 18 individuals, in order to 

correct for (or avoid) technical issues during sample collection. In addition, 12 individuals were 

sacrificed (and therefore did not make the cross-country move!) and their brain tissues were 

collected from eight brain regions. The regions of the vervet brain are: head of caudate, 
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cerebellar vermis, hippocampus, frontal pole, dorsolateral prefrontal cortex, orbital frontal 

cortex, pulvinar, and occipital pole.  

 The objective of this particular data collection was to perform gene expression studies on 

collected tissue samples. However, at the time, there were several challenges related to studying 

gene expression in vervet. First of all, vervet genome had not yet been sequenced and 

microarrays used for gene expression studies didn’t contain vervet probes. The second challenge 

was that not much was known about gene expression in primate brain. The additional challenge 

was that brain tissue samples were scarce and the large percentage of data that was available for 

the analysis contained only blood samples. Therefore, the first goal was to evaluate probe-target 

sequence compatibility of the available gene expression microarrays. If the available microarray 

probes were compatible enough, the other two important goals were to characterize regional gene 

expression in brain and identify transcripts with low variability between brain and blood (also 

known as peripheral biomarker of brain expression). The idea here was to find genes expressed 

in both brain and blood and be able to use blood as a surrogate for brain tissue sample for further 

studies.  

3.2 Methods 

BLAST was used for evaluating probe-target sequence compatibility. Hierarchical clustering was 

used to characterize regional gene expression in vervet brain. Percent variation (PV) inter-

individual and intra-individual and among tissues was used to address the third goal and identify 

peripheral biomarkers of brain expression (genes expressed in both brain and blood).  
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3.3 Probe Comparison Outcome 

 We compared 22,184 50-nucleotide long probe sequences located on the Illumina 

BeadStudio HumanRef-8 version 2 chip against 341, 172 available vervet sequences that had 

been sequenced, since the whole vervet genome didn’t exist at the time. We used BLAST 

method on the cluster machine in order to execute this comparison. When parsing the output file 

of BLAST method, we were specifically looking for top hit for each probe and counted 

frequencies for each probe length match (e.g. how many probes had 48 nucleotides matched). 

The breakdown number of probes per number of nucleotide matcheed is illustrated in figure 1. 

The results showed that 46% of human probes matched the vervet probes, but that even 88% of 

vervet probes matched the human probes. Therefore, since approximately 90% of the vervet 

probes could bind to human probes on the Illumina HumanRef-8 version 2 chip, we were able to 

continue with gene-expression studies in vervet using blood and brain data.  

 

Figure 3.1. Percent of probes per number of nucleotides matched (number of nucleotides ranges from 1 to 
50.  
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3.4 Workflow for Identifying Transcripts 

 Having data measured from the same tissues and from the same individuals allowed us to 

evaluate sources of transcript variation within and between individuals. The workflow in figure 2 

shows that we focused on two classes of transcripts characterized by high variation of expression 

across brain regions or high variance between individuals. High inter-individual variation 

between brain and blood and between independent blood samples allowed us to investigate 

heritable brain gene expression traits in peripheral blood.  

 

Figure 3.2. Components of transcript level variability. Inter-individual variation (green) and intra-
individual or between tissue (red) variation. Transcripts characterized by much higher intra-individual 
than inter-individual variation provide insight into the functional relationships between different tissues 
and are of interest as candidates for mapping brain eQTL using blood as a surrogate tissue.   

3.5 Results 

3.5.1 Results for Gene Expression Differences between Brain Tissues 

 We used hierarchical clustering in order to measure gene expression differences between 

brain tissues. Distances between tissues were estimated based on probes that showed the most 

differences in terms of number of shared detections (either detected in single one or in most brain 
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tissues). Similarities between the pairs of tissues are illustrated in heat-map in figure 3(A). 

Cerebellum (cerebellar vermis) is the most distinct among brain regions.  Interestingly, it could 

be inferred from the dendogram in figure 3(B) that expression of some genes was specific to a 

single cortical region, in particular the three cortical regions are clustering together: orbital 

frontal cortex, dorsolateral prefrontal cortex, and frontal pole.  

 

Figure 3.3. Gene expression differences between brain tissues. Pairwise comparison between all eight 
brain regions is presented in heat map (A). Corresponding hierarchical clustering of tissues is presented 
on a dendogram (B). Labels: CV-cerebellar vermis, Pu-pulvinar, Hi-hippocampus, OP-orbital pole, FP-
frontal pole, DLPFC-dorsolateral prefrontal cortex, OFC-orbital frontal cortex.  
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3.5.2 Results for Candidate Transcripts for eQTL Mapping 

 There were 2481 probes (representing 2430 genes) where gene expression was detected 

in all 12 vervet brains and in all 8 brain regions and in blood. Out of those, 474 probes (31%) had 

percent variation between brain and blood (PV BB) greater than 0.55 and Spearman Rank 

Correlation (SRC)  greater than 0.55, as illustrated in figure 4. The abundance of a gene 

transcript is directly modified by polymorphism in regulatory elements. Consequently, transcript 

abundance might be considered as a quantitative trait (eQTL) that can be mapped with 

considerable power. Expression Quantitative Trait Loci (eQTL) may act in cis (locally) or trans 

(at a distance) to a gene. By using aforementioned stringent criteria, we identified 29 transcripts 

whose expression is measureable, stable, replicable, variable between individuals, relevant to 

brain function and heritable.  

 

Figure 3.4. Selection of candidate transcripts for mapping brain eQTL in peripheral blood. The diagram 
represents the set of probes in the brain-blood gene expression comparison that passed the 55% threshold 
for PV (PV BB) and the 0.55 threshold for the SRC for any of the brain regions. (A) All 2481 probes that 
passed detection thresholds. (B) The subset of 1515 probes that also passed detection thresholds in in the 
replicate blood sample dataset.  
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3.6 Discussion 

 As discussed in goals, methods, and several results sections, by using stringent criteria, 

we were able to identify 29 transcripts whose expression is measureable, stable, replicable, 

variable between individuals, relevant to brain function and heritable. Many heritable transcript 

levels are specifically up or down regulated in several or only one tissues and therefore there 

could exist genetic variants regulating functions of a narrow set of brain tissues. This has been 

illustrated well and discussed in detail in the published manuscript (Jasinska et al., 2009).  A 

follow up study (Jasinska et al., 2012) further investigated these findings by performing 

quantitative trait linkage analysis using 261 microsatellite markers that were identified as 

significant and suggested linkages for 12 of these transcripts, including both cis- and trans-

eQTL. For one cis-eQTL (at B3GALTL, beta-1,3-glucosyltransferase), the study conducted 

follow-up single nucleotide polymorphism (SNP) genotyping and fine-scale association analysis 

in a sample of unrelated Caribbean vervets, and localized a single eQTL to a (small) region of  

less than 200kb.  
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Chapter 4 

Global Sensitivity and Parameter Search for Biomolecular Dynamic Models 
 

Abstract 

Dynamic system models are often used for simulating intracellular functions in search of 

novel therapies for clinical disorders. Systematic and efficient algorithms are needed for 

discovering primary components and interactions in biomolecular network model dynamics. The 

methods are expected to work effectively for high-dimensional models. Complex theory and 

computation make it very challenging. A major problem is that models are difficult to quantify 

from experimental data. Current algorithms for accomplishing this suffer from high 

computational demands and convergence issues. Improvements are needed for large models 

containing scores to hundreds of parameters, which are commonly found in systems biology.  

This study focuses on techniques involved in quantification cycle of biomolecular 

nonlinear dynamic models, specifically methods for global parameter search and sensitivity 

analysis, which are closely related to model reduction and optimal experiment design. The 

objective is to adequately and efficiently improve selection of parameter values by reducing the 

search space and computation times. We carried out numerical experiments for local and global 

sensitivity analysis on combination of synthetic and real biological datasets of TNF-α meditated 

NF-κβ model and performed detailed comparison of results. Our analysis provides insight into 

model mechanics and attempts to identify limitations of current methods. We discuss Sobol 

method in detail, as it proved to be the most comprehensive approach for calculating global 

parameter sensitivities. Its main disadvantage is high computational cost, which could be 

significantly reduced by using cluster computer. As a result, we augmented computer model of 

human thyroid hormone regulation dynamics to better fit the available data for thyrotoxicosis. 
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4.1 Introduction 

Biomolecular processes are difficult to be measured in vivo, within the cell.  It is 

especially difficult to predict oscillations, different levels of interactions, and other dynamic 

responses of the cellular system that are time-dependent and happen on different levels (among 

cell organelles, proteins, or genes) and across different scales (cytoplasm or nucleus). Dynamic 

system modeling helps fill-in the gaps.  

The dynamics of biomolecular networks are typically described by nonlinear ordinary 

differential equations (ODEs) based on principles of control theory. They simulate cell dynamics 

or other biological processes in the organism. Kinetics of chemical reactions among molecules is 

incorporated into the model by applying rate laws based on Michaelis-Menten, mass-balance and 

flux-balance principles (stoichiometric analysis). Dynamic system models are also referred to as 

mechanistic models.  

For model quantification, estimation of model variables and parameter values remains a 

bottleneck. Besides the usual modeling challenges related to transforming experimental data into 

structural models, more difficult challenges involve structural and numerical identifiability, i.e. 

knowing what model parameters can be quantified well. Even though most models are simplified 

and based on approximations and assumptions, they are still very complex, with tens or scores of 

state variables and even more parameters, and highly non-linear. The main question here is 

which of these state variables (nodes) and parametric couplings (edges) dominate the dynamical 

responses of the network to input perturbations, and which others can be neglected, eliminated or 

otherwise approximated.   

Due to complexity, only subsets of parameters are usually estimated, but finding the best 

subsets is difficult. Sensitivity analysis is a technique intended to aid in accurate identification of 
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model network structure and underlying dynamics. Discovery should confirm and extend our 

mechanistic understanding of biological processes and metabolic disorders (such as vulnerability 

to infection, diabetes, and obesity), leading to the identification of novel targets and therapies for 

intervention.   

 

4.2 Problem Statement 

Current methods for sensitivity analysis and parameter set selection suffer from high 

computational demands and algorithmic convergence issues. This study focuses improving the 

application of global sensitivity analysis and parameter search techniques involved in 

quantification cycle of biomolecular nonlinear dynamic models to examine one biological 

dynamic system model (NF-kB) and improve upon another one (human thyroid hormone 

regulation dynamics). 

 

4.2.1 Model Reduction 

The complexity and thus number of parameters in dynamic system models is very high, 

which drastically increases computational demands (Chu e Hahn, 2007). Importantly, the way 

these models are developed typically yield overly complex, over-parameterized models. 

Sensitivity analysis of the entire model is an effective first step in model reduction, but it is 

computationally very intensive.  Therefore, systematic and efficient algorithms are needed for 

discovering the primary components (state variables and parameters) that govern the dynamics 

(the real biology). 

Selecting the structurally identifiable set of model parameters and estimating them from 

data is a well-established and important problem (Miao et al., 2011). However, a structurally 
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identifiable parameter cannot be estimated reliably if the model output is insufficiently sensitive 

to that parameter. On the other hand, the parameter can be estimated with high precision from the 

output data when the model output is highly sensitive to that parameter (Distefano, 2014). Model 

parameter sensitivity analysis explores sensitivity of model variables to variations in parameter 

values, i.e. how much the model variables might change if a model parameter changes. The 

changes could be related to variation of a single parameter (local sensitivity) or combined 

variations of multiple parameters (global sensitivity), which includes interactions between 

parameters. Mathematically speaking, local (linear) sensitivity analysis approximates parameter 

variations using only first order terms in Taylor expansion of delta-X (for state X) with respect to 

parameter variations delta-p (for parameter p) about nominal point in parameter space.   Global 

sensitivity analysis (GSA) includes nonlinear effects of higher-order terms, which characterize 

interactions/nonlinear couplings among parameters on deltaX (“impact”).  

Solution methods currently proposed in literature include analysis of sensitivity vectors 

via principal component analysis, singular value decomposition, and correlation analysis (Chu e 

Hahn, 2007). The most recent methods involve algorithms for clustering parameters into distinct 

groups based on the dynamic effect that changes in parameters have on the output of the dynamic 

system model (Chu e Hahn, 2008). Some algorithms take advantage of sampling methods to 

determine ranges of parameters (e.g. orthogonal array sampling, Latin hypercube sampling, and 

least squares estimation) and rely on statistical approaches (e.g. Kolmogorov-Smirnov statistics, 

Pearson correlation coefficient) to rank parameter sensitivities. Numerous other techniques for 

sensitivity analysis were applied in engineering and other disciplines (physics, economics, food 

safety, etc.).  
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4.2.2 Parameter Estimation  

Estimation of model variables and parameter values remains a bottleneck for biological 

dynamic models, especially for larger systems.  Besides the usual modeling challenges related to 

collecting experimental data (such as noisy or incomplete data, missing data points, time series, 

etc.), there are more difficult challenges regarding extracting implicit data.  For example, kinetic 

constants are often derived from different organisms or under different experimental conditions. 

These nominal values are often just “guestimates”. Consequently, simulated model output may 

not be consistent with biological observations.  

In addition, high computational demands are associated to model simulation due to 

“combinatorial explosion” and issues related to algorithmic convergence and numerical round-

off error are frequently encountered. Currently proposed algorithmic solutions focus on 

circumventing integration of differential equations, reducing the complexity of the task, 

smoothing noisy data, optimizing parameter values, and constraining parameter search space 

[Chou & Voit 2009]. Many of parameter estimation methods rely on Fisher information matrix 

(FIM), as it serves as a measure of how much information about the parameters is possible to 

extract from an experiment. FIM is dependent upon initial states, inputs and parameter values. If 

singular, it is impossible to estimate parameter values. The inverse of FIM is a lower bound of 

parameter covariance matrix as postulated by Cramer-Rao theorem.  

 

4.2.3 Sensitivity Analysis 

Sensitivity analysis is a technique intended to aid in parameter estimation, accurate 

identification of model network structure and underlying dynamics, and potentially lead to model 

reduction.  It is also intended to reduce experimental and computational cost for future 
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experiments. When a model output is highly sensitive to a particular parameter, the parameter is 

considered a key-player in regulating that output and can be estimated with relatively high 

precision. Sparse, noisy experimental data pose additional challenges, and sensitivity analysis 

deals directly with these as well, with global sensitivity analysis addressing the overall problem 

more comprehensively than local sensitivity analysis [Saltelli A 2004].   

Local sensitivity analysis explores sensitivity of model variables to local (linear) 

variations in parameters about single nominal parameter points in parameter space, i.e. how 

much model outputs (and thus state variables) change when model parameters vary a small 

degree from particular nominal values. Global sensitivity analysis goes two steps further than 

local analysis.   It explores how higher-order, nonlinear parameter interactions affect model 

dynamics, and – in principle – it also considers the dependence of sensitivities on the assumed 

nominals, for the entire feasible parameter space.   

 

4.2.4 Parameter Set Selection 

Parameter estimation is challenging not only because of sparse and noisy experimental 

data, but also because models can contain hundreds or even thousands of parameters. Usually, it 

is impossible to accurately estimate values of all the parameters from experimental data. Recent 

research efforts have been geared toward using parameter set selection approaches for model 

reduction (Yue et al., 2006; Chu e Hahn, 2007; Jaewook Joo, 2007; Chu e Hahn, 2008; Cintron-

Arias, 2009). Due to complexity of parameter estimation, only a subset of parameters is usually 

estimated, while others are fixed to constant values.   
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Algorithmic solutions currently proposed in literature typically employ discretized 

sensitivity matrix (DSM) and look at directions of sensitivity vectors to identify a subset of 

parameter set to be estimated (see Methods). DSM is constructed by stacking sensitivity matrices 

for each of sample time points, and therefore could be very large. Proposed solutions usually 

identify collections of suboptimal parameter sets, as optimal set is difficult to distinguish in 

practice. This is combinatorial optimization problem and an active area of research.  

 

4.3 Materials and Methods  

 

4.3.1 Sensitivity Analysis Methods 

In this section, we provide a brief overview of several recent and commonly used 

methods for Local (LSA) and Global Sensitivity Analysis (GSA)(Zi et al., 2005; Zi et al., 2008). 

 

4.3.1.1 Finite Difference 

Several software packages (e.g. Copasi(Institute et al.) and SBML-SAT (Zi et al., 2008)) 

use central difference formula to approximate for calculations of partial derivatives for 

calculating local sensitivity functions. For a system with state variable xi, and parameter θj, 

sensitivity sij is defined as: 
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and approximated by final difference formula, where Δθj is defined as small change in parameter 

value (in reference to its nominal value): 

 

This method is used most often to calculate sensitivities(Daun et al., 2008). 

4.3.1.2 Weighted Average of Local Sensitivities (WALS) 

WLSA is local sensitivity analysis calculated at multiple random points within parameter 

space. Therefore, distribution reveals global impact. Sensitivity is computed by weighted average 

of local sensitivities (normalized). Boltzmann distribution 𝑒𝑥𝑝 − !
!"#

 is used for parameter 

ranking. In this formula, E represents error between model simulation and data, while kbT stands 

for customized scaling factor. In practice, least squares error (LSE) is used for the term in the 

denominator and minimum of least square errors is used for the term in the numerator of 

Boltzmann distribution: 𝑤! = 𝑒𝑥𝑝 − !"# !!
!"#!!!…!!"# !!

. 

 

4.3.1.3 Multi-Parametric Sensitivity Analysis (MPSA) 

Latin Hypercube Sampling (LHS) is used to randomly generate parameter values from 

probability distributions (rather than using fixed values). The method calculates objective 

function for each parameter set, which is defined as sum of square errors between random and 

reference parameter set. Range of parameter distributions is usually determined from literature or 

experience. Parameter sensitivity is based on cumulative frequency of parameter set, and 
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Kolmogorov-Smirnov statistics. Sensitivity values range on the interval between 0 and 1. 

Arbitrary threshold value is used to classify parameters from highly sensitive to non-sensitive. 

 

4.3.1.4 Partial Rank Correlation Coefficient analysis (PRCC) 

This method is based on rank transformed linear regression analysis. It seeks linear 

(monotonic) relationship between ranks of output function and input parameters and uses 

Pearson correlation coefficients to calculate parameter sensitivities, which map to sensitivity 

interval from -1 to 1. As by the previous method, LHS is used here to generate parameter values.  

 

4.3.1.5 Sobol Method 

Method proposed by (Sobol, 2001) belongs to variance-based class of methods, which have 

recently become the preferred approach for sensitivity analysis across many disciplines (Saltelli, 

2004; Saltelli, 2007). It provides decomposition of output variance into factors of increasing 

dimensionality (variances of parameters), and is therefore able to account for interactions among 

parameters. Variance decomposition is defined by the following formula, where V(y) represents 

total output variance, Vi, Vij, and V12…k represent partial variances contributed by parameter 

combinations, and k represents total number of parameters: 

  

 (first order effect) 
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 (second order effect) 

V12…k   is the last term of order k effect. There are 2k-1 terms. 

First order Sj sensitivity is defined using statistical identity as ratio of first order effect to 

overall variance: 

 

Total effect sensitivity is defined as total contribution to the variance of y due to non-xj. For 

k=3 example, the formula is: 

 

When the model is purely additive, sensitivity values sum to 1:  

As illustrated by equations above, this method enables computing sensitivities based on total 

effect on output (combinations of parameter subsets) in addition to contributions of individual 

parameters. However, due to its high computational complexity, only 1st order and Total Effect 

sensitivities are calculated in practice (e.g. S1 and S123, but not S12 and S13), bringing the 

computational cost down to n(2k+2) from n(Sk-1) for all effects. Cost for calculating 1st order 

(local) sensitivity alone is n2k (n is the number of samples, and 2 is due to needing two matrices 

to calculate mean value E). Monte Carlo estimates are used to generate parameter values, as 

large number of random samples is required for estimates to be stable (Rosolem et al., 2012). 

Sobol method (Sobol, 2001) is one of the most robust ones currently available for sensitivity 

analysis, with its main disadvantage being high computational cost. Improvements suggested by 
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several groups have only been partially successful and the method seems to fail on large datasets 

(Kiparissides, 2008; Kiparissides et al., 2009).   

Given that it relies on Monte Carlo sampling, which generates large numbers of random 

samples (~1000), and that variance decomposition is based on some of many individual 

factors/terms, our approach of implementing it in C programming language and executing it on 

cluster computer resulted in improved running time and accuracy, as well as more-likely 

convergence for large models.   

 

4.3.2 Parameter Set Selection Methods 

Several groups have recently developed methods to reduce the number of parameters to 

be estimated by identifying a subset of parameters which are more likely to be estimated 

accurately. Approaches that appear to be most effective are listed below.   

 

4.3.2.1 Cintron-Arias Approach  

The method (Cintron-Arias, 2009) lists all possible subsets of parameters and performs 

parameter estimation on each possible subset. Parameters not in the subset are fixed to nominal 

values.  Parameter selection score (length of the vector of parameter coefficient of variance) and 

condition number (ratio between the highest and lowest singular values of the DSM) are assigned 

to each subset. Subsets with the lowest PSS and condition number emerge as winners. The 

reasoning is that PSS would be high for parameters with high uncertainty making them less 

identifiable, while large condition number would indicate “ill-conditioned” DSM and therefore 

high-dependencies among parameters. 



	  

81	  
	  

The limitation of this method is that in practice it only works for very small models, due 

to combinatorial explosion caused by large parameter sets. The effectiveness of the method was 

demonstrated on a model consisting of only 3 state variables and 11 parameters.  The authors 

additionally constrained the parameter subset space to 8 parameters, as they decided that 

particular 3 parameters needed to be included in the model. Even parameter sets of moderate size 

would require exponentially large number of computations to be performed simultaneously.  

 

4.3.2.2 Sequential Cintron-Arias Approach 

Due to constraints of Cintron-Arias and similar approaches that evaluate parameter sets 

simultaneously, sequential methods are frequently used for parameter estimation of models with 

large number of parameters. These types of approaches look for ways to reduce the model by 

selecting and removing one parameter at a time and reevaluating the model after each step. 

Therefore, they are computationally feasible (linear time). Their main disadvantage is that the 

best combination of parameters might be missed, due to parameters selected at earlier steps (Chu 

e Hahn, 2007; 2008).  

Recently, modification of the Cintron-Arias approach had been suggested, to make it 

applicable sequentially. Instead of evaluating all possible combinations, search space gets 

reduced by evaluating the combinations containing P-1 parameters, where P is the number of 

parameters in the unreduced model (Sin, 2012). The new model (P-1) gets accepted with the 

lowest PSS and condition number. The next step evaluates the models with (P-1)-1 parameters, 

and again the updated model with lowest PSS and condition number gets accepted. The sequence 

of steps continues until a suitable model has been reached. Suitable, in this context, means when 
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an upper limit for the magnitude of %CVs is reached, but the criteria could be adjusted for other 

models (e.g. lower limit for singular values).  

 

4.3.2.3 Daun, Rubin Approach  

Another example of sequential approach for reducing over-parameterized models is 

found in (Daun et al., 2008), and similar method is found in (De Pauw et al., 2008). The 

approach is based on analyzing individual parameter sensitivities and prioritizing parameters 

with strong pairwise correlations that have minimal effects on the output as candidates for 

reduction. The idea is that strong pairwise correlations suggest parameters that are difficult to 

distinguish, and parameters with low sensitivity values indicate lower effect of those parameters 

on model output.  

In (Daun et al., 2008),parameter correlations are computed first, starting from the most 

correlated pair of parameters. Sensitivity of each parameter is evaluated by finding the length of 

the sensitivity vector. If the model is not sensitive to at least one of the parameters, the one with 

lower sensitivity is fixed, otherwise the next parameter pair is considered. Every time a 

parameter is fixed, new correlation matrix is calculated and the same sequence of steps is 

repeated until the stopping criterion is reached. Possible choices for stopping criteria are: number 

of parameters to be reduced, lower bound on the length of the sensitivity vector, upper bound on 

the correlation between two parameters, etc. 

 

4.3.2.4 Pairwise Clustering Approach 

This technique uses slightly different approach by splitting parameter set into groups and 

choosing only one parameter from each group as representative for parameter estimation. The 
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idea is to form groups of pairwise indistinguishable parameters (their sensitivity vectors are 

parallel and therefore those parameters cannot be estimated individually). The similarity measure 

between parameter pairs is defined by (Chu e Hahn, 2008) as cosine of the angle formed between 

two sensitivity vectors si and sk:  

 

Values close to 1 indicate that two parameters are highly dependent (small angle), while values 

close to 0 indicate parameters that could be easily discerned from each other (angle close to 90°). 

Agglomerative hierarchical clustering is used for this purpose. Number of groups of 

parameters (clusters) is chosen by cutting hierarchical tree at certain level, according to an 

arbitrary (problem-specific) threshold. Parameters with largest sensitivity vectors are chosen as 

group representatives (candidates for estimation). Discrepancy (between the original model and 

the reduced model) value of 5% and corresponding smallest similarity measure are considered to 

be the threshold for determining number of clusters. The number of parameters to be estimated 

(length of a subset) is determined based on the number of singular values of sensitivity matrix, 

until there is a gap of an order of magnitude or more between the singular values.  

To demonstrate the effectiveness of this method, the authors applied it to sample model 

of 115 parameters total. It turned out that the 9th through 115th singular values of sensitivity 

matrix were close to zero, and therefore only 8 parameters were needed to be estimated. In 

addition, authors suggested fixing (not estimating) all parameters with sensitivity vector lengths 

less than 5% of the largest sensitivity vector. There turned out to be 70 parameters satisfying the 

criterion and therefore only 45 parameters were candidates for estimation. Number of clusters 

needed was determined to be 11 by observing that the discrepancy value dropped below 0.05 
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(0.095 for 10 clusters). Conveniently, a problem boiled down to choosing parameter subset 

consisting of only 8 parameters out of 11 to satisfy D-optimality criterion (maximizes the 

logarithm of the determinant of FIM), drastically decreasing computational demands from ∼2 × 

108  possible combinations (for 45 parameters) to 165.   

The limitation of this method is that its effectiveness was demonstrated on a single case 

study with arbitrary set thresholds, and the idea of clustering contributed to only a portion of 

parameter set reduction (reducing parameter set from 45 to 11 parameters), whereas other criteria 

were used to prune the parameter set (from 115 to 45) and determine the length of subset (8).  

 

4.3.2.5 Multiple-Criteria Screening Approach 

 (Rosolem et al., 2012) recently proposed parameter grouping technique based on Pareto 

ranking concept (Goldberg, 1989). They obtained sensitivity indices for their Simple Biosphere 3 

(geophysics) model using Sobol method for all three model outputs (heat flux, latent heat flux, 

and net ecosystem exchange of CO2) with respect to 43 parameters.  

In order to obtain a more objective parameter ranking given differing sensitivity values 

for each of the outputs, they proposed this screening approach, which assigns a “group rank” to 

each parameter based on simultaneous maximization of its individual total order sensitivities. 

Even though this only worked for models with multiple outputs, the general idea of having 

groups of factors that have strong or weak contributions to overall model performance is 

important. This approach is yet to be applied to biomolecular models.       
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4.3.3 Software 

 Software packages for implementing and analyzing dynamic system biomolecular models 

are available as standalone applications or as toolboxes (add-ons) for Matlab (Mathworks). Many 

are difficult to install, not at all easy to use, have high-level of system dependency (often 

incompatible), and cannot be modified for expansion or correction. Some of those, such as Cell 

Designer and SimBiology (Mathworks), do not provide simple interface for manually entering 

mathematical equations (ODE’s) and do not use standard compartmental modeling 

nomenclature, which greatly limits their use for existing complex models. Furthermore, they 

don’t handle models with time-delays, for example, common in many network models (e.g. gene 

networks). Delay-ODEs are often used to describe transport and translation delays in mRNA 

induction, but the method in which delayed synthesis gets calculated does not behave very well 

with repeated sampling of time steps by most ODE solvers. During our preliminary studies, the 

software was not fully functional for models of only moderate complexity. Most of these 

programs are very limited in their sensitivity analysis capabilities such as COPASI (Institute et 

al.; Kent et al., 2012).  

Recently, Systems Biology Markup Language (SBML) and Systems Biology Toolbox for 

Matlab were created that enabled more flexible software environment for simulation and analysis 

of bio-systems (Schmidt e Jirstrand, 2006). Subsequently, SBML-based sensitivity analysis tool, 

SBML-SAT was created by (Zi et al., 2008)  which has proven useful. Aside from providing 

method for performing Local Sensitivity Analysis (LSA), which uses central difference formula 

to approximate for calculations of partial derivatives, it enables users to run several methods for 

global sensitivity analysis (GSA). In particular, the four methods for performing GSA 

implemented in the SBML-SAT package are: Multi-Parametric Sensitivity Analysis (MPSA), 
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Partial Rank Correlation Coefficient analysis (PRCC), Weighted Average of Local Sensitivities 

(WASL), and Sobol method. COPASI software package also provides a feature for performing 

LSA based on similar technique. 

Amigo (Balsa-Canto e Banga, 2010) is one of the most-comprehensive software packages 

to date for dynamic model quantification. It provides parameter rankings and correlation plots 

between pairs of parameters, but expects the user to decide what parameters to fix or what 

experiments to do. When user gets ranking of 128 different parameters (or more), it’s difficult to 

determine what combinations of parameters should be fixed. For example, parameters with the 

lowest ranking could be recommended to be fixed or eliminated from the model, while the highly 

ranked parameters could be considered essential (“key players”). Regardless of its limitations, if 

used with caution, Amigo is of great use for experimenting with sensitivity analysis and 

parameter set selection for bio-system dynamic models. 

 

4.3.4 Parallel Computing 

There are two general parallel programming paradigms used to improve computational 

performance. The first one is to divide matrices in blocks that enable multiple cores (nodes) to 

perform computations simultaneously. This means that sum operations could run in parallel (e.g. 

sum), while others that are highly dependent on the rest of the matrix (e.g. multiplication) 

continue to run sequentially. This is similar to popular concept of Map Reduce widely used in 

large data processing – “Map” stage is when multiple nodes work simultaneously (e.g. each one 

is counting frequencies of words in subset of pages assigned to it) and “Reduce” stage is when 

results from all nodes get sorted and summarized together. The second paradigm is related to 

optimal scheduling of nodes/clusters in order to get the best performance possible. Due to system 
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constraints, adding more nodes would not necessarily achieve increased performance. Some of 

the ideas include feeding larger matrices to nodes with more memory, reversing the order of 

operations (that are associative) in order to keep all nodes busy at all times, minimizing 

interactions among nodes by incorporating more care in assigning tasks to each node, etc.  

 

4.4 Data 

 

4.4.1 p53 Model 

The model proposed by (Sin, 2012) consists of four state variables and 23 parameters. It 

describes negative feedback loop of p53 regulation (activation and degradation) in the cell. p53 

is essential tumor suppressor protein, its function being to stop cell cycle progression (cell arrest) 

and repair DNA of damaged cells, or initiate apoptosis (cell death) where repair is not possible. 

Experimental data was obtained from (Wang et al., 2007) based on phosphorylation at the serine-

15 epitope of p53 and mRNA response of tumorigenic mammary epithelial cells (MCF7) 

following exposure to Neocarzinostatin (NCS), which causes double stranded DNA breaks. This 

model appears to be over-parameterized and needs to be reduced in order to be fully quantified 

(Javier, 2009). 

 

4.4.2 NF-kB Model 

 Nuclear factor κB (NF-κB) regulates genes that are involved with cellular signaling, 

stress response, cell growth, survival, and apoptosis (cell death). Elucidating inner workings of 

NF-κB would aid in development of new drugs for chronic inflammatory diseases. Notably first 

computational model describing NF-κB signal transduction pathway was presented by 
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(Hoffmann et al., 2002) based on experimental data and computer simulations. It consisted of 15 

state variables and 30 parameters. The model was improved by (Lipniacki et al., 2004) to contain 

24 state variables and 64 parameters, by (Werner et al., 2008) to contain 33 state variables and 

110 parameters, and by (Koh e Lee, 2011) to contain 68 state variables and 127 parameters. 

Since this is a very important model, many research groups have tried to improve (augment or 

reduce) it using both experimental and computer simulated data. In conclusion, new studies are 

needed to help elucidate complex biomolecular mechanics (Basak et al., 2012). 

 

4.4.3 Alga Model 

Genome-scale metabolic network of Chlamydomonas reinhardtii (model alga) was 

reconstructed by integrating biological and optical data by (Chang et al., 2011). This type of 

modeling encompasses existing knowledge about an organism’s metabolism and genome 

annotation and is employed to study diverse biological processes (e.g. photosynthesis, light-

driven metabolism). This particular model was reconstructed by analyzing photon absorption 

(biochemical activity spectra) in light-driven reactions (varying light wavelengths) using 

stoichiometric representation of the spectral composition of emitted light. The authors claim that 

they have experimentally validated their simulated model by applying it to measure efficiency of 

light utilization from diverse light sources.  

This is an example of whole-cell modeling approach that is becoming more and more 

utilized due to due to recent technological advances. More studies are needed to uncover the 

dynamics of regulatory mechanisms. This network models 2190 chemical reactions and 1706 

metabolites in total, divided into 18 compartments. Model simulations were performed using 

flux-balance analysis. Mechanistic (ODE) model for this system is also likely to have very large 
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number of state variables and parameters in the near future. However, it is important to note that 

this is not a dynamic system model as the derivatives in ODEs are set to zero (non-dynamic 

model).  

 

4.4.4 Human Thyroid Hormone Regulation Dynamics Model 

 

4.4.4.1 Human Thyroid Hormone Regulation Dynamics Model Overview 

A computer simulation model of human thyroid hormone (TH) dynamics has previously 

been developed and validated against published clinical data sets (Eisenberg et al., 2006; 2008; 

Eisenberg e Distefano, 2009; Eisenberg et al., 2010; Ben-Shachar et al., 2011). It models 

regulation of TH in blood, tissues and the hypothalamus-pituitary-thyroid axis. The model is 

represented by 25 ordinary differential equations (ODEs) and more than 50 parameters. It has 

been used to predict pharmacological and pathophysiological conditions in adults and children. It 

is useful for computer experiments for hypothetically dosing human patients with hormone 

supplements (e.g. pills, injections, intravenous infusion) with T3 and T4 content, and obtaining 

temporal dynamics of hormone levels (T3, T4, and TSH) in plasma. The limitation of the current 

model is that it seriously underestimates clinically observed T3 plasma levels for times greater 

than 24 hours following a thyrotoxic dose of 3000 ug of T4 (Leboff et al., 1982).  
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4.4.4.2 Human Thyroid Hormone Regulation Dynamics Detailed Model 

Structure 

 The thyroid gland secretes thyroid hormones (TH) thyroxine (T4) and triiodothyronine 

(T3), which play a role in metabolism and growth of the human body (Ho, 2013). Thyroid 

stimulating hormone (TSH) regulates the secretion rate of T4 and T3. The pituitary gland is 

stimulated to release TSH, which in turns signals the thyroid gland to secrete more TH when its 

levels in the bloodstream are low. The process is reversed when TH levels in the bloodstream are 

high via negative feedback loop. In this section, we describe modeling process of human TH 

dynamics in detail (Eisenberg et al., 2006; Eisenberg et al., 2010; Ben-Shachar et al., 2011). 

 The closed-loop human TH regulation model is primarily structured as a feedback control 

system (FBCS). It contains dual suppressor inputs: plasma concentrations of T3 and T4 (T3p and 

T4p), two controlled outputs: T3p and T4p, and six interconnected subsystems (blocks) 

representing source and sink components based on tissue types (organs). The three source blocks 

are: hypothalamus (HYP), anterior pituitary (ANT PIT), and thyroid gland (THYROID).  The 

three sink, also called distribution and elimination (D&E), components are: thyrotropin-releasing 

hormone (TRH) D&E, thyroid stimulating hormone (TSH) D&E, and thyroid hormone (TH) 

D&E. Concentrations of TSH in plasma (TSHp) are driven implicitly by TRH and embodied in 

the TSHp(t) data forcing function, since hypothalamic and pituitary submodels cannot be 

quantified experimentally. Therefore, four of the six blocks were subsumed, and only the 

remaining two, TH D&E and THYROID were needed explicitly. Subsequently, T3 and T4 

feedback effects (secretion rates in response to TSH stimulation) were used as (TSHp) input 

(output data as input forcing function) and fitted to closed-loop data as indicated in figure 1. 
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Figure 4.1: Adult thyroid hormone feedback control system (FBCS) composed of three source (HYP, 
ANT PIT) and three sink (TRH D&E, TSH D&E, and TH D&E) submodels. HYP= hypothalamus, TRH 
= thyroid releasing hormone, ANT PIT = anterior pituitary, TSH = thyroid stimulating hormone, TH = 
thyroid hormone. (Eisenberg et al., 2006; 2008)  

 

 Originally, the group proposed and quantified the six-compartment TH D&E model 

structure, linear and uniquely identifiable (leaks ko3 and k06 set to equal zero). Compartments 1 

and 4 represent the free hormone in plasma, T4 and T3 respectively. Compartments 2 and 5 

represent total T4 and T3 in tissues with fast exchange, while compartments 3 and 6 represent 

total T4 and T3 in those with slow exchange. Extravascular enzymatic T4 to T3 conversions 

from compartment 3 to 6 and from 2 to 5 (k52 and k63) are nonlinear. Michaelis-Menten (M-M) 

kinetic terms represent enzymatic conversions of D1 and D2. For this purpose, two known 

constants were used: KmD1 and KmD2 and unknown VmaxS, and it was assumed that all fast 

compartment conversion occurred via D1 and 80% of slow pool conversions was via D2.  

 The more complete model contains several additional submodels. The binding submodel 

models protein-bound hormone representing the reversible and competitive binding of both T3 

and T4 to three plasma proteins: TBG, HSA, and TTR. It expresses plasma free hormone as 

functions of plasma total hormone concentrations. Total hormone uptake rate constants k21, k31, 
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k54, and k64 are converted into free hormone uptake rate constants k21free, k31free, k54free, and k64free 

using normal steady state free fraction values. The thyroid gland secretion submodel is a simple 

three-parameter time-delay model, with linear coefficients representing the secretory responses 

(stimulating T3 and T4) to plasma TSH concentrations. Parameter τ represents the approximate 

time delay for thyroidal secretion in response to TSH stimulation. The gut absorption submodel 

serves for pharmacokinetic (PK) simulation studies using oral dose inputs of TH hormone 

supplements. The TH absorption rates were estimated from data (e.g. 88% of T3 is absorbed). 

The nonlinear brain submodel represents the dynamics of brain components (hypothalamus and 

pituitary combined) as shown in figure 2.  

 

 

Figure 4.2: Adult lumped brain submodel for TSH, TRH D&E, and TSH secretion from Figure 10 
(Eisenberg et al., 2006; 2008). TSHp is driven implicitly by TRH, and dual suppressor inputs---plasma T3 
and T4 concentrations, T3p(t) and T4p(t).  
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 It simulates TRH and TSH secretion, and TRH D&E. It contains a single-output, TSH 

secretion rate, two (dual supressor) inputs: plasma T3 and T4 concentrations (T3p and T4p), and 

two new compartments T3 in brain (T3B) and TSH D&E. In particular, T3B models how T3 in 

brain directly or indirectly affects TSH secretion in brain. TSH secretion rate is represented as a 

harmonic oscillator, to model TSH secretion circadian oscillations. The FBCS Hypothalamo-

Pituitary-Thyroid Axis (H-P-T Axis) model is shown in figure 3. 

 

 

Figure 4.3: Adult T3 and T4 D&E submodel (Eisenberg et al., 2006; 2008). Compartment 1: free plasma 
T4, compartment 4: free plasma T3; non-linear, extravascular enzymatic T4 to T3 conversions: from 
compartment 3 to 6 and from compartment 2 to 5. Rates based on Michaelis-Menten (M-M) kinetics. The 
secretion of T3: SR3(t), T4: SR4(t). Time-delay estimate τ for SR3(t) and SR4(t) responses to TSH 
stimulation that yields the best fit to the closed-loop data (Eisenberg et al., 2008). 
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4.5 Results 

 

4.5.1 Global Sensitivity Analysis of NF-kB Model 

We focused on model reduction methodology for elucidating biomolecular pathway 

dynamics.  Specifically, we addressed computational aspects of this problem by examining more 

efficient methods for sensitivity analysis and parameter set selection for NF-kB model with128 

parameters in reference to 69 state variables. 

One of the arguments for adding complexity to the NF-kB model was that apoptosis is a 

complex process and interactions between all pertinent molecular pathways needed to be taken 

into consideration. In order to identify molecular key-players, (Koh e Lee, 2011) performed 

sensitivity analysis. However, the two methods they used (LSA and MPSA) yielded very 

different parameter rankings, which we interpreted as unreliable. We reproduced their results and 

proceeded by applying other methods to the same dataset in an attempt to identify and isolate key 

components with higher confidence. 

In particular, we applied four algorithms for GSA to TNF-α meditated NF-κB model by 

(Koh e Lee, 2011) using SBML_SAT software. MPSA had previously been applied to this model 

by (Koh e Lee, 2011), while PRCC, SOBOL’s, and WASL are the original contributions of this 

study. Running time of Sobol method was 12 hours on a cluster computer, while the other three 

methods took only 1-2 hours to converge. Resulting 3D plots are included in figures 4-7, and 

results are summarized in tables 1 – 3. 
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Rank Parameter 
PRCC 
Sensitivity Parameter 

SOBOL's 
Sensitivity Parameter 

WALS 
Sensitivity 

1 ki18 5.23E-01 ke11  -1.5704e+00  ki28 6.67E+03 

2 ki22 4.29E-01 ki2  -1.8715e+00  ki18 2.83E+02 

3 ki1 1.74E-01 kr4  -2.3107e+00  ke2 2.82E+02 

4 ki2 1.32E-01 kn16  -2.4765e+00  ke4 2.82E+02 

5 ke9 7.61E-02 ki22  -2.5107e+00  ki13 2.82E+02 

6 ki4 6.77E-02 p  -2.7649e+00  kn1 2.82E+02 

7 ki5 6.11E-02 ki5  -2.9830e+00  kn17 2.82E+02 

8 kr4 5.75E-02 kn18  -3.1194e+00  kr13 2.82E+02 

9 ke3 5.49E-02 ke1  -3.1733e+00  ke1 2.08E+02 

10 kc5 5.22E-02 kc5  -3.2919e+00  ke5 1.57E-76 

Table 4.1: Top 10 sensitive parameters in reference to state variable s57 obtained using PRCC, SOBOL’s, 
and WALS sensitivity analysis methods.  

Rank Parameter 
PRCC 
Sensitivity Parameter 

SOBOL's 
Sensitivity Parameter 

WALS 
Sensitivity 

1 kr15 7.28E-01 kr1 -1.0262e+05  ke2 9.48E+03 

2 kn18 2.35E-01 kn18 -1.0405e+05  ke4 9.48E+03 

3 kn5 1.90E-01 kn13 -1.0469e+05  ki13 9.48E+03 

4 kn15 1.58E-01 ke5 -1.0901e+05  ki18 9.48E+03 

5 kr5 1.37E-01 kr5 -1.1075e+05  kn1 9.48E+03 

6 kr6 1.32E-01 kn20 -1.1278e+05  kn17 9.48E+03 

7 kn1 4.49E-02 ke3 -1.1357e+05  kr13 9.48E+03 

8 kn12 4.41E-02 kr17 -1.1361e+05  ke2 3.99E-75 

9 kn10 4.31E-02 kr4 -1.1364e+05  ke5 3.99E-75 

10 ki23 3.66E-02 ke4 -1.1370e+05  ke11 3.99E-75 

Table 4.2: Top 10 sensitive parameters in reference to state variable s194 obtained using PRCC, 
SOBOL’s, and WALS sensitivity analysis methods. 
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Rank Parameter 
PRCC 
Sensitivity Parameter 

SOBOL's 
Sensitivity Parameter 

WALS 
Sensitivity 

1 kr2 5.35E-01 ki25 -1.1809e-01  ki28 -8.62E+02 

2 kr1 5.28E-01 kn15 -1.2499e-01  ke7 -8.16E+02 

3 kr4 4.25E-01 kn14 -1.3377e-01  ki29 -8.16E+02 

4 kn18 1.60E-01 kn16 -1.3455e-01  kn14 -3.24E-82 

5 ke9 1.12E-01 kr2 -1.5075e-01  kn16 -3.01E-82 

6 kn5 1.09E-01 ke4 -1.5324e-01  kr4 -2.69E-82 

7 kn10 7.84E-02 kn3 -1.6955e-01  kr6 -2.11E-82 

8 kn15 7.37E-02 kn6 -1.7660e-01  kn9 -1.83E-82 

9 k_r17 6.91E-02 kn4 -1.8115e-01  kr5 -1.21E-82 

10 kr19 4.30E-02 kn12 -1.8154e-01  ke3 -4.74E-83 

Table 4.3: Top 10 sensitive parameters in reference to state variable s222 obtained using PRCC, 
SOBOL’s, and WALS sensitivity analysis methods. 
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Figure 4.4: 3D bar plot of simulation results for multi-parametric sensitivity analysis (MPSA) 
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Figure 4.5: 3D bar plot of simulation results for partial rank correlation coefficient analysis (PRCC) 
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Figure 4.6: 3D bar plot of simulation results for Sobol’s method analysis  
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Figure 4.7: 3D bar plot of simulation Results for weighted average of local sensitivities analysis (WALS) 
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 We also performed LSA using both SBML_SAT (Zi et al., 2008) and COPASI software 

(Institute et al.).  (Koh e Lee, 2011) used COPASI software to perform LSA and we wanted to 

see whether SBML_SAT software would perform better and output similar results. Resulting 3D 

plots are included in figures 8-10. Figure 11 indicates comparison of plots from Copasi and 

SBML-SAT tools. Figure 12 shows again 3D plot of Sobol method results, but from a different 

perspective, in order to better illustrate the variability of the sensitivity values. Corresponding 

data files containing all sensitivity values are available upon request. SBML_SAT software was 

difficult to set up, but easy to use. On the other hand, Copasi software installed quickly but 

contains the interface that’s counter-intuitive and therefore was more difficult to use.  

 

 

Figure 4.8: 3D bar plot of local sensitivity analysis results obtained using Copasi 
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Figure 4.9: 3D bar plot obtained using local sensitivity analysis (LSA) in SBML-SAT 
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Figure 4.10: Comparison of plots for GSA and LSA methods 
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Figure 4.11: Comparison of plots from Copasi and SBML-SAT tools 
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Figure 4.12: Sobol method results 
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4.5. 2 Augmentation of Human Thyroid Hormone Regulation Dynamics 

Model for Thyrotoxicosis 

 We modified the equations in computer model of human thyroid hormone (TH) 

regulation dynamics and applied computationally intensive global search method in Amigo 

software (Balsa-Canto e Banga, 2010) called GlobalM to fit the new model parameters. As a 

result, we obtained an augmented model that fits the available data for the state of thyrotoxicosis, 

which previous version of the model failed to do, as indicated in figure 13. The pharmacokinetic 

data we used for modeling thyrotoxicosis consisted of serum T4 and T3 concentrations collected 

over seven days in three subjects who were given single oral dose of 3mg of   Levothroid® (T4) 

on one occasion and 3 mg of Syntrhoid®(T4) on another (Leboff et al., 1982).  

 The main change in the model resulted to be the rate equation from compartment 2 to 5. 

The equation was changed from Michaelis-Menten function to Hill function. 

Michaelis-Menten function:  

 

Hill function: 

 

 As can be seen in the formula, Hill function is identical to Michaelis-Menten function 

when n=1, but as n increases, the graph becomes steeper (figures 14 and 15). Therefore the 
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search for the most appropriate value of the parameter n is of high importance for model 

improvement. The resulting parameters values after using global search method that fit the 

clinical data best are: n1=2000, VD1fast = 0.02, and KD1fast=2.8500 and the computational cost 

to accomplish this task was: 464.430577 s, as indicated in table 4. 

 

Figure 4.13: Model output in response to 3000ug T4 dose (thyrotoxic) thyroid hormone (TH) treatment. 
Simulated graph of the original TH model fits T4 but not T3 responses after 24 hours. 
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Figure 4.14: Michaelis-Menten function graph. Michaelis-Menten functions are in our simulation model 
to represent enzyme substrate interactions in cells. As substrate level goes up, reaction rate increases 
rapidly at first, and the increase rate slow down until it approaches its maximum rate. 

 

Figure 4.15: Hill function graph for different values of parameter n (n=1, n=2, n=4, n=10) 
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parameter value  

n 1.2000 

VD1fast 0.0200 

KD1fast 2.8500 

Cost 464.430577 s 

Table 4.4: Parameter Search Results using GlobalM Method in AMIGO SW for Thyroid Hormone (TH) 
model to handle state of thyrotoxicosis.  

 

 The resulting augmented model (figure 16) is able to successfully simulate TH body 

response to thyrotoxicosis, without losing any of its previously available capabilities. Resulting 

model output is shown in figure 17. The results can also be simulated using Thyrosim application 

(Han et al., 2016). The snapshot of Thyrosim simulation output is shown in figure 18. 
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Figure 4.16: Augmented adult T3 and T4 D&E model to handle thyrotoxicosis. Non-linear, extravascular 
enzymatic T4 to T3 conversion from compartment 2 to 5 rate is based on higher-order Hill function 
instead of Michaelis-Menten (M-M) function. 
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Figure 4.17: Augmented Model Simulation. T3 and T4 model response for 3000ug dose (thyrotoxicosis). 
Model output fits clinical data published in (Leboff et al., 1982). 
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Figure 4.18: Thyrosim web-application used for TH model simulation (Distefano, 2014; Han et al., 2016). 
With our improvement of TH model, it is possible to accurately simulate the state of thyrotoxicosis in 
Thyrosim
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4.6. Discussion 

	  

4.6. 1 Discussion of Global Sensitivity Analysis of NF-kB Model 

 Our original hypothesis was that different methods for global sensitivity analysis would 

lead to similar results and accurate identification of the most sensitive parameters in the model. 

Table 1 displays 10 most sensitive parameters obtained using PRCC, SOBOL’s, and WALS 

methods in reference to a single state variable (s57). Different parameters are ranked in a 

different order by each method. There seems to be little correlation between results and no single 

parameter or parameter set stands out as most sensitive. Tables 2 and 3 also summarize top 

parameter rankings obtained using aforementioned GSA methods, but in reference to a different 

state variables (s194 and s222, respectively).  

Second column of each table indicates top-ten parameter rankings based on sensitivity values 

obtained using PRCC method. Table 1 ranks parameters in decreasing order: ki18, ki22, ki1, ki2, 

ke9, ki4, ki5, kr4, ke3, kc5; Table 2: kr15, kn18, kn5, kn15, kr5, kr6, kn1, kn12, kn10, ki23; 

Table 3: kr2, kr1, kr4, kn18, ke9, kn5, kn10, kn15, kr17, kr19.  Since objective of analysis is to 

determine most sensitive parameters in the system, one would expect same set would be ranked 

most-sensitive in majority of cases, but they are not. Similar comparison can be done row-wise 

by comparing parameter rankings obtained using different methods with respect to same state 

variable.  

We concluded that all results are different and there is no evident pattern among parameter 

sensitivities obtained using different methods. There are also no apparent relationships among 

parameter rankings obtained by the same method in reference to a different state variable.  
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The lack of clear correlation is even more evident from the available plots. Figure 1 displays 

3D-bar plot obtained by MPSA, reproduced from (Koh e Lee, 2011). Figures 2, 3, and 4 display 

3D-bar plots obtained by PRCC, SOBOL’s, and WALS methods, respectively. Sensitivities of all 

parameters appear fairly uniform (instead of high and low), especially for Sobol and WALS 

methods (a single color dominates each map). However, a different color dominates each plot 

(e.g. red for Sobol’s, green for PRCC, and  blue for WALS), even though the scale of each heat-

map is the same (ranging from blue to red, blue indicating the least sensitive, and red indicating 

the most sensitive areas). In addition, ranges of sensitivity values seems to be far apart for each 

method, especially for SOBOL and WALS methods that are not scaled to a known interval, 

which warrants further investigation (there appears to be limitation in SBML-SAT package).  

 Even though LSA does not capture interactions/couplings of model parameters, which are 

likely to occur in nature, we were interested to verify if two software packages would provide 

similar results when performing same type of analysis on the exact same model. However, the 

results are different, as can be seen on 3D plots in figure 7, which contain different sensitivity 

values for the same set of parameter-state variable combinations.  

Since the goal of sensitivity analysis is to identify key components of the same biological 

pathway, we would expect that these methods would produce similar results (allowing some, but 

little room for error). We have repeated each experiment several times in order to obtain more 

robust results, but results indicate something amiss.  All methods should give similar results in 

order to provide useful information and aid in design of biological experiments and clinical 

studies. They do not. It is difficult to determine which parameters need to be estimated and 

which can be fixed to nominals or eliminated from the model. This remains an open research 
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area, and as with many computational methods, a user should choose one that is the most 

appropriate for the task at hand. 

 

4.6.2. Augmentation of Human Thyroid Hormone Regulation Dynamics 

Model for Thyrotoxic Dose 

Human thyroid hormone (TH) plays a role in metabolism and development of all tissues 

of the body. It is secreted by the thyroid gland, which is located below the neck and shaped in the 

form of a butterfly. TH refers to two hormones: thyroxine (T4) and triiodothyronine (T3). The 

pituary gland stimulates production of thyroid stimulating hormone (TSH), which then stimulates 

the thyroid gland to produce TH. T4 could be described as pro-hormone (precursor), while T3 is 

the product (derivative) of T4. T3 is major thyromimetric (active) hormone, and could be either 

bound or free, depending on whether it’s bound or not to plasma proteins. Both T4 and T3 are 

unbound when secreted. Proteins thyroxine-binding globulin (TBG), human serum albumin 

(HAS), and transthyretin (TTR) act like capacitors and carry the hormone around the body in 

blood. In general, only free hormone is able to penetrate cellular membrane and flow into the 

cell. 

 Conversion from T4 to T3 happens in all organs, but each tissue makes different amount 

of it. For example, brain cells have a high conversion rate – they make the most T3 out of T4 

(almost all they need). Overall, we can differentiate between slowly exchanging organs such as 

brain, muscle, and skin, and fast exchanging organs such as thyroid, kidney and liver. The reason 

for this differentiation is that it can be assumed that only one enzyme, called type 1 diodiniase 

(D1), catalyzes conversion of T4 to T3 (chemical reaction) in tissues with fast exchange, while 

two enzymes D1 and type 2 diodiniase (D2) are responsible for the same conversion in tissues 
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with slow exchange of TH. In fact, it is assumed that 80% of conversions occur via D2 in this 

case. Both D1 and D2 are considered activating enzymes, but a third enzyme type 3 diodiniase 

(D3), is deactivating, acting as a scavenger (Maia et al., 2011). The mechanism of T3 interaction 

with these three enzymes is not fully understood, but it is known that D1 induces transcription of 

mRNA via dio1 gene and therefore increases production of T3 (Maia et al., 2011; Darras e Van 

Herck, 2012). 

The balance of TH in the body is maintained in large part via a closed negative feedback 

loop: when TH blood levels decrease, more TH gets produced, while the opposite occurs when 

TH blood levels are high. Plasma levels of all three hormones (TSH, T3, and T4) can be 

measured in blood. All hormone levels exhibit daily oscillations. Thyroid diseases are conditions 

affected by the amount of TH. Clinically, TSH values are used to discern among these conditions 

as the most sensitive to change. Normal TSH range (in euthyroid individuals) is 0.5 – 5 mU/l. 

Individuals who have TSH level greater than 4.5 mU/l are hypothyroid (thyroid gland doesn’t 

produce enough TH), while those who have TSH level less than 0.5 mU/l are called hyperthyroid 

(thyroid gland produces too much TH). Normal ranges for T4 and T3 are: 5-12 ug/dl and 0.8-1.9 

ng/ml, respectively. Graves disease is the most common type of hyperthyroidism, where thyroid 

gland produces excessive amounts of hormone as a response to antibodies activated by the 

autoimmune system (Thyroid Diseases). Hyperthyroidism can be severe hyperthyroidism and 

lead to thyrotoxicosis. Thyrotoxicosis occurs when toxic amount of T3 is present in the body 

causing the suppression of TSH and T4 to subnormal levels. It can also occur without 

hyperthyroidism, due to thyroiditis (inflammation of the thyroid gland) causing release of TH 

stored in the gland, or after ingestion of excessive amounts of TH hormone supplements 
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(Devereaux e Tewelde, 2014). Even mild thyrotoxicosis may have adverse effects on cardiac and 

bone health (Williams, 1997).  

The default simulation model is challenged by published thyrotoxic data in adults, 

following a super-physiological dose of 3mg of oral T4 (either Levothroid® or Synthroid®) 

(Leboff et al., 1982). It underestimates the observed T3 response in plasma, failing to reproduce 

~30% rise in T3 concentrations at times greater than 24 hours, even though it correctly predicts 

T3 responses for the first 24 hours and T4 responses over the same 7 day period (similar peak 

values and areas under the curve (AUC’s)). Our current model addresses this issue by 

incorporating update based on the hypothesis of the underlying biological mechanism. Data 

shows the increase in free T4 and free T3 fractions by 50% in the subjects who were given this 

super-physiological dose. Therefore, we hypothesize that conversion rates of T4 toT3 in both fast 

and slow tissues amplify between 24 and 48h under thyrotoxic conditions. Physiologically, due 

to abrupt increase of the amount of T4 (it increased to > 25 µg/dl) (Eisenberg et al., 2008), TBG 

gets saturated (reaches its maximum binding capacity, which is only about 20 ug/dl of T4), and 

therefore the binding of both T4 and T3 is shifted to the lower affinity serum proteins (HAS and 

TTR). After those proteins get saturated as well, leftover (free) hormone escapes into the cell 

during the first 24 hours. After 24 hour delay, the dio1 gene is activated, makes mRNA, which 

subsequently makes D1 and increases T3 production from increased T4. This amplified increase 

in T3 level causes positive feedback (D1 interacting with T3 and making more of T3) until T4 

level begins to fall (gut absorbs oral dose approximately after 48 hours). The result is a 

significantly greater and transient increase in total T3 (~30%) than would be expected for oral 

dosing with T4 within physiological range.  
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The original model assumed approximate Michaelis-Menten kinetics for T4 to T3 

interconversion, via both D1 and D2 deiodinase activities, with enzyme concentrations assumed 

approximately constant. Even though, this was a good approximation for hypo- and euthyroid 

TH ranges, a more appropriate model for thyrotoxic TH levels was needed. The augmented 

model needed to simulate T3 production more substantially increased for extended periods, via 

positive product feedback of T3 on D1 production and thus the D1-T4 reaction. Simple Hill 

function with Hill constant n > 1 was able to accurately reflect this, with the challenge being to 

find the appropriate value of n. The overall mechanistic model underlying this biosystem 

involves coupled effects among variables and parameters of these subsystems and others, 

meaning significantly more effort was needed to fully refine model parameters to fit the extreme 

thyrotoxic response data, which we accomplished by using global search algorithm. 
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Chapter 5 

Conclusion 

 

5.1 Summary of Contribution of this Dissertation 

At the time of writing this dissertation, it is estimated that only 4% of the human genome 

(including the aforementioned 1.5%) is exonic, while 96% of the human genome is non-exonic. 

Genomic and epigenomic datasets are large-scale data, which size is currently measured in 

gigabytes, terabytes, and possibly even petabytes. These datasets require statistical and 

computational methodology, in addition to incredible amount of computational resources (such 

as time, memory, and processing power) in order to be analyzed and produce scientific findings. 

This dissertation makes a contribution to developement and/or application of existing 

computational, statistical, numerical, and machine learning methods to analyze large-scale 

biomolecular and genomic data.  

 

5.2 Summary of Methods 

We presented computational and quantitative methods developed specifically for 

processing large-scale data and searching vast parameter space.  

In particular, Predictor and Identifier of Conserved Regions (PICEL) method 

incorporates thousands of genomic datasets and provides a single resource to the scientific 

community. It uses supervised machine learning technique logistic regression for which the 
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details are given in chapter two. PICEL serves as a single genome-wide score for predicting 

whether the particular position on the human genome belongs to evolutionary conserved region.  

Percent of variation statistics was used to identify how gene expression values vary 

between brain and blood and among various brain regions, and detect genes that had similar 

value of expression in both blood and brain tissues of the vervet monkeys. The dataset was large 

and required to be prepared and processed on a cluster computer using various scheduling 

techniques. Hierarchical clustering was used to characterize tissue specific gene expression 

differences among eight brain regions. Prior to obtaining results of the gene expression study, we 

successfully applied BLAST method to perform probe-sequence comparison and derived 

computational methodology to analyze large-scale output data, in order to verify whether gene 

expression studies for vervets could be performed using human probes. 

Finally, we carried out various numerical methods in order to perform sensitivity analysis 

on NF-kB dynamic system model in an attempt to simplify the model and discern key molecular 

components of it. By using global search method, we were able to identify parameter values for 

thyroid hormone control flow system model in order to properly handle thyrotoxic case, as 

measured by clinical data.  

 

5.3 Applications 

With PICEL method, we have only scratched the surface of using its output to perform 

heritability analysis, researching false negatives results in gene ontology, and identifying false 

positive results as candidates for future biomolecular or genetic studies. The main purpose of 

PICEL is to summarize data and help discern the more interesting locations in the human 
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genome and the hope that a tool of this caliber may lead to discoveries in biological chemistry, 

human genetics, and medicine. 

 

5.4 Future Work Methodology 

 PICEL method could be improved by incorporating even more (thousands of) data tracks, 

especially if new technologies get developed that measure areas of the open chromatin and also 

potentially if more accurate methods and data detecting conservation appear. In addition, model 

training could be performed using different form of supervised learning technique. Furthermore, 

model accuracy could be even more improved if more samples are used for training, which 

would be possible using stochastic logistic regression.  

 

5.5 Future Work Grand Challenge 

This work demonstrates that it is possible to use computers and algorithms in search for 

discoveries that would potentially lead to novel scientific findings. About a decade ago, when the 

author was introduced to this research area, the grand challenges were somewhat different. 

Computationally, processing power was reaching Moore’s law and multi-core technologies, and 

the powerful cluster computers and process parallelization had been in its infancy successfully 

solving this problem. The idea of applying statistical and machine learning techniques to large-

scale genomic datasets was only a few years old at a time.  

In the field of human genetics, very little was known about human genome or genomes of 

many other species used as model organisms for studying complex traits and human diseases. 

The field of epigenetics was barely emerging. Less efficient wet lab techniques like western blot 
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and PCR were regularly used for isolating only small sequences of the genome, and massive 

parallel sequencing such as gene expression and next generation sequencing had just emerged. 

Furthermore, most types of cancer diseases at the time were in majority of the cases still 

incurable, and far less was known about mechanisms involving cancer or genes that could be 

contributing to its formation.  

At the moment of concluding this dissertation computational methodology and 

quantitative techniques are closely tied to any work produced in the wet lab. More importantly, 

there are many forms of cancer that are now detectable and curable. Even though it is out of 

scope of this dissertation, it is fascinating to note that robotic surgery is a thing of the present 

(and not science-fiction), with many such surgeries successfully performed on daily basis.  

The author hopes and firmly believes that this type of quantitative and computational 

methodology will prevail in the future as well, in order to aid in more efficient, less harmful and 

less invasive search for new therapies and medication, especially for finding cures for various 

neuro-psychological disorders (such as depression) that are starting to plague our society and are 

presenting the next grand challenge to diagnose, treat and cure.  
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